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Abstract

This article addresses to the appropriate modeling of loss given default

(LGD) for the retail business sector. We assume small or mid-size loans that

are assigned in a standardized way and collateralized by residential or com-

mercial property. The focus on this specific type of loans entails two major

advantages: Firstly, reduction of complexity is followed by easier-to-grasp

methodology and increased handiness of results when comparing with other

recent approaches in the field. Secondly, the focussing allows to take into

account the characteristic properties of the housing market and its under-

lying uncertainty and so choose a tailor-made modeling for the collateral.

The choice of an exponential Ornstein-Uhlenbeck diffusion as the stochastic

process of the collateral combines the desirable features with the charm of

analytical solvability which seems to be of advantage as regards to accep-

tance among practitioners. Further key improvements of this approach are

the explicit consideration of loan ranking, the disentanglement of the time of

default and the time of liquidation as well as the introduction of liquidation

cost.
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1 Introduction and motivation

Loss Given Default (LGD) is one of the key measures when modeling and

managing credit risk. It captures the percental loss the bank faces in case of a

defaulting obligor. Since 2006, the Basle Committee on Banking Supervision

(BCBS) allows banks to use their own rating approaches for the purpose of

calculating the required equity for credit collateralization – i.e. a so called

Internal Rating Based Approach (IRBA). This concept stipulates the idea of

expected loss as a product of three factors:

E[L] = PD · EAD · LGD.

The first factor PD represents the probability of default (PD), the sec-

ond one EAD denotes the amount of unredeemed outstanding debt at the

moment the obligor defaults, the exposure at default (EAD). The third com-

ponent yet is the loss given default (LGD) as percentage of nonrecoverable

debt related to EAD. Banks using the advanced rating approach are allowed

to estimate these parameters single-handedly by means of internally devel-

oped methods. If one assumes that the EAD component is predictable to a

great extent by means of amortization schedules, the problem reduces to an

accurate estimation of LGD and PD. For the bank, reliable estimates of each

component are important in equal measure: Correctly estimated (and low)

values for LGD and/or PD lead to lower expected loss and therefore to lower

capital requirements and a reduction of risk capital.

Before proceeding it is worth concretizing the concept of expected loss as

introduced in the equation above. Let us consider a portfolio with N debtors.

For each of them i, i = 1, ..., N, let Di be the digital random variable that

indicates whether the very debtor defaults with possible realizations for Di

to be 1 in case of default and 0 if no default occurs, i.e. Di is a digital random

variable or indicator function. Consequently, the random loss Li in absolute
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terms is

Li = Di · LGDi · EADi,

where LGDi and EADi are the percentage loss and the outstanding debt in

case of default of the ith obligor. Taking expectations we receive

E[Li] = E[Di · LGDi · EADi]

= E[Di · E[LGDi · EADi|Di]]

= P (Di = 1) · E[LGDi · EADi|Di = 1]

+P (Di = 0) · E[LGDi · EADi|Di = 0]

= P (Di = 1) · E[LGDi · EADi|Di = 1],

where for the last line we identified the case of no default with the absence of

any loss. Slightly simplifying notation by PDi for P (Di = 1) and assuming

deterministic exposure at default EADi, we obtain

E[Li] = PDi · E[LGDi|Di = 1] · EADi.

When we compare this to the equation provided by the BCBS, we state that

the notation used of the latter implicitly assumes that both the percent-

age loss and the exposure at default are known with certainty. Deviating

from that we assume in this article uncertainty with respect to the LGD and

identify the LGD in the BCBS sense with the expected loss given default

E[LGDi|Di = 1].

Even though the equations and the discussion above stress the impor-

tance of LGD for banks, the scientific debate seems to be biased towards an

over-intense discussion about default probabilities. One reason for that may

be the fact that the conceptual requirements of the BCBS with respect to the

loss given default had not been specified that clearly until recently. Another

reason could be that in a general framework the modeling of LGD cannot be

reasonably done without simultaneously modeling the PD component. There
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are a number of empirical articles that indicate a dependence of PD and LGD:

Altman/Resti/Sironi (2001), Altman/Brady/Resti/Sironi (2005), Caselli/

Gatti/Querci (2008) and Acharya/Bharath/Srinivasan (2007) use regres-

sion based models to show that the economic cycle of an industrial sector

or of the whole economy explains both probabilittes of defaults and histori-

cally realized values of loss given default in a significant way. Hu/Perraudin

(2006) use extreme value theory to prove a direct correlation of PD and LGD

in the US bond market. Bade/Rösch/Scheule (2011) investigate corporate

loans and identify a correlation between the default process (i.e. PD) and

the process of recovery values (i.e. LGD) by means of maximum likelihood

methods.

The existing literature concerning theoretical aspects of LGD, however,

restricts itself to a very general and hardly applicable view of the topic. The

theoretical models usually account for the possible dependence of PD and

LGD in one of the following ways: Frye (2000), Dev/Pykhtin (2002), Hille-

brand (2005), van Damme (2011) und Jacobs (2011) model the recovery

rate as one random variable and the assets of the obligor as a second one and

let both of them be driven by one latent factor. Jokivuolle/Peura (2003) and

Pykhtin (2003) choose correlated stochastic processes for the firm value on

the one hand and the value of the collateral on the other hand. The result-

ing formulas are highly complex but still vague for lack of concretion towards

a realistic and practice-oriented type of collateral. Consequently, trying to

catch ’all by one’, these approaches end up at the lowest common denomina-

tor. Typically, this common denominator is found to be geometric Brownian

motion which then again can neither satisfy researchers nor practitioners.

As we acknowledge the impossibility to capture the heterogeneity of dif-

ferent LGD estimation problems within one general and still powerful model,

we enter the alternative path of specification: In this paper we focus on one
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single but typically quite important portion of a bank’s credit portfolio, the

part of the retail business where loans are collateralized by residential or

commercial property. We look at loans, that are conferred in standard way

to an obligor, which typically is represented by a private individual or a small

or mid-size company1.

We now explain how this focus allows us to neglect the phenomenon of

correlated PD and LGD by means of economic latent factors described above

and thereby jettison part of the methodological over-complexity. This mod-

eling is supported by some recent empirical results of Grunert/Weber (2009)

and Grunert (2010): Both articles use default histories of small bank loans

to conclude that there is no significant correlation between a bunch of eco-

nomic indicators and the realized recovery rates. On the other hand, the

assumption of independence for the retail business is not at odds with the

other studies cited above that confirmed a general correlation of default prob-

ability and loss given default: The relationships detected in Altman/Resti/

Sironi (2001), Altman/Brady/Resti/Sironi (2005), Hu/Perraudin (2006)

as well as Bade/Rösch/Scheule (2011) relate to defaults of publicly traded

bonds. Acharya/Bharath/Srinivasan (2007) derive their insights from some

data covering large-cap credit portfolios. Evidently, both types of financing

are crucially different to the case of a classical mortgage-backed loan. Only

the work of Caselli/Gatti/Querci (2008) address their analysis to small and

mid-size bank loans of an Italian bank. The authors again receive some gen-

eral evidence for a correlation between LGD and macroeconomic factors, yet

they explicitly stress that this evidence disappears when choosing only the

loans that are collateralized by residential property.

Summarizing, for the special case of a mortgage-backed private loan, the

assumption of independence of the local housing market on the one hand and

1Large-size engagements with international companies are excluded, as they are cru-

cially different for being structured in a much more complex way.
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the solvency of the single obligor on the other hand, seems to be feasible or

at least not a major limitation. But what we earn is much more: We obtain

an increased analytic manageability which should also increase acceptance

among practitioners considerably. Meanwhile, the model reduction fans out

a multitude of possibilities for an adequate modeling of the collateralizing

asset. As we focus on residential property, we have a look on mathematical

models of real estate markets (commercial and residential).

With respect to the descriptive and empirical level, there is early work of

Case/Shiller (1989), Case/Shiller (1990) and Hosios/Pesando (1991). All

three emphasize the incompleteness of real estate markets and elaborate the

phenomenon of serial correlation to be a key ingredient of an appropriate

mathematical model. Furthermore, seasonality seems to play an important

role for the studies dealing with local housing prices in Chicago (Case/Shiller)

and Toronto (Hosios/Pesando). Englund/Ioannides (1997) affirm these re-

lationships when investigating international data sets. A number of articles

tries to ascribe these stylized facts to search-theoretic (see Wheaton (1990),

Krainer (2001), Piazzesi/Schneider (2009), Novy-Marx (2009) and Diaz/

Jerez (2013)) and/or behavioristic (see e.g. Hott (2011)) mechanisms.

Despite of these insights the early literature dealing with derivative pric-

ing in the real estate sector are based on the assumption of complete markets

and geometric Brownian motion as stochastic model (see Titman/Torous

(1989), Buttimer/Kau/Slawson (1997) and Björk/Clapham (2002)). Later

models keep geometric Brownian motion as driving diffusive process but in-

troduce equilibrium models to account for market incompleteness (see Gelt-

ner/Fisher (2007) and Cao/Wei (2010)). Crawford/Fratantoni (2003) sug-

gest ARIMA- and GARCH- models for a realistic mapping of house price

indices. The recent work of Fabozzi/Shiller/Tunaru (2010) again stresses

the need of a mathematical model that incorporates serial correlation and
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provides new empirical evidence. The model the authors suggest ties in

with the approaches of Lo/Wang (1995) and Jokivuolle (1998) who deal

with other serially correlated assets. Finally, Fabozzi/Shiller/Tunaru (2012)

point out that the property of serial correlation must be regarded as a cen-

tral requirement when modeling any kind of real estate. The process these

authors use and which also Perelló/Sircar/Masoliver (2008) use in a slightly

different context with stochastic volatility, is called exponential Ornstein-

Uhlenbeck process. Against the background described above, we also adopt

this stochastic process for the purpose of modeling the value of the collater-

alizing residential property.

The basic idea of this article is to use a conceptual analogy of option

pricing theory for LGD modeling. More precisely, we interpret the loss pro-

file of a debtor at default as kind of a put option, where the underlying is

identified by the vale of the collateral. Our model for LGD estimation shows

a number of advantages with respect to practical use that to the best of our

knowledge have not been worked out within the literature before: Firstly,

we explicitly differentiate between the time of default and the time of liq-

uidation. This separation makes allowance for the fact that the liquidation

procedure is preceded by several steps of administrative and/or legal char-

acter, which leads to a delay between the time of default and the start of

the liquidation (see also Gürtler/Hibbeln (2013)). Secondly, we introduce

a cost factor that captures the liquidation efforts that may also affect the

amount of loss. This approach acknowledges the requirement of the Basle

committee, which provides workout costs to be included in the definition of

LGD. Thirdly, our model easily captures the existence of loan-specific rank

structures. We regard this to be necessary as also the retail business is often

affected by situations where one collateral is used for the securitization of

more than one loan. If one or several other creditors are in a superior or

in the same rank, this has an immediate effect on the bank’s risk position.
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Finally, the analytical tractability of our model allows to compute sensitivi-

ties of the LGD formula for key parameters in closed form which could prove

useful for practitioners when thinking of risk steering.

The remainder of the paper is structured as follows: In section 2 we

present the overall modeling framework. Section 3 provides a closed-form

solution for the expected loss given default, while section 4 analyzes the

derived formula and investigates sensitivities with respect to the parameters

of the model. Section 5 concludes.

2 The basic model

We first simplify notation and drop the index i for the remainder of the ar-

ticle, i.e. we write E[LGD|D = 1] for the expected loss given the default

of a representative obligor. As mentioned above we build our model based

on analogies taken from option pricing theory. For that purpose we need

at least one source of uncertainty. An obvious candidate is the value of the

collateral which we denote by C. Its future development being uncertain we

regard C = Ct as a stochastic process.

We use the following notation: The variable t indicates calendar time.

Initially, this can be identified with the starting date of the loan, later it may

be any point in time where revaluation of the loss given default is assessed.

The future date under consideration where there may or may not be a default

is denoted by TD (time of default). The instructions of the Basle Committee

postulate a time horizon of one year concerning the potential loss, i.e. TD = 1.

We generalize slightly treating TD as a variable. As motivated above, for the

sake of sufficient practical relevance we further assume that liquidation takes

place with some delay at the point in time TL (time of liquidation) with

t < TD ≤ TL. The difference TL − TD then is the length of the liquidation
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period. It clearly depends on the efficiency of the bank’s liquidation division,

but may also be driven by strategic considerations. Using historical default

data, average values can be determined empirically.

The part of the loan that is unredeemed until time t is termed Et (Ex-

posure). As we discussed earlier, we reduce complexity by stating that the

amortization schedule determines that time-dependent variable to great ex-

tent and therefore assuming Et to be deterministic through time typically of

decreasing shape2. For example, an installment loan should exhibit a step

function with steps of equal height. The outstanding unredeemed part of the

loan at time of default, is called exposure at default EAD, i.e. ETD
= EAD.

Taking into account that liquidation actions of collateralizing assets are

costly for the bank, we introduce the cost parameter k. It represents the

average cost of liquidation as a percentage value in relation to the value of

the collateral.

Moreover, we equip the model with different rank structures (especially

second-tier engagements). Generally, we allow for a senior position of other

banks/debtors with a nominal N which is served first when liquidating the

collateral3. Concerning liquidation, the second-tier rank of the bank repre-

sents an additional exposure. Only if the net present value of the liquidation

revenues (i.e. discounted to the time of default and net of liquidation costs)

exceeds the nominal amount N being senior, the liquidation actions will re-

duce the bank’s loss. On the other hand the bank will only benefit from

liquidation revenues until the outstanding loan (and liquidation cost) is cov-

2Exposures of non-deterministic type may be modeled using credit conversion factors

(CCF).
3For simplification reasons, positions of equal rank are treated as junior positions

taking a conservative view. A generalization to more complex rank constellations is though

straightforward.
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ered, i.e. we have a lower limit of the bank’s potential loss at the value of

zero. Consequently, the loss profile is linearly decreasing with the value of

the collateral for collateral (net present) values between N (last value of full

loss) and N + EAD (first value with full recovery).

Finally, as have been done by Jokivuolle/Peura (2003) we assume that beside

liquidation additional recovery efforts are made undertaken by the credit-

granting bank. If the liquidation revenues do not cover the amount of unre-

deemed loan at default (EAD), the bank will try to collect the outstanding

amount in a different vein. The share of this kind of recovery as a fraction of

unredeemed exposure (scarp value) net any recovery cost is termed by γ and

represents the residual recovery rate. Again, we assume that this ratio can

be derived from historical data and so be accurately estimated in advance.

Consequently, we define this parameter to be non-random. The interest rate

r represents the bank-internally used refinancing rate. It consists of the risk-

free rate plus an additional bank-specific risk premium and is also assumed

to be constant here.

With these assumptions, the loss profile LP at default reads as follows:

LPTD
=



EAD, if 0 ≤ e−r(TL−TD)(1− k)CTL
≤ N

EAD +N − e−r(TL−TD)(1− k)CTL
,

if N < e−r(TL−TD)(1− k)CTL
< EAD +N

0, if EAD +N ≤ e−r(TL−TD)(1− k)CTL
.

(2.1)

It is easy to see that the structure of the loss profile looks like the payoff

of an option. If we drop the nominal N in a first step, the option type is that

of a long put option with strike EAD, i.e. the loss is in-the-money as soon as

the underlying (the discounted collateral net cost) falls below the EAD4. If

4Indeed, the liquidation payoff has the structure of a short put as one could interpret

the liquidation payment at default as the duty to buy the collateral at the price of the

EAD. As we are interested in loss profiles, the signs turn around.
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we additionally take the nominal into account, we have an offsetting position

for collateral values between zero and N , i.e. a short put with strike N . The

combined position is that of a bear put spread.

The expected loss given default is given by the expected loss profile related

to the total exposure and multiplied by 1 − γ which accounts for residual

recovery:

E[LGDTD
] = (1− γ)

1

EAD
E[LPTD

|τ = TD], (2.2)

where we have E[LGDTD
] = E[LGD|D = 1] and τ is the set of all possible

times of default. For the special case where N = 0 (no senior positions) and

TD = TL (no liquidation delay) we obtain

E[LGDTD
] = (1− γ)

1

EAD
E[max(EAD − (1− k)CTD

, 0)|τ = TD]

= (1− γ)E
[EADNC

EAD
|τ = TD

]
. (2.3)

Here, the parameter EADNC represents the non-collateralized share of the

unredeemed loan. For fully uncollateralized loans, we have EADNC = EAD,

so that the LGD is only driven by the residual recovery process.

For the remainder of the article, we assume collateralized credit engage-

ments. Treating the exposure at default as non-random, the only random

factor influencing the loss profile and therefore the loss given default, is the

value of the collateral. Focussing on residential or commercial property,

we model the value of the collateral as an exponential Ornstein-Uhlenbeck-

process (OU) as motivated above. Moreover, we assume that the market

value of the collateral asset can be represented at any point in time T > t as

CT = Cte
YT , (2.4)

where YT is an OU-process. As noted above, the exponential OU-process

was proposed by Fabozzi/Shiller/Tunaru (2012) for the development of real

estate property values and captures characteristic features of the housing

market:
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• Returns of real estate assets fluctuate over time, though they exhibit

some mean-reverting trend to a long-term average.

• Returns are serially correlated over time.

Furthermore, the use of this process guarantees the collateral value to stay

positive. The dynamics of the return process Yt are described by the following

stochastic differential equation:

dYt =
(dΨt

dt
+ κ(Ψt − Yt)

)
dt+ σdWt. (2.5)

Ψt represents the average long-term level of the return process on property.

This level is exogenous and depends on several features of real estate mar-

kets. It is time-dependent and may show different shapes: one could imagine

e.g. a linear trend of the form Ψt = α + βt or a cyclical (seasonal) trend

with Ψt = α1 cos(β1t) + α2 sin(β2t). The parameter κ > 0 determines the

speed at which mean-reversion takes place, the parameter σ > 0 indicates

the volatility of the process, while by Wt we denote a standard Brownian mo-

tion with zero expectation and variance t. In the basic model, σ is assumed

to be constant, extensions to a time-dependent volatility σ = σt are though

easy to accomplish. From a methodological point of view, the model is a

generalization of the model of Vasicek (1977), which is the standard setup

for modeling interest rates with constant long-term mean (Ψt = c).

At this point of the paper it is important to emphasize the following: We

will make use of aspects of option pricing theory, which suggest themselves

when looking at the loss profile and its option-like payoff. However, we still

derive a traditional expectation under the physical measure. From a con-

ceptual point of view, this has nothing to do with option pricing or a fair

value approach for the credit portfolio or loss profile. Instead, we are asked

to provide an estimate for the expected loss as one risk measure required by
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the Basle Committee5. Consequently, the fact that the real estate market

is incomplete – which is important when valuing real estate derivatives (see

Fabozzi/Shiller/Tunaru (2012)) – does not play a major role here. Math-

ematically speaking, that means that there is no change of measure or risk

premium here. Furthermore, the idea of discounting the future claim to to-

day is not appropriate when thinking of the future loss at default time TD

that can be expected today.

It is straightforward to show that for all t < T the solution of equation

(2.5) is given by

YT = ΨT − (Ψt − Yt)e
−κ(T−t) + σ

∫ T

t

e−κ(T−s)dWs. (2.6)

Obviously, YT is a Gaussian process with the following conditional moments:

E[YT | Yt] = ΨT − (Ψt − Yt)e
−κ(T−t) (2.7)

V ar[YT | Yt] =
σ2

2κ

(
1− e−2κ(T−t)

)
. (2.8)

As one should expect, for the long-term limit we obtain

lim
T→∞

E[YT | Yt] = Ψ∞

while the long-term variance is

lim
T→∞

V ar[YT | Yt] =
σ2

2κ
.

We state that even though the expected value can increase without any

bound depending on the shape of Ψ, the variance remains limited. Two

more interesting features of the process have to do with the parameter κ.

We have

lim
κ→∞

E[YT | Yt] = ΨT

5Though an isolated view on this measure may be misleading, in combination with

other risk measures (e.g. value at risk) the information may nevertheless prove useful.
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lim
κ→∞

V ar[YT | Yt] = 0

as well as

lim
κ→0

E[YT | Yt] = ΨT −Ψt + Yt

lim
κ→0

V ar[YT | Yt] = σ2(T − t).

For an infinite speed of mean-reversion, the return process becomes deter-

ministic. For κ = 0 however, there is no feedback between the current level

of return Yt and the number Ψt, we have a classical Brownian motion plus a

deterministic drift component.

We conclude this section by bringing the results from the return to the

price level of the collateral. We receive

E[CT | Ct] = Cte
µY + 1

2
σ2
Y (2.9)

V ar[CT | Ct] = C2
t e

2µY +σ2
Y (eσ

2
Y − 1), (2.10)

where µY = µYT
and σ2

Y = σ2
YT

are the moments of the return process YT

given by equations (2.7) and (2.8). Additionally, we observe the probability

that the collateral value CT exceeds a critical value x is given by

P (CT > x) = Φ(d), (2.11)

with d = (ln(Ct/x) + µY )/σY and Φ(x) is the standard normal distribution

at point x, i.e.

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
z2dz.

With limx→0 d = ∞, we obtain P (CT > 0) = 1, i.e. the value of the collateral

cannot become negative.
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3 The expected loss given default

In this section we derive an analytical solution for the expected loss given

default. With the model setup of the previous section and the related as-

sumptions, the LGD is influenced by a couple of parameters and we can

write

E[LGDTD
] = E[LGDTD

(EAD,N,C, k, TD, TL, γ, r,Ψ, κ, σ)].

We start by providing the main result concerning the expected loss given

default:

Theorem 3.1 As of time t, the expected loss given default for an obligor

defaulting at time TD is given by

E[LGDTD
] = (1− γ)

[(
1 +

N

EAD

)
Φ(−d)− N

EAD
Φ(−d∗)

−(1− k)e−r(TL−TD) Ct

EAD
eµY + 1

2
σ2
Y

[
Φ(−(d+ σY ))− Φ(−(d∗ + σY ))

]]
,

(3.1)

where

d =
ln Ct

X
+ µY

σY

(3.2)

d∗ =
ln Ct

X∗ + µY

σY

(3.3)

X =
EAD +N

1− k
er(TL−TD) (3.4)

X∗ =
N

1− k
er(TL−TD) (3.5)

µY = µYTL
= ΨTL

− (Ψt − Yt)e
−κ(TL−t) (3.6)

σ2
Y = σ2

YTL
=

σ2

2κ

(
1− e−2κ(TL−t)

)
, (3.7)

and Φ(·) being the cumulative density function of the standard normal dis-

tribution.

15



For the proof, see Appendix A1.

Remark 3.2 In the special case where N = 0, i.e. d.h. the bank is the only

senior rank creditor, the formula for the LGD can be simplified as follows:

E[LGDTD
] = (1−γ)

[
Φ(−d)−(1−k)e−r(TL−TD) Ct

EAD
eµY + 1

2
σ2
Y Φ(−(d+σY ))

]
,

(3.8)

where d, µY and σY are as above while X = EAD/(1−k)er(TL−TD) is adjusted.

The formulae satisfy an economically interesting homogeneity condition.

Proposition 3.3 For any π > 0 we have

E[LGDTD
(πEAD, πN, πC, k, TD, TL, γ, r,Ψ, κ, σ)]

= E[LGDTD
(EAD,N,C, k, TD, TL, γ, r,Ψ, κ, σ)], (3.9)

e.g., the expected loss given default is homogeneous of degree zero with respect

to EAD,N and C.

The proof is an immediate consequence of equations (3.1)-(3.5). The eco-

nomical statement of this mathematical finding is that for the LGD only

the relationship between the three parameters matters, while absolute values

have no influence. This ensures that all obligors are considered in the same

way (especially, independent of the firm size).

We investigate the analytic structure of the derived formula a little deeper.

For the purpose of a better understanding, we look at some examples based

on concrete numbers. First, we analyze graphically, how the rank structure

influences the expected LGD. We compare two cases of loans with even char-

acteristics except that the first loan exhibits a senior position of a third party

amounting to a nominal of N = 50, whereas in the second case this is not the

case (N = 0). We let the long-term mean of real estate returns be constant

at a level of Ψt = 0.06 and choose the other parameters as follows: EAD =
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Figure 1: LGD estimates for two different tranches.

100, TD = 1, TL = 1.5, k = 0.05, r = 0.05, Y = 0.04, γ = 0.25, κ = 2, σ = 0.3.

The expected LGD depending on today’s value of the collateral is depicted

in Figure 1 for both cases.

As expected, in both cases, the expected LGD is decreasing with increas-

ing values of the collateral. The main difference, however, is that for the first

scenario the existence of the third-party nominal (N = 50) shifts the LGD

values considerably upwards. As long as the collateral only suffices to serve

the senior position, there is no recovery from the liquidation. In our model,

the residual recovery process characterized by the parameter γ = 25% limits

the loss to a maximum of 75%.

We now relax the assumptions assuming a linear trend for the long-term

mean of returns on residential property, i.e. Ψt = α+ βt. Again, we choose

two different scenarios: one scenario where the housing market is prospering,

the other scenario where it diminishes. The values for the scenarios are given

in Table 1.

The other parameters that are equal for both cases are: TD = 1, EAD =
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Scenarios for the real estate market
Prospering market α = 0.02 β = 0.08
Diminishing market α = 0.02 β = −0.08

Table 1: Two different scenarios for the real estate market used in the next

example.

100, N = 50, k = 0.05, r = 0.05, Y = 0.04, κ = 1, σ = 0.3 and γ = 0.25. We

combine the two scenarios with two liquidation periods of different length:

in the first case liquidation is supposed to take place six months after default

(TL = 1.5), in the second case 18 months after default (TL = 2.5). The

corresponding length of the liquidation period TL − TD is 0.5 and 1.5 years,

respectively. Figure 2 shows the expected LGD over the collateral value

for these different speeds of liquidation assuming the positive (left graph of

the figure) and negative (right graph) development of the housing market,

respectively.

Again, due to the nominal N , there is no liquidation revenue for the bank

as long as the collateral value lies below the claims of the senior parties.

It is the residual recovery process that reduces the loss to a level of 75%

((1− γ) ·EAD). More interestingly, the effect of the two scenarios becomes

clear, not only in terms of the absolute level of the curves: For the assumption

of a long-term prospering market, the delay of liquidation proceeds may be

beneficial as higher revenues are earned from liquidation of a more valuable

collateralizing asset. For the diminishing real estate market, the increased

liquidation period is however disadvantageous in all respects.

Finally, we analyze the effect of different cost factors on the LGD value.

We also keep today’s value of the collateral flexible and focus on the scenario

of an upturn in the market for residential property (α = 0.02, β = 0.08).

In our example, the cost factor may vary between 1% and 20%, the other
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Figure 2: LGD estimates for two different market scenarios and two different

liquidation periods.

parameters are EAD = 100, N = 50, TD = 1, TL = 2, r = 0.05, Y = 0.04, κ =

2, σ = 0.3 and γ = 0.25. We obtain a three-dimensional surface which is

displayed in Figure 3.

One clearly observes that the cost factor k influences the expected LGD

in a negative way which is in line with our intuition. The effect is most

pronounced for collateral values close to the EAD. If the collateral value is

too small to cover the nominal N of the senior parties, the cost factor is of

minor relevance, the same holds true when the collateral value is far beyond

the EAD.
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Figure 3: LGD estimates for different combinations of collateral values C

and cost factors k.

4 Sensitivities

It is crucial for any bank to quantify, evaluate and control the default risk of

their credit portfolio. As any information that serves this purpose should be

valuable, it might prove useful to know about the influence of single param-

eters on the expected loss or the expected LGD, respectively. Clearly, the

value of this information is evident when thinking of designing new credit

contracts: The bank then may quantify how contract parameters as for ex-

ample the value of the collateral influences the expected LGD. But also for

existing engagements there is a multitude of applications, e.g. the knowledge

about the influence of liquidation efficiency and cost factors on the LGD may

lead to consequences on liquidation policy.

By means of our model we are able to quantify key sensitivities of the

LGD formula with respect to its parameters in closed form. While one could
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investigate influence of any model parameter, we focus on an (in our opinion)

appropriate choice of the most important ones.

The first sensitivity we derive is the one with respect to the value of the

collateral C, which – in analogy to option pricing theory – we name Delta:

Proposition 4.1 For the Delta of the expected LGD (Theorem 3.1) it holds:

∂E[LGDTD
]

∂C
= (1− γ)

[
− n(d)

σY · C
+

N

EAD · σY · C
(n(d∗)− n(d))

−(1− k)e−r(TL−TD) e
µY + 1

2
σ2
Y

EAD

[
Φ(−(d+ σY ))− Φ(−(d∗ + σY ))

+
1

σY

(n(d∗ + σY )− n(d+ σY ))
]]
, (4.1)

where Φ(·) are the cumulative density function and n(·) the density function

of the standard normal distribution.

For the proof, see Appendix A2.

Remark 4.2 For the special case N = 0 (no other senior positions), the

formula for the Delta can be written as

∂E[LGDTD
]

∂C
= (1−γ)

[
− n(d)

σY · C
−(1−k)e−r(TL−TD) e

µY + 1
2
σ2
Y

EAD

[
Φ(−(d+σY ))−

n(d+ σY )

σY

]]
,

(4.2)

where we have X = EAD/(1− k)er(TL−TD).

For a graphical illustration we use the same example as in the previous

section (Figure 1) where we had the case with a nominal N = 50 as well

as without any nominal N = 0. For ease of interpretation, we exclude the

residual recovery actions here setting γ = 0. The other parameter values were

EAD = 100, TD = 1, TL = 1.5, k = 0.05, r = 0.05, Y = 0.04, κ = 2, σ = 0.3

and Ψt = 0.06. Figure 4 depicts the Delta values for the two cases over the

collateral value.
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Figure 4: LGD Delta estimates for two different tranches.

Obviously, if the lending bank is in senior position (N = 0), the delta is

at a constant level of minus one percentage point for very low collateral val-

ues. This value results from the fact that an increase of the collateral value

by one unit also reduces the expected loss in total amounts by (almost) one

unit. Divided by the EAD, which is 100 in this example, we receive the

effect on the expected loss rate there to be -1%. With the analogy to option

pricing stated above, recall that the payoff profile of LGD without nominal

N resembles the position of a long put. For a collateral value close to zero,

this option is far in-the-money. With increasing value of the collateral, the

reduction on the expected loss is lower and finally tends to a level of zero for

high collateral values. Here, the put option is far out-of the money, so that

a further increase of the underlying value has nearly no effect on the value

of the option.

If a third-party senior position exists with a nominal, there is an addi-

tional effect. For very low collateral values, the effect on the expected LGD

is close to zero: Here, an increase of the collateral’s value only helps the first-
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tier creditors because the probability of any liquidation revenue that exceeds

the nominal is rather low. Coming closer to the nominal, the potential loss

reduction strengthens more and more. After exceeding the nominal value we

have a shifted version of the first case described above: from the maximum

effect of -1.00%, a further increase of the collateral’s value will first result in

weaker effects and finally fade out. Once more making use of option theory

terminology, the LGD profile can be described as a combination of a short

put with strike N = 50 and a long put with strike N + EAD = 150 (i.e. a

bear put spread): For low collateral values, both options are far in-the-money

and the effects (+1% for the short put and -1% for the long put) offset each

other. Approaching the strike of the short put, the potential effect of the

short put decreases from the value of +1% to zero while the long put is still

far in-the money with a delta of -1% dominates, the sum of the two therefore

evolves from 0 to -1%. With the collateral’s value increasing further, the

short put loses any influence and we have the shape of the long put’s delta

as in the example without any senior third-party.

The second sensitivity we investigate more deeply is the partial derivative

of the expected loss given default with respect to the time of liquidation TL:
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Proposition 4.3 The Tau of the expected LGD is given by:

∂E[LGDTD
]

∂TL

= (1− γ)
[
− n(d) · [A− (lnC∗ − r(TL − TD) + µY ) ·B]

+
N

EAD

[
− n(d) · [A− (lnC∗ − r(TL − TD) + µY ) ·B]

+n(d∗) · [A− (lnC∗∗ − r(TL − TD) + µY ) ·B]
]

−(1− k)
C

EAD
e−r(TL−TD)+µY + 1

2
σ2
Y

[(
− r +

∂ΨTL

∂TL

+ κ(Ψt − Yt)e
−κ(TL−t)

+
1

2
σ2e−2κ(TL−t)

)(
Φ(−(d+ σY ))− Φ(−(d∗ + σY ))

)
−n(d+ σY ) · [A− (lnC∗ − r(TL − TD) + µY ) ·B +

∂σY

∂TL

]

+n(d∗ + σY ) · [A− (lnC∗∗ − r(TL − TD) + µY ) ·B +
∂σY

∂TL

]
]]
, (4.3)

where

A =
−r +

∂ΨTL

∂TL
+ κ(Ψt − Yt)e

−κ(TL−t)√
σ2

2κ
(1− e−2κ(TL−t))

, (4.4)

B =
e−2κ(TL−t)

2σ

( 2κ

1− e−2κ(TL−t)

) 3
2
, (4.5)

C∗ = ln
C(1− k)

N + EAD
, C∗∗ = ln

C(1− k)

N
, (4.6)

as well as
∂σY

∂TL

=
σ

2

√
2κ

e−2κ(TL−t)

√
1− e−2κ(TL−t)

, (4.7)

and where Φ(·) are the cumulative density function and n(·) the density func-

tion of the standard normal distribution.

For the proof, see Appendix A3.

Figure 5 depicts the Tau values for the two scenarios over the collateral

value. Note that we choose the nominal position N and the residual recovery

rate γ to be zero in order to ease the interpretation. The other parameter
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values are EAD = 100, TD = 1, TL = 2.5, k = 0.05, r = 0.05, Y = 0.04, κ = 2

and σ = 0.3 .
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Figure 5: LGD Tau estimates for two different market scenarios.

As already suggested by Figure 2, the effect observable in this example

heavily depends on the choice of the long-term mean ΨTL
, yielding a decrease

in loss and hence a negative Tau for an upward-tending real estate market

and vice versa. For both scenarios, the absolute value of the partial derivative

takes a maximum value in the vicinity of the EAD. As goes along with intu-

ition, for highly collateralized engagements (C >> EAD), the fluctuations

of the collateral value induced by the prolongation of time play a dwindling

role.
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5 Conclusion

In this paper, we derived closed-form solutions for the loss given default

(LGD) quotas. We therefor focussed on a selected subcase of LGD where

loans of the retail sector are collateralized by residential or commercial real

estate property. In our opinion, this specification is feasible and reasonable

in more than one regards: first, it is one of the most important cases for

the retail sector, second, it facilitates the disentanglement of PD and LGD

which makes computations tractable and third, it allows for a case-specific

and powerful modeling of the collateral value. To the best of our knowledge,

the (careful) use of option pricing analogies with respect to methodology

and interpretation of sensitivities has not been worked out before in that

clearness. For sake of broad applicability, we incorporated typical problems

of practitioners’ workaday life like cost factors, residual recovery, liquidation

periods and existing third-party nominal. Still being in a handy size, we

hope that the formulae is attractive for practitioners with useful tools as

sensitivities and intuition-feeding graphical illustrations. On the other hand,

it may be a starting point for researchers to develop further sector-specific

LGD formulae based on option-pricing arguments.

A Appendix

A.1

Proof of Theorem 3.1: First, we note that E[LPTD
|τ = TD] may be written

as

E[LPTD
|τ = TD] = E[max(E +N − e−r(TL−TD)(1− k)CTL

, 0)]

−E[max(N − e−r(TL−TD)(1− k)CTL
, 0)]. (A.1)

Furthermore, we know that the return process YTL
(conditioned on Yt) is a

normal variable with expectation µY and variance σ2
Y given in Theorem 3.1.
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Hence the density function of the collateral CTL
equals

p(CTL
|Ct) =

1

CTL

√
2πσ2

Y

exp
(
− 1

2

( lnCTL
− (lnCt + µY )

σY

)2)
. (A.2)

The calculation of the expected loss profile as a sum of two expectations is

done straightforwardly and is left as an exercise. The result is the formula

stated in the Theorem. �

A.2

The proof of the formula for the delta is done fairly easy. We treat the

parameter d and d∗ as functions of C and get

∂d(C)

∂C
=

∂d∗(C)

∂C
=

1

σY · C
. (A.3)

Applying the chain rule for derivatives we obtain

∂Φ(−d)

∂C
= − n(d)

σY · C
, (A.4)

and
∂Φ(−d∗)

∂C
= − n(d∗)

σY · C
. (A.5)

A straightforward application of the product rule establishes the formula. �

A.3

The derivation of the sensitivity formula with respect to the parameter TL is

slightly more cumbersome. Similarly to the delta case, we treat the variables

d, d∗, µY and σY as function of TL. We have

d(TL) =
lnC∗ − r(TL − TD) + µY (TL)

σY (TL)
, (A.6)

where C∗ = ln(C(1− k)/(N + EAD)) (analogously for d∗). Further,

∂µ(TL)

∂TL

=
∂ΨTL

∂TL

+ κ(Ψt − Yt)e
−κ(TL−t), (A.7)
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and
∂σY (TL)

∂TL

=
σ

2

√
2κ

e−2κ(TL−t)

√
1− e−2κ(TL−t)

. (A.8)

Application of the chain rule gives

∂Φ(−d)

∂C
= −n(d)

∂d(TL)

∂TL

(A.9)

(analogously for d∗). The final expression follows after applying and combin-

ing the product and quotient rule for derivatives and aggregation. �
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