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Abstract

The paper estimates constant conditional correlation (CCC) GARCH models to

test whether the dramatic changes in stock-bond market correlations can be explained

by monetary policy variables such as OIS interest rate shocks or volatility regimes.

We �nd that both speci�cations are empirically relevant: Correlations decrease after

positive monetary shocks (decreasing rates) as well as in times with large central bank

activity (high rate volatility regimes).
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1 Introduction

The correlation between aggregate stock and bond returns experienced a dramatic shift

over the past two decades. Figure 1 illustrates (unconditional) stock-bond correlations

using daily excess returns for �ve markets estimated over a moving one-year time interval

between January 1987 to June 2014. The decline in correlations is obvious, in particular

after the Asian and Russian crises in 1997/98. This shift is clearly observable in the US,

the UK as well as Germany where the correlation was in a range between 0.2 and 0.6 before

1997/ 1998, and declined to a range between zero and -0.6 afterwards. A similar but less

pronounced pattern can be observed in Switzerland, whereas the deterioration in correla-

tions starts around �ve years earlier in Japan. The correlation breakdown is numerically

documented in Table 1. Over the entire time period, stock-bond correlations are slightly

below zero. A split of the sample into two essentially equal subperiods (before and after

the turn of the millennium) reveals the described picture: The changes in correlation range

between -0.37 (Switzerland) and -0.63 (Germany).

The overall pattern of negative correlations observed over the past �fteen years is

particularly unusual in a longer perspective. Ilmanen (2003) shows that in case of the US

markets, stock-bond correlations exhibit negative values only on a few occasions between

1926 and 2001, and over relatively short periods, namely from 1929 to 1932 and 1956

to 1965. Compared to these periods, the recent deterioration is (respectively, was) fairly

long-lasting.

The consequences of this shift are far reaching: they a�ect asset allocation decisions as

much as equilibrium risk premiums on bonds and equities. In this paper, we estimate vari-

ous speci�cations of constant conditional correlation (CCC) GARCH models to analyze the

role of monetary shocks and volatility regimes to explain the observed (i.e. unconditional)

correlation pattern. These models assume that the variances and covariances of the ana-

lyzed variables conditionally change over time, or are subject to unexpected shocks, but the

(conditional) correlation coe�cient remains constant.1 This re�ects a widely maintained

hypothesis in asset allocation models and the asset management industry.

In this paper we argue that monetary interventions, particularly in times of �nancial

crisis or stock market troughs, may well have caused the observed (unconditional) correla-

tion pattern. Since the mid 90s, monetary authorities increasingly directed their monetary

course to �nancial indicators, in particular, the state of the stock market. Enhancing the

�nancial system by central bank liquidity in times of stress decreases short term interest

rates and increases bond returns. This behavior potentially explains the negative cor-

relation between stock and bond returns, and will be tested by conditioning stock-bond

covariances upon monetary shocks and volatility regimes.

Due to data limitations, i.e. the availability of reliable monetary indicator rates (OIS

1 This framework was developed by Bollerslev (1990) and was originally applied to analyze the changing
behavior of stock market correlations by Longin and Solnik (1995).
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Figure 1: Moving window of stock-bond correlations

This �gure shows a one-year moving window of stock-bond correlations using daily data. Data run from
January 1987 to June 2014. The gray bars denote periods of economic contraction according to NBER.
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rates) since 2002 only, we are not able to empirically address the decline of (unconditional)

correlations as documented in Figure 1 per se; however, our tests help to understand

whether monetary policy e�ects play a role in �reversing� the (unconditional) correlation

pattern of stock and bond returns.

A methodologically similar study, however covering a much longer time horizon (1855-

2001) and using monthly data and di�erent monetary indicators, is Yang et al. (2009).

While their main focus is on the impact of business cycles on stock-bond correlation pat-

terns (which is di�erent between the UK and the US), their smooth transition conditional

correlation (STCC) model reveals that higher stock-bond correlations tend to follow higher

short rates in both countries, in particular in the period after 1923.

The role of a long-term trend, as opposed to cyclical variations, in stock-bond cor-

relations is analyzed by Ohmi and Okimoto (2015). They extend a smooth transition

regression (STR) model by a trend component and include multiple transition variables

as suggested by Aslanidis and Christiansen (2012). They �nd that the short rate and

yield spread become only marginally signi�cant once the trend variable is included in the

regression; the volatility remains signi�cant.

Asgharian et al. (2015) also distinguish between long-run and short-run correlation

components and use macro-�nance variables to predict the long-run component. In order

to combine daily return data with economic data available at lower frequency, they combine

their dynamic conditional correlation (DCC) model with a mixed-data sampling (MIDAS)
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Table 1: Descriptive statistics

This table shows the annualized mean (excess) returns in local currency and standard deviations of both
stock and bond markets. Furthermore, the stock-bond correlations over the full as well as two subperiods
are depicted. Data run from January 1987 to June 2014.

SW US UK Ger JP

Mean stock 7.12% 7.59% 5.47% 4.07% 1.08%
Mean bond 3.04% 3.65% 3.88% 3.68% 3.14%
S.D. stock 16.68% 18.41% 16.90% 19.20% 20.60%
S.D. bond 4.63% 7.44% 6.69% 5.41% 5.11%

Stock-bond correlations
full period −0.14 −0.11 −0.07 −0.12 −0.08
before 2000 0.06 0.27 0.24 0.23 0.08
after 2000 −0.31 −0.35 −0.35 −0.40 −0.31

approach. They �nd that the behavior of the long-run stock-bond correlation is strongly

a�ected by their macro-�nance variables. Most important, their results con�rm that long-

run correlation tends to be small/negative when the economy is weak.

Other papers have recently analyzed the time-variation of stock-bond correlations using

high-frequency data: Christiansen and Ranaldo (2007) investigate the e�ects of macroeco-

nomic announcements by estimating simple �news� regressions. They �nd that in economic

expansions (recessions) announcements increase (decrease) realized correlations. Aslanidis

and Christiansen (2012) estimate smooth transition regression (STR) models for high fre-

quency data and �nd that positive and negative correlation regimes are primarily related

to �nancial transition variables (such as the short rate, yield spread, and the VIX volatil-

ity index), and to a lesser extent to macroeconomic variables. Aslanidis and Christiansen

(2014) extend this analysis by estimating quantile regressions which allows to investigate

the entire distribution of stock�bond correlations; they moreover include a larger set of

predictive variables. They �nd that macro-�nance predictors are most useful for explain-

ing correlations if these are strongly negative. Schopen and Missong (2011), also using

high-frequency data, estimate a generalized DCC model and separate correlations e�ects

from volatility e�ects. They �nd that most macroeconomic news lead to falling conditional

correlations, while the contrary is observed for the publication of news concerning future

interest rates or in�ation �gures.

None of these papers addresses monetary e�ects explicitly, which we measure by OIS

(overnight index swap) rates in this paper and which are widely regarded as adequate

monetary indicators. We use the standard CCC-GARCH framework to test the impact

of monetary shocks and volatility regimes on conditional correlations. This is not only a

parsimonious estimation approach, but also re�ects the hypothesis � and widely maintained

assumption in portfolio and asset pricing models � that the conditional correlation between

stocks and bonds exhibits a �natural� level which is only a�ected by abnormal economic
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conditions.

The rest of the paper is structured as follows: Section 2 presents the CCC model, and

Section 3 describes the data used in this study and presents basic CCC model estimates.

Section 4 discusses the results of our main model which speci�es the CCC model with

monetary shocks. Section 5 summarizes our �ndings.

2 Methodology

The evolution of correlations across stock and bond markets can be measured with the pro-

cedure used in Longin and Solnik (1995). They employ the standard constant conditional

correlation (CCC) GARCH model originally proposed by Bollerslev (1990). Estimating

the correlation between two assets, the corresponding model consists of a mean as well as

a covariance part, where in case of the latter both the two variances and the covariance

are modeled to vary over time. However, the correlation coe�cient within the covariance

part is constant and, hence, can be extended to explicitly model deviations. Moreover,

lagged information variables are incorporated as exogenous variables in both the mean

and variance equation assumed to predict future returns and variances. In what follows,

the methodology to estimate the CCC model using a simple, parsimonious GARCH(1,1)

process is described brie�y.

2.1 Constant conditional correlation

Following Longin and Solnik (1995), we start with a simple GARCH(1,1) model to estimate

constant conditional correlation. The corresponding mean equation looks as follows:

Ri
t = bi′Zi

t−1 + εit, (1)

where Ri
t denotes the excess return of asset i, i.e. the return of stock or bond markets less

the risk-free rate of the particular country.2 Zi
t−1 represents the vector of predetermined

information variables at time t−1 including a constant.3 The unexpected return of asset i

is characterized by εit. This vector of individual innovations is assumed to be conditionally

normal with conditional variance-covariance matrix Ht. Ht contains diagonal elements hit

(variances) and o�-diagonal terms hijt (covariances). For reasons of simplicity, the applied

set of information variables is equivalent in both mean and both variance equations, i.e.

stock and bond returns as well as variances are assumed to be predicted using the same

information basis.

The conditional variance of each asset is de�ned to be a function of the past squared

innovation, the past conditional variance and the same set of information variables used

2 The risk-free security in each country is de�ned as the one-month LIBOR.
3 Following previous studies, e.g. Harvey (1991) for equity portfolios and Silva et al. (2003) for bond
portfolios, it is assumed that excess returns are a linear function of past information.
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in the mean equation. Furthermore, the conditional covariance is de�ned as the product

of the constant correlation parameter and the time varying standard deviations of each

asset. Therefore, variance and covariance equations in the bivariate CCC GARCH(1,1)

speci�cation look as follows:

hit = ωi + αiε2it−1 + βihit−1 + bi′Zi
t−1

hijt = ρij
√
hit

√
hjt , (2)

where hit denotes the conditional variance of asset i, and hijt represents the conditional

covariance between assets i and j (stocks and bonds) in a particular country, with ρ be-

ing the corresponding constant correlation parameter. As in Longin and Solnik (1995),

the GARCH system de�ned by Equations (1) and (2) is used as the base model. After

estimating the base model, various alterations of it can be tested and employed for com-

parison concerning the assumption of constant conditional correlation. Using this setup,

the conditional variance-covariance matrix, Ht, is de�ned as:

Ht = DtRDt (3)

where Dt is a N ×N diagonal matrix with elements
√
hit, and R denotes a time-invariant

N ×N matrix of conditional correlations with N representing the dimension of the model,

i.e. the number of assets.

The base model described in Equations (1) and (2) is estimated by maximizing the

following log-likelihood, lt(θ), at each point in time:

lt(θ) = −
1

2

(
N log(2π) + log |Ht|+ ε′tH

−1
t εt

)
, (4)

where θ denotes the vector of model parameters. Accordingly, the log-likelihood for the

whole sample, i.e. from time 1 to T , is equal to:

L(θ) =
T∑
t=1

lt(θ). (5)

The log-likelihood is estimated for each country individually, implying the estimation of

a bivariate GARCH model with 21 parameters. Eight of those are allotted to the mean

equations, i.e. a constant and three coe�cients belonging to the information variables for

both stock and bond returns. On the other hand, the variance part contains twelve para-

meters, three for the GARCH terms as well as three concerning the information variables

(again for each asset). At last, the remaining parameter denotes the constant correlation

coe�cient.
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3 Data and structural characteristics

The �rst part (3.1) of this section brie�y describes the data set employed in the CCC model

estimation. Based on the de�nition of all incorporated variables, Section 3.2 proceeds

with investigating the results obtained from estimating the base model. Section 3.3 then

introduces two standard tests to check whether and how correlation changed over time.

3.1 Variables

The data set used in modeling the evolution of stock-bond correlations via a simple CCC

model consists of three di�erent parts. First, the returns of all markets examined, i.e.

data on those stock and bond markets for which the correlations are analyzed. Second,

a set of variables representing the information basis assumed to predict stock and bond

returns and variances. Third, to measure the impact of monetary policy on correlations,

a short-term interest rate is required as proxy for monetary policy. The examined period

ranges from March 2002 to June 2014 employing daily data (3203 observations).

Stock and bond returns: Return series are generated for the following countries: Switzer-

land, the US, the UK, Germany, Japan. All data are collected from Thomson Reuters

datastream. For stock returns, the datastream market indices of each country are used to

calculate daily excess returns employing the one-month LIBOR as the risk-free security.

The excess returns on bond markets are derived analogously. Both stock and bond returns

are applied in local currency.

Information variables: According to Ferson and Harvey (1999), several di�erent vari-

ables come into consideration as information basis for predicting stock returns. Due to

lack of availability of some variables in some countries, the information set used in this

study is restricted to the lagged dividend yield (e.g. Fama and French (1989)), the lagged

short-term interest rate (e.g. Fama and Schwert (1977) and Ferson (1989)) and the lagged

term spread. The dividend yield is calculated as the log of the total value of dividends

paid of all constituent parts of the index at time t minus the log of the total market value

of the index at time t.4 The short-term interest rate is the one-month LIBOR in each

country. At last, the term spread is de�ned as the di�erence between the 10-year and the

three-month interest rate.

These three variables are supposed to also predict bond returns. This selection can

be justi�ed in two ways. First, Keim and Stambaugh (1986), for instance, detect that

both US stock and bond markets are subject to common predictability. Second, both the

short-term interest rate as well as the term spread are applied as information variables in

studies where only bond returns are predicted, e.g. Silva et al. (2003).

Accordingly, stock and bond returns are subsequently assumed to be predicted by the

same set of variables. All instruments are available on a daily basis and enter the CCC

4 Logarithms are taken because of superior time series properties (Lewellen (2004)).
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model as lagged variables, i.e. their values at time t − 1 are supposed to predict asset

returns at time t. Data on all information variables are taken from Thomson Reuters

datastream.

Monetary policy: To analyze the e�ect of monetary policy shocks as well as monetary

policy regimes on correlations, a suitable proxy for monetary policy is required. The short-

term interest rate thereby denotes the most obvious proxy as the central bank's main

instrument. One possible and convenient method would be to simply employ the three-

month LIBOR as a proxy for monetary policy due to its availability in all countries over

a long period of time. However, in periods of �nancial distress, e.g. the recent �nancial

crisis, the LIBOR tends to be a rather bad proxy as the spread to the true key policy rates,

e.g. the Federal funds rate in case of the US, largely increases.

A viable alternative is to use the overnight indexed swap (OIS), depicting a rather good

proxy also in stressed market conditions. Moreover, the OIS rates represent a variable that

is available in all countries, making a consistent comparison of results possible. Accordingly,

daily OIS data are used to proxy for monetary policy, the corresponding data are taken

from Bloomberg. The usage of OIS rates, however, comprises one drawback in the from

of rather short time series available, implying an analysis period that starts between 2000

and 2002 depending on the country.

3.2 Base model

This section discusses the �ndings of the base model de�ned in Equations (1) and (2).

Table 2 provides the corresponding results. Panel A shows the estimated coe�cients of

the mean equations for stock and bond returns as well as the correlation coe�cient, ρ, and

the log likelihood, Lik, for each country. Panel B illustrates the results of the variance

equations.

Looking at Panel A reveals that the coe�cient of the dividend yield is positive in all

stock markets except for Switzerland. This positive relationship intuitively makes sense as

a high dividend yield should lead to higher future returns, indicating that the particular

company is �nancially sound. In cases of the US and the UK, the coe�cient is statistically

signi�cant at the 1% level. For bond markets the dividend yield also tends to exhibit a

positive impact with a signi�cant coe�cient observed only in case of Switzerland. Short-

term interest rates tend to have a negative e�ect on stock markets (except for the US)

with signi�cant e�ects in Switzerland and Japan. This �nding is in line with the literature

as higher interest rates raise the cost of �nancing of companies. On the other hand, the

impact on bond returns is somehow counterintuitive. Recall that the bond returns are

generated using 10-year bond indices, and, hence, the di�erence in time to maturity is

quite large. Moreover, long-term interest rates tend to be determined by what impact the

market believes short-term interest rates will have on long-term interest rates. Accordingly,

a possible explanation of the positive e�ect is derived via expectations of future in�ation.
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Table 2: Constant conditional correlations between stock and bond markets

This table shows the GARCH coe�cients of the following system of equations:

Ri
t = b0i + b1iDY

i
t−1 + b2isIR

i
t−1 + b3iTS

i
t−1 + εit

hi
t = ωi + αiε2it−1 + βihi

t−1 + b1iDY
i
t−1 + b2isIR

i
t−1 + b3iTS

i
t−1

hij
t = ρij

√
hi
t

√
hj
t ,

where Ri
t denotes the return on either stock or bond markets. DY , sIR and TS represent, respectively, the

lagged dividend yield, the lagged short-term interest rate and the lagged term spread. hi
t is the variance

of either stock or bond markets, and hij
t denotes the corresponding covariance with ρij being the constant

correlation coe�cient. Standard errors are shown in parentheses. Data run from March 2002 to June 2014.

Panel A: Mean equation, correlation and log likelihood

b0 DY ·103 sIR TS ρ Lik

SW Stocks 0.003∗∗∗ −1.653∗∗ −0.071∗∗ −0.079∗∗ −0.290∗∗∗ 25085
(0.001) (0.805) (0.029) (0.033) (0.015)

Bonds −0.001∗∗ 0.652∗∗ 0.013 0.038∗∗∗
(0.000) (0.274) (0.009) (0.011)

US Stocks −0.007∗∗∗ 8.690∗∗∗ 0.055∗∗ 0.067∗ −0.356∗∗∗ 23272
(0.003) (2.519) (0.028) (0.036) (0.013)

Bonds −0.002∗∗ 1.680 0.030∗∗ 0.048∗∗∗
(0.001) (1.034) (0.013) (0.017)

UK Stocks −0.003∗ 3.707∗∗∗ −0.014 −0.026 −0.355∗∗∗ 24136
(0.002) (1.381) (0.015) (0.025) (0.014)

Bonds −0.001 0.306 0.011 0.025∗∗
(0.001) (0.484) (0.008) (0.012)

Ger Stocks 0.001 0.384 −0.018 −0.018 −0.412∗∗∗ 24212
(0.001) (0.976) (0.020) (0.030) (0.013)

Bonds 0.000 0.225 0.004 0.020∗∗
(0.000) (0.315) (0.007) (0.010)

JP Stocks 0.001 0.370 −0.246∗∗ −0.016 −0.380∗∗∗ 25231
(0.001) (0.715) (0.100) (0.076) (0.014)

Bonds 0.000 0.044 0.003 0.006
(0.000) (0.110) (0.017) (0.012)

For instance, if short-term interest rates are (believed to be too) low, expected in�ation

increases implying long-term interest rates to increase as well due to decreasing purchasing

power of future bond cash �ows. The estimated coe�cients of the term spread are negative

for stock markets (except for the US) but mostly insigni�cant. In case of bond markets,

the impact is unambiguously positive and mostly signi�cant. Overall, roughly half of the

coe�cients with respect to the information set are signi�cant (at least at the 10% level).

In addition, it seems that predicting returns works comparatively well in Switzerland and

the US.

Finally, the constant conditional correlation coe�cients, ρ, in Panel A are considerably

below zero and clearly signi�cant in all countries. This is, of course, due to the chosen pe-

riod starting in March 2002. The corresponding correlation coe�cients range between -0.29

(Switzerland) and -0.41 (Germany). This �nding of negative correlations is now subject

to further tests conducted in Section 3.3 and Section 4 by adding either simple extensions
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Table 2 (continued)

Panel B: Variance equation

ω · 103 α β DY ·103 sIR ·103 TS ·103

SW Stocks −0.002 0.090∗∗∗ 0.881∗∗∗ 0.003∗∗∗ 0.122∗∗∗ 0.094∗∗
(0.001) (0.008) (0.010) (0.001) (0.038) (0.038)

Bonds 0.000∗∗∗ 0.046∗∗∗ 0.938∗∗∗ 0.000 0.003∗ −0.001
(0.000) (0.004) (0.005) (0.000) (0.002) (0.002)

US Stocks −0.003 0.078∗∗∗ 0.901∗∗∗ 0.004 0.062∗ 0.080∗
(0.003) (0.007) (0.008) (0.004) (0.035) (0.045)

Bonds 0.000 0.036∗∗∗ 0.956∗∗∗ 0.000 0.003 0.004
(0.000) (0.004) (0.006) (0.000) (0.003) (0.005)

UK Stocks 0.002 0.088∗∗∗ 0.898∗∗∗ 0.000 −0.001 0.008
(0.002) (0.008) (0.008) (0.002) (0.014) (0.025)

Bonds 0.000 0.028∗∗∗ 0.954∗∗∗ 0.000∗∗ −0.006∗∗∗ −0.006∗∗
(0.000) (0.004) (0.009) (0.000) (0.002) (0.003)

Ger Stocks −0.008∗∗∗ 0.091∗∗∗ 0.863∗∗∗ 0.010∗∗∗ 0.157∗∗∗ 0.099∗∗
(0.003) (0.008) (0.012) (0.002) (0.038) (0.046)

Bonds 0.000 0.029∗∗∗ 0.952∗∗∗ 0.000∗ 0.000 −0.003
(0.000) (0.005) (0.007) (0.000) (0.001) (0.002)

JP Stocks 0.010∗∗∗ 0.110∗∗∗ 0.861∗∗∗ −0.003∗∗ 0.411∗∗ −0.439∗∗∗
(0.002) (0.008) (0.011) (0.001) (0.193) (0.154)

Bonds 0.000∗∗∗ 0.076∗∗∗ 0.905∗∗∗ 0.000∗∗∗ 0.017∗∗∗ 0.003
(0.000) (0.005) (0.006) (0.000) (0.005) (0.002)

based on stock market volatility and through the incorporation of monetary policy e�ects,

respectively. Both approaches help identifying and measuring possible deviations from the

constant correlation base model.

Panel B illustrates that conditional variances are primarily driven by the GARCH

parameters. All α's and β's are highly signi�cant in each country for both stock and bond

returns. Moreover, they take on the usual values, and the condition for (weak) stationarity,

α+ β < 1, holds in all cases. On the other hand, the set of information variables exhibits

rather small e�ects on conditional variances as their coe�cient values are all close to zero.

However, there is quite some statistical signi�cance with more than half of the coe�cients

being statistically signi�cant (at least at the 10% level).

For reasons of comparison, two bivariate homoskedastic model speci�cations are esti-

mated in addition to the heteroskedastic base model. Doing so enables one to test the

hypothesis of constant means and variances using likelihood ratio tests. The �rst of the

two homoskedastic models contains no information variables at all, and, hence, only one

parameter in each mean equation (two constants) as well as seven covariance terms have

to be estimated (three GARCH parameters for each asset as well as the correlation coef-

�cient). The second model, on the other hand, adds the vector of information variables

to the mean equation only, implying a total of 15 parameters. The log likelihood is then

estimated for both speci�cations.

Results not shown here indicate that both mean and variance exhibit variability over

time. Likelihood ratio tests comparing the base model with the homoskedastic model
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with no information variables at all yield test statistics signi�cant at the 1% level in all

countries. Concerning the homoskedastic model with information variables included only

in the mean equation, the null hypothesis of constant variances can be rejected at the 5%

signi�cance level in all countries except for the US. As a consequence, the chosen set of

information variables and its incorporation into the mean and variance equations seem to

be appropriate.

To see whether the GARCH(1,1) speci�cation of the base model does well in capturing

the existing heteroskedasticity, two simple tests following Bollerslev (1990) are conducted.

First, the standard Ljung-Box portmanteau misspeci�cation test on standardized residuals

is applied. The test can be performed on squared standardized residuals, ε̂i2t /ĥ
i
t, of asset

i in each country separately, yielding a total number of ten tests. The maximum lag, h,

is set to nine, i.e. the log of the number of observations.5 Nine of ten test statistics range

between 4.05 (Swiss bonds) and 16.64 (Japanese bonds) when nine lags are included and,

hence, lie below the critical value (16.92) of the chi square distribution, χ2
0.95,9. However,

in one case (US stocks) the test statistic is slightly above the critical value, suggesting that

the corresponding residuals are not independently distributed.

The validity of the GARCH speci�cation in Equations (1) and (2) can also be tested

by implementing the regression based approach suggested by Bollerslev (1990). As noted

before, using the GARCH parametrization it is assumed that E(eite
j
t | Zt−1) = hijt . Setting

i = j the test is conducted by regressing (ε̂i2t /ĥ
i
t − 1) on 1/ĥit and ε̂

i2
t−1/ĥ

i
t, . . ., ε̂

i2
t−5/ĥ

i
t. To

check whether the estimated coe�cients are jointly equal to zero one then has to perform

a conventional F-test. The corresponding 95% critical value for the F6,3192 distribution

is 2.1. Results not shown here con�rm the �ndings of the Ljung-Box test, meaning that

the F-test values are statistically insigni�cant at the 5% level in nine of ten cases. Again,

only for US stocks the F-test yields a value of 4.47, and, hence, the null hypothesis of all

coe�cients being jointly equal to zero is rejected at the 1% level.

To sum up, both tests indicate that the parsimonious multivariate GARCH(1,1) model

with constant conditional correlation is speci�ed well enough. Only in case of US stocks the

null hypothesis of no serial correlation in the residuals is rejected in both test speci�cations.

3.3 Simple extensions

In this section, two simple approaches to model deviations from the constant correlation

base model are employed. Both are applied using a set of dummy variables constructed with

respect to the stock market volatility. As volatility tends to increase when stock markets

fall, one would expect correlation to be smaller in recessions and vice versa. On the other

hand, increasing volatility can be decomposed into positive and negative shocks to stock

market returns, enabling the researcher to identify asymmetric e�ects on correlation due to

5 Note that the incorporation of 20 lags in the Ljung-Box test leads to similar results.
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shocks in the stock market. From theory, some amount of asymmetry would be expected

in the form of lower correlations following a negative stock market shock compared to a

positive one.

To investigate the in�uence of high stock market volatility, the base model in Equations

(1) and (2) is augmented with a dummy variable, St−1, implying the following covariance

equation:

hijt = (ρ0 + ρ1St−1)

√
hit

√
hjt , (6)

where St−1 takes on the value one if the conditional stock market volatility of the base

model at time t is larger than the unconditional stock market volatility and zero otherwise.

Incorporating the so constructed time series as a lagged variable describes the impact of

high stock market volatility at time t− 1 on correlation at time t.

As Panel A of Table 3 displays, the impact of high stock market volatility on stock-bond

correlations is obvious as the correlation considerably deteriorates in all countries. In Japan

the reduction is the lowest and statistically insigni�cant. The remaining countries, on the

other hand, exhibit highly signi�cant and negative e�ects with ρ1 ranging between -0.11

(Switzerland) and -0.21 (US). The negative impact turns out as expected and underlines the

bene�t of diversi�cation in turbulent times using bonds. As the augmented model is nested

with the base model, standard likelihood ratio tests are employed. The corresponding test

statistics are shown in the last row and clearly indicate a rejection of the null hypothesis

of the base model except for Japan.

To analyze possible asymmetries in the e�ect of shocks in stock market returns on

correlation, a set of four dummy variables is de�ned following Longin and Solnik (1995).

The dummies are constructed using εit−1, i.e. the resulting residuals in the mean equation

for stocks in the base model, and take on the following values:

• S1,t−1 = 1 if εit−1 is greater than σ
i,

• S2,t−1 = 1 if εit−1 is greater than 0 and less than σi,

• S3,t−1 = 1 if εit−1 is less than 0 and greater than −σi,

• S4,t−1 = 1 if εit−1 is less than −σi,

and zero otherwise. Note that σi denotes the standard deviation of the residuals generated

with the mean equation for stocks in the base model.

Including these four dummies in the GARCH speci�cation results in the following

covariance equation:

hijt = (ρ1S1,t−1 + ρ2S2,t−1 + ρ3S3,t−1 + ρ4S4,t−1)

√
hit

√
hjt , (7)

where the constant correlation parameter, ρ0, is dropped. Assuming that the negative
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Table 3: Simple extensions to constant conditional correlation

This table shows the results of two simple extensions of the base model. First, in Panel A the base model
is augmented with a dummy variable representing high stock market volatility, i.e. times of �nancial
distress. The coe�cient ρ1 measures the change in correlation in volatile markets compared to the constant
correlation, ρ0. Second, Panel B shows the results of a model extension where the covariance equation is
a function of four stock market shock dummies. Thereby, ρ1, ρ2, ρ3 and ρ4 denote strong positive, weak
positive, weak negative and strong negative stock market shocks, respectively. If ρ1 = ρ4 and ρ2 = ρ3,
there is no asymmetry. Standard errors are given in brackets. As the model in Panel A is nested with the
base model, the likelihood ratio test statistic, LR, and the corresponding p-value are shown in addition to
the coe�cients. Data run from March 2002 to June 2014.

SW US UK Ger JP

Panel A: Volatility shock

ρ0 −0.256∗∗∗ −0.299∗∗∗ −0.296∗∗∗ −0.354∗∗∗ −0.373∗∗∗
(0.018) (0.016) (0.017) (0.016) (0.017)

ρ1 −0.110∗∗∗ −0.206∗∗∗ −0.190∗∗∗ −0.192∗∗∗ −0.028
(0.029) (0.027) (0.027) (0.025) (0.026)

LR 10.371 37.681 35.775 39.910 0.727
(p-value) (0.001) (0.000) (0.000) (0.000) (0.394)

Panel B: Volatility thresholds

ρ1 −0.362∗∗∗ −0.408∗∗∗ −0.454∗∗∗ −0.506∗∗∗ −0.239∗∗∗
(0.053) (0.042) (0.045) (0.034) (0.036)

ρ2 −0.271∗∗∗ −0.317∗∗∗ −0.351∗∗∗ −0.373∗∗∗ −0.396∗∗∗
(0.023) (0.021) (0.022) (0.021) (0.023)

ρ3 −0.278∗∗∗ −0.362∗∗∗ −0.314∗∗∗ −0.407∗∗∗ −0.413∗∗∗
(0.022) (0.019) (0.020) (0.018) (0.019)

ρ4 −0.330∗∗∗ −0.419∗∗∗ −0.434∗∗∗ −0.476∗∗∗ −0.367∗∗∗
(0.040) (0.033) (0.033) (0.027) (0.040)

e�ect of high stock market volatility in Panel A of Table 3 is mainly due to negative

shocks, coe�cients should be asymmetric when ρ1 and ρ4 or ρ2 and ρ3 are compared.

Panel B of Table 3 presents the estimated coe�cients using the augmented model in-

corporating volatility thresholds. The four coe�cients show two interesting results that

appear to a similar extent in all countries except for Japan. First, correlations are consider-

ably lower after strong stock market shocks, independent of the shock's sign. Second, large

negative and large positive shocks seem to be symmetric. Only in case of Japan, there is a

distinct asymmetry in terms of stock market shocks, implying lower correlations upon large

negative shocks compared to large positive shocks. Overall, a rather symmetric pattern is

observed concerning the reaction of stock-bond correlations to stock market shocks. Dif-

ferences in the correlation coe�cients between (large) positive and (large) negative shocks

are small and only for Japan an asymmetry is unambiguously detected.

To conclude, results above reveal that increasing stock market volatility leads to a

lower stock-bond correlation. However, over this period of overall negative correlations the

impact of stock market shocks seems to be independent of its sign.
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4 Empirical Results

This section investigates the impact of monetary policy on correlation between stocks and

bonds. Thereby, monetary policy is proxied by OIS rates representing the central bank's

primary instrument. According to standard valuation models, one would expect that both

stock and bond prices fall in response to a higher interest rate and vice versa since interest

rates determine the risk-free part of discount rates.

In what follows the impact of monetary policy is measured in two di�erent ways.

First, monetary policy shocks are estimated using a simple autoregressive-moving average

model. Second, monetary policy regimes are speci�ed based on a standard Markov regime

switching model.

4.1 Monetary policy shocks

The �rst approach to measure the impact of interest rates on stock-bond correlations uses

monetary policy shocks. The corresponding time series of interest rate shocks is constructed

with a simple autoregressive-moving average (ARMA) model. A parsimonious ARMA(1,1)

speci�cation is estimated using �rst di�erences of the raw interest rate data:

yt = φiyt−i + θjεt−j + εt,
6 (8)

where yt denotes the vector of interest rate di�erences. Interest rate shocks, i.e. the

resulting residuals, εt, are obtained by applying this model to the di�erenced interest rate

series of each country individually. Using the generated time series of interest rate shocks,

two dummy variables can be de�ned according to the following thresholds:

• S1,t−1 = 1 if εit−1 is greater than σ
i,

• S2,t−1 = 1 if εit−1 is less than −σi.7

Incorporating these dummy variables leads to the below covariance equation of the GARCH

speci�cation:

hijt = (ρij0 + ρij1 S1,t−1 + ρij2 S2,t−1)

√
hit

√
hjt . (9)

Accordingly, dummy variables S1,t−1 and S2,t−1 represent negative (increasing rates) and

positive (decreasing rates) monetary policy shocks, respectively, at time t− 1.

The covariance speci�ed in Equation (9) now enables the researcher to directly inves-

tigate the impact of monetary policy shocks on stock-bond correlations. In order to have

consistent and comparable data among countries, OIS series are employed to proxy mon-

etary policy and generate the corresponding shocks. As mentioned earlier, the availability

6 For reasons of simplicity and comparability, a lag of one is chosen for both the AR and MA part, implying
the estimation of a simple ARMA(1,1) for all countries.

7 Note that the de�nition of a one standard deviation threshold is highly arbitrary. For robustness checks
using alternative threshold speci�cations see Section 4.3.
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and length of OIS data series depend on the chosen country, and, hence, the de�nition of

the investigated period is not unambiguous. One way of specifying the period is to use

a common sample by simply employing the period of the shortest available time series,

i.e. the Japanese OIS series. Thus, Panel A of Table 4 displays the results concerning

the impact of monetary policy shocks on stock-bond correlations generated with daily OIS

data according to Equation (8) over the period from March 2002 to June 2014. The three

coe�cients are de�ned in Equation (9), where ρ1 denotes the impact of negative and ρ2

represents the in�uence of positive monetary policy shocks.

The estimates clearly suggest that some sort of anomaly exists when negative and

positive shocks are compared. The anomaly arises from the signi�cantly negative value of

the coe�cient ρ2. Standard valuation models indicate that lower interest rates imply higher

stock as well as higher bond prices. However, ρ2 reveals that positive monetary policy

shocks decrease stock-bond correlations in all countries except for Japan. The negative

e�ects range between -0.078 in Switzerland and -0.163 in Germany. Moreover, negative

e�ects are statistically signi�cant to the 10%, 5% and 1% signi�cance level in Switzerland,

the US and both the UK and Germany, respectively. On the other hand, coe�cients

estimated with negative monetary policy shocks tend to be close to zero and statistically

insigni�cant. Thus, it seems that the causality is reversed, implying that deteriorating stock

markets induce monetary policy to lower interest rates which, in turn, leads to increasing

bond prices. As the base model in Section 3.2 is also estimated using the common sample,

Panel A of Table 4 furthermore displays the test statistics as well as the corresponding

p-values of simple likelihood ratio tests. In case of the UK and Germany, these clearly

indicate a rejection of the null hypothesis of the base model. For the remaining three

countries there is no signi�cant improvement. However, dropping the negative monetary

policy shock from the covariance equation since ρ1 is always insigni�cant, yields likelihood

ratio tests that reject the null hypothesis in case of the US at the 10% level and only closely

fail to reject the null hypothesis in case of Switzerland.

For comparative purposes, Panel B of Table 4 shows the results of the same model

with a set of slightly di�erent data. It presents the outcome using the complete OIS data

series in each country, and, hence, the investigated period now di�ers between countries.

Accordingly, the sample starts in August 2000, December 2001, January 2001, January

2000, and March 2002 in Switzerland, the US, the UK, Germany and Japan, respectively.

A mere look clearly indicates that the negative e�ect is still present when individual sample

periods are analyzed. Interestingly, the impact is even stronger, i.e. more negative, and

signi�cant at the 1% level in Switzerland. On the other hand, positive monetary policy

shocks exhibit a weaker and less signi�cant e�ect in the US, the UK and Germany, where

the latter is only inconsiderably below zero. The in�uence of negative shocks tends to be

positive but remains insigni�cant. Due to di�erent sample periods, the model is no longer

nested with the base model and, hence, no likelihood ratio tests are performed.
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Table 4: Monetary policy shocks

This table shows the results of the base model augmented with two dummy variables accounting for negative
and positive monetary policy shocks, given by ρ1 and ρ2, respectively. Note that a positive monetary policy
shock denotes decreasing interest rates and vice versa. Standard errors are given in brackets. Data range
from March 2002 to June 2014 in Panel A whereas Panel B employs country-speci�c samples.

SW US UK Ger JP

Panel A: Common sample (03:2002 - 06:2014)

ρ0 −0.282∗∗∗ −0.345∗∗∗ −0.343∗∗∗ −0.396∗∗∗ −0.386∗∗∗
(0.016) (0.014) (0.015) (0.015) (0.015)

ρ1 −0.017 −0.068 −0.027 −0.002 0.022
(0.067) (0.058) (0.063) (0.051) (0.051)

ρ2 −0.078∗ −0.112∗∗ −0.158∗∗∗ −0.163∗∗∗ 0.075
(0.045) (0.051) (0.047) (0.031) (0.054)

LR 2.033 4.228 7.932 13.328 1.559
(0.362) (0.121) (0.019) (0.001) (0.459)

Panel B: Individual sample (... - 06:2014)

08:2000... 12:2001... 01:2001... 01:2000... 03:2002...

ρ0 −0.284∗∗∗ −0.352∗∗∗ −0.337∗∗∗ −0.365∗∗∗ −0.386∗∗∗
(0.015) (0.014) (0.014) (0.013) (0.015)

ρ1 0.042 0.096 −0.023 0.024 0.022
(0.064) (0.063) (0.057) (0.055) (0.051)

ρ2 −0.150∗∗∗ −0.089∗ −0.106∗∗ −0.026 0.075
(0.037) (0.048) (0.044) (0.032) (0.054)

Overall, �ndings discussed here clearly show that stock-bond correlation decreases at

time t when there is a positive monetary policy shock at time t−1. This depicts some sort of

anomaly as central banks possibly react to falling stock markets by lowering interest rates,

leading to higher bond prices. However, this insight cannot explain why the overall negative

correlation during the 21st century exists as the negative e�ect only reduces the negativity

further, i.e. ρ0 is already clearly and signi�cantly negative throughout all countries as can

be seen in Table 4.

4.2 Monetary policy regimes

The second approach to measure the in�uence of interest rates on stock-bond correlations

is based on the existence of monetary policy regimes. In contrast to the case of shocks as

explained before, one could expect regimes to be more persistent, i.e. switches from low

to high interest rate regimes and vice versa do not occur very often. Due to this fact, the

di�erentiation between the impact of shocks and the one of regimes makes sense.

To de�ne a regime dummy, a simple Markov regime switching model is applied to

short-term interest rates in di�erenced form. Again, the OIS rate serves as a proxy for
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monetary policy actions. The model is estimated using the following speci�cation:

yt = µSt + εt,

εt ∼ (0, σ2St
) (10)

where yt denotes, again, the di�erenced interest rate series, and St represents the state

of the process. The constant, µSt , and the variance of the residual, σ2St
, are either high

or low depending on the state. Assuming the existence of only two states, the transition

probability matrix, P , is de�ned as follows:

P =

[
p11 p12

p21 p22

]
, (11)

where pij denotes the probability of being in regime j at time t switching to regime i at time

t + 1. Hamilton's (1994) �lter is then employed in the maximum likelihood estimation.

Based on that optimization, the vector of interest including the smoothed probabilities

used to de�ne the regimes is generated according to Kim (1994).

Figure 2 shows the estimated smoothed probabilities for the high volatility regime

for Switzerland and the US using OIS data. The two graphs look similar and indicate

some periods of high volatility, one of which clearly took place during the �nancial crisis.8

Moreover, the aftermath of the dotcom bubble also seems to be more volatile in terms

of monetary policy. All in all, periods of high probability for high volatility occur only

seldom and primarily around business crises, and, thus, the speci�cation of monetary policy

regimes in addition to monetary policy shocks makes sense.

To implement the Markov regime switching probabilities into the CCC model, let p̃t

be the vector of smoothed probabilities for state two, i.e. the high volatility regime. The

dummy variable to measure the in�uence of high volatility regimes in monetary policy on

stock-bond correlations is then de�ned as:

• S1,t−1 = 1 if p̃t−1 is greater than or equal to 0.95,9

and, hence, the covariance equation looks as follows:

hijt = (ρ0 + ρ1S1,t−1)

√
hit

√
hjt . (12)

Table 5 presents the corresponding coe�cients. Panel A shows the results using OIS

data as a proxy for monetary policy and a common sample that ranges from March 2002

8 The variation of the smoothed probabilities for the UK, Germany and Japan is not shown here but looks
similar.

9 Using this simple rule, the dummy variable is equal to one for about 9.6% and 12.5% of all observations
in Switzerland and the US, respectively. Note that, however, de�ning a threshold of 0.95 is highly arbi-
trary. Accordingly, Section 4.3 provides an overview on several tests of robustness employing alternative
threshold speci�cations.
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Figure 2: Smoothed probability of the high volatility regime

This �gure shows the estimated smoothed probabilities of high volatility regimes using OIS series in
Switzerland and the US. The gray bars denote periods of economic contraction according to NBER.
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to June 2014, i.e. the sample equals the length of the Japanese OIS series. Interestingly,

stock-bond correlations at time t are lower when monetary policy is in the high volatility

regime at time t− 1 for each country except for Japan. Moreover, this negative impact is

statistically signi�cant at least at the 5% signi�cance level in all countries. This �nding

suggests, again, that some sort of anomaly is present when central banks are particularly

active, i.e. when the volatility in policy rate changes is comparatively large. Finally,

likelihood ratio tests indicate a rejection of the null hypothesis of the base model at least

at the 10% level. As in the previous section for monetary policy shocks, Panel B of Table

5 displays the estimates of country-speci�c samples, each equal to the total length of

the OIS series. The corresponding results con�rm the insight of deteriorating stock-bond

correlations even though the e�ect is smaller and not signi�cant in case of the UK and

Germany. Again, keep in mind that the e�ect cannot be held responsible for the overall

negativity of stock-bond correlations in the 21st century as the constant correlation, ρ0, is

clearly negative and signi�cant as well.

Overall, results using monetary policy regimes con�rm the �ndings generated with

monetary policy shocks. A negative shift in stock-bond correlations is revealed in times

when monetary policy exhibits high volatility, i.e. during periods of large central bank

activity, and, hence, the OIS rate is subject to rather large changes. Therefore, the anomaly

of reversed causality is also present using a simple Markov regime switching model to

identify volatile periods of monetary policy.
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Table 5: Monetary policy regimes

This table presents the results of the bivariate GARCH(1,1) model augmented with an additional dummy
variable representing monetary policy regimes. The standard correlation coe�cient is denoted by ρ0,
whereas ρ1 represents the change of the constant correlation at time t when the Markov process is in the
high volatility regime at time t − 1. Standard errors are given in brackets. Data range from March 2002
to June 2014 in Panel A whereas Panel B employs country-speci�c samples.

SW US UK Ger JP

Panel A: Common sample (03:2002 - 06:2014)

ρ1 −0.279∗∗∗ −0.340∗∗∗ −0.340∗∗∗ −0.382∗∗∗ −0.391∗∗∗
(0.016) (0.014) (0.015) (0.015) (0.020)

ρ2 −0.096∗∗ −0.086∗∗ −0.068∗∗ −0.139∗∗∗ 0.022
(0.042) (0.034) (0.033) (0.027) (0.025)

LR 3.658 4.999 3.649 17.522 0.592
(0.056) (0.025) (0.056) (0.000) (0.442)

Panel B: Individual sample (... - 06:2014)

08:2000... 12:2001... 01:2001... 01:2000... 03:2002...

ρ0 −0.284∗∗∗ −0.338∗∗∗ −0.339∗∗∗ −0.360∗∗∗ −0.391∗∗∗
(0.015) (0.014) (0.015) (0.014) (0.020)

ρ1 −0.094∗∗∗ −0.084∗∗ −0.031 −0.024 0.022
(0.035) (0.033) (0.029) (0.026) (0.025)

4.3 Robustness tests

This section serves to check whether the results concerning the e�ect of monetary policy

shocks and regimes on stock-bond correlations are robust. Using daily OIS data reveals

an anomaly in terms of the sign, i.e. positive shocks signi�cantly decrease the observed

correlation. This �nding is interesting as it suggests a reversed causality, meaning that

monetary policy possibly reacts to deteriorating stock prices by lowering interest rates

which, in turn, increases bond prices, and, thus, lowers the correlation between stocks and

bonds.

The speci�cation of those monetary policy shocks and regimes is, however, highly

arbitrary. In order to check whether the �ndings are robust, Table 6 now displays the

results of the bivariate GARCH model when either the thresholds - de�ning monetary

policy shocks and regimes in the covariance equation - are slightly altered or a di�erent

set of data is employed. Thus, Panel A shows the estimates using a common sample when

the threshold de�ning the shock dummy variable is set equal to 1
2σ instead of σ. The

corresponding coe�cients are very similar to those in the standard speci�cation, implying

that the positive shock decreases stock-bond correlations at the 5% signi�cance level in

Switzerland, the UK and Germany and at least at the 10% level in the US. On the other

hand, negative shocks exhibit positive coe�cients that are, again, insigni�cant. Panel B

displays the coe�cients of monetary policy regimes with a common sample employing a

threshold of 0.9 instead of 0.95, i.e. the dummy variable is set equal to one if the probability

of the Markov regime switching process is larger than 0.9. Again, the results seem to be
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Table 6: Robustness tests

This table shows the results of several robustness tests. Panel A lists the coe�cients of monetary policy
shocks when the corresponding dummy variable is de�ned according to a threshold of 1

2
σ instead of σ.

Panel B presents the estimates of monetary policy regimes, where the dummy variable is set equal to one
if the smoothed probability of the high volatility regime is larger than 0.9 rather than 0.95. Panels C and
D display the coe�cients for both monetary policy shocks and regimes when the 10year bond market data
are replaced with 1-3year bond series. The average correlation is denoted by ρ0. In Panels A and C, ρ1
and ρ2 represent positive and negative policy shocks, respectively. In Panels B and D, ρ1 denotes the e�ect
of the high volatility regime. A common sample is employed that ranges from March 2002 to June 2014.
Standard errors are given in brackets.

SW US UK Ger JP

Panel A: Policy shocks - 1
2
σ threshold

ρ0 −0.285∗∗∗ −0.353∗∗∗ −0.336∗∗∗ −0.402∗∗∗ −0.381∗∗∗
(0.018) (0.015) (0.016) (0.015) (0.016)

ρ1 0.064 0.032 −0.042 0.023 −0.004
(0.047) (0.036) (0.042) (0.037) (0.040)

ρ2 −0.077∗∗ −0.068∗ −0.088∗∗ −0.073∗∗ 0.018
(0.035) (0.039) (0.038) (0.029) (0.041)

Panel B: Policy regimes - 0.9 probability threshold

ρ0 −0.278∗∗∗ −0.341∗∗∗ −0.343∗∗∗ −0.376∗∗∗ −0.391∗∗∗
(0.016) (0.014) (0.016) (0.015) (0.020)

ρ1 −0.103∗∗ −0.079∗∗ −0.047 −0.145∗∗∗ 0.022
(0.040) (0.033) (0.032) (0.026) (0.025)

Panel C: Policy shocks - 1-3year bond data

ρ0 −0.159∗∗∗ −0.280∗∗∗ −0.329∗∗∗ −0.300∗∗∗ −0.220∗∗∗
(0.019) (0.015) (0.015) (0.017) (0.017)

ρ1 0.046 −0.235∗∗∗ −0.071 −0.044 0.000
(0.080) (0.048) (0.067) (0.057) (0.038)

ρ2 −0.143∗∗∗ −0.139∗∗∗ −0.194∗∗∗ −0.127∗∗∗ 0.000
(0.049) (0.052) (0.044) (0.044) (0.050)

Panel D: Policy regimes - 1-3year bond data

ρ0 −0.143∗∗∗ −0.267∗∗∗ −0.315∗∗∗ −0.293∗∗∗ −0.253∗∗∗
(0.019) (0.016) (0.016) (0.018) (0.021)

ρ1 −0.143∗∗∗ −0.142∗∗∗ −0.092∗∗∗ −0.071∗∗ 0.005
(0.042) (0.029) (0.028) (0.031) (0.027)

robust. The negative e�ect remains when a slightly altered threshold is applied. The only

di�erence is the fact that the e�ect is not signi�cant anymore in case of the UK.

A second approach to test the robustness of the �ndings is presented in Panels C and

D. In both cases the standard model is estimated for a common sample without altering

the thresholds. What changes, however, is the underlying bond market data. Now, the

datastream 1-3year bond market indices are employed to calculate stock-bond correlations

rather than the 10year indices. The idea is to check whether the previously discussed

anomaly is also present at a shorter duration. Panels C and D thus display the coe�cients
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of monetary policy shocks and regimes, respectively, in the standard model speci�cation.

First, it is interesting to note that all countries exhibit considerably larger overall stock-

bond correlations, i.e. the coe�cient ρ0 is less negative when the duration is reduced.

Second, however, the coe�cients measuring the sensitivity with respect to monetary policy

shocks and regimes are still negative and highly signi�cant (except for Japan). Thus, the

anomaly of reversed causality also exists at shorter duration. Moreover, from a statistical

point of view the e�ect is even more pronounced as the coe�cients are signi�cant at the

1% level in most cases. Note that the e�ect of a negative monetary policy shock in the US

is also signi�cantly negative and even larger compared to the positive impact. We do not

have an obvious explanation for this observation.

Instead of altering the thresholds or interchanging the employed data series, one can

also estimate the model at a di�erent frequency in order to see whether the anomaly is still

present. Results not shown here suggest that the insight of reversed causality is, however,

not robust when we switch from daily to weekly data. Using weekly data yields stock-

bond correlations, ρ0, that are slightly lower compared to the daily coe�cients and, more

importantly, e�ects with respect to positive monetary policy shocks that are now highly

ambiguous exhibiting mixed signs across countries. Furthermore, none of the coe�cients

measuring the response of stock-bond correlations to monetary policy is statistically sig-

ni�cant. Therefore, the anomaly of reversed causality strongly depends on the usage of

daily data.

Overall, the robustness tests indicate that the �ndings are indeed robust to alternative

thresholds. Moreover, the negative impact of monetary policy shocks and regimes on

stock-bond correlations appears to a very similar extent at a shorter bond duration. The

anomaly, however, is strongly reliant on the usage of daily data as the e�ect completely

vanishes if the frequency is lowered.

5 Conclusion

As shown by Ilmanen (2003), stock-bond correlation strongly varied over time in the US

with only a few cycles where it remained negative for a longer period of time. Figure 1 shows

that one of these periods with negative correlation occurred around the �rst decade of the

21st century, starting with the Asian/Russian crises after a period of normal, i.e. positive,

correlations. This study analyzes stock-bond correlations in �ve major economies during

this period of ongoing negativity in correlations using a constant conditional correlation

model. This model is used to test whether monetary interventions may have caused the

observed correlation pattern. The examined countries are Switzerland, the US, the UK,

Germany and Japan.

The basic constant conditional correlation model �rst shows average correlation coef-

�cients considerably below zero during the 2002-2014 sample period. Section 3.3 revealed
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that high stock market volatility at time t − 1 reduces stock bond correlations at time

t by a minimum of 0.11 (Switzerland) and a maximum of 0.21 (US). Interestingly, there

seem to be symmetric e�ects concerning stock market shocks, i.e. negative and positive

shocks tend to exhibit similar negative e�ects on correlation. More importantly, using OIS

rates as a proxy for monetary policy reveals a statistically signi�cant, negative reaction of

stock-bond correlations to positive monetary policy shocks. The same is observed when

monetary policy is in the high volatility state according to a simple Markov regime switch-

ing model. A potential explanation is that central banks possibly react to deteriorating

stock markets by lowering their policy rates. This, in turn, increases bond prices leading to

lower stock-bond correlations. Due to data availability, this �nding covers only the period

ranging from roughly 2002 until 2014. Accordingly, it does not explain the overall nega-

tive correlation but rather opens up the possibility of an anomaly concerning the causality

between the policy rate and asset prices.

Overall, the �ndings suggest several reasons that possibly explain the low or even

negative correlation between stock and bond markets. Thereby, market volatility probably

represents the most reasonable and obvious one. Moreover, positive monetary policy shocks

and regimes of high central bank activity tend to reduce stock-bond-correlations. However,

this negative e�ect occurs in a period where correlations are already at negative levels.

Accordingly, none of these �ndings su�ce to explain the general shift from positive to

negative correlation and the rather long period or persistence of negative correlation. The

simple fact that this period of negative correlations started with the Asian/Russian crises

and went on with two more major crises, i.e. the dotcom bubble as well as the �nancial

crisis, may comprise another key source due to the rather high percentage of time spent in

turbulent economic and �nancial conditions. In terms of asset allocation, the recent period

of negative stock-bond correlations clearly helped to build a well diversi�ed portfolio. From

this perspective, one question that remains is whether this positive characteristic continues

when interest rates start to increase again.

Although none of the previous studies uses OIS rates as monetary indicators, our results

do at least not contradict those papers who have used TBill and longer rates as condition-

ing variables of latent or realized stock-bond correlations. Interest rate e�ects are reported

for monthly and high frequency data in the literature discussed in the Introduction of this

paper. For monthly data, Yang et al. (2009) and Ohmi and Okimoto (2015) �nd that

higher (lower) stock-bond correlations follow higher (lower) short rates, and the seconds

study reveals that this partly explains the negative time trend observed over the recent

decades. Using the same methodology (smooth transition regression) but high frequency

data, Aslanidis and Christiansen (2012) �nd that among the �nancial transition variables

the short rate plays a prominent role: high short rates imply a positive stock-bond cor-

relation. This is consistent with Schopen and Missong (2011) using a generalized DCC

(dynamic conditional correlation) model; they �nd that positive (negative) interest rate
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news imply a positive (negative) e�ect on correlation between stock and bond returns.10

However, these announcement e�ects capture a di�erent aspect of monetary policy than

we address in our paper.

10 See their Table 4, second last column.
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