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Abstract 

This paper investigates the case of time-variability in the performance of the cointegration-
based index tracking, which is shown to produce consistent excess return during some time 
periods.  The only information used to construct the trading strategy is the history of stock 
prices, and the cause of the index out-performance should be linked to their time-variability 
characteristics.  We define a new measure of prices’ cohesion within the market index called 
‘index dispersion’.  The relationship between index dispersion and fund out-performance is 
found to depend on stock market regimes.  A Markov switching model estimated for this 
relationship indicates the presence of two regimes having very different characteristics.  The 
first regime, associated with more volatile market conditions and prevailing during the last 
few years, is responsible for the entire excess return generated from index tracking.  In this 
regime, an increase in dispersion is followed by a relative gain from index tracking.  The 
second regime, less volatile but with no significant out-performance of the index tracking 
strategy, is prevailing at the beginning of the data sample, and indeed during most of the 
1990’s. In this regime, it is a decrease in dispersion which is followed by a relative gain from 
index tracking. We relate these observations to the long-run equilibrium relationships 
identified by cointegration and show that the tracking portfolio disregards temporary 
deviations of stock prices from the equilibrium levels which occur in regime two, and tracks 
the index very accurately.  However, when disequilibria in stock prices are no longer 
temporary, but instead represent transitions towards new equilibrium prices, the cointegration-
based tracking portfolio generates consistent excess returns, and this is what is happening in 
regime one.   

 

1. Introduction 

The issue of time-variability in the performance of funds has recently attracted considerable 
academic interest.  One particularly important question is whether the observed time-
variability can provide additional insight on the factors influencing fund returns.  Generally, 
hedge funds and mutual funds have been found to perform better in recession periods than in 
boom periods.  This time-variability has been associated with informational asymmetries 
(Shin, 2002) and changes in the investment environment, according to the phase of the 
business cycle (Moskowitz, 2000; Kosowski, 2001).  A separate line of research concerns 
trend following strategies, which have been found to generate returns similar to a lookback 
straddle paying the owner the difference between the highest and the lowest price of the 
underlying asset over the observation period (Fung and Hsieh, 1997 and 2001).  Trend 
followers appear to perform best in extreme up or down markets, and less well during calm 
markets.  Even without highlighting the cause of this behaviour, there is considerable interest 
from the investment community in the fact that these funds provide a partial hedge against 
general market conditions (Fung and Hsieh, 1997). 

This paper investigates one particular case of time-variability in fund performance and 
identifies a highly significant leading indicator for it.  Both the investment strategy and the 
leading indicator are generated through a purely statistical methodology.  The fund is assumed 
to operate solely on the cointegration-based index tracking methodology introduced by 
Alexander (1999).  This strategy is known to have some interesting features, such as the fact 
that the tracking portfolio comprising the same stocks as the market index produces a 
consistent excess return during some time periods (Alexander and Dimitriu, 2002).  This is a 
rather counterintuitive result, as one would expect the most complete combination of stocks 
available, which is found to be cointegrated with the index, to produce always a stationary 
tracking error, even out of sample.  Nevertheless, the pattern of the excess return exhibits a 
pronounced time-variability: periods of stationary excess return are alternating with periods 
during which the excess return is accumulated consistently.  Moreover, the periods during 
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which most of the excess return is produced appear to coincide with the main market crises 
during the sample period.   

The only information used to construct the tracking strategy is the history of the stock prices, 
and therefore, the cause of the index out-performance should be linked to the time-variability 
characteristics of the stock prices in the system.  We define a new measure of prices’ cohesion 
within the market index called ‘index dispersion’.  The relationship between index dispersion 
and fund out-performance is found to depend on stock market regimes.  A Markov switching 
model estimated for this relationship identifies two, very distinct regimes, with almost all out-
performance being attributed to just one of these regimes.   

Throughout the analysis we justify the conclusions drawn from real-world and simulated 
stock and index prices.  Beginning with the simplest two-stock scenario, we illustrate the 
connection between stock prices, portfolio weights and index out-performance.  The 
relationship between excess return from index tracking and stock price dispersion is then 
examined cross-sectionally, by simulating stock prices and controlling for their dispersion in 
the index, and in a time series context.  Both methods document a significant linear 
relationship which, however, has a considerable time-variability in parameters.  To address 
this issue, a Markov switching model for the excess return from index tracking is estimated 
using the real-world universe of the Dow Jones Industrial Average (DJIA).  We find strong 
evidence of a latent state variable, which determines the form of the linear relationship 
between the excess return from index tracking and the stock prices dispersion.  

Belonging to a very general class of time series models, which encompasses both non-linear 
and time-varying parameter models, the regime switching models provide a systematic 
approach to modelling multiple breaks and regime shifts in the data generating process.  

Increasingly, regime shifts are considered to be governed by exogenous stochastic processes, 
rather than being singular, deterministic events.  When a time series is subject to regime 
shifts, the parameters of the statistical model will be time varying, but in a regime-switching 
model the process will be time-invariant conditional on a state variable that indicates the 
regime prevailing at the time.   

The importance of these models has long been accepted, and the pioneering work of Hamilton 
(1989) has given rise to a huge research literature (Hansen, 1992 and 1996; Kim, 1994; 
Filardo, 1994; Diebold, Lee and Weinbach, 1994; Garcia, 1998; Psaradakis and Sola, 1998).  
Hamilton (1989) provided the first formal statistical representation of the idea that economic 
recessions and expansions influence the behaviour of economic variables.  He demonstrated 
that real output growth might follow one of two different auto-regressions, depending on 
whether the economy is expanding or contracting, with the shift between the two states 
generated by the outcome of an unobserved Markov chain.  Subsequent research in 
macroeconomics and business cycles includes several Markov switching models of GNP 
(Hansen, 1992 and 1996), interest rates (Gray, 1996; Sola and Driffill, 1994) and foreign 
exchange rates (Engel and Hamilton, 1990).  

In finance, the applications of Markov switching techniques have been many and very 
diverse: from modelling state dependent returns (Perez-Quiros and Timmermann, 2000) and 
volatility regimes (Hamilton and Lin, 1996), to option pricing (Aingworth, Das and 
Motwani, 2002), to detecting financial crises (Coe, 2002), bull and bear markets (Maheu and 
McCurdy, 2000) and periodically collapsing bubbles (Hall, Psaradakis and Sola, 1999), or to 
measuring mutual fund performance (Kosowski, 2001).  Despite their limited forecasting 
abilities (Dacco and Satchell, 1988), Markov switching models have been successfully 
applied to constructing trading rules in equity markets (Hwang and Satchell, 1999), equity 
and bond markets (Brooks and Persand, 2001) and foreign exchange markets (Dueker and 
Neely, 2002).   
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In this paper we find that, when applied to modelling the excess return from index tracking, 
the Markov switching model indicates the presence of two regimes having very different 
characteristics.  The first regime, associated with more volatile market conditions, is 
responsible for the entire excess return generated from index tracking.  This regime occurs 
much more frequently during the last few years: since 1999, even though stock markets have 
been excessively volatile, the prevailing regime has been the one associated with positive 
excess return from cointegration based index tracking.  The second regime, less volatile but 
with no significant out-performance of the index tracking strategy, is prevailing at the 
beginning of the data sample, and indeed during most of the 1990’s.  

Additionally, the explanatory variable, the lagged change in index dispersion, has a different 
effect on the excess return in the two regimes: in the first regime an increase in dispersion is 
followed by a relative gain from index tracking in the next period, while in the second regime 
it is a decrease in dispersion that is associated with relative gains from index tracking in the 
next period, although in the second regime such gains are only temporary.  We relate these 
observations to the long-run equilibrium relationships identified by cointegration and show 
that the tracking portfolio disregards the temporary deviations of stock prices from the 
equilibrium levels which occur in regime two, and tracks the index very accurately.  
However, when disequilibria in stock prices are no longer temporary, but instead represent 
transitions towards new equilibrium prices, the cointegration-based tracking portfolio 
generates consistent excess returns, and this is what is happening in regime one.   

The remainder of the paper is organised as follows: section two reviews the cointegration-
based index tracking methodology, defines the index dispersion and motivates a possible 
relationship between dispersion and tracker fund performance; section three uses simulated 
indices with different dispersion characteristics to document the relationship between 
dispersion and index tracking out-performance; section four examines the real world 
relationship between excess return from index tracking and lagged dispersion in the Dow 
Jones Industrial Average (DJIA) and motivates the need for a Markov switching framework; 
section five introduces the Markov switching model of index tracking performance and makes 
statistical inferences on its relationship with index dispersion; section six constructs trading 
rules based on the Markov switching model that demonstrate its predictive power; and finally, 
section seven summarises and draws the main conclusions.   

2. Cointegration and Index Dispersion 

The rationale for constructing tracking portfolios based on a cointegration relationship with 
the market index rests on the following features of cointegration: the price difference between 
the index and the tracking portfolio (i.e. the tracking error) is, by construction, stationary; the 
stock weights, being based on a large amount of history, have an enhanced stability; and, 
there is a full use of the information comprised in level variables such as stock prices.  
Moreover, cointegration relationships between the market index and portfolios comprising all 
or only part of their stocks should be easy to find since market indexes, either equally 
weighted or capitalisation weighted, are just linear combinations of stock prices.    

Following Alexander and Dimitriu (2002), we assume that the fund uses a natural logarithmic 
formulation1 of the cointegration-based index tracking model.  The basic model for a tracking 
portfolio comprising all the stocks included in the market index at a given moment is a 
cointegrating regression of the form: 

                                                 
1 Hendry and Juselius (2000) show that if level variables are cointegrated, so will be their logarithms. The level 
variables are cointegrated by definition, since the current weighted index is a linear combination of the stock 
prices. 

3 



t

n

1k
tk,1k1t ε)ln(Pcc)ln(index ++= ∑

=
+     (1) 

where the index is reconstructed historically based on the current membership of the market 
index, and n is the total number of stocks included in the market index.  The specification of 
the model in natural log variables has the advantage that, when taking the first difference, the 
expected returns on the tracking portfolio will equal the expected returns on the market index, 
provided that the tracking error is a stationary process.  

We note that the application of ordinary least squares (OLS) to non-stationary dependent 
variables such as ln(index) is only valid in the special case of a cointegration relationship.  
The residuals in (1) are stationary if, and only if, ln(index) and the tracking portfolio are 
cointegrated.  If the residuals from the above regressions are non-stationary, the OLS 
coefficient estimates will not be consistent and no further inference will be valid.  Testing for 
cointegration is, therefore, essential in constructing cointegration optimal tracking portfolios.  
The Engle-Granger (1986) methodology for cointegration testing is particularly appealing in 
this respect for its intuitive and straightforward implementation.  Moreover, the well-known 
limitations (small sample problems, asymmetry in treating the variables, at most one 
cointegration vector) are not effective in the construction of tracking portfolios.  The 
estimation sample is typically set to at least three years of daily data, there is a strong 
economic background to treat the market index as the dependent variable, and identifying 
only one cointegration vector is sufficient for our purposes.  Further to estimation, the OLS 
coefficients in model (1) are normalised to sum up to one, thus providing the composition of 
the tracking portfolio.      
 
Alexander and Dimitriu (2002) present an exhaustive analysis of the performance 
characteristics of cointegration optimal tracking portfolios, together with various other 
statistical arbitrage strategies derived from them, for different model parameters.  Such model 
parameters include the number of stocks in the tracking portfolios, the stock selection method, 
the spread between the benchmarks tracked and the calibration period.  The out-of-sample 
performance of all fully funded and self-financing portfolios, in the DJIA stock universe, was 
measured based on a commonly used rebalancing method: every 10 trading days the optimal 
weights of the stocks are rebalanced based on the new OLS coefficients of the cointegration 
regression.  For each re-balancing, the cointegration regression (1) is re-estimated over a 
fixed-length rolling calibration period, ranging from 3 to 5 years of daily data.  The number of 
shares held in each stock is further determined by the previous portfolio value, the current 
stock prices and the stock weights.  In between re-balancings, the portfolios are left 
unmanaged, i.e. the number of stocks is kept constant.   

From all the combinations investigated in Alexander and Dimitriu (2002), the case of the 
tracking portfolio comprising all stocks in the market index displayed a very interesting 
feature, the simple index tracking producing a positive excess return in certain market 
conditions.  This is a rather counterintuitive result, as one would expect the most complete 
combinations of stocks, very strongly cointegrated with the reconstructed index, to produce 
out of sample returns with zero mean.  To investigate whether this result can be replicated in 
other equity markets, we have constructed random subsets of stocks in the FTSE100, CAC40 
and SP100 universes.  For each index we have set up 100 random portfolios comprising a 
fixed number of stocks (50 for FTSE, 25 for CAC and 80 for SP100) and determined an equal 
holding index for each portfolio, as a simple average of the stock prices.  Each of the 300 
indexes was tracked with a cointegration-optimal portfolio comprising all the stocks included 
in that particular index.  Based on the rebalancing strategy detailed above, we have 
determined and reported in Table 1 the average annual excess return from index tracking over 
the period 1997 to 2001, together with its standard deviation.  For comparison, we have also 
reported the excess return from index tracking in the real-world DJIA universe. 
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[Insert Table 1 here]  

The first observation is that, for all four cases, DJIA, FTSE, CAC and SP100, there is a 
positive average excess return over the index tracked, when measured over the entire data 
sample.  This result is highly relevant, showing that excess return can be obtained in different 
markets, with largely different numbers of stocks (from 25 in CAC to 80 in SP100). 
Regarding the time distribution of the excess returns for the simulated indices, the last years 
in the data sample are responsible for most of this excess return, as it is also the case with the 
DJIA index tracking.  The time variability is less evident in the CAC case, and most evident 
in the case of FTSE simulated indexes for which the excess return in 2000 is almost 5%, 
while in case of SP100 simulated indexes, the largest excess return occurs during 2001, 
amounting to 4.6%.  Given the consistency of this pattern, it is expected that the same type of 
out-performance occurs also for other stock markets.      

Considering the above, we conclude that there is clear evidence of excess return from 
cointegration-based index tracking, and this out-performance has an obvious time-variability 
pattern.  This provides us with the motivation to investigate further the pattern of the index 
tracking out-performance, restricting the analysis, for reasons of space, to the DJIA universe. 

Using daily close prices for the thirty stocks in the DJIA as of 31-Dec-01 and a sample period 
from 01-Jan-90 to 31-Dec-01, we have estimated the performance of a fund applying 
model (1) with a rolling 3-year calibration period and 10-day recalibration/rebalancing 
frequency.  The cumulative daily excess return (calculated as the difference between the 
return on the tracking portfolio and the return on the index) during the entire sample period is 
shown in Figure 1.  A very noticeable feature is the time variability of the excess return, 
which is far from being uniformly accumulated throughout the data sample.  Periods of 
stationary excess returns alternate with periods during which there is consistently positive 
excess return.  Moreover, the periods during which most of the excess return is accumulated 
coincide with the main market crises during the sample period: the Asian crisis, the Russian 
crisis and the technology market crash.  

[Insert Figure 1 here] 

The question arising is what causes this excess return, and there is no obvious answer.   
Although the periods with excess return are associated, on a longer time horizon, with market 
downturns, on a daily basis there is no significant negative correlation with the market 
returns.  Neither is there a significant positive correlation with the change in market volatility 
(the unconditional correlation coefficients estimated over the entire sample using daily data 
are very close to zero: 0.01 and –0.03 respectively).  Moreover, these low correlation 
coefficients are not an artefact of the simple (equally weighted) measure of association, since 
also the conditional correlation estimates remain low throughout the entire data sample.2    

Considering that neither market returns nor market volatility manage to explain the excess 
return from index tracking, another potential cause of the excess return from index tracking 
could be the 10-day no-rebalancing period.  However, a portfolio constructed based on market 
weights and held constant for 10-day intervals produces a zero-mean stationary excess return 
in out of sample backtests.  Therefore, the 10-day no-trading interval is not responsible for the 
excess return from index tracking.   

                                                 
2 Exponentially weighted moving average (EWMA) correlation between the excess return from index tracking and 
the market returns generally remain between -0.2 and +0.2, although this does depend to some extent on the choice 
of smoothing constant. The same can be observed for the EWMA correlation between excess return and the first 
difference in market volatility: this too generally falls between -0.2 and +0.2. 
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Having eliminated these potential causes, it follows that the out-performance of the 
cointegration tracking portfolio must be connected to the portfolio weighting system and its 
relationship with stock price dynamics.  In order to understand better the relation between the 
market index and the tracking portfolio weights based on the normalised cointegration 
regression coefficients estimated using model (1), we investigate the simplest case of an index 
comprising only 2 stocks.  The index, It, is computed as the average of the two stock prices. 
For constructing a portfolio tracking It from the two stocks, according to model (1) we need 
the weight w such that 

)w)ln(P(1)wln(P)ln(I t2,t1,t −+=      (2) 
 
It follows that where a = Pa)ln(2))/ln(a)(ln(1w −+=

a)a/(1w* +=

1 / P2.  Therefore w > 0.5 if and only 
if P1 > P2, meaning that in (2), the stock with the higher price will also have a higher weight in 
the tracking portfolio.  The difference between the tracking portfolio weights in model (2) and 
the market weights, , will increase with the spread between the stock prices.  
The further away is a from unity, the more significant will be the over-weighting of the stock 
with the higher price in the tracking portfolio, and, also, the larger the dispersion between the 
two stock prices.  Therefore, a significant difference between the stock index weights and 
tracking portfolio weights occurs when the dispersion of stock prices increases.   

This clear-cut result motivates our study of index dispersion, i.e. the cross sectional standard 
deviation of the prices across their mean (which is the reconstructed index), defined as: 

n/))/II-((Pd
n

1k

2
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For computing the time series of index dispersion, all stock prices are rescaled to be equal to 
100 at the beginning of the period, the series starting therefore from zero.  In (6), the index is 
reconstructed as an equally weighted average of the stock prices, which represents just a scale 
adjustment to the DJIA case, based on the value of the latest index divisor.   

In Figure 2 the bold line represents the time series of dispersion in the DJIA.  After a steady 
increase, the dispersion indicator increased substantially at the beginning of the technology 
sector boom, due to the sharp increase in the price of technology stocks, and a relative decline 
in price of other sectors.  The highest dispersion occurred at the beginning of 2000, but since 
then the dispersion has decreased, most obviously during the crash of the technology bubble. 
We note that index dispersion in most major equity markets (whether capitalisation3 or 
equally weighted) follows a similar pattern.   

 

3. Cross-sectional Analysis of the Excess Return - Simulation Results 

In this section we use simulation to verify that different degrees of dispersion in stock indexes 
give rise to different excess returns from index tracking.  To this end, we need to construct 
equity indices which are similar in all respects except for their dispersion.  In a classical 
simulation framework (i.e. based on a stock price model such as, for example, a lognormal 
diffusion with Poisson jumps), there is no straightforward way to allow for different degrees 
of dispersion in different sets of stock prices, since the dispersion is not an explicit parameter 
                                                 
3 The dispersion in a capitalisation weighted index is computed as: 
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in the model.  Generally, dispersion in a stock prices system can be obtained by using 
different drifts in the individual stock returns, but this would infringe the requirement of 
having the systems of stock prices similar in all respects, except for the dispersion.     

Another solution is to use the actual DJIA system of stock prices as reference, and further 
reduce/increase its dispersion, by preserving the general pattern of stock prices and having 
exactly the same index for all the systems.  To this end, at every point in time, the stocks are 
split into two groups by the prices’ median.  We finely adjust the next-period return, r, for 
each stock with price above the median.  For a particular stock, the adjusted return, r* is given 
by: 

      (1−α)r if r > 0 
- reduced dispersion simulations  r* =  
      (1+α)r if r < 0 
 
      (1−α)r if r < 0 
- increased dispersion simulations: r* =  
      (1+α)r if r > 0 
 

Thus the high price stock group will move closer to the median in the reduced dispersion 
simulations and away from the median in the increased dispersion simulations.  The level of α 
should be set reasonably low, and in our case α was set to 0.01.  In order to keep the index 
value unaffected by these adjustments, the price of each stock below the median must be 
increased (respectively decreased) proportionally to the difference between the adjusted prices 
mean and the index, which is also the mean of the unadjusted prices.  This difference is 
uniformly distributed between the stocks, according to their price.  The result is three systems 
of stock prices: the historical prices, a simulated system with reduced dispersion and a 
simulated system with increased dispersion.  All three systems have the same index value at 
every point in time, computed as the simple average of the stock prices.  The individual stock 
returns have slightly different means and volatility in the three systems, but the differences 
are very small indeed.   

[Insert Figure 2 here]  

Using the DJIA stocks as reference, the time series of the dispersion in the three systems are 
compared in Figure 2.  The differences in dispersion are significant and uniformly 
accumulated.  Since the systems are similar in all other features, we should be able to quantify 
the impact of dispersion on the excess return from index tracking.  For each system we 
construct cointegration-optimal tracking portfolios comprising all stocks, and rebalance them 
every 10 days as explained in section 2.  The excess return from index tracking is determined 
in each system as the difference between the tracking portfolio returns and the index returns.  
The cumulative excess return from index tracking in the original DJIA framework, 
accumulated over the period Jan-92 to Dec-01, is 11.30%, while in the reduced, respectively 
increased dispersion system it is 11.53%, respectively 9.97%.  Overall there appears to be a 
negative relationship between dispersion and the excess return from index tracking.  
However, if up to the end of 2000, the excess return from index tracking is negatively related 
to dispersion, after that point the relationship changes: the highest excess return (6.9%) is 
generated by the system with the highest dispersion, and the lowest excess return (3.1%) is 
generated in the system with the reduced dispersion.  Such change in the sign provides us 
with additional motivation to investigate, in a time series context, the relationship between 
index dispersion and the cumulative excess return from index tracking.   
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4. A Basic Time Series Analysis   

Both cumulative excess return and index dispersion prove to be I(1) variables.4  Thus a basic 
stationary specification of their relationship will relate the excess return from index tracking 
to the change in index dispersion, including also the lagged excess return and some lagged 
changes in dispersion:    

t2-t41-t3t21-t1t ∆disp*β∆disp*β∆disp*βxs_return*βα  xs_return ε+++++=      (7) 

The simple regression estimation results based on the DJIA sample from Jan-92 to Dec-01 are 
presented in Table 2.  Statistically significant coefficients are associated with the lag of the 
excess return and the first lag of the change in dispersion.  The contemporaneous and the 
second lag of the change in dispersion are not statistically significant.  The positive 
coefficient of the lagged excess return accounts for the autocorrelation in the excess return 
from index tracking.  As indicated also by simulation analysis, there is a negative, significant 
relationship between the excess return from index tracking and the lagged change in 
dispersion.  Thus following an increase in dispersion, there will be a relative loss in the 
tracking portfolio compared with the market.  The fact that the excess return from index 
tracking is determined by the lagged change in dispersion rather than by a simultaneous 
variable will be of further use in constructing trading rules.    

[Insert Table 2]       

We also need to test the structural stability of this relationship, as we have noticed in the 
cross-sectional framework a potential change at the end of year 2000.  To this end, we run a 
standard Chow structural break test, with the breakpoint set at various dates in the sample. 
The results are shown in Figure 3.  According to these results, the null hypothesis of no-
structural break is most significantly rejected on 16th October 2000.  The two regressions 
estimated before and after this date give quite different results (Table 3).  The main difference 
between them is the sign of the coefficient of the lagged dispersion.  As displayed also in 
Figure 3 by the rolling window estimates of the slope coefficient, until October 2000 there is, 
almost always, a negative relationship between excess return from index tracking and the 
lagged change in dispersion, but after October 2000, the relationship between the two 
variables becomes positive.  Additionally, when the impact of the change in dispersion is 
separated in the two samples, the lagged dependent variable becomes insignificant. 

[Insert Figure 3 and Table 3 here]   

Rationale for the Relationship between Index Dispersion and Tracking Performance 

Provided that the weights in the tracking portfolio are based on a long-run equilibrium 
relationship identified by cointegration, the negative relationship between the excess return 
from index tracking and the lagged change in dispersion therefore has a strong rationale.  The 
dispersion can be interpreted of a measure of (dis)equilibrium – when prices diverge from 
long-run equilibrium levels, the dispersion in the entire stock prices system increases.   

To illustrate this, we use the example of a stock from the upper part of the index stock prices. 
Figure 4(a) shows a smooth line representing the long-run equilibrium price of this stock and 
a wavy line representing the actual price of this stock.  If the price of the stock increases, its 
weight in the market index will also increase (remember that our reconstructed index is an 
equally weighted average of stock prices).  However, its weight in the tracking portfolio, 
                                                 
4 Considering the ADF statistics for the dispersion, respectively cumulative excess return, of –0.81 and 0.18, we 
cannot reject the null hypothesis of a unit root in the series. However, the ADF tests on the first difference of the 
series clearly reject the null hypothesis of unit root (ADF statistics of –22.11 and -23.11) at any standard 
significance level.  
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being based on a long history of prices, is not likely to react immediately to the increase in the 
stock price, which could be just noise from a long-run equilibrium perspective.  Therefore, the 
tracking portfolio will be relatively under-weighted on this particular stock while its price is 
increasing, and it will realise relative losses compared to the market index, during a period 
when dispersion is increasing.  However, when the price of this stock returns towards its long-
run equilibrium level, and consequently the dispersion in the system decreases, the tracking 
portfolio will make a relative profit compared with the market index, because it is still under-
weighted (relative to the index) on a stock whose price is declining.   

[Insert Figure 4 here] 

In this framework, the positive relationship between the excess return and the change in 
dispersion after October 2000 is rather puzzling.  The only feasible explanation is that the 
cointegration relationship identifies new equilibrium prices, which are even further dispersed. 
This case is illustrated in Figure 4(b) where now the high price stock has a long-run 
equilibrium price well above the actual stock price shown by the wavy line.  The tracking 
portfolio will realise a relative profit when the stock price is increasing because it is over-
weighted (relative to the index) on the high-price stock.  Similarly when the high price stock 
declines and the dispersion decreases, the tracking portfolio, which is relatively over-
weighted in this stock, will make a relative loss.  Thus, when cointegration identifies a new 
equilibrium, where the stock prices are even further dispersed, positive excess returns will be 
associated with increasing dispersion. 

Returning to the Chow test results, in order to explain the significant change in the behaviour 
of the excess return from index tracking, we take a closer look at the markets during the 
period September-December 2000.  We examine a three-month period rather than only 
October 16th because the exact date indicated by the tests as having the highest likelihood of a 
structural break can be an artefact of the estimation method used.  This three-month period is 
the time of the second great fall in the Nasdaq composite index - index volatility reached 
47.59% and the index fell 48.25%, i.e. another 745.83 points, having already fallen 425 points 
from March 2000.  Therefore, it is reasonable to infer that October 2000 marked the end of 
the technology bubble. 

However, up to now, we have only found that there can be two different specifications of the 
relationship between the excess return from index tracking and the lagged change in 
dispersion.  There is an obvious time-variability in the parameters of the estimated 
regressions, which cannot be accounted for with simple tools like Chow structural break tests 
without inducing a significant degree of arbitrariness.  There appear to be some grounds for a 
structural break in the relationship between the excess return and dispersion in October 2000, 
but this does not ensure that the break identified is unique.  To address these issues, we 
propose a Markov switching modelling alternative. 

 

5. A Markov Switching Model  

To specify and make further inference on the time-variability pattern identified in Figure 1, 
we have estimated a Markov switching model for the excess return from index tracking.  The 
model assumes the presence of a latent variable (state variable) which determines the form of 
linear relationship between the excess return from index tracking and the lagged dispersion in 
stock prices.  The advantages of using a latent variable approach instead of a pre-defined 
indicator have been long documented.  For example, when analysing business cycles, the 
Markov switching model produces estimates of the state conditional probabilities, which 
contain more precise information about the states that are driving the process than a simple 
binary indicator of the states, which is prone to significant measurement errors.  The estimates 
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of the conditional probability of each state allow more flexibility in modelling the switching 
process.  An additional motivation for using a latent variable approach in this case, is the fact 
that there is no obvious indicator of the states of the process generating the excess return from 
index tracking.  

For the Markov switching model of excess return from index tracking, the intercept, 
regression slope and the variance of the error terms are all assumed to be state-dependent. If 
we let st denote the latent state variable which can take one of K = 2 possible values 
(i.e. 1 or 2), then the regression model can be written as: 

tt sstt εβzy += '      (8) 
 
where yt  is the (T x 1) vector of the excess return from index tracking; zt = (1 xt) is the (T x 2) 
matrix of explanatory variables, with xt denoting the lagged change in the prices dispersion; 

) ( 
tt ss γµ=

tsβ is the vector of state dependent regression coefficients; ε is the vector of state 

dependent disturbances, assumed normal with state dependent variance 
ts
2σ

ts  

The transition probabilities for the two states are assumed to follow a first-order Markov 
chain and to be constant over time:  

ij1tt2t1tt pi}s|jP{sl,...}si,s|jP{s ======= −−−     (9) 
 
The matrix of transition probabilities can be written: 

ij
2211

2211

2212

2111 p]pp-1
p-1p[]pp

pp[ ===P      (10) 

 
If we let ξt represent a Markov chain, i.e. a random (2x1) vector whose element j is 1 if s t = j 
and zero otherwise: 
 

                     (11) 2s   when (0,1)'
1s   when (1,0)'{

t

t
=
==tξ

 
then the conditional expectation of ξt+1 given s t = i is given by: 
 

tt Pξξ ===+ ]p
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i2

i1
t1       (12) 

 
The conditional densities of yt, assumed to be Gaussian, are collected in a 2x1 vector: 
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where α is the vector of parameters characterising the conditional density.  
 
The conditional state probabilities can be obtained recursively: 
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t|tt|1t

t1-t|t

t1-t|t

ˆˆ

)ˆ('

ˆ
 ˆ

ξPξ

ηξ1

ηξ
ξ t|t

=

⊗

⊗
=

+

      (13) 

 
where ξ represents the vector of conditional probabilities for each state estimated at time t, 

based on all the information available at time t, while ξ represents the forecast of the same 
conditional probabilities based on the information available at time t for time t+1. The 
symbol ⊗  denotes element-by-element multiplication.  

t|t
ˆ

t|1t+
ˆ

 
The ith element of the product ξ can be interpreted as the conditional joint 
distribution of y

t1-t|t
ˆ η⊗

t and st = i. The numerator in expression (13) represents the density of the 
observed vector yt conditional on past observations.  
 
Provided the assumptions made on the conditional density of the disturbances, the log 
likelihood function can be written as: 
 

)ˆ('log);;|(log),( t1-t|t
11

ηξ1PαzyPα tt ⊗== ∑∑
==

T

t

T

t
fL   (14) 

 
This approach allows the estimation of two sets of coefficients for the regression and variance 
of the residual terms, together with a set of transition probabilities.  
 
Considering the complexity of the log likelihood function and the relatively high number of 
parameters to be estimated, the selection of starting values is critical for the convergence of 
the likelihood estimation.  To reduce the risk of data mining, we have not used any state-
dependent priors as starting values.  Instead, we have used the unconditional estimates of the 
regression coefficients and the standard error of the residual term.  Additionally, we have 
arbitrarily set ξ1|1 to (1 0).  A number of restrictions needed to be imposed on the coefficient 
values, in order to ensure their consistency with model assumptions.  The transition 
probabilities were restricted to be between 0 and 1, while a non-negativity constraint was 
imposed on the standard deviation of the residuals in both states.   
 
In Markov switching models it is essential to ensure a sufficiently long data sample for 
correctly identifying the time-variability of parameters.  The data sample covered 10 years of 
daily data from 1992 to 2002.  In a correctly specified switching model, i.e. one in which the 
entire time-variability of the parameters is captured by the regime switching and within each 
regime the parameter estimates are time-invariant, the use of such a long data sample should 
not create any difficulties. 
 
[Insert Table 4 here] 
 
Table 4 reports the Markov switching model estimation over the entire data sample.  The only 
coefficients statistically non-significant at 1% are the regression intercepts, for both states.  A 
noteworthy difference between the two regimes concerns the coefficient of the lagged change 
in dispersion: in the first state, the coefficient is positive, while in the second state it is 
negative, thus the lagged change in dispersion having a different effect on the excess return in 
the two regimes.  In the first regime an increase in the index dispersion is followed by a 
relative gain from index tracking in the next period, while in the second regime, a decrease in 
dispersion is the one associated with relative gains.  Additionally, the standard deviation of 
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the residuals is higher in the first regime, but as we show below, so is the excess return 
generated during this regime.  Regarding the transition probabilities, the second regime 
appears to be more persistent than the first one: the probability of staying in regime two at 
time t+1 provided that at time t the process was in regime two is 0.98, while the probability of 
remaining in regime one once there is 0.88. 
 
If we split the sample observations between the two regimes based on the criterion of 
estimated probability5, we can determine the excess return associated to each regime.  Based 
on this procedure, the number of observations in regime two is almost three times the number 
of observations in regime one.  Also, the cumulative excess return generated during regime 
one turns out to be even higher than the excess return generated by the entire process, because 
the second regime generates a relative loss, even if not very significant. 

Figure 5 shows the cumulative excess return from each regime: there is a consistent excess 
return produced in regime one, while the second regime produces a slightly negative excess 
return.  Apart from higher returns, and higher volatility, regime one returns have a positive 
skewness (0.77) and higher excess kurtosis (2.99).  Regime two, as well as having negative 
mean returns, also exhibits a negative skewness (-0.11), which indicates a higher probability 
of returns below the average, but relatively low excess kurtosis (0.11). 

[Insert Figure 5] 
 
Based on the same separation procedure as above, we observe that, as opposed to the tracking 
portfolio, the market index generated smaller returns in regime one than in regime two (the 
equivalent of 8.75% p.a. as opposed to 12.93% p.a.).  The notable difference concerns, 
however, the volatility of these returns: regime one returns are associated with an annual 
index volatility of 19%, while the returns in regime two have only 13% annual index 
volatility.  Therefore, the tracking over-performance occurs in periods with lower returns and 
higher volatility for the market.  
 
The time distribution of the states is an important feature to investigate.  From Figure 6, 
which plots the estimated probability of the first regime, it becomes clear that in the first half 
of the sample regime two is the one prevailing, while towards the end of the sample, regime 
one becomes predominant.  Over the entire data sample, observations in regime one represent 
25% of the total number of observations.  However, this distribution is far from being time 
invariant, since in the first half of the data sample, regime one accounts for only 7% of the 
total number of observations, while in the last two years of the data sample, i.e. 2000 and 
2001, regime one occurs 87% of time.    
 
Our main conclusion is that the two regimes have very distinctive characteristics: regime one, 
which occurs less frequently, but is predominant during the last few years, is responsible for 
producing the entire excess return from index tracking.  This regime occurs in more volatile 
market conditions and the over-performance follows an increase in the index dispersion.  In 
the second regime there is a negative, but not significant, excess return from index tracking.  
Any positive excess return from index tracking in regime two occurs following a decrease of 
the index dispersion. 
 
Considering the consistent excess return generated in regime one, and its relationship with the 
lagged change in dispersion, it follows that, in this regime, when the stock prices become 
more dispersed, the index tracking is in a relative profit position.  This can occur if the 
tracking portfolio is over-weighted on stocks having higher than average prices which are 
further increasing, and/or under-weighted on stocks having lower than average prices which 

                                                 
5 If the estimated conditional probability of regime one at time t is above 0.5, we say that the process was in regime 
one at time t. Alternatively, the process will be in regime two. 
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are further decreasing.  If these prices, after diverging, would return towards their previous 
levels, then the initial relative profit of the tracking portfolio would be reversed, and there 
would not be any consistent excess return.  However, since in this regime the observed excess 
return is consistent, it follows that after diverging, the prices are not returning to their 
previous levels.  Instead, they are actually moving towards new equilibrium levels, levels that 
are pre-identified by the cointegration relationship and accounted for in the composition of 
the tracking portfolio.  Therefore, the tracking portfolio is in a relative profit position during 
such transition periods, which, in regime one, are not likely to be reversed and consequently 
the profit to be eroded.   
 
When there is an increase in dispersion in regime two, i.e. when the prices move away from 
equilibrium, the tracking portfolio is in a relative loss position compared to the market index. 
However, since there is no consistent loss on the tracking portfolio during regime two, it 
means that these stock price movements are only temporary disequilibria, and the 
cointegration is treating them accordingly.  In regime two, the drifting of stock prices around 
their long-run equilibrium results in a stationary tracking error in the cointegration process. 
 
Testing the null hypothesis of no-switching  
 
In order to validate the above inferences about the two-state process driving the excess return 
from index tracking, one needs to test and reject the null hypothesis of no switching.  Even if 
there is evidence that the excess return has different patterns in the two regimes, this does not 
imply that the asymmetries between the two states are also statistically significant.  
 
Standard testing methods such as likelihood ratio tests are not applicable to Markov switching 
models due to the presence of nuisance parameters under the null hypothesis of linearity, or 
no switching. The presence of nuisance parameters gives the likelihood surface sufficient 
freedom so that one cannot reject the null hypothesis of no switching, despite the fact that the 
parameters are apparently significant.  
 
A formal test of the Markov switching models against the linear alternative of no-switching, 
which is designed to produce valid inference, has been proposed by Hansen (1992, 1996).  
This method implies the evaluation of the log likelihood function for a grid of different values 
for the regression coefficients, standard deviation and the transition probabilities.  Therefore, 
for each set of parameters, a constrained optimisation takes place.  However, depending on 
the complexity of the log likelihood function and the number of parameters, this method can 
become computationally burdensome.  
 
Following Hamilton (1996), we let α = (µ1-µ2, γ1-γ2, σ1-σ2, p11, p22)’ denote the regime 
switching parameters of model (8) and λ = (µ1, γ1, σ1)’ denote the remaining parameters, 
which are not state dependent.  The conditional log likelihood function for the parameters will 
be written as Lt(α,λ) = log f(yt|yt-1, yt-2, ... y1; α,λ).  
 
The null hypothesis of no switching can be written as α = α0, where α0 = (0, 0, 1, 0)’.  To 
represent the alternative hypothesis, we have constructed a grid of 1,125 possible values for 
α, with A denoting the set comprising all values of α.  For any α, denotes the value of λ 
that maximises the likelihood taking α as given.  Hamilton (1996) defines the time series of 
the difference between each constraint log-likelihood function for the grid of alternatives and 
the constraint log-likelihood function estimated for the null hypothesis as:      

) (αλ̂

 
)](αλ̂,[αl)] (αλ̂, [αl) (αq 00ttt −=     (15) 

  
The likelihood ratio statistic is: 
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If the null hypothesis is true, then, for large samples, the probability that the above statistic 
exceeds a critical value z is less than the probability that the following statistic exceeds the 
same value z: 
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Following Hamilton (1996), we have generated Hansen’s statistic for M values of 0-4 and 
found that the null hypothesis is strongly rejected with a p-value of 0.0000.  The estimated 
Hansen statistic is of 5.58, while the upper bound of the simulated distribution is 2.82.   

 
An alternative approach to the Hansen statistic uses a classical log likelihood ratio test for 
estimating (a) the asymmetries in the conditional mean, assuming the existence of two states 
in the conditional volatility, and (b) the asymmetries in the conditional volatility, assuming 
the existence of two states in the conditional mean.  Such test follows the standard chi-
squared distribution.  Table 5 reports the log likelihood estimates for the restricted and 
unrestricted models, the log likelihood ratios and the associated p values.     

[Insert Table 5 here] 

We have tested the following hypotheses: (1) the intercept and slope coefficients are not 
significantly different between the two states, and (2) the standard deviations of the residuals 
of the two states are not significantly different.  As shown by the results in Table 5, both tests 
turned out to be statistically significant, and the null hypotheses were rejected.  Therefore, we 
conclude that there is clear evidence of the fact that the asymmetries between the two regimes 
identified by the model are not only economically, but also statistically significant.   
 
 
6. Trading Rules 
 
In this section we examine two market neural strategies which attempt to exploit the regime 
dependent relationship between the index tracking out-performance and the stock prices 
dispersion.  The construction of trading rules is facilitated by the fact that the Markov 
switching model is using the lag of the change in dispersion to explain excess return.  Also, 
forecasts of the latent state conditional probability can be produced for a number of steps 
ahead by using the unconditional transition probabilities and the current estimate of the 
conditional probabilities of the latent states. 
 
The portfolio generating the excess return from index tracking, P, is defined as the difference 
between the tracking portfolio holdings and the market holdings in each stock.  Both trading 
rules assume active trading, with daily rebalancing according to a trading signal.   
 
The first trading rule ensures that P is held only if there is a buy/hold signal from the Markov 
switching model.  In the second strategy, P is held if there is a buy/hold signal, and is shorted 
otherwise.  The ‘buy/hold’ signal occurs either after an increase in the dispersion, if the 
forecast of the conditional probability of the latent state indicates that the process is currently 
in regime one, or after a decrease in dispersion, if the forecast of the conditional probability 
indicates that the process is currently in regime two.  As the excess return from index tracking 
is not correlated with the market returns, both strategies will inherit market neutral 
characteristics.  Moreover, they are self-financed, as the sum of all stock weights in P is, by 
construction, zero.      
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For pure out-of-sample tests, we have extended our initial database up to Nov-02, and the 
trading rules were implemented for the period Dec-01 to Nov-02.  In order to obtain the signal 
for a given date, we have used only the information available at the moment of the signal 
estimation (the sign of the lagged change in dispersion and the one-period ahead forecast of 
the conditional probability of the regimes). 
 
The returns of the trading strategies are plotted in Figure 7.  Over the 11-months testing 
period, the first trading rule produced a cumulative return of 3.9%, with an average annual 
volatility of 2.2%.  This translates into an average annual information ratio of 1.89, again, for 
a self-financing strategy.  The second trading rule produced over the same time interval a 
cumulative return of 9.3%, with a slightly higher average annual volatility, i.e. 3.2% p.a.  The 
average annual information ratio for this strategy is of 3.15.   
 
However, these results need to be interpreted with caution.  First, 11 months is a rather short 
sample, and secondly, the very high profitability of the trading rules during the last part of the 
data sample can be the result of the predominance and persistence of regime two during this 
period.  Therefore, to estimate the impact of these limitations, we have also performed in-
sample tests, for the period Dec-91 to Dec-01. The results are very similar: over the 10-year 
testing period, the first trading rule produced a cumulative return of 51.5%, with an average 
annual volatility of 1.9%.  This translates into an average annual information ratio of 2.65, 
again, for a self-financing strategy.  The second trading rule produced over the same time 
interval a cumulative return of 91.9%, with a slightly higher average annual volatility, 
i.e. 2.5% p.a.  The average annual information ratio for this strategy is of 3.56.  
 
However, the trading rules, as they are designed, require daily rebalancing, which can result 
in significant transaction costs.  In our analysis we have not accounted for potential 
transaction costs, as we only aimed to test the efficiency of the model forecasts with real 
trading rules rather than with statistical tools.  However, the problem of potentially high 
transaction costs in trading rules based on Markov switching forecasts is not new and has 
been dealt with either by reducing the frequency of trades, or by imposing some filtering of 
the signals, when trades take place only if the signal exceeds a given threshold (Dueker and 
Neely, 2001).    
     
 
7. Summary and Conclusions 
 
The cointegration-based tracking over-performance has been documented in several major 
real-world and simulated stock market indexes.  The excess return from index tracking 
displays time-variability characteristics which are uncorrelated to general market conditions, 
such as market returns or volatility.  The aim of this paper was to identify and model the 
cause of cointegration-based tracking over-performance.  

Using a simple two stock scenario, we have related the cointegration-optimal portfolio 
weights to the level of stock prices, suggesting a relationship between excess return from 
index tracking and the dispersion of stock prices within the index.  We examined this 
relationship cross-sectionally, by simulating stock prices and controlling for their dispersion 
in the index, and in a time series context.  Both methods documented a strong relationship 
between the cumulative excess return from index tracking and the index dispersion, but with 
significant time-variability in the parameters.  To account for this, we have specified a 
Markov switching model for the excess return from index tracking, assuming the presence of 
a latent state variable which determines the form of linear relationship between the excess 
return and the lagged change in index dispersion.  
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The results of estimating this Markov switching model indicate the presence of two regimes 
having very distinctive characteristics: the first regime, associated with higher index volatility 
and which occurs more frequently towards the end of the data sample, is responsible for the 
entire excess return generated from index tracking, while in the second regime, associated 
with less index volatility and prevailing at the beginning of the data sample, the excess return 
is marginally negative.  The lagged change in dispersion has a different effect on the excess 
return in the two regimes: in the first regime an increase in the index dispersion is followed by 
a relative gain from index tracking in the next period, while in the second regime, a decrease 
in dispersion is associated with relative gains from index tracking in the next period.  

We have related these observations to the long-run equilibrium relationships identified by the 
cointegration regression and showed that, disregarding temporary disequilibrium in stock 
prices, the tracking portfolio produces a stationary tracking error in regime one.  However, in 
regime two, when the disequilibrium is no longer temporary, and represents instead a 
transition towards new equilibrium prices, the cointegration-based portfolio consistently out-
performs the market index.   

The information revealed by the Markov switching model was exploited by constructing 
simple trading rules.  Such rules managed to enhance significantly the characteristics of 
simple index tracking, producing steady returns with low volatility and average information 
ratios of 1.89 to 3.15 during 2002.     
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Figure 1 Cumulative excess return from index tracking 
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Figure 2 Price Dispersion in DJIA and Simulated Indices 
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Figure 3 F-statistic Chow structural stability test and the coefficient of the lagged 
change in dispersion 
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Figure 4(a) Stock prices movements in regime two 
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Figure 4(b) Stock prices movements in regime one 
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Figure 5 Regime conditional cumulative excess return from index tracking 
 
 
 
 
 
 
 
 
 
 
 
 
 

-5%

0%

5%

10%

15%

20%

Dec-91 Dec-92 Dec-93Dec-94 Dec-95 Dec-96 Dec-97Dec-98 Dec-99 Dec-00

xs_ret
xs return state 1
xs return state 2

 Regime 1  Regime 2 
Mean  2.32E-04 -1.80E-05 
Max 0.0154  0.0036
Min -0.0094 -0.003
Stdev 0.0028  0.0009
Skewness 0.77 -0.1
Kurtosis 5.99  3.84
No of obs 632 1888 

 

 
8 

 
1 

 

 
Figure 6 Estimated probability of regime one 
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Figure 7 Cumulative returns produced by the trading rules 
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Table 1. A. Excess return from index tracking 
 
  1997 1998 1999 2000 2001 overall 
DJIA  1.71% -1.00% 1.46% 2.08% 5.61% 7.82% 

mean -0.18% -0.64% 0.92% 4.77% 0.34% 5.21% FTSE simulated 
indexes stdev 0.0055 0.0101 0.0136 0.0137 0.0114 0.0227 

mean 1.19% 1.16% -0.04% 1.22% -0.13% 3.41% CAC simulated 
indexes stdev 0.0045 0.0045 0.0071 0.0123 0.0100 0.0232 

mean 0.73% -1.68% -1.84% 1.00% 4.59% 2.79% SP100 simulated 
indexes stdev 0.0033 0.0071 0.0125 0.0173 0.0139 0.0280 

   
Table 1. B. Index returns 
 
  1997 1998 1999 2000 2001 
DJIA  20.41% 14.93% 22.49% -6.37% -7.37% 
FTSE simulated mean 19.86% 8.24% 8.35% 7.32% -11.71% 
CAC simulated mean 8.21% 27.26% 38.44% 0.45% -21.79% 
SP100 simulated mean 26% 19% 18% 1% -13% 

 
 
Table 2 Estimated coefficients of model (7)  
 
 α β1 β2 β3 β4 
Coefficient 4.43E-05 0.075924 0.001347 -0.020175 0.005545 
Standard error 3.25E-05 0.019892 0.002362 0.002361 0.002393 
t-statistic 1.362186 3.816796 0.570434 -8.543316 2.317162 
P-value 0.1733 0.0001 0.5684 0.0000 0.0206 

 
 
Table 3 Stability test for model (7) 
 
Chow Breakpoint Test: 2227 (October 16, 2000) 
F-statistic 638.1618     Probability 0.000000 
 
Sample Jan-92 to Oct-00 
 α β1 β3 
Coefficient 3.92E-0.5 0.0025 -0.0567 
Standard error 2.45E-0.5 0.0179 0.0018 
t-statistic 1.60 0.14 -29.92 
P-value 0.1094 0.8880 0.0000 
 
Sample Oct-00 to Dec-01 
 α β1 β2 
Coefficient 1.30E-0.4 0.0599 0.1068 
Standard error 1.33E-0.4 0.0435 0.0070 
t-statistic 0.97 1.37 15.25 
P-value 0.3313 0.1695 0.000 
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Table 4 Estimation output for model (8) 
 
 µ1 µ2 γ1 γ2 σ1 σ2 p11 p22 
Coefficient 2.68E-04 2.63E-05 0.0163 -0.056 0.0029 0.0006 0.88 0.98 
Standard error 1.25E-04 1.48E-05 2.82E-03 1.14E-03 1.02E-05 1.58E-06 0.087 0.073 
Z-statistic 2.15 1.78 5.77 -49.01 -286.01 -403.08 10.03 13.35 
P-value 0.031 0.074 0.000 0.000 0.000 0.000 0.000 0.000 
 
 
 
 
Table 5 Log likelihood ratio tests for identical mean and volatility 
 
 Unrestricted log 

likelihood  
Restricted log 
likelihood  

LR statistic P-value 

H0: µ1 - µ2 = 0  
γ1  - γ2 = 0  

13707.64 13666.05 82.24 0.0000 

H0: σ1 - σ2 = 0 
  

13707.64 13057.31 1300.66 0.0000 
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