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WHO NEEDS HEDGE FUNDS? 
A Copula-Based Approach to Hedge Fund Return Replication 

 

 

 

Abstract 
In this paper we develop and demonstrate the workings of a copula-based technique 

that allows the derivation of dynamic trading strategies, which generate returns with 

statistical properties similar to hedge funds. We show that this technique is not only 

capable of replicating fund of funds returns, but is equally well suited for the 

replication of individual hedge fund returns. Since replication is accomplished by 

trading futures on traditional assets only, it avoids the usual drawbacks surrounding 

hedge fund investments, including the need for extensive due diligence, liquidity, 

capacity, transparency and style drift problems, as well as excessive management 

fees. As such, our synthetic hedge fund returns are clearly to be preferred over real 

hedge fund returns.  

 

 

 

 

 

 

 

 



 3

1. Introduction 
Rising from relative obscurity, over the last 15 years hedge funds have become 

increasingly popular with high net worth individual as well as institutional investors. 

As a result, the number of hedge funds has risen from around 500 in 1990 to an 

estimated 8000 in 2005. Over the same period, assets under management are 

estimated to have increased from $50 billion to $1 trillion. Apart from the success of 

the prime brokerage concept, one of the crucial factors behind the spectacular growth 

of the hedge fund industry has been the rise of the fund of funds structure as the 

preferred way of investing in hedge funds. Currently, most money invested in hedge 

funds flows through funds of funds, with the total number of such funds being 

estimated at around 4000.   

 

Initially, hedge funds were sold on the promise of superior performance, the story 

being that hedge fund managers� long experience and proven investment skills were a 

virtual guarantee for superior returns. Especially high net worth investors proved 

sensitive to these arguments and fuelled much of the early growth of the industry. 

Towards the end of the 1990s the story began to change, however. No longer were 

hedge funds sold on the promise of superior performance, but more and more on the 

basis of a diversification argument, pointing at hedge fund�s relatively low correlation 

with stocks and bonds and the beneficial effects on risk and return from including 

hedge funds in the traditional investment portfolio. The reason for this rather 

remarkable change in sales tactics was twofold. Firstly, starting in the late 1990s, 

hedge fund performance took a turn for the worst, with every next year being worse 

than the year before. According to the HFRI Fund of Funds Composite Index, the 

average fund of funds only returned a meagre 3.85% over the first ten months of 

2005. Secondly, driven by historically low interest rates, substantial losses in the 

equity markets, and keen to be seen taking action, institutional investors started to 

look more seriously at hedge funds as well. Given institutions� emphasis on risk 

management, the hedge fund story changed to accommodate this new clientele1.   

 

                                                
1 The current trend is to introduce retail investors to hedge funds as well. Since the typical retail investor is unlikely to 

appreciate the special nature of hedge fund investment, this will intensify the call for more profound regulation, which in turn 

will force the industry to reshape itself once again.   
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Hedge fund managers typically put a lot of effort into generating their returns. 

However, with the industry implicitly admitting, and more sophisticated performance 

studies confirming2, that hedge fund performance is not truly superior (anymore), the 

question arises whether it is possible to generate similar returns in a much more 

mechanical way and with less effort. More precisely, is it possible to design dynamic 

trading strategies, mechanically trading cash, stocks, bonds, etc., that generate hedge 

fund-like returns? If indeed we could design such strategies, this would solve a 

respectable number of problems typically surrounding hedge funds (as well as many 

other �alternative� investments), including: 

 

The need for extensive due diligence 

Without any publicly available information and research, investors are forced to 

invest substantial amounts of time and energy in visiting hedge fund managers, asking 

questions, interpreting the answers and doing background checks. A number of third 

parties do provide these services on a stand-alone basis, but at significant costs.  

   

Lack of liquidity 

Most hedge funds use lock-up structures to tie in new investors for periods ranging 

from 6 months up to 5 years3. After the lock-up has expired, investors typically need 

to give one or three months notice if they want to disinvest. In addition, some funds 

charge departing investors an additional fee of up to 5% �to compensate remaining 

investors for the costs of having to rebalance the fund portfolio�. It is hard to see why 

a fund would require an exit fee if there is already a notice period in place though. 

Given proper notice, freeing up money should not cost an arm and a leg. Imposing an 

exit fee therefore seems nothing more than a subtle way of extending the lock-up 

period. 

 

Lack of transparency 

All hedge funds claim to do something highly exclusive and proprietary and anxiously 

guard their trading secrets. Although transparency has improved with the arrival of 

institutional investors, hedge fund investors are seldom told what exactly goes on 

                                                
2 See for example Amin and Kat (2003), Bailey et al. (2004) or Fung et al. (2005). 
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inside the black box. As a result, it can sometimes be very hard to properly assess the 

risk-return characteristics of a fund4.  

 

Lack of capacity 

In an attempt to preserve the level of returns, successful hedge funds may close for 

new investors or close for new money altogether5. This, however, does not prevent 

money from flowing to other managers in the same category. As a result, when 

opportunities are in limited supply, performance may come under pressure.  This is 

especially true for arbitrage-type strategies, where the arrival of more money and/or 

managers will significantly increase market efficiency. Recently, convertible bond 

arbitrage has suffered quite badly from this form of over-investment, reporting an 

average return of �2.65% for the first ten months of 2005 (HFRI Convertible 

Arbitrage Index). 

 

Excessive management fees 

The average hedge fund charges its investors �2 plus 20�, i.e. a flat management fee 

of 2% plus an additional incentive fee equal to 20% of any profits over a hurdle rate. 

Funds of funds tend to charge an additional �1 plus 10� on top of this. With interest 

rates and hedge fund performance at historically low levels, this means that nowadays 

pre-fee hedge fund returns are split more or less equally between investors and fund 

(of funds) managers.  

 

Style drift 

Hedge fund managers may sometimes change their style or strategy, which in turn 

may cause a significant change in a fund�s risk-return profile. When not explicitly 

notified of this change and without sufficient transparency, investors can only find out 

about this from the returns that the fund generates. With returns reported on a monthly 

basis, however, it could take a long time before it becomes clear that something has 

changed.  

                                                                                                                                       
3 Investors are becoming increasingly resistant to lock-up periods. According to Dyment et al. (2005), in 2004 68% of investors 

would only invest with managers with lock-ups of one year of less. In 2005, this rose to 77%.   
4 Dyment at al. (2005) report that only 14% of investors requires full transparency. Even more surprisingly, 19% of investors do 

not require any transparency at all.   
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Of course, we are not the first to attempt to replicate hedge fund returns. Following 

the work of Sharpe (1992) on equity mutual funds, previous authors have primarily 

relied on the use of factor models to replicate month-to-month returns6. In theory, the 

factor model approach should work well. Once the relevant risk factors have been 

identified and the fund�s sensitivity to these factors has been determined, one can 

construct a portfolio of stocks, bonds, and other securities with the same factor 

sensitivities as the fund in question. Since it has the same factor sensitivities, the 

resulting portfolio will generate returns that are similar to those of the fund.  

 

The problem when applying the above approach in a hedge fund context is that in 

practice we often have little idea how hedge fund returns are actually generated, i.e. 

which risk factors to use. As a result, factor models typically explain only 25-30% of 

the variation in hedge fund returns, which compares quite unfavourably with the 90-

95% that is typical for mutual funds. Although the procedure works better for 

portfolios of hedge funds, funds of funds and hedge fund indices, where much of the 

idiosyncratic risk is diversified away, factor models do not appear to offer a 

particularly fruitful alternative when looking to replicate hedge fund returns 

accurately7.   

  

Given the failure of the factor model approach, we took a step back and reconsidered 

the problem at hand. When an investor likes a hedge fund, it is (or should be at least) 

because of the statistical properties of the fund�s returns, i.e. their mean, standard 

deviation, etc. and their relationship with the returns his existing portfolio. This 

implies that we do not necessarily have to replicate a fund�s month-to-month returns. 

For most applications it will be enough if we can generate returns with the same 

statistical properties as the returns generated by the fund.  

 

                                                                                                                                       
5 Anticipating closure, according to Dyment et al. (2005), in 2005 45% of investors required future capacity rights when 

investing in hedge funds.    
6 See for example Schneeweis et al. (2003) or Agarwal and Naik (2004). 
7 Despite the lack of explanatory value, several parties have recently announced the intention to launch factor model based 

products that aim to provide investors with hedge fund like returns at lower costs and in a more convenient format.      
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So far, there has only been one study, which followed the above route. Based on the 

early theoretical work of Glosten and Jagannathan (1994) and Dybvig (1988a, 1988b), 

and primarily aimed at evaluating hedge fund performance, Amin and Kat (2003) 

developed mechanical trading strategies, trading the S&P 500 and cash, which aim to 

generate returns with the same marginal distribution as the returns of a given hedge 

fund. Although interesting from a theoretical perspective, from a practical perspective 

only replicating the marginal distribution is not enough, though. Most of today�s 

investors are attracted to hedge funds because of their relatively weak relationship 

with traditional asset classes and their own portfolio in particular. To properly 

replicate hedge fund returns we therefore not only have to replicate the marginal 

distribution, but also the relationship between a fund and the investor�s existing 

portfolio. In this paper we develop a procedure, which does exactly that.  

 

The basic idea behind the proposed procedure is straightforward. From the theory of 

dynamic trading it is well known that in the standard theoretical model with complete 

markets one can perfectly hedge any payoff function. Therefore, if we can find a 

payoff function which, given the probability distribution of the underlying index or 

indices, implies the desired distribution, we will also have found the dynamic trading 

strategy which generates (returns that are drawings from) that distribution.  

 

Of course, there are a number of serious hurdles to take. First, we are not interested in 

just any strategy. To maximize expected return, we want the cheapest strategy 

possible. Second, since we are aiming to replicate not only a fund�s marginal return 

distribution but also its relationship with the investor�s existing portfolio, we are 

confronted with bivariate distributions, which can take on a large variety of shapes 

and forms. Third, real markets are a lot less well behaved than assumed in the 

standard theoretical model. As a result, an inconsistency may arise between the 

determination of the desired payoff function, which is a purely empirical matter, and 

the subsequent derivation of the dynamic trading strategy generating that payoff. A 

second consequence of relying on an abstract model is that in practice our dynamic 

trading strategies may not be able to exactly generate the desired payoff. We therefore 

perform extensive out-of-sample tests of our strategies, using daily data over the 

period 1985-2005. 
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The replication procedure concentrates on replicating a fund�s risk profile without 

explicitly considering the fund�s expected return. The underlying assumption is that, 

in an efficient market, in the longer run investors will receive a return in line with the 

risk that they have taken. This is why the empirical finding that hedge fund returns are 

not truly superior is fairly crucial. If they were superior, we would still be able to 

replicate their risk profile, but we could not expect to replicate their average as well. If 

it is superior, it can�t be replicated and vice versa. The latter observation points at 

another application of the replication technique developed in this paper: the evaluation 

of hedge fund returns. Explicitly constructed to offer the same risk profile, when the 

average replicated return is significantly higher than the average fund return, the fund 

is the inefficient alternative. We will investigate this line of thought further in a 

forthcoming companion paper8. 

 

The present paper proceeds as follows. In the next section we briefly discuss the 

theoretical setting in the form of Dybvig�s (1988a) Payoff Distribution Pricing Model 

(PDPM), which we extend to a bivariate setting. In section 3, we discuss the 

determination of the desired payoff function, i.e. the payoff function, which, given the 

distribution of the assets to be traded, implies the desired return distribution. In 

section 4 we carry out a number of simulation-based analyses, investigating how the 

size of the available data sample influences the accuracy of the procedure. In section 5 

we discuss the practical implementation of the procedure and the results of some out-

of-sample tests, replicating the returns on three well-known hedge funds (of funds). 

Section 6 concludes. Proofs relating to the univariate and bivariate PDPM can be 

found in Appendix I.  

 

 

2. Theoretical Setting 
In principle, a given payoff distribution can be generated by many different payoff 

functions. Different payoff functions come with different price tags, however. We 

therefore need to know more about the general characteristics of the cheapest 

alternative. This is where Dybvig�s (1988a) Payoff Distribution Pricing Model 

                                                
8 See Kat and Palaro (2006a). 
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(PDPM) comes in. The PDPM can be derived from a simple set of primitive 

assumptions: 

 

1) Investors� preferences depend only on the probability distribution of 

terminal, i.e. end-of-horizon, wealth. 

2) Perfect capital markets.   

3) Investors prefer more to less.  

 

This set of assumptions allows investors� preferences to depend on all moments of the 

distribution of terminal wealth. 

  

Suppose there are n possible states of the world. The state price of state i is the price 

of an elementary security which pays $1 if state i occurs and 0 otherwise. The state-

price density is defined as the price per unit of probability of terminal wealth in a 

particular state, and is given by the ratio of the state price and the probability of 

occurrence of that state. In Dybvig (1988a), the author shows that the cheapest way to 

obtain a given payoff distribution is to allocate terminal wealth as a decreasing 

function of the state-price density. In Dybvig (1988b), the author applies this result, 

assuming a binomial tree model for the underlying index, and shows that for a payoff 

function to be efficient it should allocate terminal wealth as a non-decreasing 

function of the final value of the underlying index.9 Intuitively, this is a plausible 

result as it implies that payoff and index will be positively correlated, which, when it 

comes to actually generating the payoff, will serve to keep the required rebalancing 

trades down.  

 

We now propose a more general set of assumptions. Suppose that apart from being 

concerned about the terminal wealth obtained from some new investment opportunity, 

investors are also concerned about the dependence between this investment and their 

existing portfolio. This means replacing assumption 1 by: 

 

1) Investors� preferences depend only on the joint probability distribution of 

terminal wealth derived from the investment and their existing portfolio. 

                                                
9 Proof can also be found in Appendix I A. 
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Equivalently, since the distribution of the investor�s existing portfolio will be given, 

we can say that: 

 

1) Investors� preferences depend only on the probability distribution of 

terminal wealth derived from the investment conditional on the distribution of 

terminal wealth derived from their existing portfolio. 

 

The non-satiation and perfect capital markets assumptions remain unchanged. Given 

this new set of assumptions, it is possible to derive an allocation rule for the cheapest 

payoff function similar to the univariate case10. This time, however, the rule depends 

on the value of the investor�s existing portfolio, which makes it a little more awkward 

to incorporate in the replication procedure. We will return to this issue in the next 

section.  

 

Another important paper in this context is Cox and Leland (2000). The latter show 

that in a Black-Scholes (1973) world all path-dependent payoff functions are 

inefficient because they generate payoff distributions that can also be obtained with a 

path-independent payoff function, but at lower costs. Our replicating payoffs will 

therefore not only have to allocate terminal wealth in a specific manner, but always be 

path-independent as well.  

 

Strictly speaking, the above results are only valid in the relatively simple theoretical 

setting from which they are derived. For the purpose of our replication procedure, 

however, we will assume that they are also valid in a more complex world where asset 

returns may be non-normally distributed, with highly unusual patterns of dependence. 

Of course, this need not be true. Unfortunately, without the availability of a more 

sophisticated theoretical framework, this is the best one can do.  

 

 

3. Determination of the Replication Strategy 

                                                
10 Proof is provided in Appendix I B. 
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The replication procedure consists of a number of distinct steps. First, we collect 

return data on the fund to be replicated, the investor�s portfolio, and the reserve asset 

(see Appendix I B). Second, we analyse the data to infer the joint distribution of the 

fund return and the investor�s portfolio return. We refer to this as the �desired 

distribution�. We do the same for the joint distribution of the investor�s portfolio 

return and the return on the reserve asset, which we refer to as the �building block 

distribution�. Third, we determine the cheapest payoff function, which turns the 

building block distribution into the desired distribution. Fourth, we price the latter 

payoff function. Fifth, we derive the required allocations to the investor�s portfolio 

and the reserve asset from the resulting value function. 

 

In this section we discuss the above steps in more detail. Before we do so, however, 

we provide a brief introduction to copulas and their use in multivariate dependence 

modelling. As will become clear, copulas are a crucial ingredient in the replication 

procedure as they allow us to easily capture a large variety of non-normal dependence 

structures.  

 

Copulas 
Recent research in finance has uncovered various deviations from not only univariate, 

but also multivariate normality11. One powerful and at the same time convenient way 

to model this is by the use of copulas, as it allows the decomposition of any n-

dimensional joint distribution into n marginal distributions and a single copula 

function12. Assume a random vector of two random variables. A bivariate copula can 

then be defined as follows. 

   

Definition 1: The copula C of the random vector (X,Y)  is the joint distribution of the 

random vector (U, V), where U = FX(X) and V = FY(Y), and where FX, FY, are the 

distribution functions of X and Y respectively.  

 

The above definition implies that:  

                                                
11 Longin and Solnik (2001) for example find clear evidence of asymmetric dependence in international equity markets. A 

similar conclusion can be found in Ang and Chen (2002) with respect to US stocks. 
12 Copulas have been widely used in the statistical literature. Joe (1997) and Nelsen (1999) provide a good introduction. 

Cherubini et al. (2004) discuss copulas in a finance context. 
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  ℜ∈ℜ∈∀= yxyFxFCyxF YXYX ,)),(),((),(, ,                             (1) 

 

where FXY is the joint distribution of the random vector (X,Y). Intuitively, the copula 

function divides the characteristics of the joint distribution between the marginal 

distributions, which contain the univariate characteristics of each random variable, 

and the copula, which contains all information concerning the dependence between 

these random variables.  

 

Next, we present a key result in copula theory13. Let },{ ∞−∞∪ℜ=ℜ  denote the 

extended real line. 

 

Sklar�s Theorem: Let FX,Y be a 2-dimensional joint distribution function with 

marginal distributions FX, and FY. Then there exists a copula C such that for all (x,y) 

in 2ℜ ))(),((),(, yFxFCyxF YXYX = . If FX and FY are continuous then C is unique; 

otherwise, C is uniquely determined on Ran(FX) × Ran(FY). Conversely, if C is a 

copula and FX, FY are distribution functions, then the function FXY defined by (1) is a 

joint distribution with margins FX, FY. 

 

From a multivariate financial modelling perspective, it is the converse of Sklar's 

Theorem that is most interesting, as it implies that any combination of two univariate 

distributions and a copula defines a valid bivariate distribution. This solves the 

problem that in statistics, although we do have a large set of flexible parametric 

univariate distributions available, the set of parametric multivariate distributions is 

quite limited.  

 

Estimation of the Desired and Building Block Distributions 
In the replication procedure we allow three different marginal distributions (Normal, 

Student-t and Johnson SU)14 and six different bivariate copulas. The first two copulas 

are part of the class of elliptical copulas, since they are derived from elliptical 

                                                
13 Proof of this theorem can be found in Nelsen (1999, p. 18). 
14 See Johnson (1949, 1965) for details on the Su distribution. 
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distributions. The normal copula is extracted from the bivariate normal distribution. If 

we combine the bivariate normal copula with two normal marginal distributions, we 

end up with the bivariate normal distribution. However, if either one or both marginal 

distributions are non-normal, then the joint distribution produced will be a completely 

different distribution. The Student-t copula, which is extracted from the bivariate 

Student-t distribution, is also an elliptical copula, but it differs from the normal copula 

in that it allows for some extreme dependence in the lower and upper tails. Since the 

Student-t copula is symmetric, however, this dependence must be the same for both 

tails.  

 

The next three families of copulas, Gumbel, Cook-Johnson and Frank, are part of the 

Archimedean copulas class, a rich class of copulas that allows for very different types 

of dependence. The Gumbel copula is asymmetric. It has more dependence in the 

upper tail than in the lower tail. The Cook-Johnson copula, also known as the Clayton 

copula, is also asymmetric, but with more dependence in the lower tail than in the 

upper tail. As shown by Longin and Solnik (2001) and Ang and Chen (2002), this is 

quite common behaviour in equity market returns. The Frank copula implies the same 

dependence between positive returns as between negative returns. Like the Normal 

and Student-t copulas, it allows for positive and negative dependence. The sixth and 

final copula is the symmetrised Joe-Clayton (SJC) copula, proposed by Patton 

(2005a). It is the most flexible of the copulas discussed here. It has two parameters, 

which separately control the dependence in the lower and upper tail. As a result, this 

copula can fit data with very different patterns of dependence in the tails. 

 

<< Insert Figure 1 Here >> 

 

Figure 1 shows 500 simulated drawings from six bivariate joint distributions. In all 

cases, the marginal distributions are standard normal and the linear correlation is 0.7. 

Despite this, the plots show six different patterns of dependence, underlining the 

impact and different characteristics of each of the six copula families. Only in the 

bivariate normal case is the linear correlation coefficient sufficient to fully describe 

the observed dependence structure15.  

                                                
15 Kat (2003) discussed this point in a hedge fund context. 
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The estimation method that we use is known as the Inference Functions for Margins 

(IFM) method16. It is a two-step maximum likelihood method. Let (X,Y) be a vector of 

two random variables with joint distribution function FXY  and marginal distribution 

functions FX and FY respectively. The marginal distribution FX depends only on the set 

of parameters ΘX and the same for FY and ΘY.  Let ΘC be the vector of parameters of 

the bi-dimensional copula C. So the unknown vector of parameters is given by Θ = 

(ΘX, ΘY, ΘC). We know from Definition 1 that 

));;(),;(();,( 21 CYXXY yFxFCyxF ΘΘΘ=Θ . So the joint distribution FXY is completely 

specified by the vector of parameters Θ. Differentiating with respect to both variables, 

we have ),()())(),((),( yfxfxFxFcyxf YXYXXY =  where 
vu
vuCvuc

∂∂
∂= ),(),(  is the 

copula density. 

 

For a bivariate random sample of size T { } T
iii yx 1),( = , the log-likelihood function is 

therefore given by: 

 

∑∑∑
===

Θ+Θ+ΘΘΘ=Θ
T

t
YtY

T

t
XtX

T

t
CYtYXtX yfxfyFxFcl

111
);(ln);(ln));;();;((ln)( . 

 

Estimating all parameters at the same time would be very cumbersome and            

time-consuming. We therefore do so in two consecutive steps. First, we estimate the 

marginal set of parameters ΘX and ΘY  (separately) by maximum likelihood. 

Subsequently, we create the series )�;(� XtXt xFu Θ=  and )�;(� YtYt yFv Θ=  and estimate 

ΘC   by maximum likelihood using the likelihood function ∑
=

Θ=Θ
T

t
CttC vucl

1
);�;�(ln)( .  

 

With three possible candidates for the marginal distribution and six for the copula, we 

have 54 possible joint distributions to choose from. To select the final model, we use 

the Akaike information criterion (AIC)17. We considered some other selection criteria 

                                                
16 See Xu (1996) and Patton (2005b) for details on the statistical properties of this method. 
17 See Akaike (1973) for details. 
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as well, including the quadratic distance between the estimated copula and the 

empirical copula for example. The advantage of the AIC, however, is that it penalises 

models with a large number of parameters.  

 

Determination of the Desired Payoff Function   
Having selected the desired and building block distributions, the next step is to 

determine the cheapest payoff function, which turns one into the other, i.e. the 

cheapest function g* such that: 

 

yxySxSPySSgxSP IPRPP ,),,()),(*,( ∀≤≤=≤≤ ,                       (2) 

 

with SI denoting the end-of-month payoff of the fund, SP the end-of-month payoff of 

the investor�s portfolio, and  SR the end-of-month payoff of the reserve asset.  
 

We start by assuming the current value of all assets is equal to 100. Rescaling to log-

returns, this means looking for the cheapest function 







=

100
))exp(100),exp(100(*log),( yxgyxg such that: 

 

yxyxFyXxXPyXXgxXP IPIPRPP ,),,(),()),(,( , ∀=≤≤=≤≤ ,              (3) 

 

with 





=
100

log I
I

SX , 





=
100

log P
p

SX , and 





=
100

log P
p

SX . Or equivalently, the 

cheapest function g such that: 

 

yxxyFxXyXPxXyXXgP PIPIPRP ,),|()|()|),(( | ∀==≤==≤                 (4) 

 

From Appendix I B., we know that the cheapest payoff function depends on the 

conditioning value x. As a result, the bivariate function g may not be a �smooth� 

function, i.e. the derivatives of this function will �jump� around the line x=xmin, 

making the execution of the replication strategy derived from the payoff function 

quite awkward. From Appendix I B. we find that the desired payoff function should 

only be a non-decreasing function of the reserve asset if   
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






 −>−
P

P

R

R xr
σ

µρ
σ

µ ,    (5) 

 

for ]1,1[−∈∀ ρ . The expression on the left is nothing more than the Sharpe ratio of the 

reserve asset. From (5) it therefore follows that as long as the Sharpe ratio of the 

reserve asset is high enough and the correlation with the investor�s portfolio low 

enough, the desired payoff function should be a non-decreasing function of the 

reserve asset.  

 

Assuming the reserve asset satisfies the above condition18, the function g in 

expression (4) is given by: 

ℜ∈∀= − yxxyFFyxg PRPI ),|)|((),( |
1

|    (6) 

 

where )|(1
| xyF PI
−  denotes the pseudo-inverse of )|(| xyF PI . This is a composed 

function, with two non-decreasing components. The composition is therefore also 

non-decreasing, as required.  

 

Next, we have to prove that (4) holds: 

 

==≤==≤ )|),(()|),(( xXyXxgPxXyXXgP PRPRP

),|)|(()|)|)|((( 1
||

1
| xXyxUFPxXyxxXFFP PPIPRPRPI =≤==≤ −−             (7) 

 

where U ~ Uniform[0,1] by the probability integral transformation. Then, by the same 

reasoning, )|(1
| xUF PI
−  has the same distribution as XI given XP = x, so we finally have: 

 

)|()|()|)|(( |
1

| xyFxXyXPxXyxUFP PIPIPPI ==≤==≤− ,                  (8) 

 

and (4) holds as required. 

                                                
18 Extensive simulations showed that, under reasonable assumptions, this does not introduce any significant error if not true for 

some values of x.  
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In order to obtain the function g, we need to model the conditional distributions FI|P 

and FR|P. Let CP,I denote the copula between XP and XI and let CP,R denote the copula 

between XP and XR. Then from (1) we have: 

 

.,)),(),((),( ,, ℜ∈ℜ∈= yxyFxFCyxF IPIPIP                               (9) 

.,)),(),((),( ,, ℜ∈ℜ∈= yxyFxFCyxF RPRPRP                            (10)   

 

We can write the conditional distributions FI|P and FR|P as: 

,,),()|( ,
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So the cheapest function g in expression (6) can be rewritten as: 

 

 ( ) ℜ∈ℜ∈= − yxyyxg RP
x

IP
x ,,)(),( ,,)1( κκ .             (8) 

 

We can now rewrite everything in terms of the end-of-month payoff to obtain the 

desired payoff function. The end-of-month replicated values from a monthly initial 

investment of 100 will be equal to: 

 

Sg = 





















=

100
log,

100
logexp100),(* RP

RP
ssgssg .                        (9) 

 

Theoretically, the vector (SP, Sg) will have the same joint distribution as the vector 

(SP, SI), meaning that, as intended, we are not only replicating the end-of-month 

payoff of the fund, but also its dependence with the investor�s existing portfolio. 

 

Pricing and Generating the Desired Payoff Function  
Having determined the desired payoff function, the next step is to price it. This is of 

course not a new problem. It is what arbitrage-based option pricing theory has 
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concentrated on for the last 35 years. Following Harrison and Kreps (1979), the 

desired payoff function can be priced by calculating the discounted risk neutral 

expected payoff. The two most obvious methods to do so are either bivariate Monte 

Carlo simulation or a trinomial tree19. Once we are able to price the desired payoff 

function, we can work out the controls of the dynamic trading strategy generating it 

by straightforward partial differentiation of the value function.  

 

Two points are worth noting at this stage. First, only after pricing the payoff function 

do we know what the expected return on the replicating strategy will be. The desired 

payoff function explicitly aims to replicate all aspects of the desired distribution, 

except the fund�s expected return. The latter follows from the expected return on the 

investor�s portfolio and the reserve asset, the desired payoff function, and the pricing 

environment for the latter, i.e. interest rates, expected dividends, volatilities, etc. In 

other words, it is the capital market that sets the expected return on the replicating 

strategy. Second, although determined in a much more flexible setting, the desired 

payoff function is priced in the standard model where asset returns are normally 

distributed. As long as we don�t have access to a more sophisticated theoretical 

pricing model, we cannot escape this inconsistency.  

 

 

4. Simulation Analysis 
Given the desired and building block distributions, the above results allow us to 

derive, price and generate the cheapest payoff function that turns one into the other. 

The procedure is exact, so by itself it does not require any testing. Taking this 

procedure into the real world and using it to replicate fund returns, however, we are 

confronted with a number of problems. First, we do not know the true population 

distribution. The best we can do is estimating it from a small data sample. Second, the 

latter distribution may not be stationary over time. Third, due to market imperfections 

and insufficient information on the underlying price processes, we may not always be 

able to exactly generate the desired payoff function.  

 

                                                
19 See Jaeckel (2002) or Glasserman (2003) for an introduction to Monte Carlo methods. Details on the trinomial tree approach 

can be found in He (1990). 
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In this section, we use simulation methods to study the error resulting from 

determining the desired payoff function from a relatively small sample, instead of 

from the population distribution. In these simulations, we assume that the population 

distribution is stationary and that it is possible to generate the desired payoff function 

without any error. In the next section we perform a number of out-of-sample tests on 

real-life data to also include the error contributions of non-stationarity and sub-

optimal dynamic trading. In the simulations, we study two different cases, selected to 

capture different distributional conditions. Throughout, we assume that the returns on 

the investor�s portfolio and the reserve asset are both normally distributed with the 

parameter values given below. In addition, we assume they are related through a 

Gaussian copula with a correlation coefficient of 0.3.   

 

Investor�s portfolio  

Log-returns - XP ~ N ( 0.01 , 0.0433012)   

Mean = 12% p.a. 

Volatility = 15% p.a. 

 

Reserve asset  

Log-returns � XR ~ N ( 0.00833 , 0.0288672)   

Mean = 10% p.a. 

Volatility = 10% p.a. 

 

Case 1: Gaussian fund marginal, dependence higher in the lower tail. 

Our first case assumes that the fund return is normally distributed, but that the 

relationship with the investor�s portfolio is such that there is more dependence in the 

lower than in the upper tail. This could be the risk profile of a fund of funds with a 

bias towards risk arbitrage for example. The marginal distribution of the fund return 

and the relevant copula are specified as follows: 

 

Fund  

Log-returns � XI ~ N ( 0.015 , 0.0577352)   

Mean = 18% p.a. 

Volatility = 20% p.a. 

Copula (investor�s portfolio, fund) = SJC (0.75, 0.10) 
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<< Insert Figure 2 and 3 Here >> 

 

Give the desired and building block distributions, we derived the desired payoff 

function using the results of section 3.  Figure 2 and 3 depict the latter graphically, as 

a contour plot as well as a 3D graph. From the graphs we see that the desired payoff is 

an increasing function of the reserve asset (by construction) as well as the investor�s 

portfolio. The strategy�s controls will therefore tell us to hold long positions in both 

assets. As is especially clear from the contour plot, the payoff function is quite curved. 

This of course serves to generate the required difference in dependence between the 

upper and lower tail.  

 

To gain insight into the potential error when deriving the desired payoff function from 

only a small sample, instead of the population distribution, we took a sample of size N 

and derived a payoff function from it. Subsequently, we took 2000 observations from 

the building block distribution, and fed these observations through the latter payoff 

function to produce a joint distribution of replicated payoffs and the investor�s 

portfolio. From the latter distribution we calculated the mean, standard deviation, 

skewness, and kurtosis of the replicated payoff as well as its correlation with the 

investor�s portfolio. The above procedure was repeated 100 times, for different values 

of N (= 24, 48, 72, 96, 120, 240). Across each set of 100 runs, we subsequently 

calculated the mean, standard deviation and skewness of the replication errors, i.e. the 

differences between the above sample statistics and the true fund parameters. The 

results can be found in table 1.  

 

<< Insert Table 1 Here >> 

 

To be able to properly interpret the entries in the table, the first row in Table 1 shows 

the mean, standard deviation, skewness, kurtosis and correlation of the fund payoff, as 

implied by the assumed fund return distribution. The rows that follow show, for 

various sample sizes N (= 24, .., 240) and each over 100 runs, the average (Avg), 

standard deviation (SD) and skewness (SK) of the replication errors. Table 1 confirms 

that the larger the sample, the more accurate the desired payoff function will be. It 

also shows that even with a relatively small sample the procedure still works quite 
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well and is unbiased. For all parameters and sample sizes, the average error is 

statistically insignificant at 5% (-1.96 SD, + 1.96 SD).  

 

Case 2: Negatively skewed fund marginal, Gaussian copula. 

Our second case is somewhat more extreme. It assumes that the fund return exhibits a 

high degree of negative skewness. To make up for that, however, it also has a 

relatively high mean and low correlation with the investor�s portfolio. With a little 

imagination, this could be the risk profile of a fixed income arbitrage fund for 

example. The marginal distribution of the fund return and the relevant copula are 

specified as follows: 

 

Fund  

Log-returns � XI ~ Johnson-SU (0.058604, 0.046978, 0.926426, 1.390468)   

Mean = 18% p.a. 

Volatility = 20% p.a. 

Skewness = -2.0 

Excess kurtosis = 10 

Copula (investor�s portfolio, fund) = Gaussian (0.2). 

 

<< Insert Figure 4 and 5 Here >> 

 

From the above population distributions we again derived the desired payoff function, 

which is graphically depicted in Figure 4 and 5. As required, the payoff is a positive 

function of the reserve asset. However, since the assumed correlation between the 

fund and the investor�s portfolio is lower than the assumed correlation between the 

investor�s portfolio and the reserve asset, the payoff is a negative function of the 

investor�s portfolio. The strategy�s controls will therefore want us to go long in the 

reserve asset, but short in the investor�s portfolio. The slope of the payoff function 

increases as the investor�s portfolio rises and the reserve asset drops, which serves to 

generate the required negative skewness.   

 

<< Insert Table 2 Here >> 
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To gain insight into the potential error from deriving the desired payoff function from 

a small sample in this particular case, we repeated the procedure used earlier in case 1. 

The results can be found in Table 2. Not unexpectedly, given the much more extreme 

distributional assumptions, we see quite some variation for small sample sizes. 

Especially the replication of the assumed �2.0 skewness meets with some difficulty. 

Since, by definition, tail events only occur infrequently, many smaller samples will 

not contain enough information to estimate skewness accurately. This is reflected by 

the strong positive skew of the error distribution for small N.  

 

The above two case studies suggest that, depending on the distributions involved, the 

error from working with a small sample may sometimes be quite substantial. It is 

important to note though, that when applying the procedure in practice, one will 

typically re-estimate the payoff function periodically as new fund return data becomes 

available. Through time therefore, these errors may diversify away to some extent.  

 

  

5. Out-of-Sample Tests 
We proceed with some out-of-sample tests. Taking the replication procedure into the 

real world introduces a new set of problems. Where the model assumes continuous 

trading at zero costs, we will necessarily have to trade discretely, pay commissions 

and possibly be confronted with significant market impact. In addition, where the 

model assumes all relevant parameters to be known, we are confronted with a 

significant degree of uncertainty about future parameter values. Fortunately, these 

problems are not new. They are characteristic to all model-based dynamic trading 

strategies. A number of authors have studied and suggested solutions to the above 

problems20. None of these, however, appears to be able to improve the efficiency of 

dynamic trading strategies to a very large extent. We therefore assume the simplest 

possible set-up. If our replication strategies do not work under these conditions, it is 

unlikely they will work in a more elaborate set-up.  

 

The out-of-sample tests that follow are all structured in the same way. Given a fund, 

we take the first 24 months of its track record as given, assuming we do not know 
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anything about what is to come. If a fund�s track record starts in January 1985 for 

example, we assume to be living on January 1st, 1987. Subsequently, we determine the 

desired payoff function from the available 24 monthly returns, calculate the 

accompanying strategy controls and set up the required positions. During the month, 

we adjust our portfolio on a daily basis, driven by the daily changes in the underlying 

index values. At the beginning of the next month, we include the hedge fund return 

over the previous month in our dataset and repeat the whole procedure, now using 25 

monthly returns instead of 2421. The above is repeated until we arrive at the end of 

October 2004 (where our fund database ends).  

 

Throughout we assume the investor�s portfolio consists of 50% US equity, in the form 

of the S&P 500 tracking portfolio, and 50% long-dated US Treasury bonds. We use 

nearby Eurodollar futures as the reserve asset22. To minimize transaction costs, all 

trading is done in the futures markets23. Transaction costs for all futures contracts are 

assumed to be 1bp one-way. The necessary volatility and correlation inputs are 

obtained from historical estimates, using all available data at the time of determining 

the desired payoff function. 

 

In what follows we discuss the out-of-sample replication results for three different 

hedge funds (of funds). We selected these funds because they are well known within 

the industry and among investors and because they have relatively long track 

records24. The latter requirement stems from the fact that when comparing the 

statistical properties of the fund and the replicated returns we are basically comparing 

two bivariate distributions, which is best done using as many data points as possible. 

All fund returns are net of fees and were taken from the TASS database, with all data 

                                                                                                                                       
20 See for example, Boyle and Emanuel (1980), Leland (1985), Figlewski (1989), Kat (1996) or Clewlow and Hodges (1997). 
21 In practice hedge funds typically take one or two weeks to report their end-of-month net asset value. For simplicity, we refrain 

from this complication here. 
22 The decision to use Eurodollar futures is primarily based on liquidity considerations. Research into the characteristics of the 

optimal reserve asset is ongoing, however, and may lead us to change the reserve asset in a later version of this paper.  
23 S&P 500 (SP) and Eurodollar futures (ED) are traded on the CME, while T-bond futures (US) are traded on the CBOT. 
24 More in particular, we did not select these funds because the replication procedure works especially well for them, nor do we 

mean to boost or damage these managers� business in any way.   
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series ending per October 2004. We do not charge any management fees in the 

replication strategy.  

 

Several studies have shown that reported monthly hedge fund returns may exhibit 

highly significant levels of autocorrelation25. This primarily results from the fact that 

many hedge funds invest in illiquid securities, which are often hard to mark to market. 

When confronted with this problem, hedge fund administrators will either use the last 

reported transaction price or a conservative estimate of the current price, which 

creates artificial lags in the evolution of hedge funds� net asset values, resulting in 

artificial smoothing of the reported monthly returns. As a result, estimates of hedge 

fund volatility for example, can be biased downwards by 30-40% in some cases. 

 

One possible way to correct for the above autocorrelation is found in the real estate 

finance literature. Due to smoothing in appraisals and infrequent valuations of 

properties, the returns on direct property investment indices suffer from similar 

problems as hedge fund returns. The approach employed in the literature has been to 

�unsmooth� the observed returns to create a new set of returns which are more 

volatile and whose characteristics are believed to more accurately capture the 

characteristics of the underlying property values. Nowadays, there are several 

unsmoothing methodologies available. We use the method originally proposed by 

Geltner (1991).  

 

Leveraged Capital Holdings N.V. 
Our first example concerns one of the first funds of hedge funds. Leveraged Capital 

Holdings (LCH) was started in 1969 (our return data, however, only start in 1985) by 

Georges Karlweis of Banque Privee Edmond de Rothchild in Geneva. Over the years, 

LCH has (been) invested in all well-known hedge fund managers, such as George 

Soros, Martin Zweig and Joseph DiMenna, and Michael Steinhardt. LCH is publicly 

listed on the Amsterdam Stock Exchange and currently has $1.32 billion under 

management (TASS, October 2005).  

 

                                                                                                                                       
 
25 See for example Brooks and Kat (2002) or Lo et al. (2004).  
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<< Insert Figure 6-7 Here >> 

Figure 6 and 7 show the payoff function used for the replication of the LCH return per 

October 2004 (the last month for which we have fund return data available)26. Notice 

that the LCH payoff function is a lot more �lively� than the payoff functions 

encountered in the previous section. This underlines the complexity of real-life hedge 

fund returns. The graphs show that the desired payoff is a positive function of the 

investor�s portfolio as well as the reserve asset, implying that the replication strategy 

will be long in both assets. We also see quite some variation in the slope of the payoff 

surface. Since the controls of the replication strategy are nothing more than the slope 

coefficients of the payoff value function, this signals the presence of �hot spots�, 

where relatively small changes in the investor�s portfolio and/or reserve asset will 

generate relatively large changes in the strategy�s controls.    

 

<< Insert Figure 8 Here >> 

 

The left hand side of Figure 8 shows a scatter plot of the monthly returns on the 

investor�s portfolio versus the LCH returns. The right hand side of Figure 8 shows a 

scatter plot of the monthly returns on the investor�s portfolio versus the replicated 

returns. Comparing both plots, we see that they are very similar, which indicates that 

the replication strategy is indeed able to successfully replicate LCH�s returns� 

statistical properties. We also see that the replication strategy is unable to replicate the 

three large losses that LCH reported in October 1987 (-22.52%), August 1998 (-

11.45%) and April 2000 (-10.83%). Since these are clearly outliers, it is not surprising 

that the replication procedure was unable to capture them out-of-sample. Given the 

size of these losses, it is unlikely investors will consider this a real shortcoming 

though.  

 

<< Insert Table 3 Here >> 

 

Another indication of the accuracy of the replication strategy comes from comparing 

the actual mean, standard deviation, skewness and kurtosis of LCH�s returns with 

                                                
26 The jagged profile in the bottom right-hand corner of the contour plot is due to some numerical instability in the extremes. A 

similar phenomenon is observed in the two cases that follow.  
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those of the replicated returns. The latter statistics can be found in Table 3, together 

with the correlation and Kendall�s Tau with the investor�s portfolio. Since LCH�s 

returns exhibit some clear outliers, apart from the standard skewness and kurtosis 

measures we also report more robust skewness and kurtosis measures27. To test 

whether the marginal distribution of the replicated returns and the joint distribution of 

the replicated returns and the investor�s portfolio are significantly different from the 

original distributions, we use the univariate and bivariate Kolmogorov-Smirnov (K-S) 

tests28.  

 

Comparing the entries in Table 3, it is clear that, despite the obvious limitations, the 

statistical properties of LCH�s returns have been quite successfully replicated. The 

replication strategy has not only replicated the marginal distribution of LCH�s returns 

but also its relationship with the investor�s portfolio. This is also the conclusion from 

both the K-S tests. Although slightly higher (14.76% pa versus 12.48% pa), the mean 

of the replicated returns is similar to that of the LCH returns as well. This confirms 

the assumption underlying the replication procedure that in the longer run investors 

receive a return which is in line with the risk profile they take on, irrespective of how 

that risk profile is acquired.   

 

<< Insert Figure 9 Here >> 

 

It is interesting to delve a bit further into the workings of the replication strategy. The 

left hand side of Figure 9 shows a scatter plot of the reserve asset returns versus the 

replicated returns. The positive relationship confirms the efficiency of the replication 

strategy (see section 2). The right hand side of Figure 9 shows a scatter plot of the 

fund returns versus the replicated returns. The plot makes it clear that although the 

replicated returns have statistical properties, which are very similar to those of LCH, 

they come to the investor in a completely different order. It is exactly this feature of 

the replication process, i.e. giving up the requirement that returns need to be similar 

on a month-to-month basis as well, which allows us to do so much better than the 

standard factor model approach.  

                                                
27 See Hinkley (1975) and Crow and Siddiqui (1967). These measures are also discussed in Kim and White (2004). 
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<< Insert Figure 10 Here >> 

 

Figure 10 shows the evolution of the replication strategy�s controls over the period 

Dec. 2002 � Oct. 200429. The graph confirms that the replication strategy holds long 

positions in both the investor�s portfolio and the reserve asset. It also shows that the 

number of units of the reserve asset held is much higher than for the investor�s 

portfolio. This is because the volatility of the Eurodollar future is quite low compared 

to that of LCH and the investor�s portfolio. It therefore requires substantial 

leveraging. The strategy is quite dynamic, with the strategy�s controls exhibiting a 

number of peaks and troughs. The latter are the result of a combination of strong 

inter-month index movement, a steep payoff function and monthly strategy resetting. 

For example, during April 2004 the value of the investor�s portfolio dropped by 

almost 4%. As a result, the number of units of the investor�s portfolio to hold rose 

from 0.90 at the start to 1.54 at the end of the month. At the same time, the number of 

units of the reserve asset to hold rose from 9.34 to 10.63. At the beginning of May, 

however, the strategy was reset to its starting values, meaning that the allocation to 

the investor�s portfolio dropped to 0.85 units and the allocation to the reserve asset to 

9.58 units. 

 

Calamos Multi-Strategy Fund L.P. 
The second example is a convertible arbitrage fund. The Calamos Multi-Strategy 

Fund (CMSF) was established in 1989 by convertible bond experts John and Nick 

Calamos. For most of its life CMSF has pursued a convertible arbitrage strategy. 

Since 2004, however, CMSF has adopted a long/short equity strategy as well. 

Managed primarily for the personal accounts of the Calamos family and a small group 

of friends, the fund is relatively small with currently $14.1 million under management 

(TASS, October 2005)30.  

                                                                                                                                       
28 See Fasano and Franceschini (1987) for details. Since the mean is not explicitly replicated, we subtract the mean from both the 

fund and the replicated returns before performing these tests. 
29 The period Dec. 2002 � Oct. 2004 is representative for the period 1987 � 2004. A graph covering the full 1987-2004 test 

period would be too condensed to provide any worthwhile insights. 
30 Although the fund is only small, we decided to include it because the Calamos family is very well known for their work on 

convertibles and convertible arbitrage. See for example Calamos (1998) and Calamos (2003).   
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<< Insert Figure 11 -14 and Table 4 Here >> 

 

The desired payoff function for CMSF as per October 1st, 2004 is shown in Fig 11 and 

12. At first sight, it looks similar to that for LCH, but, as is easiest seen from the 

contour plot, there are some significant differences as well. Figure 13 shows the same 

scatter plots as in Figure 8. Comparing both plots, we again see that they are very 

similar, indicating the replication strategy performs quite well. This is confirmed by 

the entries in Table 4. As before, all parameters are very similar, including the means 

and the correlation with the investor�s portfolio. Both the univariate and bivariate K-S 

test confirm that there is no significant difference between the original and replicated 

distributions. Figure 14 shows the same scatter plots as in Figure 9. We again see a 

positive relationship between the reserve asset returns and the replicated returns, 

confirming the efficiency of the replication strategy. The plot of the fund returns 

versus the replicated returns shows a random scatter, making it clear that although the 

replicated returns have similar statistical properties as CMSF, they come in a 

completely different order. 

 

Rocker Partners L.P. 
Most hedge funds� returns are positively correlated with the equity market. Our final 

example therefore concerns a dedicated short seller, the returns of which are likely to 

be negatively correlated with the stock market. Rocker Partners (RP) was started in 

1985 by David Rocker. While RP maintains both long and short positions, the general 

focus is on short selling. The fund is therefore popular with investors as a hedge 

against their long biased investments. RP currently has $611.1 million under 

management (TASS, October 2005). 

 

<< Insert Figure 15 - 18 and Table 5 Here >> 

 

The desired payoff function for RP as per October 1st, 2004 can be found in Figure 15 

and 16. From these graphs we see that the payoff function for RP is quite different 

from what we found for LCH and CMSF. Of course, the payoff is a positive function 

of the reserve asset. The RP payoff, however, is a negative function of the investor�s 
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portfolio. The replication strategy will therefore go long in the reserve asset, but short 

the investor�s portfolio. This is of course what one would expect for a short seller, 

whose returns are likely to be negatively correlated with the market. From Figure 17 

and Table 5 we see that the replication strategy performs in the same way as before. 

The replicated return statistics are again similar to those of the fund returns. Even the 

negative correlation with the investor�s portfolio is closely replicated. Figure 18 paints 

a similar picture as Figure 9 and 14.  

 

 

6. Conclusion 
Much of investors� current interest in hedge funds derives from the fact that 

traditional asset classes seem to lack opportunity these days. Stock markets are 

hesitant, bond prices will come down when interest rates go up again and the yield 

curve is flattening. With fresh memories of double-digit returns, this has driven 

investors towards commodities, emerging markets, credit-based structures, and of 

course hedge funds. Having generated high returns in the early years, the average 

return on hedge funds over the last 10-15 years has been quite impressive and many 

investors seem more than happy to use this as a guide for future returns. Given 

today�s low interest rates, low risk premiums across the board, as well as the current 

size of the hedge fund industry itself, a repeat of the last 10-15 years is extremely 

unlikely, however.  

 

Investing in alternatives comes with many drawbacks, including due diligence, 

liquidity, capacity, transparency and style drift problems, and excessive management 

and incentive fees. As long as investors believe they will be rewarded with (close to) 

double-digit returns, they will take these problems for granted. However, when reality 

kicks in and investors realize that hedge funds are no longer the money machines they 

once were (thought to be), their attitude will undoubtedly change. The above 

drawbacks will become more and more important and may ultimately become a 

reason to say farewell to hedge funds altogether and migrate to other alternative asset 

classes like emerging markets for example, which has shown stellar performance over 

the last 3 years. In fact, according to HFR, during the third quarter of 2005 funds of 
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hedge funds were confronted with their first net outflow of funds, in the amount of 

$1.2 billion31. 

 

Although we can�t create something out of nothing, in this paper we have shown that 

it is possible to design dynamic trading strategies, which generate returns similar to 

those of individual hedge funds and funds of hedge funds. Since this is accomplished 

by trading (futures on) traditional assets only, these strategies avoid the typical 

drawbacks surrounding hedge fund and other alternative investments. As such, our 

synthetic hedge fund returns are clearly to be preferred over real hedge fund returns.  

 

Finally, it should be noted that the applications of the technique introduced here are 

not limited to replication only. The same technique can also be used for performance 

evaluation for example. When the average replicated return is significantly higher 

than the average fund return, that fund cannot claim superiority. After all, superior 

returns can�t be replicated. As it essentially allows one to design trading strategies that 

generate returns with predefined statistical properties, the technique can also be used 

for the creation of completely new risk-return profiles. This means that investors no 

longer have to go through the usual process of finding and combining assets and funds 

in a costly and often unsuccessful attempt to construct a portfolio with the risk-return 

characteristics they require. Given the proper trading strategy, investors can now 

generate directly whatever risk-return profile they are after. Based on this technique, a 

whole new industry could develop! We will investigate these possibilities in more 

detail in two forthcoming companion papers32.   

                                                
31 Financial Times, Oct. 31, 2005. According to HFR, from the first to the second quarter of 2005 asset flows into hedge funds 

dropped by 60%, from $27.3 billion to $10.9 billion.  
32 See Kat and Palaro (2006a, 2006b).  
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Appendix I 
 

A. Univariate Case (See also Dybvig (1988b)) 
Suppose we lived in the standard model with one stock, one bond, perfect markets, a 

positive equity risk premium, and where the stock price follows a binomial tree with n 

steps, with time increments ∆t. In one step, for each node, the stock price can move up 

by a factor ttu ∆+∆+= σµ1  or down by a factor ttd ∆−∆+= σµ1  with the 

same probability. After n steps, the initial price S0 will have evolved into one of n+1 

possible values S0 un, S0 un-1d1, S0 un-2d2, �, S0 dn, which we label as states 1, 2, �, 

n+1 respectively. The bond returns r∆t over each period, with r denoting the riskless 

rate. 

 

What is the state price for each of the above n+1 states? Suppose we are at time t=0 

and want to replicate the payoff of some particular investment. The stock price is S0 

and the bond value is B. Suppose the value of the investment one step ahead is either 

v1 if the stock price goes up, or v2 if it goes down. In order to replicate the investment, 

we need an investment of Sv  shares and Bv bonds: 
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Solving and reordering this result, we have the following one-period pricing 

relationship: 
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where p1 and p2 are the state prices. Dividing the state prices by the probability of 

each state, which is ½, we obtain the following state-price density: 
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Note that, assuming a positive risk premium, )1(0 ttS σµ +∆+  > )1(0 ttS σµ −∆+  

and ρ1 < ρ2. If we repeat this for all nodes in the tree, we find that for the last step the 

state-price density is inversely related to the terminal values of the stock. In state 1, 

the stock has the highest value S0un , but the state-price density assumes the lowest 

value, while in state n+1 the stock has the lowest value S0 dn but the state-price 

density function assumes the highest value.     

 

Now we are set to use Theorem 1 of Dybvig (1988a). By this theorem, the cheapest 

payoff function allocates terminal wealth as a non-increasing function of the state-

price density. Combining this with the above, the cheapest payoff function should 

therefore allocate terminal wealth as a non-decreasing function of the value of the 

stock. 

 

B. Bivariate Case 
Now assume that instead of one, we have two risky assets we can trade, which we will 

refer to as �the investor�s portfolio� and �the reserve asset�. The prices of both are 

denoted as SP and SR respectively. Following He (1990), we assume a trinomial tree 

for the joint behaviour of both prices. We denote the mean and standard deviation of 

the terminal wealth provided by the investor�s portfolio as µP and σP Likewise, we 

denote the mean and standard deviation of the terminal wealth provided by the reserve 

asset as µR and σR . ρ denotes the correlation coefficient between the two assets. 

 

From assumption 1 (section 2) we know that all investors are concerned about is the 

conditional distribution of SR given SP. For each value SP = x we can therefore study 

the question how to allocate terminal wealth between states as a univariate problem. 

In other words, we do not need the entire trinomial tree, but only the conditional 

distribution. 

 

We know that the distribution of R given SR = x is a normal distribution with mean 

)( P
P

R
R x µ

σ
σρµ −+  and standard deviation 21 ρσ −R . We can use a binomial model 

to approximate this distribution. Doing so, we can perform the same analysis as in the 
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univariate case to obtain the state-price density for the first step of the tree. Suppose 

that the initial price of the reserve asset is SR,0. Then the prices for the two nodes are  
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The state-price density is therefore given by: 
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Clearly, much depends on the value of ρ. Suppose 0>ρ . In that case 21 ρρ <  if 

min)( xrx
R

P
RP =−+>

ρσ
σµµ , and 21 ρρ >  otherwise. In other words, the allocation 

rule for the cheapest payoff function will depend on the value of the investor�s 

portfolio. If x > xmin, the rule is to allocate terminal wealth as a non-decreasing 

function of the value of the reserve asset, just as in the univariate case. If x < xmin, 

however, the rule is to allocate terminal wealth as a non-increasing function of the 

value of the reserve asset. 
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When 0<ρ , we see a similar phenomenon. In that case 21 ρρ <  if 

max)( xrx
R

P
RP =−+<

ρσ
σµµ , and 21 ρρ >  otherwise. This means that if x < xmax, the 

rule for the cheapest payoff function is to allocate terminal wealth as a non-decreasing 

function of the value of the reserve asset. When x > xmax, however, the cheapest 

payoff function allocates terminal wealth as a non-increasing function of the value of 

the reserve asset.  
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Differences (replicated - fund) 

 

Table 1: Variation due to payoff construction from small sample case 1. 

 

 

 

 

 

 Mean 

 

St. Dev 

 

Skewness Excess 

Kurtosis

Corr. with Portfolio 

Fund 101.6805 5.8267 0.0000 -0.0447 0.7400 

Avg 24 -0.0315 0.0416 0.0174 0.0952 -0.0171 

Avg 48 0.1010 -0.0090 0.0156 0.0835 -0.0071 

Avg 72 0.1390 0.0689 0.0052 0.0843 -0.0020 

Avg 96 0.0151 0.0114 0.0187 0.0781 -0.0148 

Avg 120 0.0142 -0.0079 0.0038 0.0935 -0.0011 

Avg 240 -0.0209 -0.0118 0.0053 0.0595 0.0015 

SD 24 1.0386 1.0253 0.2052 0.4181 0.1234 

SD 48 0.8287 0.6701 0.1206 0.1641 0.0933 

SD 72 0.5975 0.5496 0.1099 0.1613 0.0726 

SD 96 0.5023 0.5620 0.1299 0.1712 0.0656 

SD 120 0.4733 0.4794 0.1026 0.1437 0.0576 

SD 240 0.3352 0.2918 0.0884 0.1465 0.0402 

SK 24 0.3765 -0.0241 0.9582 4.4101 -1.1399 

SK 48 0.3071 0.6894 0.3059 0.1667 -0.8320 

SK 72 -0.2267 -0.3145 0.0991 0.1401 -0.5869 

SK 96 -0.0114 0.2892 -0.1812 0.4813 -0.7360 

SK 120 -0.0748 0.4211 -0.1757 0.1810 -0.3530 

SK 240 -0.0991 0.3519 -0.1098 -0.0260 -0.4008 
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Differences (replicated - fund) 

 

Table 2: Variation due to payoff construction from small sample case 2. 

 

 

 

 

 Mean 

 

St. Dev 

 

Skewness Excess 

Kurtosis

Corr. with Portfolio 

Fund 101.6805 5.8604 -1.9851 9.8511 0.2000 

Avg 24 -0.0798 0.3568 1.1919 -0.0162 -0.0454 

Avg 48 0.0221 0.5960 1.2455 4.5453 -0.0341 

Avg 72 -0.1577 0.3589 0.7876 -2.4691 0.0450 

Avg 96 -0.0201 0.1341 0.7929 -1.9950 -0.0152 

Avg 120 0.0300 0.0985 0.6538 -1.6140 0.0090 

Avg 240 -0.0762 0.1846 0.5238 -1.0256 0.0086 

SD 24 1.6094 2.0242 1.1313 19.8187 0.2882 

SD 48 1.3526 1.5985 1.7192 41.6658 0.2205 

SD 72 0.8821 1.2115 0.6218 2.9127 0.1374 

SD 96 0.7701 1.1864 0.6591 3.5340 0.1385 

SD 120 0.7622 0.9344 0.5907 2.7828 0.1136 

SD 240 0.3818 0.7366 0.6266 4.4289 0.0812 

SK 24 -0.2246 0.9298 3.9961 8.2333 -0.1064 

SK 48 0.0573 0.5893 5.6316 8.5348 0.1809 

SK 72 0.0405 0.6589 0.1550 -0.2631 -0.0549 

SK 96 0.0785 0.7394 0.9729 4.0508 -0.4042 

SK 120 -0.1274 0.4989 0.0159 0.2908 -0.1725 

SK 240 0.0587 0.6556 1.0541 5.0328 0.0376 
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Table 3: Monthly return statistics Leveraged Capital Holdings and replication 

strategy, 1987 - 2004.  

 

 

 

Table 4: Monthly return statistics Calamos Multi-Strategy Fund and replication 

strategy, 1991 - 2004.  

 

 

 

Table 5: Monthly return statistics Rocker Partners and replication strategy, 

1987 - 2004. 

 Mean 
 

St. Dev 
 

Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt. 
(robust) 

Corr. with 
Portfolio 

Kendall�s 
Tau 

LCH 
 

0.0095 0.0419 -1.9675 
 

-0.1641 13.4015 
 

0.3156 
 

0.704 
 

0.536 

Replica 
 

0.0125 0.0355 -0.3541 
 

-0.1681 0.7021 
 

0.5736 
 

0.728 
 

0.571 

Univariate K-S Statistic = 0.056, (approximated) p-value = 0.884  

Bivariate K-S Statistic = 0.053, (approximated) p-value = 0.968 

 Mean 
 

St. Dev 
 

Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt 
(robust) 

Corr. with 
Portfolio 

Kendall�s 
Tau 

CMSF 
 

0.080 0.0213 0.2357 
 

0.0154 2.6296 
 

1.6937 
 

0.509 
 

0.337 

Replica 
 

0.094 0.0170 0.6656 
 

0.0582 2.2128 
 

0.9525 
 

0.506 
 

0.388 

Univariate K-S Statistic = 0.103, (approximated) p-value = 0.322 

Bivariate K-S Statistic = 0.087, (approximated) p-value = 0.719 

 Mean 
 

St. Dev 
 

Skewness Skewness 
(robust) 

Excess 
Kurtosis 

Ex. Kurt. 
(robust) 

Corr. with 
Portfolio 

Kendall�s 
Tau 

RP 
 

0.0058 0.0684 -0.2456 
 

-0.0992 1.5588 
 

1.3862 
 

-0.302 
 

-0.179 

Replica 
 

0.0083 0.0430 0.8377 
 

-0.0385 5.0043 
 

1.5521 
 

-0.346 
 

-0.196 

Univariate K-S Statistic = 0.117, (approximated) p-value = 0.101 

Bivariate K-S Statistic = 0.111, (approximated) p-value = 0.295 



 41

 

 

 

 

 

 

 

 

 

 
 

Figure 1.  Random drawings from various copulas, assuming standard normal 

marginals and a linear correlation coefficient of 0.7. 
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Figure 2. Contour plot payoff function from population distribution case 1. 

 

 

 

 
Figure 3. 3D plot payoff function from population distribution case 1. 
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Figure 4. Contour plot payoff function from population distribution case 2. 

 

 

 

 
Figure 5. 3D plot payoff function from population distribution case 2. 
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Figure 6. Contour plot payoff function Leveraged Capital Holdings. 

 

 

 

 
Figure 7. 3D plot payoff function Leveraged Capital Holdings. 
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Figure 8. Scatter plot investor�s portfolio returns versus Leveraged Capital 

Holdings returns (left) and replicated returns (right), 1987-2004. 

 

 

 

 

 
Figure 9. Scatter plot reserve asset returns versus replicated returns (left) and 

Leveraged Capital Holdings returns versus replicated returns (right), 1987 - 

2004. 
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Figure 10. Evolution of controls Leveraged Capital Holdings return replication 

strategy, Dec. 2002 � Oct. 2004. 
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Figure 11. Contour plot payoff function Calamos Multi-Strategy Fund. 

 

 

 

 

 
Figure 12. 3D plot payoff function Calamos Multi-Strategy Fund. 
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Figure 13. Scatter plot investor�s portfolio returns versus Calamos Multi-

Strategy Fund returns (left) and replicated returns (right), 1991 - 2004. 

 

 

 

 

 
Figure 14. Scatter plot reserve asset returns versus replicated returns (left) and 

Calamos Multi-Strategy Fund returns versus replicated returns (right), 1991 - 

2004. 

 



 49

 

 
Figure 15. Contour plot payoff function Rocker Partners. 

 

 

 

 

 
 

Figure 16. 3D plot payoff function Rocker Partners. 
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Figure 17. Scatter plot investor�s portfolio returns versus Rocker Partners 

returns (left) and replicated returns (right), 1987 - 2004. 

 

 

 

 

Figure 18. Scatter plot reserve asset returns versus replicated returns (left) and 

Rocker Partners returns versus replicated returns (right), 1987 � 2004. 


