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The Term Structure of VIX

Abstract

We extend the CBOE constant 30-day VIX to other maturities and construct daily VIX

term structure data from starting date available to August 2009. We propose a simple yet

powerful two-factor stochastic volatility framework for the VIXs. Our empirical analysis

indicates that the framework is good at both capturing time-series dynamics of the VIXs

and generating rich cross-sectional shape of the term structure. In particular, we show that

the two time-varying factors may be interpreted as factors corresponding to level and slope

of the VIX term structure. Moreover, we explore information content of the VIXs relative

to historical volatility in forecasting future realized volatility. Consistent with previous

studies, we find that the VIXs contain more information than historical volatility.
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1 Introduction

In 1993, the Chicago Board Option Exchange (CBOE) introduced the VIX index, which

quickly became the benchmark for stock market volatility. The VIX measures market

expectations of near term volatility conveyed by equity-index options, and is often referred

to as the “investor fear gauge”. It is regarded as one of the most publicized indicators

in the financial world, and is widely followed by theorists and practitioners, especially

after financial turmoil during 2008. The index was originally computed as averaged Black-

Scholes implied volatilities of near-the-money S&P 100 index (OEX) American style option

prices. On September 22, 2003, the CBOE revised the methodology of calculation, using

theoretical results by Carr and Madan (1998), and Demeterfi et al (1999) who proposed

the original idea of replicating the realized variance by a portfolio of European options.3

The main differences between the two indices are that the new VIX is model-free, and uses

the S&P 500 index (SPX) European style options. The new VIX is able to incorporate

information from the volatility smile by using a wider range of strike prices. Now, the

CBOE has created an identical record for the new VIX dating back to 1986, as well as the

old index which under the new ticker symbol “VXO”. See Carr and Wu (2006) for a detail

comparison between the two indices.

The popularity of the VIX has also generated a huge demand on VIX related products,

due to increasingly importance of volatility/variance trading. VIX futures and options were

introduced by the CBOE on March 26, 2004 and February 24, 2006, respectively. Nowadays,

VIX options and futures are among the most actively traded contracts at the CBOE and the

CBOE Futures Exchange (CFE). For example, on December 11, 2009, the open interest

of VIX options was 3,655,350 contracts, and the trading volume was 300,236 contracts.

Meanwhile, academic research on the exchange listed volatility derivative market has also

3See the CBOE 2003 whitepaper, which is further updated in 2009.
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been growing rapidly in recent years. Zhang and Zhu (2006) is the first attempt to study the

VIX index and VIX futures. Zhu and Zhang (2007) extend Zhang and Zhu (2006) model by

allowing long-term mean level of variance to be time-dependent. Lin (2007) applies affine

jump-diffusion model with jumps in both index and volatility processes. Recently, Zhang,

Shu, and Brenner (2010) provide a comprehensive analysis on VIX futures market. Sepp

(2008a) and Lin and Chang (2009) focus on VIX options. Sepp (2008b) studies options on

realized variance. Carr and Lee (2009) provide an up-to-date description of the market for

volatility derivatives, including variance swaps and VIX futures and options.

Although the literature on the VIX and its derivatives is fast growing, only the VIX with

a single fixed 30-day maturity is considered. There is no comprehensive study directly on

the term structure of VIX, which is the focus of the current paper. Generally speaking, two

important determinants of implied volatility surface are strike price and time to maturity.

The implied volatility as a function of strike for a certain maturity is often called the implied

volatility smirk/smile.4 While previous studies have extensively investigated on implied

volatility smile, few attention has been paid to volatility term structure.5 We investigate

characteristics of implied volatility of the SPX options along time to maturity direction,

which should enhance our understanding of the valuation of option prices. Actually, the

importance of the volatility term structure has already been noticed by practitioners, and

the CBOE lunched S&P 500 3-month volatility index under the ticker symbol “VXV” on

November 12, 2007. The VXV employs the same methodology used to calculate the VIX,

but with a different set of the SPX options with expiration dates that bracket a constant

maturity of 93 calendar days. In this paper, we will study the volatility index up to 15

months.

4See, for example, Derman and Kani (1994), Dupire (1994), Rubinstein (1994), Pena, Rubio, and Serna
(1999), Foresi and Wu (2005), Zhang and Xiang (2008), and Chang, Ren, and Shi (2009), among others.

5Poterba and Summers (1986), Stein (1989), and Poteshman (2001) study reaction of the different
maturity equity index options to volatility shocks, with conflict results. Campa and Chang (1995) examine
the term structure of implied volatility in foreign exchange options market.
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One related study is Mixon (2007), who tests the expectations hypothesis of the term

structure of implied volatility for several national stock market indices. However, the

data used in Mixon (2007) are based on the Black-Scholes implied volatilities for at-the-

money calls, while we use model-free volatilities for a wider range of strike prices. As

noted before, there are several advantages in using the new VIX calculation methodology.

There are also some studies on the variance term structure. While Li and Zhang (2008),

and Egloff, Leippold, and Wu (2009) focus on the over-the-counter (OTC) variance swap

data, Lu and Zhu (2010) use the VIX futures market data. We are the first to provide

an in-depth study directly on the VIX term structure data based on market information

provided by the CBOE. Since the 30-day VIX index has already been widely accepted as

a new barometer of investor fear, and the term structure of VIX reflects significant insight

on the market’s expectation of future realized volatilities of different maturities, our results

should be valuable for investors to have a better understanding of the SPX option prices,

VIX futures and options.

In this paper, we construct daily VIX term structure data with six maturities, ranging

from January 2, 1992 to August 31, 2009, where the former is the starting date available.

We find that the term structure of VIX exhibits typical upward sloping, downward sloping,

as well as hump and inverted hump shapes. More importantly, we propose a novel two-

factor stochastic volatility framework for the instantaneous variance, with the second factor

to be the long term mean level of the instantaneous variance. Our framework has several

advantages in modeling the VIX and its derivatives. First, we do not specify the underlying

dynamics, which enables the framework to include existing models in index option pricing

literature as special cases. Second, we directly model the total variance of the underlying

index rather than the diffusion variance in previous studies (e.g., Duan and Yeh (2007), Lin

(2007), Sepp (2008b), Lin and Chang (2009)). Note that the jump component in dynamic

of the underlying will also contribute to the total variance, which complicates expression



VIX Term Structure 5

for the VIX with an additional jump-related term (see Duan and Yeh (2007) and Sepp

(2008b)). Third, it is much more general than previous studies on VIX futures and options

in the sense that it contains any martingale specifications for the instantaneous variance,

including Egloff, Leippold, and Wu (2009), Zhang and Huang (2010), and Zhang, Shu,

and Brenner (2010). We emphasize that the martingale specification extremely simplifies

expression for the VIX, which in turn allows us to efficiently estimate model parameters.

Fourth, the VIX squared is the weighted average between the instantaneous variance and

its long-term mean level. When the two factors are modeled to be stochastic, the model is

able to generate rich time-series dynamics of the VIXs with different maturities.

We employ an efficient iterative two-step procedure (e.g., Bates (2000), Huang and Wu

(2004), and Christoffersen, Heston, and Jacobs (2009)) to estimate parameters by using

information in both time series and cross section. Our empirical analysis indicates that

the model is capable of replicating various shapes of the VIX term structure. We find

that the instantaneous variance can be modeled as a mean-reverting process, and the long-

term mean level of the instantaneous variance can be simply treated as a pure martingale

process. Furthermore, we show that the instantaneous volatility and the difference between

the instantaneous volatility and its long term mean correspond to level and slope of the

VIX term structure, respectively.

Our paper also relates to the literature on information content of implied volatility

in forecasting future realized volatility. Canina and Figlewski (1993) find that implied

volatility of the S&P 100 options is a poor forecast of subsequent volatility and does not

contain information beyond that in historical volatility. Christensen and Prabhala (1998)

report that, when nonoverlapping data is used, implied volatility outperforms past volatility

in forecasting future volatility. Other recent studies, which provide evidence that implied

volatility is a more efficient forecast for future realized volatility, are Fleming (1998), Chris-

tensen, Hansen, and Prabhala (2001), Ederinton and Guan (2002), Pong et al (2004), Jiang
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and Tian (2005), Yu, Lui, and Wang (2010). Following the literature, we investigate the

information content of the 30-day VIX as well as other maturities. Consistent with previous

studies, we find that the VIXs contain more information than historical volatility.

The rest of this paper is organized as follows. Section 2 proposes models for the VIXs.

Section 3 describes data construction details. Section 4 provides estimation procedure and

empirical results. Section 5 studies information content of the VIX term structure. Section

6 concludes the paper.

2 Model

In this section, we first define our VIX term structure and provide necessary introduction

for VIX. We also demonstrate that the jump component in dynamic of the S&P 500 index

is negligible in modeling the VIXs index. Then, we propose a novel two-factor stochas-

tic volatility framework for the instantaneous variance. Some discussions related to the

modeling of VIX and its derivatives are also provided.

2.1 Definitions

We extend the CBOE single 30-day VIX to other maturities and introduce the term struc-

ture of VIX. Generally, the term structure of VIX, like traditional term structure of interest

rates, display the relationship between the VIXs and their term to maturity. For example,

a VIX squared at time t, with maturity τ , is defined as

V IX2
t,τ ≡ EQ

t

[
1

τ

∫ t+τ

t

Vudu

]
, (1)

where Vu, is the instantaneous variance of the index. Note that we have τ = 30/365 for

the traditional CBOE 30-day VIX.

Now, we give a brief review of the CBOE 30-day VIX, and then present Proposition 1

on the role of jumps in modeling the SPX index. Carr and Madan (1998) and Demeterfi
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et al (1999) provide theoretical fundamental for the CBOE revised VIX. They show that

realized variance can be replicated by a dynamic trading strategy and a log contract or by a

static portfolio of out-of-the-money call and put options, which correspond to two methods

for calculating VIX as demonstrated below. Although the revised VIX is model-free, it

is better to consider specific model for illustration. Assume that the process for the SPX

index, St, in the risk-neutral measure Q, is given by

dSt

St

= rdt +
√

vtdW Q
t , (2)

where r is the risk-free rate and vt, is the instantaneous variance of the index. W Q
t is a

standard Q−Bronian motion. Applying Ito’s lemma to Equation (2) gives a process of

logarithmic index

d lnSt =

[
r − 1

2
vt

]
dt +

√
vtdW Q

t . (3)

In principle, the CBOE 30-day VIX index squared is defined as the variance swap rate over

the next 30 calendar days. It is equal to the risk-neutral expectation of the future variance

over the period of 30 days from t to t + τ0 with τ0 = 30/365. That is, the VIX can be

calculated as

V IX2
t,τ0

≡ EQ
t

[
1

τ0

∫ t+τ0

t

vudu

]
, (4)

=
1

τ0

∫ t+τ0

t

EQ
t (vu)du.

On the other hand, according to Zhang, Shu, and Brenner (2010), the CBOE implementa-

tion of 30-day VIX is given by

V IX2
t,τ0

≡ 2

τ0
EQ

t

[∫ t+τ0

t

dSu

Su

− d(lnSu)

]
, (5)

=
2

τ0
EQ

t

[∫ t+τ0

t

(
1

2
vu

)
du

]
,

=
1

τ0

∫ t+τ0

t

EQ
t (vu)du.
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Obviously, the two VIX formulas in Equations (4) and (5) are identical when there

is no jump in the index. However, this is not the case when jump is considered. Note

that, in Equation (1), we use Vu to denote the instantaneous variance rather than diffusion

variance vt (see Equation (2)), in the sense that jump component also contributes to the

total variance when dynamic of the index is given by jump-diffusion process. An natural

question arises is that what is the difference between the two methods when the underlying

index do have jumps? The answer is presented in the following Proposition 1.

Proposition 1: The jump component in dynamic of the S&P 500 index is negligible in

modeling the VIX index.

Proof. See appendix.

In other words, the proposition provides supportive evidence for models in Zhang and

Zhu (2006), Zhang and Huang (2010), and Zhang, Shu, and Brenner (2010), where the

dynamic of the SPX index is given by a diffusion process. Note that our result is more

general than Broadie and Jain (2008) in that they only consider the effect of jumps when

jump size is assumed to be normally distributed under stochastic volatility with jumps

model.

2.2 Two-factor framework for the VIXs

Although it has advantages to calculate the VIX by using model-independent method, we do

need specific models to study dynamics of the VIX and further explore information content

of the VIX term structure. Previously, we discuss VIXs calculation by concentrating on

the S&P 500 index process and do not require any specification of the variance dynamics.

Recently, the importance of modeling long term mean of the variance as the second factor

is well recognized in the literature on volatility/variance derivatives. Zhang and Huang

(2010) study the CBOE S&P 500 three-month variance futures and suggest that a floating

long-term mean level of variance is probably a good choice for the variance futures pricing.
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Zhang, Shu, and Brenner (2010) build a two-factor model for VIX futures, where long-term

mean level of variance is treated as a pure Brownian motion. They find that the model

produces good forecasts of VIX futures prices. Egloff, Leippold, and Wu (2009) show that

two risk factors are needed to capture variance risk dynamics in variance swap markets.

In this paper, we propose a more general framework for modeling variance dynamics,

which contains above models as special cases. We use Ft to denote the forward price of

the S&P 500 index at time t. Since Ft is a martingale under the forward measure F , we

consider the following two-factor model for the variance Vt,

dVt = κ(θt − Vt)dt + dMF

1,t,

dθt = dMF

2,t,
(6)

where θt is the long-term mean level of the variance. κ is the mean-reverting speed of the

variance. dMF

1,t and dMF

2,t are increments of two martingale processes. Then, the VIXs can

be calculated as in the following proposition:

Proposition 2: Under the framework described in Equation (6), the VIX index squared,

at time t, with maturity τ , VIX2
t,τ , is given by

V IX2
t,τ = (1 − α1)θt + α1Vt, α1 =

1 − e−kτ

kτ
. (7)

Proof: Since the dynamic of the variance is given by Equation (6), therefore,

EQ
t (Vu) = θt + (Vt − θt)e

−κ(u−t), u > t. (8)

By definition, the VIX squared is equal to the risk-neutral expectation of the variance over

[t, t + τ ], or

V IX2
t,τ ≡ EQ

t

(
1

τ

∫ t+τ

t

Vudu

)
, (9)

=
1

τ

∫ t+τ

t

EQ
t (Vu)du, (10)

= (1 − α1)θt + α1Vt, α1 =
1 − e−kτ

kτ
. (11)
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Remark 1 We do not specify the underlying dynamic, which means that the model is

flexible to include existing models in index option pricing literature as special cases. In

fact, when jump is added into the underlying process, the realized variance of the index

is modified with an additional jump-related term (e.g., Duan and Yeh (2007) and Sepp

(2008b)).

Remark 2 We directly model the total variance (Vt) of the index rather than the dif-

fusion variance (vt) in the literature. More importantly, in contrast with previous stud-

ies (e.g., Lin (2007), Sepp (2008a), Lin and Chang (2009)), the martingale specification

tremendously simplifies expression for VIX. For example, Lin and Chang (2009) consider

dvt = κ(θ − vt)dt + σv

√
vtdW Q

t + zdNt, where z is jump size. Since the jump term is not

compensated, the expression for VIX will be very complicated (see Equation (4) in their

paper), which also put more burden on parameter estimation.

Remark 3 The current framework is general enough to contain any martingale spec-

ification for the random noises in the variance, such as Brownian motions, compensated

jump processes, or a mixture of both. Actually, Zhang and Huang (2010) can be obtained

with constant θt and Browmian motion innovation. Zhang, Shu, and Brenner (2010) and

Egloff, Leippold, and Wu (2009) are special cases with Brownian motion innovations for

the two factors.

Remark 4 Since α1 is a number between 0 and 1, VIX2
t,τ is the weighted average between

the instantaneous variance Vt and its long-term mean level θt with α1 as the weight. Since

the two factors are stochastic, the model is flexible to generate various dynamics of the VIX

term structure.
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3 Data

In this section we construct our VIX term structure data. The daily VIX term structure

data provided by the CBOE are available since 2008 with historical data going back to

January 2, 1992.6 The VIX term structure is a collection of volatility values tied to par-

ticular SPX option expirations. They are calculated by applying the CBOE VIX formula

to a single strip of options having the same expiration date. However, unlike the VIX

index, VIX term structure data does not reflect constant-maturity volatility. Generally,

the CBOE lists SPX option series in three near-term contract months plus at lest three

additional contracts expiring on the March quarterly cycle; that is, on the third Friday of

March, June, September and December. Therefore, for each day, there are different num-

bers of expiration dates and corresponding VIXs. For example, on January 2, 1992 and

June 18, 1992, there are eight and seven VIXs, respectively.

Note that the CBOE calculate VIX term structure data using a “business day” conven-

tion to measure time to expiration, as well as the “calendar day” convention used in the

VIX index itself. In particular, the generalized VIX formula has been modified to reflect

business time to expiration as:

σ2 =
2

TBusiness

∑

i

∆Ki

K2
i

eRTCalendarQ(Ki) −
1

TBusiness

[
F

K0
− 1

]2

, (12)

where the volatility σ times 100 gives the value of the VIX index level. TBusiness is business

time to expiration and TCalendar is a calender day measure that is used to discount the option

prices. Ki is the strike price of ith out-of-money options, ∆Ki is the interval between two

strikes. R is the risk-free rate to expiration. Q(Ki) is the midpoint of the bid-ask spread of

each option with strike Ki. F is the implied forward index level derived from the nearest

to the money index option prices by using put-call parity and K0 is the first strike that is

6http://www.cboe.com/micro/vix/vixtermstructure.aspx
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below the forward index level.7

Consistent with this modification, we use interpolation as in the CBOE VIX calculation

procedure to construct VIX term structure data with constant maturities. For example,

on Jan 2, 1992, we use implied volatility values of two SPX options with expiration dates

March 21, 1992 (56 business days) and June 20, 1992 (121 business days) to compute the

VIX with 63 trading days to expiration. That is,

V IXt,63 =

√{
T1σ2

1

[
NT2

− N63

NT2
− NT1

]
+ T2σ2

2

[
N63 − NT1

NT2
− NT1

]}
× N252

N63
, (13)

where T1 and T2 are business days to expiration of two SPX options, and σ1 and σ2 are

corresponding volatilities. We construct the daily VIX term structure data with fixed

maturities 1, 3, 6, 9, 12 and 15 months, which corresponds to 22, 63, 126, 189, 252 and 315

business days, from January 2, 1992 to August 31, 2009. Note that the CBOE calculates

three separate volatility values based on SPX option bid, offer and midpoint prices at each

point. We will focus on midpoint data in the following sections.

Table 1 provides descriptive statistics for the daily VIX term structure data quoted in

annualized percentage terms. The following stylized facts emerge: the average VIXs are

not monotonic, rise from 19.7 percent for a 1-month VIX to 20.4 percent for a 6-month VIX

and then decrease; both VIXs and VIXs spreads are quite volatile, which implies that there

is substantial variation in both level and shape of the VIX term structure; the variation of

VIXs is downward sloping as maturity increases, with long VIXs varies moderately relative

to its mean; all VIXs are highly skewed and leptokurtic as might be expected, especially

for the 1-month VIX. The principal component analysis in Table 2 shows that the main

principal component explains around 97% of the total variation in the data, while the first

two components explain more than 99%. It means that the convexity effect is negligible

for the VIX term structure data. The eigenvectors indicate that the first and second

7Please refer to the VIX whitepaper and the VIX term structure description for more details.
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principal components are related to level and slope factors in the VIX term structure cure,

respectively. We will investigate this point further in later section.

Figure 1 shows a three-dimensional plot of the VIX term structure data and Figure 2

plots time series of three selected VIXs. From time-series perspective, looking at VIX with

maturity 1-month in Figure 2, the index is relatively low (less than 20 percent) during the

period 1992 to 1996, and shifts to above 20 percent since 1997. It experiences a dramatic

rise in late 1997, September 1998, November 2001 and August 2002. The 1-month VIX

reverts to stay around 20 percent during the June 2003 to August 2008 period and reaches

peak during the 2008 financial crisis. It takes about ten months to come back to normal

level. Cross-sectionally, the term structure is almost upward sloping during the periods 1992

to 1995 and 2004 to 2006. It shifts between upward sloping and downward sloping, and

exhibits hump and inverted hump shapes. Interestingly, the slope of VIX term structure is

usually negative during turbulent periods, as expected.

4 Estimation

In this section, we use above VIX term structure data to estimate parameters of the model

introduced in Section 2. Since the stochastic volatility is unobservable, we have to estimate

model’s parameters, κ, as well as the spot variances {Vt}t=1,...,T and its long term mean

{θt}t=1,...,T , where T is the number of observations. We adopt an efficient iterative two-

step procedure in Christoffersen, Heston, and Jacobs (2009), which is a modification of the

approach by Bates (2000) and Huang and Wu (2004). The procedure starts from an initial

value for κ.

Step 1: Obtain time series of {Vt, θt}, t = 1, ..., T . In particular, for a given parameter

set {κ}, we solve T optimization problems of the form:

{V̂t, θ̂t} = arg min

Nt∑

j=1

(
V IXMkt

t,τj
− V IXt,τj

)2

, t = 1, ..., T, (14)
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where V IXMkt
t,τj

is the market value of VIX with maturity τj on day t and V IXt,τj
is the

corresponding theoretical value given by Equation (7). Nt is the number of maturities used

on day t.

Step 2: Estimate parameter set {κ} with {Vt, θt} obtained in Step 1. That is, we

minimize aggregate sum of squared errors

{κ̂} = arg min

T∑

t=1

Nt∑

j=1

(
V IXMkt

t,τj
− V IXt,τj

)2

. (15)

Iteration between Step 1 and Step 2 is continued until there is no further significant

improvement in the aggregate objective function in Step 2. Note that, the two-step proce-

dure is well-behaved due to simple closed-form formula for VIX in the model. Moreover,

only few iterations are required within each step and for overall convergence.

We obtain a unique solution for parameter: κ = 7.0655 and daily values of Vt and θt.

Figure 3 plots time series of estimated Vt and θt. The long term mean, θt, stayed at a level

of about 3 percent before July 1997, and volatile at around 5 percent at most time during

the period August 1997 to September 2008. It rose to the level of 20 percent in October

and November 2008 and remains at 10 percent until now. These results are consistent with

those obtained in Zhang, Shu, and Brenner (2010) by using daily VIX futures data. The

instantaneous variance, Vt, is quite highly volatile relative to its long term mean, especially

during the periods 1997-1998, 2001-2002, and October 2008 to February 2009. It even rose

to 80 percent during the 2008 global financial crisis.

With these estimates, we are able to calculate daily fitted VIX term structure value

by using formula (7) and compare them with market data. Figures 4-6 show time series

of three selected VIXs with maturities of 1, 6 and 15 months. Figure 7 shows the term

structure of VIX for some selected dates. It is obvious that our model fits to the market

data very well. Furthermore, the model is capable of generating various term structure

shapes: upward sloping, downward sloping, humped and inverted humped.
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We can also compare model implied level and slope of the VIX term structure with

market data implied level and slope. We define the model-based level as the long-term mean

level of instantaneous volatility,
√

θt, and model-based slope as the difference between the

instantaneous volatility and its long term mean level,
√

θt−
√

Vt. Moreover, the data-based

level and slope are defined to be the 15-month VIX and the difference between the 15-

month and the 1-month VIXs, respectively. Figure 8 plots time series of model-based level

along with the data-based level. Figure 9 plots time series of model-based and data-based

slopes. The figures mean that the two factors in our model correspond to level and slope,

which is consistent with our previous principal component analysis in Table 2. Actually,

the correlation coefficients are 0.9834 and 0.9881, respectively.

5 Information content of the VIX term structure

In this section, we explore the information content of the VIXs relative to historical volatil-

ity in forecasting future realized volatility. The longer time series data enables us to con-

struct lower frequent nonoverlapping data for both historical and realized volatilities, which

increases statistical power.

5.1 Volatility indices data

We calculate the annualized realized volatility (RVol) over a period [t, t + τ ] as in Zhang

and Huang (2010):

RV ol =

√√√√ 252

Ne − 1

Na−1∑

i=1

R2
i , (16)

where Ri = ln(Si+1/Si), Ne is the number of expected S&P 500 values needed to calculate

daily returns during [t, t + τ ], Na is the actual number of S&P 500 values used. Note that,

we follow market convention and do not subtract the square of the mean.

We collect monthly realized volatility data observed on the Wednesday immediately
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following the expiry date of the month, as in Christensen and Prabhala (1998) and Jiang

and Tian (2005). The main reason is that trading volume is relative large during the week

following the expiration date and Wednesday has the fewest holidays among all weekdays.

The following Thursday then the proceeding Tuesday will be used in case the Wednesday

is not a trading day. To avoid the telescoping overlap problem described by Christensen,

Hansen, and Prabhala (2001), we extract realized volatilities at fixed maturities of 22 (1m),

63 (3m), 126 (6m), 189 (9m), 252 (12m) and 315 (15m) trading days, which match our

VIX term structure maturities. Following Canina and Figlewski (1993) and Christensen

and Prabhala (1998), we calculate the monthly historical volatility over a matching period

immediately proceeding the current observation date. For example, in order to calculate

τ -month historical volatility at time t, we employ the formula in Equation (16) over the

period [t− τ, t]. The sample period is January 1992 to June 2008, totally 198 observations.

Tables 3 and 4 provide summary statistics for monthly volatility indices and their nat-

ural logarithms, respectively. As shown in Table 3, VIXs are on average higher than corre-

sponding realized volatilities, which turn out to be higher than historical volatilities. This

observation indicates that VIXs are likely up biased forecast for realized volatilities, while

historical volatilities are down biased forecast for realized volatilities. It is consistent with

negative market price of risk observed in the literature (see Duan and Yeh (2007), Carr and

Wu (2009), Egloff, Leippold, and Wu (2009), and Zhang and Huang (2010)). Moreover,

the lower values of skewness and kurtosis reported in Table 4 mean that regressions based

on the log volatility are statistically better trustable than those based on volatility and

variance.
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5.2 Relation between VIXs and realized volatilities

Now, we explore relation between the VIX term structure and realized volatilities. Follow-

ing Jiang and Tian (2005), we specify following encompassing regressions

σRE
t,τ = ατ + βV IX

τ V IXt,τ + βHIS
τ σHIS

t,τ + ǫt,τ , (17)

V RE
t,τ = ατ + βV IX

τ V IX2
t,τ + βHIS

τ V HIS
t,τ + ǫt,τ , (18)

ln σRE
t,τ = ατ + βV IX

τ ln V IXt,τ + βHIS
τ ln σHIS

t,τ + ǫt,τ , (19)

where σt,τ and Vt,τ are volatility and variance, respectively. The superscripts RE, V IX,and

HIS stand for REalized, VIX, and HIStorical, respectively. The subscripts t and τ are

observation date and maturity, respectively. Univariate regressions are obtained if one of the

two regressors are dropped. As noted in previous section, t = 1, ..., 198 and τ = 1, 3, 6, 9, 12

and 15 months. We run OLS regressions for all six maturities. Tables 5-7 show results from

both univariate and encompassing regressions by using 1-, 6- and 15-month volatilities.

Panel A, B and C present results from the three specifications, respectively. Numbers in

brackets below the parameter estimates are the standard errors.

Some notable observations are in order. First, as can be seen from univariate regressions,

both VIXs and historical volatilities contain information for future realized volatilities.

Moreover, the VIXs explains more variations in future realized volatilities than historical

volatilities, especially for the short and the long maturities. The R2 for the VIXs with

maturities 1 and 15 months ranging from 50% to 65% and 21% to 42%, respectively, which

are higher than those for historical volatilities across the three specifications. However,

in case of 6-month maturity, historical volatility performs slightly better for volatility and

variance specifications. Second, the results from encompassing regressions reveal that the

VIXs subsume all information contained in historical volatility and are more efficient in

forecasting future volatility. Furthermore, the addition of historical volatility do not im-

prove the regression goodness-of-fit (adjusted R2) at all, which is in line with previous
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studies (Christensen and Prabhala (1998) and Jiang and Tian (2005)). Although it is

slightly different for 6-month volatility and variance specifications, the log VIX is more

efficient than historical volatility, which is consistent with observation in previous section.

Third, the Durbin-Watson statistics are not significantly different from two in most cases

for 1-month maturity, indicating that the regression residuals are not autocorrelated. How-

ever, there are not the case for 6- and 15-month maturities. It should be related to our

monthly data sampling procedure, which matches 1-month maturity. We check it by sam-

pling data for every 3 months and obtain 66 observations. The OLS regression by using

3-month volatilities in Table 8 confirms it.

6 Concluding remarks

The CBOE VIX has been publicly available since 1993. It is widely accepted as the premier

measure of stock market volatility and investor sentiment. As a matter of fact, the regular

VIX is market expectation of future volatility in the following 30 calender days only. In

this paper, we go one step further by studying the VIXs with other maturities as well, or

the term structure of investor fear, by using market data provided by the CBOE.

We demonstrate that the jump component in dynamic of the S&P 500 index is negligible

in modeling the VIXs. Thus, we provide supportive evidence for Zhang and Zhu (2006),

Zhang and Huang (2010), and Zhang, Shu, and Brenner (2010). Moreover, we propose a

simple yet powerful two-factor stochastic volatility framework for the VIXs. The framework

can be served as a platform for further modeling VIX futures and options in the future. In

particular, the impacts of different specifications for diffusion and jump components in the

two factors for option pricing is a promising direction. For example, Christoffersen, Jacobs,

and Mimouni (2009) show that linear rather than square root diffusion for variance is the

best one in fitting the option data, Dotsis, Psychoyios, and Skiadopoulos (2007) and Wu
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(2009) find that jump component is important for volatility/variance dynamics.

We estimate model parameters by an efficient iterative two-step method with the con-

structed daily VIX term structure data. Our empirical analysis indicates that the frame-

work is good at both capturing time-series dynamics of the VIXs and generating rich

cross-sectional shape of the term structure. More importantly, we show that the two time-

varying factors may be interpreted as factors corresponding to level and slope of the VIX

term structure, respectively.

We also investigate information content of the VIX term structure. Generally, we

find the VIXs to be an informative, but biased, forecast of future realized volatility that

tend to dominate historical volatility. These results are consistent with previous studies.

Furthermore, Becker, Clements, and McClelland (2009) find that the 1-month VIX index

both subsumes information on how past jump contributes to the price total volatility and

reflects incremental information pertaining to future jump activity relative to model-based

forecasts.

Recently, implied volatility has been proved to be an important risk factor in predicting

future index return (e.g., Banerjee, Doran, and Peterson (2007), Yu, Lui, and Wang (2010))

or future changes in credit default swap spread (see Cao, Yu, and Zhong (2009)). The

VIX term structure data can also be useful to improve volatility derivatives valuation

(e.g., Lin (2009)). Since the term structure of VIX conveys more insights than a single

constant 30-day VIX on how the market views, our results are helpful to shed light on

better understanding of the risks of the SPX options, VIX futures and options of different

maturities.
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7 Appendix

Proof of Proposition 1. The idea is to compare VIX formulas in the two settings

whether or not jump is added into the dynamic of the index. We consider the following

general jump-diffusion process for the index, St,

dSt

St−
= rdt +

√
vtdW Q

t + (ex − 1) dNt − λ EQ
t (ex − 1) dt, (20)

where St− is the value of St before a possible jump occurs. Nt is a pure jump process with

intensity λ. x is the jump size of the logarithm index, EQ
t (ex−1) stands for the expectation

of (ex − 1), and the term, λEQ
t (ex − 1)dt, compensates jump innovation. In addition, Nt is

assumed to be independent of W Q
t . Other symbols are the same as before. Applying Ito’s

lemma with jumps to Equation (20) gives a process of logarithmic index

d lnSt =

[
r − 1

2
vt − λEQ

t (ex − 1)

]
dt +

√
vtdW Q

t + xdNt. (21)

Since the jump component also affects variance of the index, the instantaneous total vari-

ance of the index, Vt, is different and becomes

Vt = vt + EQ
t (λx2), (22)

where the first term is diffusion variance and the second term is jump variance. Then,

according to definition in Equation (1), the VIX squared is given by

V̂ IX
2

t,τ = EQ
t

[
1

τ

∫ t+τ

t

Vudu

]
,

=
1

τ

∫ t+τ

t

EQ
t (Vu)du,

=
1

τ

∫ t+τ

t

EQ
t (vu + λx2)du,

=
1

τ

∫ t+τ

t

EQ
t (vu)du + EQ

t (λx2), (23)
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where we have used property of iterated expectations. On the other hand, the VIX squared

can also be calculated, by using Equations (20) and (21), as following

Ṽ IX
2

t,τ =
2

τ
EQ

t

[∫ t+τ

t

dSu

Su

− d(ln Su)

]
,

=
2

τ
EQ

t

[∫ t+τ

t

(
1

2
vu + λ(ex − 1 − x)

)
du

]
,

=
1

τ

∫ t+τ

t

EQ
t (vu)du + EQ

t [2λ(ex − 1 − x)]. (24)

Therefore, the difference between the two formulas in Equations (23) and (24) is

∆ = EQ
t [2λ(ex − 1 − x) − λx2],

≈ EQ
t

(
1

3
λx3

)
. (25)

With λ = 0.4845 and x = −0.0789, which are obtained in Chang, Zhang, and Zhao (2006)

by using daily data of the SPX index from January 2, 1985 to December 30, 2005, we have

∆ = −0.00024. (26)

Thus, for general value of VIX at 20, we have

Ṽ IX t,τ = 20, V̂ IX t,τ = 20.06, (27)

which corresponds to 0.3% overvalue by using Equation (23) or our definition Equation (1).

In other words, the jump component only contributes marginally to VIX index and hence

negligible.
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Table 1: Descriptive Statistics for Daily VIX Term Structure

Maturity Mean Std.dev. Skewness Kurtosis Minimum Maximum

Panel A: VIXs
1-m 19.696 8.650 2.100 10.058 9.212 80.352
3-m 20.169 7.814 1.837 8.209 9.971 70.562
6-m 20.405 7.114 1.603 6.739 5.746 61.956
9-m 20.175 6.623 1.586 6.560 10.775 56.892
12-m 20.153 6.332 1.466 6.049 7.730 53.410
15-m 20.177 6.231 1.339 5.440 12.129 50.535

Panel B: VIX spreads
3-m 0.473 1.861 -2.724 20.937 -20.330 7.675
6-m 0.710 2.843 -2.817 20.556 -29.540 16.215
9-m 0.480 3.539 -2.512 20.824 -35.745 32.595
12-m 0.458 4.025 -2.617 18.001 -41.130 25.591
15-m 0.482 4.094 -2.576 15.752 -38.079 14.233

This table provides descriptive statistics for the daily VIX term structure data with matu-

rities 1, 3, 6, 9, 12 and 15 months. Panel A and B present summary statistics for the VIXs

levels and VIX spreads relative to the 1-month VIX, respectively. Reported are the mean,

standard deviation, skewness, kurtosis, minimum and maximum. All VIXs are expressed

in annualized percentage terms. The data consist of 4432 observations covering the period

January 2, 1992 to August 31, 2009.
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Table 2: Principal Component Analysis of Daily VIX Term Structure

1st 2nd 3rd 4th 5th 6th

Percent
96.56% 2.77% 0.29% 0.18% 0.13% 0.07%

Eigenvectors
0.4851 0.7138 -0.3395 -0.3231 -0.1880 0.0117
0.4492 0.2224 0.3092 0.5796 0.4261 -0.3683
0.4103 -0.1093 0.2548 0.1884 -0.0876 0.8435
0.3783 -0.2698 0.5946 -0.4972 -0.2874 -0.3173
0.3576 -0.4212 -0.3885 -0.3586 0.6433 0.0357
0.3515 -0.4228 -0.4688 0.3852 -0.5281 -0.2251

This table provides principal component analysis of daily VIX term structure data with

maturities 1, 3, 6, 9, 12 and 15 months. The data consist of 4432 observations covering the

period January 2, 1992 to August 31, 2009.
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Table 3: Descriptive Statistics for Monthly Volatilities

Maturity Mean Std.dev. Skewness Kurtosis Minimum Maximum

Panel A: VIXs
1-m 18.052 6.079 0.801 3.008 9.424 37.517
3-m 18.518 5.585 0.689 2.754 10.622 36.585
6-m 19.162 5.270 0.639 2.530 12.027 35.389
9-m 18.996 4.824 0.602 2.380 12.283 32.613
12-m 18.879 4.593 0.498 2.157 12.126 30.815
15-m 19.109 4.714 0.476 2.169 12.630 31.758

Panel B: Realized volatilities
1-m 14.518 7.025 1.377 5.179 5.275 43.176
3-m 14.929 6.432 0.929 3.254 6.074 35.207
6-m 15.548 7.180 1.675 8.070 6.832 54.395
9-m 16.034 7.628 1.687 7.268 7.655 50.137
12-m 16.400 7.864 1.546 6.041 7.909 45.550
15-m 16.689 7.873 1.357 4.966 8.396 41.695

Panel C: Historical volatilities
1-m 14.421 6.874 1.351 5.247 4.905 43.259
3-m 14.764 6.300 0.938 3.274 6.378 35.369
6-m 14.895 5.951 0.735 2.578 6.754 31.994
9-m 14.897 5.688 0.606 2.168 7.551 29.288
12-m 14.900 5.524 0.514 1.887 7.891 27.450
15-m 14.912 5.382 0.447 1.719 8.387 25.769

This table provides descriptive statistics for the monthly volatilities with maturities 1, 3,

6, 9, 12 and 15 months. Panel A, B and C show VIXs, realized volatilities and historical

volatilities, respectively. Reported are the mean, standard deviation, skewness, kurtosis,

minimum and maximum. All volatilities are expressed in annualized percentage terms. The

data consist of 198 monthly observations covering the period January 1992 to June 2008.
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Table 4: Descriptive Statistics for Monthly Log Volatilities

Maturity Mean Std.dev. Skewness Kurtosis Minimum Maximum

Panel A: Log VIXs
1-m 2.840 0.324 0.247 2.113 2.243 3.625
3-m 2.875 0.293 0.226 2.013 2.363 3.600
6-m 2.917 0.267 0.268 1.909 2.487 3.566
9-m 2.913 0.247 0.283 1.869 2.508 3.485
12-m 2.909 0.239 0.209 1.806 2.495 3.428
15-m 2.921 0.243 0.174 1.806 2.536 3.458

Panel B: Log realized volatilities
1-m 2.573 0.446 0.288 2.524 1.663 3.765
3-m 2.617 0.412 0.239 2.109 1.804 3.561
6-m 2.654 0.416 0.417 2.440 1.922 3.996
9-m 2.681 0.423 0.471 2.493 2.035 3.915
12-m 2.701 0.429 0.464 2.417 2.068 3.819
15-m 2.719 0.430 0.414 2.278 2.128 3.730

Panel C: Log historical volatilities
1-m 2.569 0.443 0.244 2.511 1.590 3.767
3-m 2.608 0.407 0.253 2.125 1.853 3.566
6-m 2.625 0.387 0.257 1.843 1.910 3.466
9-m 2.631 0.373 0.243 1.665 2.022 3.377
12-m 2.634 0.365 0.222 1.563 2.066 3.312
15-m 2.638 0.358 0.194 1.503 2.127 3.249

This table provides descriptive statistics for the monthly natural logarithms of volatilities

with maturities 1, 3, 6, 9, 12 and 15 months. Panel A, B and C show natural logarithms of

VIXs, realized volatilities and historical volatilities, respectively. Reported are the mean,

standard deviation, skewness, kurtosis, minimum and maximum. The data consist of 198

monthly observations covering the period January 1992 to June 2008.
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Table 5: Information content of 1-month volatilities: Univariate and encompass-
ing regressions (Monthly data)

α1−m βV IX
1−m βHistorical

1−m Adj. R2 DW

Panel A: σRE
t,1−m

-1.688 0.898 0.601 1.856
(1.073) (0.067)
4.152 0.719∗∗∗ 0.492 2.303
(0.851) (0.067)
-1.257 0.764∗ 0.137 0.604 2.010
(1.160) (0.127) (0.100)

Panel B: V RE
t,1−m

-27.609 0.793∗∗ 0.503 1.882
(26.094) (0.095)
103.336 0.614∗∗∗ 0.348 2.215
(21.615) (0.105)
-24.084 0.741∗ 0.059 0.502 1.948
(28.572) (0.153) (0.109)

Panel C: ln σRE
t,1−m

-0.568 1.106∗ 0.646 1.829
(0.173) (0.061)
0.637 0.754∗∗∗ 0.559 2.377
(0.116) (0.045)
-0.408 0.876 0.192∗∗ 0.653 2.067
(0.191) (0.124) (0.086)

This table presents the OLS regression results for specifications in Equations (17)-(19) in

the content by using 1-month volatilities. The numbers in parentheses below the parameter

estimates are the standard errors. *, ** and *** indicate that the leading term β coefficient

is significantly different from one or the remaining term β coefficient is significantly different

from zero at the 10%, 5%, and 1% level, respectively. The data consist of 198 monthly

observations covering the period January 1992 to June 2008.
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Table 6: Information content of 6-month volatilities: Univariate and encompass-
ing regressions (Monthly data)

α6−m βV IX
6−m βHistorical

6−m Adj. R2 DW

Panel A: σRE
t,6−m

-1.286 0.879∗ 0.413 0.268
(1.142) (0.070)
3.776 0.790∗∗∗ 0.426 0.206
(0.845) (0.070)
0.671 0.412∗∗∗ 0.468∗∗∗ 0.444 0.226
(1.143) (0.144) (0.147)

Panel B: V RE
t,6−m

30.920 0.664∗∗∗ 0.198 0.229
(23.739) (0.083)
105.369 0.730∗∗ 0.208 0.198
(18.804) (0.113)
52.329 0.320∗∗∗ 0.444∗∗ 0.219 0.210
(22.678) (0.135) (0.190)

Panel C: ln σRE
t,6−m

-0.767 1.173∗∗∗ 0.565 0.316
(0.189) (0.066)
0.508 0.817∗∗∗ 0.574 0.228
(0.122) (0.048)
-0.199 0.560∗∗∗ 0.465∗∗∗ 0.594 0.256
(0.223) (0.159) (0.115)

This table presents the OLS regression results for specifications in Equations (17)-(19) in

the content by using 6-month volatilities. The numbers in parentheses below the parameter

estimates are the standard errors. *, ** and *** indicate that the leading term β coefficient

is significantly different from one or the remaining term β coefficient is significantly different

from zero at the 10%, 5%, and 1% level, respectively. The data consist of 198 monthly

observations covering the period January 1992 to June 2008.
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Table 7: Information content of 15-month volatilities: Univariate and encom-
passing regressions (Monthly data)

α15−m βV IX
15−m βHistorical

15−m Adj. R2 DW

Panel A: σRE
t,15−m

-1.824 0.969 0.333 0.077
(1.681) (0.100)
6.946 0.653∗∗∗ 0.195 0.024
(1.183) (0.082)
-2.657 1.194 -0.233 0.337 0.102
(2.122) (0.265) (0.211)

Panel B: V RE
t,15−m

4.349 0.867 0.212 0.062
(38.952) (0.136)
196.973 0.570∗∗∗ 0.073 0.023
(32.895) (0.109)
-9.424 1.223 −0.494∗ 0.230 0.095
(45.987) (0.303) (0.266)

Panel C: ln σRE
t,15−m

-0.630 1.147∗ 0.417 0.086
(0.243) (0.085)
0.894 0.691∗∗∗ 0.327 0.024
(0.162) (0.063)
-0.623 1.139 0.006 0.414 0.085
(0.357) (0.274) (0.186)

This table presents the OLS regression results for specifications in Equations (17)-(19) in the

content by using 15-month volatilities. The numbers in parentheses below the parameter

estimates are the standard errors. *, ** and *** indicate that the leading term β coefficient

is significantly different from one or the remaining term β coefficient is significantly different

from zero at the 10%, 5%, and 1% level, respectively. The data consist of 198 monthly

observations covering the period January 1992 to June 2008.
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Table 8: Information content of 3-month volatilities: Univariate and encompass-
ing regressions (3-monthly data)

α3−m βV IX
3−m βHistorical

3−m Adj. R2 DW

Panel A: σRE
t,3−m

-1.182 0.876 0.505 2.123
(1.962) (0.120)
5.116 0.657∗∗∗ 0.417 2.311
(1.436) (0.111)
-0.816 0.797 0.073 0.498 2.176
(2.012) (0.218) (0.188)

Panel B: V RE
t,3−m

7.700 0.701∗ 0.384 2.194
(45.050) (0.156)
120.247 0.542∗∗∗ 0.271 2.252
(34.826) (0.159)
2.230 0.761 −0.063 0.375 2.151
(40.877) (0.210) (0.209)

Panel C: ln σRE
t,3−m

-0.587 1.116 0.566 2.070
(0.334) (0.116)
0.733 0.720∗∗∗ 0.509 2.354
(0.212) (0.082)
-0.350 0.850 0.201 0.567 2.219
(0.387) (0.243) (0.159)

This table presents the OLS regression results for specifications in Equations (17)-(19) in

the content by using 3-month volatilities. The numbers in parentheses below the parameter

estimates are the standard errors. *, ** and *** indicate that the leading term β coefficient

is significantly different from one or the remaining term β coefficient is significantly different

from zero at the 10%, 5%, and 1% level, respectively. The data consist of 66 every three

months’ observations covering the period January 1992 to June 2008.
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Figure 1: VIX term structure from 1992 to 2009. We show a three-dimensional plot
of daily VIX term structure with maturities of 1, 3, 6, 9, 12 and 15 months. The sample
period is January 2, 1992 to August 31, 2009 with 4432 observations. All volatilities are
expressed in percentage terms.
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Figure 2: Time series of VIXs with maturities of 1, 6 and 15 months. We show
time series of daily VIXs with maturities of 1 (black lines), 6 (red lines) and 15 (blue lines)
months from January 2, 1992 to August 31, 2009 with 4432 observations. All volatilities
are expressed in percentage terms.
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Figure 3: Time series of the estimated instantaneous variance and its long term
mean level. We show time series of the daily estimated instantaneous variance (dotted
red lines), Vt, and its long term mean level (black lines), θt, from January 2, 1992 to August
31, 2009 with 4432 observations.
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Figure 4: Time series of model-based and data-based VIXs with maturity 1-
month. We show time series of model-based (black lines) and market-based (red lines)
VIXs with maturity 1 month from January 2, 1992 to August 31, 2009 with 4432 observa-
tions. All volatilities are expressed in percentage terms.
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Figure 5: Time series of model-based and data-based VIXs with maturity 6
months. We show time series of model-based (black lines) and data-based (red lines) VIXs
with maturity 6-month from January 2, 1992 to August 31, 2009 with 4432 observations.
All volatilities are expressed in percentage terms.
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Figure 6: Time series of model-based and data-based VIXs with maturity 15
months. We show time series of model-based (black lines) and market-based (red lines)
VIXs with maturity 15 months from January 2, 1992 to August 31, 2009 with 4432 obser-
vations. All volatilities are expressed in percentage terms.
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Figure 7: Representative term structure shapes at different dates. We plot some
model-based (lines) and data-based (asterisks) representative term structure shapes at dif-
ferent dates. All volatilities are expressed in percentage terms.
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Figure 8: Time series of model-based and data-based levels. We show time series
of model-based (black lines) and data-based (red lines) VIX term structure levels from
January 2, 1992 to August 31, 2009. We define the data-based level as the 15-month VIX,
and the model-based level as the estimated long term mean volatility, that is

√
θt. All

volatilities are expressed in percentage terms.
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Figure 9: Time series of model-based and data-based slopes. We show time series
of model-based (black lines) and data-based (red lines) VIX term structure slopes from
January 2, 1992 to August 31, 2009. We define the market-based slope as the difference
between the 15-month and the 1-month VIXs, and the data-based slope as the difference
between the estimated long term mean and the instantaneous volatility, that is

√
θt −

√
Vt.


