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Optimal Timing and Tilting of Equity Factors

Abstract

Given the pervasive low yield environment, investors strive to allocate capital to al-
ternative building blocks. Within equities, this approach amounts to identifying equity
factors that are associated with rm characteristics and have proved useful in explaining
the cross-section of stock returns. A challenge is to combine these factors into a coherent
portfolio that is capable of optimally harvesting the associated factor premia. We test
an integrated framework to optimally exploit both time-series and cross-sectional factor
allocation signals. In particular, we consider a parametric portfolio policy that allows
for both: timing factors conditional on time-series predictors and tilting factors using
cross-sectional factor characteristics. While the time-series predictors turn out insigni-
cant in our model, the resulting factor allocation sharply outperforms the equal-weighted
benchmark. The cross-sectional evidence is strong in a multivariate framework, but the
outperformance of the resulting factor allocation is less pronounced.

Keywords: Asset allocation, factor investing, factor timing, parametric portfolio policy
JEL Classification: G11, D81, D85



1 Introduction

The pervasive low yield environment in major developed markets severely challenges investors

who strive for positive and stable investment performance. For this purpose, the bedrock of

investment management was to diversify investments across asset classes, a concept which

is often referred to as the only “free lunch” in investing, see Ilmanen and Kizer (2012)

among others. Yet, the concept of diversification mostly failed during the financial crisis

in 2007–08. Except for high-quality sovereign debt, virtually all asset classes suffered and

were characterized by high volatility. In turn, many investors were not as diversified as they

had thought and started to consider new sources to generate sufficient investment returns at

a reasonable level of risk.

In a related vein, the recent academic literature synthesizes that all asset classes are

subject to some common underlying factor exposures or risk premia. For instance, Ang,

Goetzmann, and Schaefer (2009) argue that a high proportion of active fund returns can be

explained by exposure to various factors. Based on the observation that factors are hardly

correlated, Ilmanen and Kizer (2012) argue that the concept of diversification is not dead but

that investors simply failed to diversify across these factors historically.

While this concept of factor investing has recently attracted considerable interest, the

underlying factor theory is not new. The first approach known as the capital asset pricing

model (CAPM) of Sharpe (1964) builds on the foundation of diversification and the mean-

variance paradigm introduced by Markowitz (1952). The CAPM states that the expected

return of an asset is proportional to its sensitivity to the market, i.e. its beta. In other words,

the market premium is the sole risk premium available to investors and beta is the unique

pricing factor. Unfortunately, the simplicity of the CAPM model comes at the cost of many

assumptions and the CAPM has been challenged empirically. In that regard, a recurring

theme are patterns in the cross-section of stock returns that cannot be explained by the

exposure to the market factor and the associated market risk premium alone, see Martellini

and Milhau (2015). Among the most prominent findings are the size, value, and momentum

effects which describe a persistent link of future stock returns to the corresponding stock

characteristic over a sustained time period and in several markets, see Banz (1981), Basu

(1977), and Jegadeesh and Titman (1993), respectively.

Resurrecting the CAPM, models using multiple factors were introduced starting with the

intertemporal CAPM by Merton (1973) and the Arbitrage Pricing Theory by Ross (1976).

These approaches were followed by the three-factor model of Fama and French (1993) that

builds on the empirical observation that size and value are complementary in explaining the

cross-section of stock returns. Building on the work of Jegadeesh and Titman (1993), Carhart

(1997) incorporated momentum into the three-factor model as a further priced factor.

To rationalize the explanatory power of equity factors one way is to relate them to the

stochastic discount factor (SDF) denoted as m. In modern asset pricing theory the SDF

acknowledges the notion of uncertainty and time-varying expected returns when defining the
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price P it of a given risky asset, see Cochrane (2009):

P it = Et[mt+1 xt+1]s (1)

where xt is the cash flow for asset i in period t. The SDF in t can be interpreted as an index

of “bad times”, i.e., times where the marginal utility of returns for investors is high: If period

t+1 turns out to be a bad state, mt+1 will be high, and vice versa. For further insights we

consider the beta representation of expected returns, see Cochrane (2009):

E(Rit+1)−Rft+1 =
covt(R

i
t+1,mt+1)

vart(mt+1)︸ ︷︷ ︸
=: β

i,mt+1
t

×
(
−vart(mt+1)

Et(mt+1)

)
︸ ︷︷ ︸

=: λ
mt+1
t

(2)

Representation (2) shows that the required return of asset i is linked to its covariation with

bad times, covt(R
i
t+1,mt+1): Assets that perform well in bad states are particularly valuable

for investors leading them to accept lower expected returns or risk premia. Conversely,

investors require a higher risk premium for assets that perform poorly in bad states. While a

higher sensitivity to the market increases the assets’ expected return in the CAPM, it is now

the sensitivity of the asset to the SDF (β
i,mt+1

t ) that is multiplied by λ
mt+1

t , i.e., the SDF

risk premium. However, the SDF is unobservable and needs to be associated to observable

variables as pursued in consumption-based models1. The unobservability issue prompts to

use factor models as a proxy for the SDF. Given that K observable factors are represented

by dollar-neutral excess returns, the SDF depends on a (K × 1) vector of factor returns f , a

scalar a and a (K × 1) vector b of pricing factors (abstracting from time indices):

m = a+ b′f (3)

This formulation is equivalent to the following beta representation of expected returns, see

Cochrane (2009):

E(Ri) = Rf + β′
i Λ (4)

where βi is a (K×1) vector of multivariate regression coefficients of Ri on f with a constant.

The vector of factor risk premia, Λ, contains the expected factor returns E(f), see Cochrane

(2009). Each of the K factors in f (deemed to be relevant in explaining the cross-section of

stock returns) make up the stochastic discount factor and each define a different set of bad

times. In equlibrium, investors have to be compensated by factor risk premia for bearing

these risks.

The present paper thoroughly investigates the idea of directly investing into factors instead

of traditional asset classes. The challenge is to optimally combine factors which is “still

1Obviously, such associations may raise new problems, e.g., aggregated macroeconomic consumption data
is characterized by low frequencies, lagged releases and revisions, see Martellini and Milhau (2015).
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unchartered territory” [Briere and Szafarz (2016)]. In the literature, most studies focus on

the timing of factors by developing factor return prediction models, often restricted to single

factors. Examples are momentum-based models, see Clare, Sapuric, and Todorovic (2010) or

Chen and De Bondt (2004), and multivariate models using economy- or stock market-related

predictors, see Copeland and Copeland (1999), Kao and Shumaker (1999), Levis and Liodakis

(1999), Cooper, Gulen, and Vassalou (2001), Lucas, van Dijk, and Kloek (2002), and Bauer,

Derwall, and Molenaar (2004). Conversely, Medvedev and Vaucher (2017) concentrate on

optimal stock selection based on factor exposures but do not consider allocating between

factors used as input for portfolio construction.

Our main contribution is to combine equity factors into a coherent portfolio that is capable

of optimally harvesting the associated factor premia. In particular, we distinguish between

factor timing that seeks to exploit time-series information and factor tilting that seeks to

exploit cross-sectional information. Both approaches are couched into the parametric portfo-

lio policy of Brandt and Santa-Clara (2006) and Brandt, Santa-Clara, and Valkanov (2009),

respectively. This work therefore will contribute to the ongoing debate or ”quantroversy“

among quantitative investment managers and/or academic scholars regarding the degree to

which it is possible to time equity factors, see Parker, Hayes, Ortega, and Naha (2016) for a

quite positive view and Asness (2016) for a rather sceptical one. In a similiar vein, Hodges,

Hogan, Peterson, and Ang (2017) use business cycle factors to time factors and building

on work of Asness, Friedman, Krail, and Liew (2000) and Lewellen (2002) when incorpo-

rating cross-sectional information to tilt factors. Jointly investigating such information in a

parametric portfolio policy sheds new insights into active factor allocation.

Our empirical analysis is driven by a broad set of some 20 global equity factors, that we

compile from a broad sample of global companies. Ultimately, we thus can build our main

analysis on two-decades of global equity factor returns ranging from 1997 to 2016. First

taking an agnostic perspective regarding expected factor returns, we start by examining

a quite diversified multi-factor portfolio based on equal factor weights. To improve this

benchmark allocation, we strive for optimal factor investing in two ways: First, we try our

hand at factor timing based on a variety of fundamental and technical indicators commonly

used for predicting the equity risk premium, see for example Campbell and Thompson (2008)

and Neely, Rapach, Tu, and Zhou (2014). These indicators are exploited in the parametric

portfolio policy framework of Brandt and Santa-Clara (2006). Second, we engage in factor

tilting according to cross-sectional factor characteristics. In particular, we consider spreads,

valuation, the 1-month price momentum, see Avramov, Cheng, Schreiber, and Shemer (2017),

volatility, and two centrality measures: Building on the work of Pozzi, Di Matteo, and

Aste (2013) and Lohre, Papenbrock, and Poonia (2014) we use the factors’ centrality in

the corresponding factor correlation network. A related but yet distinct characteristic is

a factor’s distance to the market factor as revealed in the correlation network. These six

characteristics are then couched into the parametric portfolio policy of Brandt, Santa-Clara,

and Valkanov (2009). Both, timing and tilting of factors, are based on a benchmark-relative

utility maximization of a mean-variance investor with a quadratic utility function. Given
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strong signals in the data, the optimal strategy will actively deviate from the benchmark

allocation. Conversely, it will embrace the benchmark when the informational content is

weak. This framework allows to capitalize the diversification benefits embedded in the risk-

based benchmark while exploiting the opportunity of active positioning. As a consequence,

one might harvest utility gains when some factors enjoy their good times or avoid large

drawdowns when some factors suffer from bad times.

While relying on time-series information, embedded in fundamental and technical pre-

dictor variables, the model is insignificant. Although the statistical evidence is weak, the

resulting factor allocation outperforms the equal-weighted factor allocation benchmark. For

factor tilting we use information embedded in the cross-section of the factor set. In a mul-

tivariate framework the resulting tilting-coefficients show a strong statistical evidence and

slightly helps to improve performance.

2 Building global equity factors

To allow for a comprehensive and relevant analysis of factor timing and tilting we put together

a representative set of global equity factors. These global equity factors derive from a global

universe encompassing the constituents of MSCI, FTSE, S&P or STOXX global as well as

regional indices throughout time. The source for company specific data such as financial

statement data is the Worldscope database. The sample of monthly factor returns starts in

January 1997 to allow for a reasonably broad universe, even in the regional subsets. The

last month of the sample period is December 2016 giving us two decades of equity factor

returns. The overall investable universe comprises roughly 4500 stocks in December 1996

and this number increases to 5000 companies in December 2016. As for the regional split,

the universe on average includes 1700 European stocks and 1300 U.S. companies where both

figures are quite constant throughout time. In December 1996 1000 companies belong to

the Asia-Pacific region, mostly made up of Japan and Australia. The number of companies

increases to 1400 at the end of our sample period. The remainder is recruited from a Rest of

the World universe, including companies from Canada, New Zealand, Israel and Hong Kong.

To not suffer from investability concerns we focus our analysis on this global Large/Mid cap

universe, having a quite diversified universe region-wise.

As for the nature of the global equity factors build on factors which are widely used and

well documented in academic research. Specifically, the factor set includes:

• Profitability (PROF): This factor is long stocks with robust operating profitability and

short stocks with weak profitability. Profitability is calculated as annual revenues less

cost of goods sold and interest and other expenses, divided by book value for the last

fiscal year-end. The factor is based on academic research of Haugen and Baker (1996),

Cohen, Gompers, and Vuolteenaho (2002), Novy-Marx (2013) and Fama and French

(2006, 2016)

• Cashflow yield (CFY): The cashflow yield factor captures the excess return of going

long stocks with a high cashflow-to-price ratio and short those with a low one, see
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Sloan (1996), Da and Warachka (2009) and Hou, Karolyi, and Kho (2011). Cashflows

are measured as the sum of funds from operations, extraordinary items and funds from

other operating activities.

• Accruals (ACC): The accruals factor is long stocks with low accruals and short those

with high accruals, where accruals are measured as the change in working capital per

share, divided by the book value per share, see Sloan (1996).

• Dividend yield (DY): The dividend yield factor is long stocks with a high dividend-

to-price ratio and short those with a low dividend-to-price ratio, see Litzenberger and

Ramaswamy (1979), Blume (1980), Fama and French (1988) and Campbell and Shiller

(1988). Dividends include all extra dividends declared during the year.

• Asset turnover (AT): Asset turnover measures asset utilization and efficiency. Following

Soliman (2008) companies with high asset turnover are associated with future positive

returns as those firms manage their inventory more efficiently. The factor is defined as

sales, divided by the average net operating assets.

• Book to Market (BTM): The factor is constructed by going long stocks with a high

book-to-market ratio and short stocks with a small book-to-market ratio. The factor

builds on the findings of Basu (1977), Rosenberg, Reid, and Lanstein (1985), Jaffe,

Keim, and Westerfield (1989), Chan, Hamao, and Lakonishok (1991) and Fama and

French (1992) that value stocks outperform growth stocks in the long-run.

• 12-month momentum (MOM12) and 6-month momentum (MOM6): 12-month mo-

mentum as well as 6-month momentum capture a medium-term continuation effect in

returns by buying recent winners and selling recent losers. We control for the short-

term reversal effect (see below) by excluding the most recent month (t − 1) at time t.

Jegadeesh (1990) and Jegadeesh and Titman (1993) were the first that documented the

momentum effect in the cross-section of stock returns.

• Short-term reversal (STR): Jegadeesh (1990) and Lehmann (1990) documented a short-

term reversal effect in the cross-section of stock returns. The factor is going long stocks

with a weak previous month performance and short stocks with a high performance in

the previous month.

• Long-term reversal (LTR): De Bondt and Thaler (1985) documented reversal patterns

in the long-term past performance. Following DeMiguel, Martin-Utrera, Nogales, and

Uppal (2017) we choose the horizon to be 36 months. To control for the momentum

effect we exclude the most recent year from our three year horizon of past performance.

The factors goes long in stocks with a weak long-term past performance and short in

stocks with a strong long-term past performance.

• Change in long-term debt (DLTD): An increase in long-term debt could hint at empire-

building behaviour of the company which is associated with negative future returns,
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see Richardson, Sloan, Soliman, and Tuna (2005). The factor builds on year-on-year

changes, divided by the long-term debt in t− 2.

• Change in shares outstanding (DSO): Ritter (1991) and Loughran and Ritter (1995)

were the first to document that firms with a high change in shares outstanding under-

perform relative to non-issuing firms, see also Daniel and Titman (2006) and Pontiff

and Woodgate (2008). Change in shares outstanding is measured by the year-on-year

change in shares outstanding, divided by outstanding shares in t− 2.

• Size: The size factor builds on the observation that stocks with a larger market cap-

italization tend to underperform stocks with smaller market capitalizations, see Banz

(1981). The factor is going long stocks with the smallest market capitalization and

short stocks with the highest market capitalizations, see Fama and French (1992).

• Asset growth (AG): This factor is based on research by Fairfield, Whisenant, and Yohn

(2003), Richardson, Sloan, Soliman, and Tuna (2005), Titman, Wei, and Xie (2004),

Fama and French (2006) and Cooper, Gulen, and Schill (2008), all documenting a

negative relation between investment activity and returns. The factor is long stocks

with a low asset growth ratio and short stocks with a high asset growth ratio. Asset

growth is measured by the year-on-year change in total assets, divided by the total

assets in t− 2.

• Cash productivity (CP): Chandrashekar and Rao (2009) find the productivity of cash to

be a strong and robust negative predictor of returns. Firms with high cash productivity

have low subsequent stock returns, and low cash productivity firms have high future

returns The factor is defined as market value plus long-term debt minus total assets,

divided by cash.

• Profit margin (PMA): Soliman (2008) stated that firms which are able to ensure a

high profit margin are often associated with a first mover advantage or a high brand

recognition which translates into a high pricing power. Profit margin is defined as

operating income divided by sales. The factor goes long stocks with a high profit

margin and goes short firms with a lower profit margin.

• Earnings yield (EY): The earnings yield factor is long stocks with a high earnings-to-

price ratio and short those with a low earnings-to-price ratio, see Basu (1977).

• Leverage (LEV): The leverage factor of Bhandari (1988) is defined as total liabilities,

divided by the market value of the company.

• Return on Assets (ROA): High return on assets indicates a successful firm described

by Balakrishnan, Bartov, and Faurel (2010). The factor is therefore long in firms with

a high return on assets ratio and short those with a low return on assets ratio.

• Sales to cash (STC): The factor is based on research of Ou and Penman (1989) who

show a positive relationship between a high sales to cash ratio and future returns. The
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factor is long stocks with a high sales to cash ratio and short those with a low sales to

cash ratio.

• Sales to inventory (STI): Sales to Inventory measures the effective use of the firms

assets. Ou and Penman (1989) stated that a high sales-to-inventory ratio indicates firm

effectiveness and is associated with higher future returns.

To compute all equity factors we sort the global universe of companies according to the

factor characteristic on a monthly basis and compute the mean of the subsequent 1-month

local return of the respective quintiles. The ultimate long-short factor return results from

taking the spread between top and bottom quintiles.

[Figure 1 about here.]

The correlation chart in Figure 1 shows that we have constructed a quite heterogenous

factor set. Yet, factors looking to harvest a “value” premium do have a higher correlation.

The correlation of CFY , DY , BTM or EY ranges from 0.8 to 0.9. Also, the momentum

factors MOM12 and MOM6 do have a high positive correlation of 0.9. Size and ACC are

factors adding diversification potential to our factor set, having negative correlation to the

most other factors in the range from −0.1 to −0.4 for Size and from −0.4 to −0.8 for ACC.

[Table 1 about here.]

The best performing factors are the momentum factors, MOM12 and MOM6, with two

digit annualized returns of 12.1% and 10.2%, respectively. ACC, STR and STI have rather

modest returns with 0.3%, 1.9% and 2.5% p.a., respectively. Thus, all factors have a positive

premium in the sample period. All equity factors used throughout this study have a strong

economic rationale and are widely accepted in academic research. However, Schwert (2003),

Chordia, Roll, and Subrahmanyam (2011) and McLean and Pontiff (2016) show that factors

tend to weaken after their publication. As the interest of this paper is to optimally combine

factors and not provide the most stable and robust ones we refrain from cherry picking and

include all factors in the analysis. Especially, time-variation in factor returns is calling for

actively managing factor exposures to navigate potential factor cyclicality. From a volatility

perspective the momentum factors are the most volatile, with 20.2% for MOM12 and 19.2%

for MOM6, and ACC, AT and STI are the least volatile. The ensuing Sharpe Ratios range

from 0.05 for ACC to 1.15 for PROF .

3 Factor timing

To improve an equal-weighted benchmark factor allocation we consider factor timing by re-

lating factor returns to a variety of fundamental variables and technical indicators commonly

used for predicting the equity risk premium. The identification of good and bad times of a

given factor should help to improve the overall risk-return profile of the equal-weighted bench-

mark strategy. In particular, we operationalize the potential predictive content of predictor

variables in the parametric portfolio policy framework of Brandt and Santa-Clara (2006).
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3.1 Predictor variables

3.1.1 Fundamental variables

We use fundamental variables to track macroeconomic conditions which could inform about

the future state of the economy and therefore about different good or bad times, see Neely,

Rapach, Tu, and Zhou (2014). In particular, we employ the following variables as deployed

in Welch and Goyal (2008) and publicly available from July 1926 to December 2016 on Amit

Goyal’s web page2: Dividend Price Ratio (dp), Dividend Yield (dy), Earnings Price Ratio

(ep), Dividend Payout Ratio (de), Stock Variance (svar), Book to Market Ratio (bm), Net

Equity Expansion (ntis), Treasury Bills (tbl), Long Term Yield (lty), Long Term Rate of

Return (ltr), Term Spread (tms), Default Yield Spread (dfy), Default Return Spread (dfr)

and Inflation (infl). See Appendix A.1 for a definition of the variables. Following Rapach,

Strauss, and Zhou (2013) using U.S. based fundamental variables have a good predictive

ability for other developed non-U.S. countries.

To avoid spurious findings resulting from high autocorrelations it is useful to detrend

the variables, see Ferson, Sarkissian, and Simin (2003). We thus standardize any predictor

variableX at time t by subtracting its arithmetic mean and dividing by its standard deviation.

For the calculation of the mean and standard deviation we use a rolling window covering the

12 months preceding (and thus excluding) t. Hence, the current observation of X is not

included which allows for stronger innovations:

Xstd
t =

Xt −

=: X̄︷ ︸︸ ︷
1

N

t−1∑
i=t−N

Xi√
1

N−1

∑t−1
i=t−N (Xi − X̄)2

(5)

with N = 12. Furthermore, as few standardized fundamental variables might attain extreme

values, we truncate the variables at ±5:

Xstd
t =


5 if Xstd

t > 5

−5 if Xstd
t < −5

Xstd
t otherwise

(6)

3.1.2 Technical indicators

Besides variables capturing the state of the economy, we follow Neely, Rapach, Tu, and Zhou

(2014) in using technical indicators or trading rules using past factor returns. Similar to

Hammerschmid and Lohre (2017), we include 16 technical indicators based on three sets

of trading rules related to the general concepts of momentum (MOMm), moving averages

(MAs−l) and stochastic oscillator (KDSm). These technical trading rules reasonably capture

the trend-following idea of technical analysis and are representative of typical rules analyzed

2The dataset is available on http://www.hec.unil.ch/agoyal/. For a more detailed description of the
variables please refer to Welch and Goyal (2008).
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in the literature, see for example Brock, Lakonishok, and LeBaron (1992) and Sullivan,

Timmermann, and White (1999).

1. Momentum (MOMm): The momentum indicator gives a buy signal if the price at time

t, Pt, is higher than the price at time (t−m), Pt−m, and a sell signal otherwise:

MOMm =

{
1 if Pt > Pt−m

0 if Pt ≤ Pt−m
(7)

We compute five momentum indicators for different look-back periods using m =

1, 3, 6, 9, 12 months. The conjecture is that factor returns are trending such that

recent positive returns are followed by subsequent positive returns.

2. Moving Average (MAs−l): The moving average indicator is based on the comparison

of a short-term and a long-term moving average which are calculated as:

MAj,t =
1

j

j−1∑
i=0

Pt−i for j = s, l (8)

where s and l are the length of the lookback period for the short- and long-term moving

averages in months using s = 1, 2, 3 and l = 9, 12. The indicator gives a buy signal

if the short-term moving average is greater than the long-term moving average

MAs−l =

{
1 if MAs,t > MAl,t

0 if MAs,t ≤MAl,t
(9)

providing us with six moving average indicators. The conjecture is that a crossing of

the long-term moving average from below by the short-term moving average signals an

upshift in the trend while smoothing out noise from the price data.

3. Stochastic Oscillator (KDSm): The stochastic oscillator was introduced by George C.

Lane in the 1950s, see Murphy (1999), and tracks the speed or momentum of price

movements. It builds on the idea that momentum changes often precede price changes.

To compute the indicator, we first calculate Kfast
t which gives the position of the price

relative to the high-low price range over a specific period ranging from (t − m) to t

(denoted t−m, t). We create five stochastic oscillators based on five look-back periods

with m = 12, 24, 36, 48, 60 months.

Kfast
t =

[
Pt − Lt−m,t

Ht−m,t − Lt−m,t
∗ 100

]
(10)

where Lt−m,t and Ht−m,t are the lowest and the highest price respectively within the

last m months. Equation (10) yields a value between 0 and 100 with a high figure

indicating that the factor trades close to its high (measured over the m-months period).

The smoothed version using a 3-months moving average of (10) constitutes Kslow
t which
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is also denoted as Dfast
t

Dfast
t = Kslow

t = MA3,t

(
Kfast
t

)
(11)

We further decelerate Dfast
t to get a less choppy indicator by taking another 3-month

average

Dslow
t = MA3,t

(
Dfast
t

)
(12)

The final stochastic oscillator gives a buy signal if the shorter moving average (Dfast
t )

is greater than the longer moving average (Dslow
t ):

KDSm =

{
1 if Dfast

t > Dslow
t

0 if Dfast
t ≤ Dslow

t

(13)

Intuitively, the stochastic oscillator follows the speed or momentum of price changes: If

Dfast
t is bigger than Dslow

t , the factor’s price increased strongly more recently (relative

to its trading range) and gained momentum compared to the realization of the longer

term average of this number. Hence, the stochastic oscillator pictures an upward trend

in the factor’s price. Conversely, if Dfast
t is smaller than Dslow

t , the price increase slowed

down and could possibly reverse displaying a downward trend.

As we “lose” observations for technical indicators that are based on longer periods (for

instance, for KDS24 we do not have observations in the first 23 months) we fill missing values

with indicator values from shorter periods. In the KDS example, the missing observations

for month 13 to 23 for KDS24 are filled with the values of KDS12. Still, the first 12 months

are “lost” such that all technical predictors start in January 1998.

To check for multicollinearity of predictors figure 2 gives the correlation matrix for the

fundamental variables and technical indicators that obtain for the equity factor MOM12

over the whole sample from January 1998 to December 2016.3 As expected, the technical

indicators are highly correlated with correlations up to 0.9 especially within the three trading

rule sets. Only MOM1 does exhibit rather small correlations to the other technical predictors

ranging from 0.2 to 0.4. Among the fundamental variables, the correlation structure is more

heterogenous. Yet, the valuation ratios dp, dy, ep, and bm appear to be highly correlated.

Moreover, ltr and tms are perfectly collinear. The most negative correlation is found for

dp and de with −0.7. As can be seen, technical and fundamental predictors are rather

uncorrelated in general, suggesting complimentary predictive content (if any).

[Figure 2 about here.]

3Note that the fundamental variables used to predict MOM12 are also used to predict other equity factors,
whereas the technical indicators are factor-specific and therefore the correlation structure does differ across
factors. Still, the general notion of highly correlated technical indicators prevails across all equity factors.
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3.1.3 Reducing the number of predictor variables

We reduce the number of independent variables while preserving the information embedded

in them. For this purpose, we resort to principal component analysis (PCA) that is seper-

ately applied to the fundamental variables and technical indicators in the spirit of Neely,

Rapach, Tu, and Zhou (2014), see also Ludvigson and Ng (2007, 2009) and Hammerschmid

and Lohre (2017). The aim is to come up with a reduced number of predictive factors that

synthesize the heterogeneous information contained in the 30 predictor variables and to get

rid of the noise within the predictors. Also, the PCA gives orthogonal predictors such that

multicollinearity problems are avoided. In our main analysis we use the first4 principal com-

ponent for fundamental variables (denoted as FUN1) and the first principal component for

technical indicator (denoted as TECH1). Both capture a significant proportion of variation

in the underlying variables and indicators (27% and 86%, respectively).

3.2 Optimal factor timing

We ultimately want to examine whether a risk averse investor may profit from timing equity

factors with respect to fundamental variables and technical indicators. To this end, we use

the parametric portfolio policy (PPP) of Brandt and Santa-Clara (2006) that ties predictive

variables and investor utility in a portfolio-theoretic framework. Their approach translates

the predictive power embedded in the above PCA factors into optimal portfolio weights. To

do so, one augments the set of 21 equity factors by synthetic assets that invest into the equity

factors in proportion to the conditioning variables. In our case the conditioning variables are

the PCA factors. Optimal portfolio weights then derive from a classic Markowitz mean-

variance optimization over this augmented space of equity factors.

3.2.1 Methodology of Brandt and Santa-Clara (2006)

Brandt and Santa-Clara (2006) consider the maximization problem of a mean-variance in-

vestor who is risk averse according to her risk aversion parameter γ and is thus solving:

max
wt

E
[
w′rt+1 −

γ

2
w′trt+1r

′
t+1wt

]
(14)

where rt+1 is the vector of future excess return of the N equity factors and wt denotes the

vector of equity factor portfolio weights. The use of excess returns implies that the remainder

is invested into the risk-free asset with return rf if the PPP is not fully invested. The crucial

ingredient of Brandt and Santa-Clara (2006) is to assume the optimal portfolio strategy wt

to be linear in the vector zt of the K conditioning variables (of which the first element is

simply a constant):

wt = θzt (15)

4As a robustness check we have also analyzed the use of 3 PCAs (jointly capturing 56% of variation)
which gives rise to similar conclusions. Moreover, a smaller number of predictors allows to have a longer
out-of-sample backtesting window.
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and θ is an N ×K matrix of parameters. Plugging the linear portfolio policy from represen-

tation (15) in Equation (14), the problem becomes

max
θ
Et

[
(θzt)

′rt+1 −
γ

2
(θzt)

′rt+1r
′
t+1(θzt)

]
(16)

Using some linear algebra5 to rearrange the following term

(θzt)
′rt+1 = z′tθ

′rt+1 = vec(θ)′︸ ︷︷ ︸
=:w̃

(zt ⊗ rt+1︸ ︷︷ ︸
=:r̃t+1

) (17)

one can write Equation (16) as

max
w̃

Et

[
w̃′r̃t+1 −

γ

2
w̃′r̃t+1r̃

′
t+1w̃

]
(18)

As the same w̃ maximizes the conditional expected utility at all t, it also maximizes the

unconditional expected utility, hence optimization problem (18) is equivalent to

max
w̃

E
[
w̃′r̃t+1 −

γ

2
w̃′r̃t+1r̃

′
t+1w̃

]
(19)

Thus, the original dynamic optimization problem can be restated as a static Markowitz

optimization applied to an augmented set of assets that does not only include the basis assets

(i.e., the equity factors) but also “managed” portfolios. Each of these managed portfolios

invests in a single basis asset according to the realization of one of the conditioning variables.

To illustrate the augmented asset space, consider a simple two-factor example using Book-

to-Market (BTM) and 12-month momentum (MOM12) with just one conditioning variable:

r̃T =


fBTMt1 fMOM12

t1 fBTMt1 ∗ zt0 fMOM12
t1 ∗ zt0

fBTMt2 fMOM12
t2 fBTMt2 ∗ zt1 fMOM12

t2 ∗ zt1
...

...
...

...

fBTMtT
fMOM12
tT

fBTMtT
∗ ztT−1 fMOM12

tT
∗ ztT−1

 (20)

Instead of directly solving for portfolio weights as in the classical Markowitz problem, one

optimizes over the θ parameters that govern the linear portfolio policy. Having obtained

an optimal parameter for each managed portfolio, one can simply multiply these with the

current realizations of the conditioning variables to arrive at the optimal weight w. That

is, by adding up the corresponding weight components that are related to a specific factor,

we can infer the optimal weights for any single factor. In the above example, one thus adds

up the optimal weights for fMOM12 and fMOM12 ∗ z to obtain the total momentum factor

weight.

The conditioning variables used for the equity factors are the first fundamental PCA

factor and the first technical PCA factor. Note that any given equity factor can be joined

5Note that vec is a linear transformation which converts the matrix into a column vector and ⊗ denotes
the Kronecker product of two matrices.
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with a factor-specific set of conditioning variables, i.e., one could focus on selecting factor-

conditioning variables that are deemed meaningful. Yet, we refrain from pursuing such a

cherry picking exercise, but rather aim for including the maximal amount of information as

represented by the 2 PCA factors. We compute the first optimal portfolio weights over a 66

months window which is expanded going through time such that we obtain the first portfolio

for June 20036. As for the risk aversion parameter γ governing the quadratic utility function,

we choose a quite conservative value of 10 implying a relatively high risk aversion, see Ang

(2014). The parameters in θ pertaining to the original basis equity factor are constrained such

that they equal the weight of the equal-weighted benchmark portfolio. Hence, we perform

benchmark-relative portfolio allocation where deviations from the equal-weighted benchmark

only result from changes in the conditioning variables7 (i.e., in the above example for t = 1:

fBTMt1 ∗ zt0 and fMOM12
t1 ∗ zt0). To avoid extreme allocations, we allow a predictor to change

the factor weight by twice its benchmark weight at most. In addition, we rescale the timing

portfolio weights such that they obey a maximum ex-ante annualized tracking error of 2.5%.

In particular, this rescaling ensures that we do not unnecessarily force the strategy into more

extreme allocations when the signals from the PCA factors are deemed weak. In the latter

case the strategy will naturally resort to the equal-weighted benchmark. The (annualized)

ex-ante tracking error at time t (TEt) is calculated as

TEt =
√

12 (ws − wb)′ Σ (ws − wb) (21)

where ws is the weights vector of the strategy and wb is the weights vector of the benchmark

such that the difference gives the active weights of the factor timing strategy. Σ denotes the

covariance matrix based on the factor returns that are available upon estimation.

As the PPP expresses the portfolio problem in an estimation context, it is possible to

compute standard errors for the θ coefficients and to evaluate the significance of a given

predictor. According to Brandt and Santa-Clara (2006), we calculate standard errors from

the covariance matrix of w̃ which is calculated as

1

γ2

1

T − N ×K
(ιT − r̃w̃)′(ι− r̃w̃)(r̃′r̃)−1 (22)

where ιT denotes a T × 1 vector of ones.

3.2.2 Empirical results

Table 2 gives the estimates of the θ-coefficients and their significance. Significance is assessed

in terms of the corresponding confidence bands calculated as θ̂i± 1.96×SEi with i ranging

from 1 to 21× 2 = 42. Note that all the θ-coefficients representing the factor timing strategy

6Additionally, we need another 12 months to calibrate the technical indicators.
7The approach of Brandt and Santa-Clara (2006) is designed to also allow the policy to fully deinvest if

deemed necessary: When equity factors are expected to disappoint, the PPP resorts to a risk-free investment
instead. Imposing a full-investment constraint might thus prevent the strategy from fully exploiting the
information content embedded in the PCA factors. In unreported tests we observe that relaxing the full
investment constraint hardly leads the PPP to deinvest.
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are insignificant at the 5% level. Nevertheless, simply looking at the signs, a positive coef-

ficient for TECH1 would indicate that factor buy signals lead to even higher weightings in

the factor allocation.

[Table 2 about here.]

While the statistical evidence of the θ-coefficients is weak, following the approach of

Leitch and Tanner (1991), we wonder whether the economic performance is likewise weak.

In a first step we inspect the ensuing factor allocations over time. In particular, Figure 3

depicts the transfer of θ-coefficients into the optimal portfolio weights using the examples of

Book-to-Market (BTM) and 12-month momentum (MOM12). Specifically, we decompose

the optimal weights by contributions of each conditioning variable. While TECH1 favors

MOM12 in nearly every period throughout our sample - except for a few months in 2009,

FUN1 has a more cyclical contribution to the weights decomposition. Especially during the

crisis of 2007 to 2009, in 2012 to 2013 and in 2016 it is reducing the weight on MOM12. As

a result, one normally overweights the factor, except for the above mentioned periods. For

the BTM factor the picture is different. We underweight and even short this factor most of

the time, driven by TECH1 as well as FUN1 predictors.

Considering the remaining factors the average weight of PROF , CFY , AT , MOM12,

CP , EY and ROA is increased compared to the benchmark case. The strongest increase

obtains for PROF with 2.5% per month on average. For the remaining factors, the PCA

factors lead to a decrease in the weight. This decrease is most pronounced for DY with −2.5

percentage points and STR with −2.2 percentage points. The general overweight in PROF

and MOM12 as well as the underweight in ACC should help active performance while an

underweight in MOM6 and an overweight in CP should be detracting active performance.

As a result, the biggest average weight over the time period is assigned to PROF (7.3%),

MOM12 (6.9%), and CFY (6.7%), while MOM6 (3.4%), DY (2.3%), and STR (2.3%)

account for the factors with the lowest weight. Thus, the factor allocation ensuing from the

PPP is quite active and might be rewarded performance-wise, despite the insignificance of

the θ-coefficients.

[Figure 3 about here.]

In fact, the factor timing strategy is outperforming the equal-weighted benchmark by

1.23% p.a. Given an ex-post tracking error of 1.12% this results in an information ratio of

1.10, see Table 3. The absolute performance is 4.60% excess return at 2.89% volatility p.a.

which responds to a sharpe ratio of 1.59 and compares to a equal-weighted factor allocation

benchmark sharpe ratio of 1.21. Yet, the maximum drawdown of the factor timing strategy

is slightly more severe (-6.11% vs. -5.31%).

[Table 3 about here.]
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4 Factor tilting

A potentially complementary way of optimal equity factor investing could exploit differences

in cross-sectional factor characteristics. For this purpose, we couch suitable characteristics

into the cross-sectional parametric portfolio policy developed by Brandt, Santa-Clara, and

Valkanov (2009). We employ six cross-sectional factor characteristics that can be computed

from the factors’ return time series: valuation, spread, price momentum, volatility, and the

factors’ position in the factor correlation network.

4.1 Cross-sectional factor characteristics

4.1.1 Valuation (V AL)

The underlying rationale of any value strategy is to invest in relatively cheap assets while

avoiding (or shorting) securities that are relatively expensive. Translating this idea to equity

factors one could consider overweighting factors which are cheap and underweighting those

that are expensive. To operationalize this rationale we focus on valuation levels. Following the

idea of Basu (1977), value, as measured by fundamental factor metrics (such as price-to-book

or price-to-earnings), is a good predictor of future stock returns. Translating this rationale

to the factor level one can determine the relative cheapness of a given factor by comparing

the average valuation of the factor’s top quintile to the one of the bottom quintile. The

academic literature provides several explanations for the value premium ranging from risk

considerations to behavioural arguments (cf. Fama and French (1993, 1995) and Lakonishok,

Shleifer, and Vishny (1994)). Therefore, one would expect a positive prognostic ability of

future performance on a factor level as well (cf. Arnott, Beck, Kalesnik, and West (2016)).

Still, we have to keep in mind, that any factor will trade on its own norm. Value factors will

be cheap by definition compared to growth factors. Using Book-to-Market ratios as a proxy

for valuation in our research, we especially have to address if there is any additional benefit

to using a valuation indicator for factor timing when there is already a value factor in the

overall factor allocation model.

4.1.2 Spread

A factor spread measures the distance in its defining characteristic from top quintile to

bottom quintile. Thus, stocks are sorted in descending order according to the factor-defining

characteristic. If the mean difference between top and bottom quintile is large, the factor

is relatively cheap in terms of the factor-defining characteristic as one can easily distinguish

between attractive and unattractive stocks. Asness (1997) showed that realized performance

over the short term is heavily driven by the dispersion of returns. Consequently, it is difficult

to show superior skill if returns act homogeneously. Following this rationale, we use factor

spreads to proxy for their potential future return dispersion: If the factor spread is wide the
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factor’s return opportunity is expected to be largest (cf. Huang, Liu, Ma, and Osiol (2010)).

As we have a diverse set of factors included in our factor set, we standardize their spreads8.

4.1.3 1-month price momentum (PM)

We use 1-month price momentum (PM), to capture short-term factor momentum. Avramov,

Cheng, Schreiber, and Shemer (2017) document a näıve active factor momentum strategy

applied to a set of 15 equity factors to consistently outperform a 1/N benchmark. The

momentum measure for equity factor i at time t, PMi,t, is simply calculated as the return of

the respective equity factor in the previous month, ri,t−1.

4.1.4 Volatility (V OL)

As early as in the 1970s low volatility stocks have been documented to outperform high

volatility stocks, see Jensen, Black, and Scholes (1972) and Haugen and Baker (1991). In this

vein, we test whether there is also a volatility effect amongst equity factors. We calculate

V OLi,t from the variance-covariance matrix of equity factors using observations up to t which

are weighted according to an exponentially weighted moving average (EWMA). We use an

initial window of 36 months. Hence, the first factor volatilities are available as of December

1999.

4.1.5 Factor position in correlation networks

We consider two factor centrality measures that build on the work of Mantegna (1999), Pozzi,

Di Matteo, and Aste (2013) and Lohre, Papenbrock, and Poonia (2014). In a similar vein to

Montagu, Krause, Jalan, Murray, Chew, and Yusuf (2016), we investigate the centrality of

an equity factor in the factor correlation network as given by the factor’s node betweenness.

This reasoning is in line with empirical findings of Pozzi, Di Matteo, and Aste (2013) who

show that portfolios of peripheral U.S. stocks provide a superior risk-adjusted performance

compared to central stocks. In a similar vein, Lohre, Papenbrock, and Poonia (2014) use

the node betweenness in a parametric portfolio policy of Brandt, Santa-Clara, and Valkanov

(2009) and demonstrate a notable outperformance of peripheral against central equity sectors.

A related and yet distinct characteristic is the factor’s distance to the market portfolio as

revealed in the correlation network.

Appendix A.2 details the computation of a correlation network as given by a minimum-

spanning tree. To foster intuition, Figure 4 displays the MST that obtains using equity factor

data from January 1997 to December 2016 together with the market (S&P 500) with equal

weight on all observations.

[Figure 4 about here.]

Note that many factors are generally quite different from the market as the S&P 500 is

found at the periphery. This observation is expected as the long-short construction of factors

8We use an expanding window to standardize the spread according to the factors own history.

16



should remove most of the market risk. The factors, among others, PROF , LTR, LEV and

BTM turn out to be rather peripheral to the correlation network similar to S&P 500 and

Size, while MOM6 and DY are central.

4.1.5.1 Node betweenness (NB)

Specifically, we compute the betweenness centrality which is indicative of a factor’s centrality

in the network. The node betweenness of factor i is equal to the number of shortest lines

from all nodes to all others that pass through that node. Based on the minimum spanning

tree (MST ) in Figure 4, Accruals has a node betweenness of 19, as all shortest paths from 19

factors to the S&P 500 cross ACC. Only the one for Size does not pass ACC. In contrast,

the node betweenness for some factors, including PROF , EY , STR, AT and S&P 500, is

zero, as there are no shortest paths from one factor to another passing through these. Note

that we rely on a correlation network consisting of the 21 equity factors alone (excluding the

market factor) when calculating the factors’ note betweenness. Tilting towards peripheral

factors can be interpreted as an additional layer of risk control that implicitly provides a

higher degree of diversification.

4.1.5.2 Distance-to-market (DTM)

As a novel contribution to the literature we also include a characteristic that measures an

equity factor’s distance to the market. The conjecture is that factors more distant from the

market outperform those closest to the market. Specifically, tilting towards factors most

different from the general market allows for putting emphasis on those factors that appear

most genuine relative to the market return. The distance-to-market (DTM) characteristic

is calculated as the length from the shortest paths from each factor to the S&P 500 in the

MST. For the total period and an equally weighted covariance matrix, Figure 4 shows that

ACC and Size have the shortest DTM on average whereas for example AG has the longest.

4.2 Methodology of Brandt, Santa-Clara, and Valkanov (2009)

We couch the above characteristics into the parametric portfolio policy of Brandt, Santa-

Clara, and Valkanov (2009) which allows for utility-driven portfolio optimization to ex-

ploit cross-sectional characteristics. While an application of the mean-variance approach

of Markowitz (1952) would require to estimate first and second moments of all assets, the

authors propose a more parsimonious optimization problem that leads to a tremendous re-

duction in dimensionality. In particular, they suggest to parameterize the weight of an asset

as a function of its characteristics. The associated coefficients are estimated by maximiz-

ing investor utility. Specifically, the authors consider an investor seeking to maximize her

conditional expected utility of her portfolio return rp,t+1:

max
{wi,t}

Nt
i=1

Et [u(rp,t+1)] = Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]
(23)
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where wi,t denotes the portfolio weight for asset i and Nt the number of assets at time t.

Brandt, Santa-Clara, and Valkanov (2009) propose to model the portfolio weight as a linear

function of its characteristics xi,t:

wi,t = f(xi,t;φ) = wi,t +
1

Nt
φ
′
x̂i,t (24)

where wi,t denotes the benchmark weights, φ is the vector of coefficients to be estimated

through utility maximization and x̂i,t are standardized factor characteristics. Parameteriza-

tion (24) implicitly assumes that the characteristics fully capture the joint distribution of asset

returns that are relevant for portfolio optimization. The characteristics are cross-sectionally

standardized at time t across all factors

X̂i,t =

xi,t −

=: x̄︷ ︸︸ ︷
1

N

12∑
i=1

xi,t√
1

N−1

∑12
i=1(xi,t − x̄)2

(25)

As a consequence, the cross-sectional distribution of the standardized characteristics is sta-

tionary through time and the cross-sectional mean for each standardized characteristic is zero

such that deviations from the benchmark are equivalent to a zero-investment portfolio. The

weights of the resulting portfolio thus always add up to 100 %. The optimization problem

is further simplified by noting that the coefficients that maximize the conditional expected

utility of the investor at a specific time t are constant through time and across assets such

that the optimization problem can be written in terms of the φ-coefficients:

max
φ

E [u(rp,t+1)] = E

[
u

(
Nt∑
i=1

f(xi,t;φ)ri,t+1

)]
(26)

To estimate the φ-coefficients we rely on the corresponding sample moments:

max
φ

1

T − 1

T∑
t=0

u(rp,t+1) =
1

T

T−1∑
t=0

u

(
Nt∑
i=1

(
wi,t +

1

Nt
φ′x̂i,t

)
ri,t+1

)
(27)

As the PPP expresses the portfolio problem as a statistical estimation problem, it is pos-

sible to obtain standard errors for the φ coefficients and to evaluate whether a characteristic

is a significant determinant of the portfolio policy. The optimization problem in Equation

(27) satisfies the first order conditions, see Brandt, Santa-Clara, and Valkanov (2009):

1

T

T−1∑
t=0

h(rt+1, xt;φ) ≡ 1

T

T−1∑
t=0

u′(rp,t+1)

(
1

Nt
x̂′trt+1

)
= 0 (28)

where u′(rp,t+1) denotes the first derivative of the utility function and x̂′t the transpose of the

factor characteristics vector. Thus, the optimization problem can be interpreted as a method
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of moments estimator and the asymptotic covariance matrix estimator AV ar[φ̂] is given by,

see Hansen (1982):

Σφ ≡ AV ar[φ̂] =
1

T
[G′V −1G]−1 (29)

where

G ≡ 1

T

T−1∑
t=0

δh(rt+1, xt;φ)

δφ
=

1

T

T−1∑
t=0

u′′(rp,t+1)

(
1

Nt
x̂′trt+1

)(
1

Nt
x̂′trt+1

)′
(30)

and V is a consistent estimator of the covariance matrix of h(r, x;φ).

4.3 Empirical results

Table 4 gives estimation results and performance statistics for six univariate parametric port-

folio policies. Across the univariate models, the only significant coefficients obtain for PM ,

while the coefficients for V OL, NB, DTM , V AL, and Spread are insignificant. We observe

a significant positive sign for PM suggesting a short-term price momentum effect among

equity factors. Hence, factors with positive price momentum are overweighted relative to the

benchmark while factors with negative price momentum are underweighted. The annualized

return of the parametric portfolio policy using PM is 0.62 percentage points higher than

the one for the equal-weighted benchmark, the volatility increases by 0.31 percentage points.

This results in an information ratio of 0.88. While V OL, NB and V AL display negative

information ratios, DTM and Spread have a positive one (0.30 and 0.06, respectively).

[Table 4 about here.]

[Figure 5 about here.]

Instead of relying on PM only, we include six characteristics in a multivariate parametric

portfolio policy as the interactions of characteristics in a multivariate setting might alter the

evidence. Panel C in Table 4 gives the estimation results for the parametric portfolio policy

based on six characteristics. the estimation coefficients for V AL and NB are insignificant

and detract from performance. Focussing on factors whose estimation coefficients are signifi-

cant in a multivariate framework and which economically foster performance, we reduce our

characteristic set to four factors. Panel D in Table 4 and Figure 5 show the φ-estimates and

the corresponding confidence bands calculated as φ̂i ± 1.96× SEi. Similar to the univariate

case we find PM still having a significant φ-coefficient. Using a multivariate approach result

in significant coefficients for DTM , Spread and V OL in the sample period. Spread and

V OL have a negative φ-estimator meaning that the model favors less volatile factors with

wide spreads. On the other hand, DTM shows a positive φ-coefficient indicating that the

model favors factors which are more distant to the market.

[Figure 6 about here.]
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Figure 6 illustrates the ensuing optimal linear portfolio weight over time using the two

factors Book-to-Market (BTM) and 12-month momentum (MOM12). As for BTM , there

is an overweight relative to the equal-weighted benchmark due to Spread and DTM . As this

changed in the course of the financial crisis in 2009 the PPP shys away from BTM to the

extent that this factor is underweighted. The two other characteristics hardly influence the

BTM factor. As the factor is a middle-ground factor according to its volatility, the V OL

characteristic does not significantly add or detract weight from the equal-weighted benchmark

anchor. The evidence is different for the MOM12 factor. The overall weight is much more

volatile going through time. MOM12 does have the highest volatility in the factor set, thus

the PPP reduced its weight due to the negative φ-coefficients for V OL. DTM and V OL

lead to an underweight until the beginning of 2009. Afterwards DTM and Spread lead to

an overweight due to the changing φ-coefficients for DTM over time.

In Table 3 we present the resulting strategy performance. The factor tilting approach

delivers an excess return of 0.51 percentage points p.a. over the benchmark, whereas the

volatility is increased by 0.32 percentage points. As a result, the SR (1.25) is comparable to

the the equal-weighted benchmark (1.21). The return distribution is also more extreme, as

the minimum and maximum returns attain higher absolute values. However, the maximum

drawdown is slightly reduced from −5.3% to −4.6%, indicating that the strategy helps to

navigate some of the bad times. The strategy’s IR is 0.61.

We infer that the chosen characteristics are useful to tilt equity factors. By couching the

cross-sectional characteristics into the parametric portfolio policy of Brandt, Santa-Clara,

and Valkanov (2009) we are able to construct a portfolio which slightly increase on a risk-

return basis compared to an equal-weighted benchmark and is able to limit the maximum

drawdown.

5 Conclusion

To summarize, this paper contributes to the ongoing debate of whether it is possible to time

factors. In contrast to most existing studies, we use a multi-factor approach. Moreover, taking

a portfolio-theoretic factor allocation view that considers time-series as well as cross-sectional

based predictors also adds to the academic literature. In this context, we contrast our per-

formance against an equal-weighted factor allocation benchmark. Using a well documented

yet diversified factor set, we couch time-series and cross-sectional signals into the parametric

portfolio policy by Brandt and Santa-Clara (2006) and Brandt, Santa-Clara, and Valkanov

(2009) to improve the equal-weighted benchmark. For factor timing using time-series in-

formation we rely on fundamental and technical indicators as predictors. To avoid cherry

picking and overcome multicollinearity problems we use the first PCA of both datasets. We

reduce the number of variables to synthesize information embedded in all predictor variables

and also reduce their noise. Although the factor timing coefficients are insignificant we are

able to improve our benchmark results.
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For factor tilting we rely on six different characteristics embedded in the cross-section of

the factor set: valuation, spread, momentum, volatility and two factors based on the corre-

lation network (note betweenness and distance-to-market). Couching this in the parametric

portfolio policy on an univariate basis only momentum coefficients were significant. In a mul-

tivariate model only node betweenness and valuation stay insignificant. Therefore, we focus

on a model including the remaining four significant characteristics to exploit their information

in a factor tilting framework. Using this cross-sectional information the tilting-coefficients

help to slightly improve the risk-return profile of the resulting factor allocation relative to the

equal-weighted factor allocation benchmark and are able to limit the maximum drawdown

remarkably.
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A Appendices

A.1 Definition of fundamental predictors

• Dividend Price Ratio (dp): Difference between the log of 12-month moving sums of

dividends paid on the S&P 500 index and the log of S&P 500 index prices.

• Dividend Yield (dy): Difference between the log of 12-month moving sums of dividends

paid on the S&P 500 index and the log of 1-month lagged S&P 500 index prices.

• Earnings Price Ratio (ep): Difference between 12-month moving sums of earnings on

the S&P 500 index and log of S&P 500 index prices.

• Dividend Payout Ratio (de): Difference between 12-month moving sums of dividends

on the S&P 500 index and log of 12-month moving sums of earnings on the S&P 500.

• Stock Variance (svar): Realized variance calculated as the monthly sum of squared

daily returns on the S&P 500.

• Book to Market Ratio (bm): Ratio of book value to market value for the Dow Jones

Industrial Average.

• Net Equity Expansion (ntis): Ratio of 12-month moving sums of net issues by NYSE

listed stocks divided by the total market capitalization of NYSE stocks.

• Treasury Bills (tbl): Interest rate on a 3-month treasury bill traded on the secondary

market.

• Long Term Yield (lty): Yield on long-term government bonds.

• Long Term Rate of Return (ltr): Return on long-term government bonds.

• Term Spread (tms): Difference between the long-term yield on government bonds and

the T-bill rate.

• Default Yield Spread (dfy): Difference between BAA- and AAA-rated corporate bond

yields.

• Default Return Spread (dfr): Difference between the return on long-term corporate

bonds and returns on the long-term government bonds.

• Inflation (infl): Consumer Price Index (all urban consumers).
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A.2 Network Theory

Network theory deals with the representation of relations between elements in graphs. In

a graph, the elements are represented by nodes which are connected by lines. A subgraph

of a connected graph is the minimum spanning tree (MST) where the term tree refers to a

graph in which any two nodes are connected by exactly one line and a spanning tree connects

all nodes of the graph. The MST is the tree in which the sum of the length of all lines is

minimized within the subclass of spanning trees without cycles.

In our case, the elements are equity factors and their relations are described in terms of

correlations. As is common in the literature, we define the distance of factors by transforming

the correlations as follows:

Dt
i,j =

√
2 (1− ρti,j) (31)

This transformation ensures that all distances are positive and it yields a matrix with

values in the range of [0,2], in which smaller distances between factors represent higher cor-

relations, and vice versa. We can then construct the MST by using Prim’s (1957) algorithm:

We start to initialize the MST with an arbitrarily chosen single factor A. Then, we examine

all nodes that are not yet included in the graph and attach the node with the shortest dis-

tance to A (as measured by Di,j,t) to the graph. The algorithm of Prim then progressively

adds further nodes which have not already been linked. This is done by repeatedly adding

those which have the shortest distance to one of the nodes in the tree until all nodes are in-

cluded. Identical to the computation of V OL, we weight the return observations to estimate

the variance-covariance matrix using a decay parameter of λ = 0.97.

29



Table 1: Stylized facts of equity factors. The table shows stylized facts of the employed
equity factors. Annualized excess returns are calculated using the arithmetic average of simple
returns. The standard deviation and Sharpe ratio are annualized by multiplication with

√
12.

Min and Max denotes the lowest and highest monthly excess return in the sample period.
MaxDD describes the maximum drawdown the factor realized. Return, Volatility, Min, Max
and MaxDD are in percentage terms. The time period is from 01/1997 to 12/2016.

Return Volatility Min Max MaxDD Sharpe Ratio t-stat

PROF 7.70 6.66 -7.93 9.91 15.80 1.15 5.17
CFY 9.69 12.61 -14.00 17.14 46.01 0.76 3.43
ACC 0.29 5.70 -8.80 6.43 30.85 0.05 0.23
DY 5.63 14.08 -14.82 19.25 47.13 0.39 1.79
AT 4.55 5.25 -3.66 4.62 12.51 0.86 3.87
BTM 3.58 11.66 -14.26 16.95 46.36 0.30 1.37
MOM12 12.05 20.21 -33.12 22.45 56.04 0.59 2.67
MOM6 10.24 19.16 -30.25 27.83 43.93 0.53 2.39
STR 1.94 14.56 -16.26 15.87 37.14 0.13 0.60
LTR 3.20 12.72 -11.08 16.08 38.41 0.25 1.13
DLTD 4.96 7.22 -7.34 11.71 17.23 0.68 3.07
DSO 7.28 9.02 -8.61 12.55 20.83 0.80 3.61
Size 2.97 13.56 -11.45 12.84 45.27 0.21 0.98
AG 5.96 10.04 -10.51 15.71 25.09 0.59 2.66
CP 4.09 8.19 -7.30 12.18 22.82 0.50 2.24
PMA 3.99 8.63 -8.55 9.22 29.81 0.46 2.07
EY 8.33 11.35 -9.28 14.84 35.38 0.73 3.28
LEV 3.75 13.75 -18.49 18.20 51.84 0.27 1.22
ROA 5.07 7.12 -6.87 5.49 20.52 0.71 3.19
STC 5.28 11.84 -15.07 15.15 51.29 0.44 1.99
STI 2.48 5.68 -4.20 7.64 23.92 0.43 1.95
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Table 2: Factor timing. The table shows the θ coefficients for the fundamental and
technical PCA factors that obtain in the parametric portfolio policy for factor timing. The
coefficients are marked by * if significant at the 5 %-level. The sample period is from 06/2003
to 12/2016.

FUN1 S.E. TECH1 S.E.

PROF 0.10 0.28 0.21 0.52
CFY -0.10 0.39 0.03 0.38
ACC 0.10 0.41 0.13 0.62
DY -0.10 0.27 -0.05 0.30
AT 0.10 0.49 0.08 0.45
BTM -0.04 0.46 -0.03 0.50
MOM12 -0.10 0.18 0.20 0.15
MOM6 -0.08 0.18 -0.03 0.19
STR 0.02 0.08 -0.18 0.17
LTR -0.02 0.21 0.00 0.20
DLTD 0.10 0.66 0.04 0.76
DSO 0.10 0.43 0.07 0.54
Size 0.01 0.16 0.00 0.17
AG 0.10 0.61 0.02 0.59
CP 0.07 0.48 0.02 0.62
PMA 0.10 0.45 -0.04 0.43
EY -0.10 0.51 0.20 0.43
LEV -0.10 0.35 0.01 0.30
ROA 0.05 0.64 0.13 0.44
STC 0.05 0.40 -0.09 0.44
STI 0.10 0.31 0.14 0.49
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Table 3: Performance statistics: Factor timing and factor tilting. Excess return,
standard deviation, minimum, maximum, maximum drawdown, and (ex-post) tracking er-
ror are in percentage points. Annualized excess returns are calculated using the arithmetic
average of simple returns. The standard deviation and Sharpe ratio are annualized by mul-
tiplication with

√
12. The OOS period spans from 06/2003 to 12/2016.

Statistic Benchmark Factor Timing Factor Tilting
1/N PPP timeFI PPP tilt

Excess return 3.37 4.60 3.88
Standard deviation 2.79 2.89 3.11
Minimum -2.78 -2.07 -3.43
Maximum 3.34 3.50 3.50
Maximum drawdown -5.31 -6.11 -4.66
Sharpe ratio 1.21 1.59 1.25
Tracking error 1.12 0.83
Information ratio 1.10 0.61
t-statistic 4.46 5.87 4.60
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Table 4: Factor tilting-coefficients. The table gives estimation results and performance
statistics of parametric portfolio policies for factor tilting based on cross-sectional charac-
teristics. As for the estimation of the parametric portfolio policy, the first column reports
the φ-coefficients, and the second column reports the associated standard errors (S.E.). The
sample period is from 11/2002 to 12/2016. Panel B gives PPPs based on single character-
istics, Panel C gives the PPP based on six characteristics, Panel D gives the PPP based on
four characteristics. Panel A gives the benchmark model.

Characteristic φ̂ S.E. Return Vola Sharpe Tracking Information
p.a. p.a. ratio error ratio

Panel A: Benchmark model

1/N 3.37 2.79 1.21 - -

Panel B: Univariate model

PM 0.754* 0.261 3.99 3.10 1.29 0.71 0.88
VOL -0.304* 0.566 3.11 2.72 1.14 0.55 -0.48
NB -0.209* 1.215 3.04 2.63 1.15 0.78 -0.43
DTM 0.542* 0.457 3.60 3.01 1.20 0.75 0.30
Val -0.012* 0.465 3.15 2.95 1.07 0.55 -0.40
Spread -0.608* 0.814 3.41 3.03 1.13 0.70 0.06

Panel C: Multivariate model

PM 1.164* 0.256 3.69 3.15 1.17 0.84 0.38
VOL -1.403* 0.496
NB 1.857* 1.045
DTM 0.958* 0.403
VAL -0.536* 0.356
Spread -1.214* 0.624

Panel D: Multivariate model

PM 0.946* 0.226 3.88 3.11 1.25 0.83 0.61
VOL -0.854* 0.429
DTM 0.822* 0.414
Spread -1.217* 0.638
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Figure 1: Equity factor correlation matrix. The figure gives the correlation matrix for
the equity factors included in the factor set for the time period 01/1997 to 12/2016.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PROF

CFY

ACC

DY

AT

BTM

MOM12

MOM6

STR

LTR

DLTD

DSO

Size

AG

CP

PMA

EY

LEV

ROA

STC

STI

0.61

−0.61

0.46

−0.15

0.52

−0.28

−0.23

−0.01

0.44

0.56

0.63

−0.3

0.61

0.45

0.44

0.49

0.62

0.06

0.55

−0.28

−0.67

0.8

−0.15

0.89

−0.13

−0.02

0.12

0.52

0.68

0.76

−0.14

0.73

0.81

0.55

0.83

0.9

0.13

0.85

−0.36

−0.68

0.13

−0.67

0.18

0.06

−0.11

−0.66

−0.74

−0.7

0.09

−0.83

−0.58

−0.44

−0.54

−0.69

0.01

−0.71

0.13

−0.17

0.76

0.12

0.2

0.22

0.43

0.69

0.79

−0.14

0.7

0.61

0.69

0.87

0.75

0.35

0.85

−0.05

−0.27

0.13

0.12

0.12

−0.09

−0.01

0.06

−0.05

−0.04

−0.19

−0.21

−0.12

−0.26

0.26

0.03

0.2

−0.18

−0.03

0.08

0.65

0.73

0.68

−0.26

0.78

0.92

0.36

0.7

0.91

−0.13

0.68

−0.44

0.88

0.25

−0.14

0.06

0.06

−0.09

−0.08

−0.22

0.23

0.18

−0.19

0.43

0.04

0.37

0.32

−0.04

0.12

0.13

−0.06

0.02

−0.07

0.26

0.24

−0.09

0.38

0.1

0.39

0.13

0.19

0.23

−0.06

0.15

0.08

0.16

0.16

0.05

0.18

0.13

0.28

0.75

0.57

−0.2

0.82

0.65

0.04

0.25

0.62

−0.36

0.42

−0.21

0.79

−0.38

0.95

0.64

0.32

0.57

0.74

−0.07

0.68

−0.21

−0.41

0.81

0.56

0.59

0.76

0.76

0.25

0.84

−0.11

−0.32

−0.21

−0.02

−0.08

−0.3

0.21

−0.09

0.11

0.69

0.31

0.54

0.8

−0.14

0.71

−0.22

0.14

0.55

0.85

−0.27

0.53

−0.45

0.78

0.38

0.71

0.71

0.11

0.7

0.54

0.85

−0.12

−0.13

0.76

−0.35

0.4

0.29 −0.11

34



Figure 2: Correlation matrix of timing predictors. The figure shows the correlation
matrix of the standardized fundamental variables and technical indicators for the 12-month
momentum (MOM12) factor. The correlation structure of fundamental variables is in the
top left corner, the one of technical indicators in the bottom right corner. The time period
is from 01/1997 to 12/2016
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Figure 3: Decomposition of optimal factor timing weights. The figures decompose
the factor timing weight for two factors (BTM at the top and MOM12 at the bottom) into
the contributions of the conditioning variables. BM depicts the benchmark weight. The
black line shows the total weight of a respective factor. The time period is from 06/2003 to
12/2006.
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Figure 4: Minimum spanning tree. The figure visualizes the correlation network in
terms of a minimum spanning tree of equity factors plus the market. The plot builds on the
equal-weighted variance-covariance matrix using monthly data from 01/1997 to 12/2016.
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Figure 5: Multivariate φ-coefficients over time. The figure depicts φ-coefficients for the
cross-sectional characteristics used in the parametric portfolio policy for factor tilting. The
solid line depicts the coefficients while the dashed lines give the corresponding 95% confidence
interval.
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Figure 6: Decomposition of optimal factor tilting weights. The figure decomposes
the weight in the parametric portfolio policy for factor tilting for a specific factor into the
contributions of the characteristics. The solid line gives the overall weight. The upper chart
is for BTM and the lower chart for MOM12. The time period is from 06/2003 to 12/2006.
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Figure 7: Univariate φ-coefficients over time. The figure shows φ-coefficients for the
cross-sectional characteristics used in the parametric portfolio policy for factor tilting. The
solid line depicts the coefficients while the dashed lines give the corresponding 95% confidence
interval.

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

Btwn

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

DTM

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

Mom

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

Spread

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

Val

−5.0

−2.5

0.0

2.5

5.0

07−05 07−09 07−13

Vol

40


	Introduction
	Building global equity factors
	Factor timing
	Predictor variables
	Fundamental variables
	Technical indicators
	Reducing the number of predictor variables

	Optimal factor timing
	Methodology of brandt2006dynamic
	Empirical results


	Factor tilting
	Cross-sectional factor characteristics
	Valuation (VAL)
	Spread
	1-month price momentum (PM)
	Volatility (VOL)
	Factor position in correlation networks

	Methodology of *brandt2009parametric
	Empirical results

	Conclusion
	References
	Appendices
	Definition of fundamental predictors
	Network Theory


