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Learning Network Structure of Financial Institutions from CDS

Data

Abstract

Default contagion is a concern especially after witnessing the financial crisis. How

the financial institutions are connected is crucial to how likely they will default together.

However, the information on financial network structure is not available. This paper

builds a probabilistic graphical model relating the network structure to observable

prices. The financial network structure can be learned using CDS data. Conditional

default probability and expected conditional loss can be calculated accordingly. As

the information is extracted from the CDS price, all quantities are under the risk-

neutral measure, and thus account for the market fear that can trigger bank run. This

knowledge can be used to gauge systemic risk and inform policy decisions.1

1This paper is supported by the GARP Risk Management Research Program 2013
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Introduction

During the financial crisis, the government had to spend billions of dollars to bail-out

large banks. The argument was that the default of these large banks would result in the

domino effect which would cause defaults of other banks and eventually the collapse of

the entire financial system. However, there is little information about how these banks

are connected and which banks are worth saving. This paper intends to study how

banks are interconnected using observable data.

The knowledge of how banks are connected is crucial to the understanding of sys-

temic risk.2 Banks are not required to disclose their positions with other banks, and

thus this information is not observable.3 The network structure is an important in-

put into the network model such as Eisenberg and Noe (2001). Correlation matrix of

stock returns is generally used to address the level of interconnectivity. However, it

is a rather crude measure which only addresses pairwise interconnectivity of any two

banks. Is there a way to learn about the structure of the whole network in a consistent

way from the available data?

This paper proposes learning the connection structure from observable data. In

the computer science or engineering literature, a method called probabilistic graphical

model has been developed to address a general problem of connection structure of

random variables. The model has been applied to learn consumer behavior from their

shopping histories. Such knowledge can then be applied to recommend other shopping

items. Another popular application is in medical diagnosis where the system learns

about the connection structure of diseases and symptoms. With a well-trained system,

patients can report symptoms and the system can compute the most likely cause. An

example of scientific discovery using this method is Sachs et al. (2005) who use machine
2This paper refers to banks in a broad sense, including insurance companies, hedge funds and other

financial institutions.
3The positions in this case can be thought of as cash flows from one bank to another, as a net result of

their trading and lending activities. These cash flows relate the value of one bank to another, and thus also

relate their credit risk, and subsequently their CDS spreads. However, as the CDS spread also accounts for

the market belief (risk-neutral probability), the structure that we want to learn is not exactly the cash flow

structure, but the structure of defaults implied by the market.
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learning techniques to learn the causal protein signaling networks from multi-parameter

single-cell data. Since the model is general in nature, we can apply this model to learn

about the connection structure of financial institutions.

When defaults are concerned, credit default swaps (CDS) data will be the most

appropriate source of information.4 If the market is efficient, prices of securities will

reflect all available information. During the financial crisis, stock prices and CDS

spreads of many financial institutions moved together. During the European debt

crisis, the spreads of sovereign credit default swaps also moved together. The market

expects one firm’s default will increase another firm’s default probability. While data

in many markets are available, CDS data tie directly to default probabilities, and thus

are the most direct information source for default contagion. One potential concern is

that the nonlinearity of CDS spreads may not be compatible with the graphical model,

which usually requires a linear relationship between variables. Kitwiwattanachai and

Pearson (2014) develop a model to link CDS spreads to the distance-to-default, that

will linearize the CDS dynamics and make the data appropriate for the graphical model.

In practice, one may simply use a log transformation to alleviate concerns about model

misspecification, but the calculation for default probability and expected loss will still

rely on the model.

How important is the spillover effect to default correlations? Glasserman and Young

(2013) show that expected losses from network effects are actually small regardless of

network topology. Using data from the European Banking Authority (EBA), they

show that banks are more likely to default from common shocks, rather than from

the spillover effect from other banks through the network. From the surface, network

structure seems to matter less than we thought.

However, they mention that losses from spillover effects are small unless shocks are

magnified by some other mechanism, such as bankruptcy costs and mark-to-market

revaluations of assets. Borrower’s deteriorating credit quality can create mark-to-

market losses for a lender well before the point of default. Learning network structure
4It is worth clarifying that this paper is not about CDS trading positions of banks, but rather the

probability of default of banks and how these probabilities are connected. In other words, we try to learn

how default probabilities are connected using the CDS data as a proxy.
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from CDS data will find the connection structure according to the market perception

(or under the risk-neutral measure). This will account for the mark-to-market values

of financial institutions and thus shed light on how the market will value other nodes

when one node defaults. Such network structure can address the amplifying mechanism

that will magnify the expected losses beyond simple spillover effects.

The input for the model is the CDS data for each financial institution. The data

are first transformed into a log scale and then regressed on systematic risk factors, such

as market returns and implied volatility (VIX), to filter out the systematic risks that

affect all the nodes. The residuals are then passed through the Bayesian network model

where algorithms find the network structure with the highest BIC score (likelihood

score with penalty for more complex network). Parameters are then estimated from

the learned network structure. The learned network structure together with parameters

is then used to calculate conditional default probability and expected conditional loss.

Firms on top of the network, such as Goldman Sachs, Bank of America and Morgan

Stanley, can affect other firms lower down the chain, while firms on the bottom of the

network, such as Lehman Brothers, AIG and UBS, have low impact on other firms

in the network. The results can help answer the question whether Lehman Brothers

should have been saved.

In theory, when all factors or all relevant nodes in the network are observable,

and data and computational power are unlimited, the learned network structure will

converge to the true network. In practice, this ideal condition is usually not the case.

The factors driving CDS spreads are still not fully accounted for (Das et al. (2007) and

Collin-Dufresne et al. (2001)). Which financial institutions are important for systemic

risk are also debatable. The model implementation in this paper is thus demonstrative

rather than comprehensive.

After the calculation of the main network structure, I also extend the model by

adding a couple of omitted nodes (Bear Sterns and Merrill Lynch) back to the model.

The resulting network structure is largely similar to the previous one, but also contains

some significant and nontrivial changes. On the one hand, the model is relatively robust

to the choice of financial institutions to include in the calculation. On the other hand,

since there are significant changes to the network structure, the model implementation
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and interpretation still rely on the domain knowledge and judgment of the researcher.

This paper is, to the best of my knowledge, the first to apply the probabilistic

graphical model to uncover network structure of financial institutions. The imme-

diate benefit of such network structure is the ability to calculate conditional default

probability and expected conditional loss, which can help gauge the systemic risk or

whether any bank is too-big-to-fail. Reference books for probabilistic graphical model

include Daphne and Friedman (2009) and Murphy (2012). Nagarajan et al. (2013)

and Scutari and Denis (2014) include software implementation in R together with ex-

amples from biology. Sachs et al. (2005) apply the probabilistic graphical model to

scientific discovery in protein signaling. Eisenberg and Noe (2001) show the impact

of network connection on default contagion while Glasserman and Young (2013) show

that such contagion is unlikely. Kitwiwattanachai and Pearson (2014) explore default

correlations using CDS data and structural models but do not attempt to uncover the

connection structure.

The recent paper examining the network structure using security prices is Billio

et al. (2012). They propose econometric measures of connectedness based on princi-

pal component analysis and Granger causality. My paper instead uses a probabilistic

graphical model and compares the results with Granger causality. This paper further

demonstrates the calculation of conditional default probability and expected condi-

tional loss, which is the relative advantage of using CDS data, and was absent in Billio

et al. (2012) who used equity returns. This paper belongs to a strand of literature

investigating the impact of default contagion or systemic risk in general.

The paper proceeds as follows. Section 1 provides a background for the proba-

bilistic graphical model. Section 2 provides theoretical dynamics and distribution of

CDS spreads. Section 3 provides empirical analysis using CDS data and shows the

network structure implied from the CDS data. Section 4 explores implications of the

learned network structure, in particular conditional default probabilities and expected

conditional loss. Section 5 extends the model by adding a few omitted nodes to the

calculation. Section 6 concludes.
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1 Probabilistic Graphical Model

This section provides a brief introduction to the probabilistic graphical model. A

complete treatment can be found in Koller and Friedman (2009) or Scutari and Denis

(2014).

1.1 Bayesian Network Representation

A graphical model is composed of a set of random variables X = {X1, X2, ..., Xp}

describing the quantities of interest (in this case, the CDS spreads of financial institu-

tions). The multivariate probability distribution of X is called the global distribution

of the data while the univariate distribution associated with each Xi ∈ X is called local

distribution.

A directed acyclic graph (DAG), denoted G = (V,A), is composed of nodes v ∈ V

and directed arcs a ∈ A. Each node v corresponds to one variable Xi ∈ X. The arc

a represents probabilistic dependency. If there is an arc from Xi to Xj , it means that

Xj depends on Xi. Xi is a parent of Xj , and Xj is a child of Xi. In the context

of linear regression, Xj is the dependent variable and Xi is the independent variable.

Furthermore, if there is a path leading from Xi to Xj , Xi is called ancestor of Xj , and

Xj is called descendant of Xi. A cycle is not allowed in DAG, i.e., there cannot be a

path from any Xi back to Xi.

Figure 1 shows an example of a Bayesian network taken from Koller and Friedman

(2009). The student example shows the dependency of variables related to student’s

performance. Difficulty (D) stands for the difficulty of the class. Intelligence (I)

stands for student’s intelligence. Grade (G) is the grade the student receives in the

class. SAT (S) is the SAT score and Letter (L) stands for the quality of the letter

of recommendation. The graphical model shows that grade depends on difficulty and

intelligence, SAT depends on intelligence and the letter of recommendation depends

on the grade.

To represent the global distribution of X would require a large number of parame-

ters. Even in the simplest case of binary variables, a joint distribution requires 2p − 1

numbers, the probabilities of 2p different assignments of the random variables. The
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Bayesian network representation simplifies the calculation of the global distribution by

decomposition. The general formulation for the decomposition of the global distribu-

tion Pr(X) is:

Pr(X) =
p∏
i=1

Pr(Xi|PaXi) (1)

where PaXi is the set of parents of Xi. For the student example, the global distribution

decomposes Pr(I,D,G, S, L) decomposes to:

Pr(I,D,G, S, L) = Pr(I)Pr(D)Pr(G|I,D)Pr(S|I)Pr(L|G)

1.2 Structure and Parameter Learning

If the network structure and parameters are available, the Bayesian network can be

used for inference, such as finding the probability of a good grade given the information

about difficulty and intelligence. However, if the network structure and parameters are

not available, one must first find the structure and parameters through model selection

and estimation, also called learning from the machine learning literature.

Bayesian network learning is performed as a two-step process, structure learning and

parameter learning. Structure learning finds the most likely network structure given the

data, similar to maximum likelihood over all the configurations of network structures.

Parameter learning then estimates the parameters of each node by maximum likelihood

over the parameter space. This step concerns only with the local distribution, thus

avoiding the curse of dimensionality.

To be precise, let the Bayesian network model be represented by a pair < G, θG >,

where G is the network structure and θG is the associated parameters. Bayesian net-

work learning involves maximizing the likelihood score:

max
G,θG

L(< G, θG >: D) = max
G

[max
θG

L(< G, θG >: D)]

= max
G

[L(< G, θ̂G >: D)] (2)

where L(.) is the chosen likelihood score function and D is the given data. In

other words, to find the maximum likelihood < G, θG > pair, we should find the graph

structure G that achieves the highest likelihood, using the MLE parameters for G (θ̂G).
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Define:

scoreL(G : D) = l(θ̂G, D) (3)

where l(θ̂G, D) is the logarithm of likelihood score function (log(L(< G, θ̂G >: D))).

Bayesian network learning thus means finding G that maximizes the scoreL(G : D).

Similar to model selection problem, for structure learning, a major limitation of

the likelihood score (scoreL(G : D)) is that it always prefers complex structures (with

more connections) over simple ones. The likelihood score always increases with an

additional arc between the nodes. Thus, the maximum likelihood network will usually

be a fully connected one. To avoid overfitting, Bayesian information criterion (BIC) is

introduced as an alternative score function:

scoreBIC(G : D) = l(θ̂G, D)− logN

2 Dim[G] (4)

where N is the number of observations and Dim[G] is the model dimension, or the

number of independent parameters inG. The BIC score penalizes more complex models

by the second term (Dim[G]). The BIC score has been shown to be consistent, i.e., as

N →∞, the true G will have the maximum BIC score. Bayesian network learning thus

means finding G that maximizes the scoreBIC(G : D), using the likelihood computed

from the decomposition in (1).

1.3 Equivalence Class and CPDAG

Two DAGs can have the same score and thus belong to the same equivalence class. For

example, consider two DAGs, Xi → Xj → Xk, and Xi ← Xj → Xk. The likelihood

from these two DAGs are the same as shown below:

Pr(Xi)Pr(Xj |Xi)Pr(Xk|Xj) = Pr(Xi, Xj)Pr(Xk|Xj)

= Pr(Xi|Xj)Pr(Xj)Pr(Xk|Xj)

Bayesian network learning cannot differentiate between the DAGs in the same equiv-

alence class because they have the same likelihood. An equivalence class can be rep-

resented by completed partially directed graph (CPDAG). For CPDAG, arcs that are

necessary for the score and ensure no cycle will maintain directions. The remaining
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arcs will still be present but do not preserve directions, becoming undirected arcs. The

CPDAG for the example two DAGs is Xi −Xj −Xk. An example of structures that

must maintain arc directions is the v-structure, Xi → Xj ← Xk.

1.4 Algorithms and Model Averaging

The space of network structures is not continuous. Thus, one cannot use simple op-

timization algorithms to obtain the highest BIC score. Moreover, there are a pro-

hibitively large number of possible configurations of network structures, making it

impossible to enumerate all possible BIC scores for a network of reasonable size. One

must use a search algorithm to obtain the network structure with the highest BIC

score.

There are many search algorithms in the literature but for this paper I will focus

only on the hill-climbing algorithm. The algorithm explores the search space starting

from a network structure (usually an empty network without any arc) and adding,

deleting or reversing one arc at a time until the score can no longer be improved. As

is common for any greedy algorithm, the solution obtained may be the local instead of

global maximum. One can use random restart to make sure that the global maximum

is obtained.

Several networks may have similar scores and one may not be comfortable choosing

only the network with the highest score to represent the true structure. One can

improve the quality of the structure learned by averaging over multiple CPDAGs. One

possible approach is to apply bootstrap resampling of the data and learn a set of

network structures, say 1000. The final average structure will contain the arcs that are

present in the majority, say 85%, of the set of learned structures and in the direction

that appears most frequently. The significance threshold for the arcs to be present in

the final average structure can be set by the user or one can use the default threshold

from the software package.
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2 CDS Dynamics

Most software packages for Bayesian network allow only discrete or Gaussian random

variables, and only a linear relationship among them. CDS data are not discrete

(although discretization algorithm is also available to transform the continuous data

into discrete). This section considers if the CDS data can fit the Gaussian distribution.

Each node in the Bayesian network is a financial institution with the corresponding

CDS data. Kitwiwattanachai and Pearson (2014) provide a link between CDS dynamics

and asset dynamics. I briefly discuss the setup and results here while full details can

be looked up in the paper.

As is standard in structural models, the underlying asset value V follows a geometric

Brownian motion. Under the risk-neutral probability,

d lnV (u) = (r − σ2/2)du+ σdW (u), (5)

where r is the interest rate, σ is the asset return volatility, and W is a Brownian

motion. Default occurs when the asset value reaches a default boundary with time u

value B(u) that grows at a deterministic rate equal to the expected growth rate of lnV

under the risk-neutral probability, i.e.

B(u) = B(0)e(r−σ2/2)u. (6)

Consider the distance-to-default m(V (t), B(t)) = ln(V (t)/B(t))/σ. The default event

that the asset value V reaches the boundary B is identical to the event that the

distance-to-default reaches zero. Using (6) and the solution to (5), the distance-to-

default

m(V (t), B(t)) = ln(V (t)/B(t))
σ

= lnV (0) + (r − σ2/2)t+ σW (t)− lnB(0)− (r − σ2/2)t
σ

(7)

= ln(V (0)/B(0))
σ

+W (t)

is a Brownian motion with initial value ln(V (0)/B(0))
σ . Similarly,

dm(t) = dW (t) (8)
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The dynamic of distance-to-default is Gaussian, which is the assumed distribution for

the Bayesian network. While there are other extensions of this basic model in Kitwi-

wattanachai and Pearson (2014), I focus only on this basic model for the approximate

distribution.

The remaining missing link is the map between CDS spreads and distance-to-

default. Kitwiwattanachai and Pearson (2014) also shows that CDS spreads (S) can

be written as a function of distance-to-default (m) = S(m). Figure 2 shows the plot

between CDS spreads and distance-to-default from the model. In principle, one can

then invert the plot to find distance-to-default (m) from CDS spreads (S) and ob-

tain the distance-to-default dynamics as an input to the probabilistic graphical model.

However, one may be uncomfortable trusting the model in the first place.

To alleviate the concern of model misspecification, I use the log of CDS spreads

instead. Figure 3 shows the plot between the log of CDS spreads and the distance-

to-default. The plot is almost linear with some nonlinearities when CDS spreads are

extremely high (distance-to-default is extremely low) on the left end. The linear re-

lationship motivates the assumption that the dynamic of the log of CDS spreads is

Gaussian, because the dynamic of the distance-to-default itself is Gaussian (see equa-

tion (8)). Thus, for the purposes of Bayesian network learning, I use log of CDS spreads

as an input to the model. We will investigate the normality assumption of the log of

CDS spreads again in the empirical analysis in section 3.2.3.

For the purposes of inference, such as computing conditional default probability

and expected conditional loss, however, one needs the implied distance-to-default from

the model. Thus, after learning the network structure and parameters, I return to the

model to calculate distance-to-default and default probabilities.
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3 Empirical Analysis and Implied Network Struc-

ture

3.1 Data

CDS data are from Markit starting from January 2001. However, not all firms have

CDS traded from the first day of 2001. Some firms’ CDS start being traded much later.

I use only 5-year CDS for senior unsecured debt because they are the most prevalent

and the most liquid. The data are available daily. However, the daily quotes tend to

be sticky because CDS may not be traded every day and the Markit filtering algorithm

among dealers’ quotes may smooth out any small daily changes. Monthly data are

preferred but the data may not be sufficient for statistical analysis. Thus, I use weekly

data for all the analyses.

The firms are selected from the list of G-SIFIs according to Financial Stability

Board (FSB) document on 4 November 2011. SIFIs are financial institutions whose

distress or disorderly failure would cause significant disruption to the wider financial

system and economic activity. Some of the firms in the list do not have CDS until as

late as 2008 and some banks’ CDS data have duplicates. I drop banks with insufficient

data and duplicates and non-US banks that are unlikely to be the source of systemic

risk in the last financial crisis. I also include Lehman Brothers back to the list because

the objective of the paper is to study the network structure leading up to the financial

crisis, and to answer questions such as ”should Lehman Brothers have been saved?”

The final data set includes 11 financial institutions with CDS data from June 2001

to August 2008 (because Lehman Brothers declared bankruptcy by September 2008).

Table 1 shows the name and market capitalization of the banks in the data set. The list

includes mostly big US banks. The market capitalization is calculated as of January

2007 to avoid the impact of financial crisis. Table 2 shows summary statistics of CDS

data during the sample period. The statistics are calculated both on raw spreads in

basis points and log of spreads. All of the banks have relatively low CDS spreads

and thus low default probabilities before the financial crisis. The mean and standard

deviation of CDS spreads are also not very different across banks.
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Figure 4 shows an example of time series of CDS spreads for 3 banks, Citigroup,

Goldman Sachs and Lehman Brothers. The spreads are highly correlated throughout

the entire period. The financial crisis significantly affects the banks’ default probabil-

ities, as CDS spreads significantly increase at the onset of the crisis around 2007 and

2008.

3.2 Empirical Analysis

Since the main focus is on the connection between financial institutions, I first filter

out the systematic factors that will affect all CDS spreads. The risk factors that affect

CDS spreads include market returns and market volatility (see, for example, Ericsson

et al. (2009)). I run regressions of log of CDS spreads on S&P 500 index returns

and VIX to remove the systematic factors and only use the residuals for the Bayesian

network analysis. In particular, I run the regression:

∆logSi,t = αi + βmRm,t + βv∆V IXt + εi,t (9)

where ∆ denotes weekly changes, Rm,t is the S&P500 weekly returns at time t, and

VIX is the CBOE implied volatility. The residuals εi,t in theory should be normally

distributed and will be used for the Bayesian network learning.

3.2.1 Comparison with Granger Causality

As mentioned before, a simple correlation matrix or linear regression cannot estab-

lish the network structure because the direction of causality can go either way. A

typical method to establish causality in economics is Granger causality or Vector Au-

toregression (VAR). By running regression of one variable on the lagged value of other

variables, causality can be determined because only the past can determine the future,

but not vice versa. In this section I run VAR with the CDS data to see if the network

structure can be found this way.

I run VAR(1) regression using the residuals obtained from (9). In this setup, VAR

is equivalent to running separate linear regressions. For example, for AIG:

AIGt = α+ β1AIGt−1 + β2BACt−1 + β3BARCLAY St−1 + ...+ β11WFCt−1 + εt
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The same regression can be run for CDS data for all firms by changing the left-hand

side. The significance of the coefficient can establish the direction of causality from

the regressor to the dependent variable on the left hand side.

Table 3 shows an example of VAR results for AIG, GS and LEH in columns 1, 2,

and 3 accordingly. The first column suggests that CITI, LEH and UBS can cause AIG’s

spreads to move. However, CITI and UBS are marginally significant at 10% significance

level. Moreover, even though LEH is highly significant, the sign is negative, indicating

that an increase in LEH’s CDS will reduce AIG’s CDS. This result goes against the

intuition of systemic risk that one firm’s default risk will increase another firm’s default

risk.

The second column suggests that CITI, LEH and WFC can affect GS’s default risk.

However, LEH and WFC have the negative sign. GS is also negatively autocorrelated,

suggesting a mean reversion process, which does not exist in AIG. The third column

suggests that AIG can affect LEH’s default risk with a positive sign. This result creates

a problem because AIG can Granger-cause LEH, while LEH can also Granger-cause

AIG. The final direction is undetermined.

VAR results are not convincing because of the negative coefficients instead of pos-

itive and undetermined direction of causality. CDS spread changes may not be appro-

priate for Granger causality test because changes in prices may mostly be contempo-

raneous, if the market is efficient.

3.2.2 Software Packages for Bayesian Network

The theory and algorithms for probabilistic graphical model are well developed. There

are many software packages that implement algorithms to construct and manipulate

the Bayesian network model with different focuses and functionalities. This paper uses

the R package bnlearn, which implements discrete and Gaussian Bayesian network

together with structure learning, parameter learning and inference algorithms. The

package has been used mostly in the biological research area.

To visualize the Bayesian network, I use another R package Rgraphviz which can

interact with bnlearn. The Bayesian network graph generated for this paper is the
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product of these software packages. See Appendix for examples of specific functions

used to generate results.

3.2.3 Node Distribution

Figure 5 shows the distribution of each node in the Bayesian network. The first 11 plots

show the distribution of CDS of the banks in the network, while the last plot shows

the distribution of S&P 500 index returns for comparison. All distributions are weekly

and are the residuals of the systematic risk factors as shown in (9). The distributions

are not too far from, but also not exactly, the normal distribution. For example, there

are some outliers for LEH, GS and MS with realizations extremely far away from the

mean. The extreme outliers appear near the end of the sample period, at the onset

of the financial crisis, which explains the sharp increase in the CDS spreads. Most

distributions appear to have fat tails.

Table 4 shows summary statistics of the distribution of each node in the network,

together with the distribution of S&P 500 for comparison. The mean is always 0 by

construction (because of residuals) and thus not reported. The standard deviations

for all firms are similar at around 0.1 to 0.12 with JPM and LEH higher than others.

Most have slight positive skewness and high kurtosis (fat tails). LEH has the highest

positive skewness and kurtosis, as the firm’s CDS significantly increases near default.

S&P 500 has lower standard deviation, skewness and kurtosis, and thus is closer to a

normal distribution.

While the distributions of the nodes are not perfectly Gaussian, the maximum

likelihood algorithm (in this case, maximizing the BIC score) should still find the most

likely network structure. Such exercise is similar to the argument that Quasi Maximum

Likelihood Estimation (QMLE) can be used for nonnormal distribution if only the

mean and standard deviation are concerned. The resulting estimates are consistent

but not efficient, and thus the resulting network structure will also be consistent.

Further development can extend the software library to accept distributions other than

Gaussian and define the score for nonnormal distributions to maximize accordingly.

The main concern will be for inference when computing the conditional default
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probability, because the probability will depend on the assumed distribution. This

paper maintains the Gaussian assumption, but Bayesian network simulation with non-

normal distribution is also available in R package such as rjags or the general package

JAGS (Just Another Gibbs Sampler).

3.2.4 Learned Bayesian Network

Each node in the Bayesian network is normally distributed. The data for each node

are obtained from the residuals in (9). The log transformation and (8) ensure linearity

and normal distribution. With the specified input, the software package uses hill-

climbing algorithm to find the network structure with the highest BIC score. To

ensure robustness, model averaging using bootstrap samples is performed and the final

result is the network structure containing arcs that are present in the majority of the

learned structures, in the direction that appears most frequently.

The learned Bayesian network is shown in Figure 6. The corresponding CPDAG is

shown in Figure 7. The learned parameters are reported in Table 5. The R code to

generate these results is in the Appendix.

Figure 6 shows the relationship between financial institutions as implied by the

CDS data. For example, GS can affect WFC, WFC can affect LEH, and LEH can

affect AIG. GS can also affect DB which then affects AIG. The CPDAG in Figure 7 is

similar to DAG in Figure 6 but some arcs, such as GS → MS and GS → BAC, lose

direction. This indicates that the direction can go either way, and the BIC score will

be the same. For this network, the learning algorithm cannot differentiate between

GS →MS and MS → GS, or GS → BAC and BAC → GS.

Table 5 shows the learned parameters for the Bayesian network. The table cor-

responds exactly to Figure 6 with the coefficients indicating the strength of the rela-

tionship from parents to children. For example, AIG has 3 parents: BARC, DB and

LEH with coefficients 0.162, 0.218 and 0.228, respectively. Since the Bayesian network

model follows Gaussian distribution, these estimated coefficients are equivalent to ones

obtained from a linear regression (MLE and linear regressions yield the same estimates

in this setting), with familiar interpretation. For example, one unit of increase in
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(log of) CDS of BARC can increase 0.162 unit of (log of) CDS of AIG. The impact

is 0.218 for DB and 0.228 for LEH respectively. These coefficients are important for

the computation of conditional default probability, which will be discussed in the next

section.

Some interesting patterns emerge from the network structure. At the top of the

network are GS, MS, BAC, and CITI, the familiar big and powerful banks that can

influence almost all other firms in the system. JPM is not related to other banks,

perhaps indicating their superior risk management practice that shields themselves

from the volatile environment. In fact, during the crisis, JPM did survive almost

intact. At the bottom of the network are AIG and UBS, which are influenced by other

firms, either directly or indirectly through the chain. Other firms in the middle receive

influences from the top and pass down influences to the bottom.

Should Lehman Brothers have been saved? From the network structure, LEH is

near the bottom and thus would not exert influence that could collapse the entire

financial system. LEH can still impact AIG, which is indeed what we witnessed during

the crisis. After Lehman Brothers collapsed, the next firm in line was AIG, which may

have gone bankrupt if the government had not stepped in to help. While defaults are

always costly, LEH’s default was one of the least systemic defaults possible among the

selected firms.

Simply looking at the network structure can inform policy makers for their decision,

but more precise answers can be delivered from such a network model. Next section

discusses interesting queries that can be answered by the model.

4 Implications

Once the Bayesian network model and parameters have been learned, one can an-

swer probabilistic questions using the model. In the context of systemic risk, we are

concerned with conditional default probability and expected conditional loss. For ex-

ample, if GS defaults, what is the probability that AIG will also default, and what is

the expected loss for the entire system?

Such questions can be answered directly by the Bayesian network model. Defaults
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occur when the asset value is below the default barrier, or when the distance-to-default

(m) is below 0. Given the CDS spreads, I can find the corresponding distance-to-

default from the model that links CDS spreads to distance-to-default, i.e., by inverting

Figure 2. The calculation in this section thus depends on the structural model in

Kitwiwattanachai and Pearson (2014) that relates CDS spreads to distance-to-default.

One can also use an alternative model if needed while maintaining the same network

structure learned previously.

Table 6 shows the distance-to-default of all firms in the network as of 31 July

2008. This date is just before the financial crisis in August and September 2008.

The CDS spreads start to widen especially for LEH, displaying signs of trouble. The

corresponding distance-to-default (m’s) are centered at around 3.5 but can go as low

as 2.53 for LEH or as high as 4.20 for DB.

With the distance-to-default one can calculate the corresponding default probabil-

ities as the probability that m falls below 0 within a certain period, typically 1 year.

The bnlearn package also provides a simulation capability for such computation. To

calculate 1-year probability, the variance needs to be adjusted to be the variance for

m, not for the log of CDS spreads. With the guidance from (8), I readjust the variance

to 1 for all nodes. As mentioned earlier, the default probability will be calculated

assuming normal distribution.

The corresponding default probabilities are reported in the last column of Table

6 and the code is available in the Appendix. In general firms with low CDS spreads

will also have low default probabilities. Most firms have very low default probabilities

below 1 %, except for LEH, AIG and MS, with LEH leading at almost 5%. Network

structure also plays a role in default probabilities - firms lower in the network chain

can receive uncertainty from firms on top of the network, and thus have higher default

probability even with similar distance-to-default (for example, GS and BARCLAYS)

4.1 Conditional Default Probability

The interesting question is ”what will happen if firm X defaults?” The model can

simulate conditional default probability by setting the distance-to-default of the firm
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of interest to be below 0, and examine the probability that other firms’ distance-to-

default also fall below 0. The horizon of interest is 1 year.

Table 7 shows the results for conditional default probabilities. Panel A shows the

probability calculated from the network structure. Since we are interested in the addi-

tional default probability for other firms if the firm of interest defaults, Panel B shows

the difference between the conditional default probability and the original default prob-

ability in Table 6. The left column is the firm of interest. The Influence column shows

firms that are influenced by the firm on the left, the children or descendants. For ex-

ample, CITI directly influences BARCLAYS, UBS, and WFC. BARCLAYS influences

DB, UBS and AIG. WFC influences LEH and AIG. Thus, CITI can influence BAR-

CLAYS, UBS, WFC, DB, AIG and LEH. Panel A shows the default probabilities for

these firms, if CITI defaults in the next year.

Default probabilities of children and descendants increase substantially if the par-

ents default. From unconditional probability below 1%, the conditional default prob-

abilities can increase to 10% or 20%, and in some cases over 60% if the link is strong.

GS’s default can affect almost all other nodes in the network because GS sits on top of

the network, with the strongest impact on LEH and MS. LEH’s default, on the other

hand, only increases default probability of AIG to 8.88%, a substantial amount but

relatively low compared to other nodes in the network. On the other hand, LEH is

affected tremendously by defaults of its ancestors, BAC, CITI, GS, MS and WFC, each

driving up LEH’s default probability up to around 30%, and in some cases over 60%.

4.2 Expected Conditional Loss

The Bayesian network model allows us to calculate conditional default probability.

The next immediate question is the expected conditional loss from the default, i.e.,

”what is the expected loss to other firms if firm X defaults?” With the available condi-

tional default probability, finding expected loss is relatively straightforward. I multiply

conditional default probability in Panel B of Table 7 with the corresponding market

capitalization from Table 1. I assume that all the equity will be wiped out in case of

default. Additional loss to debtholders many incur but is not considered here. The
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result is the expected incremental loss, which is purely from the systemic risk as a re-

sult of other firm’s default, in addition to the firm’s own expected loss from systematic

factors and its own activity.

Table 8 reports the results for expected loss. The cumulative loss is the sum of all

the expected losses conditional on the node’s default. Ranking can also be assigned

based on the cumulative loss. As expected, the nodes on top of the network rank high

on the expected loss. GS, BAC and MS are systemically more important than UBS,

AIG and JPM. While GS seems extremely important with cumulative loss near $200

billion, one must keep in mind that this is partly due to the assumed arc direction

GS → MS and GS → BAC, which is the most frequent direction obtained from the

learning algorithm. However, as CPDAG in Figure 7 shows, the arc direction can point

to the opposite direction without changing the likelihood of the network. The opposite

arc direction will also change the expected loss attributed to GS, BAC and MS.

Should Lehman Brothers have been saved? Since the expected loss is only $13.25

billion (excluding its own loss), the answer is probably no.

5 Extensions

So far we have learned the network structure of firms that survived the financial crisis,

except for Lehman Brothers which has been included to answer the hypothetical ques-

tion. The purpose of the exercise is demonstrative rather than comprehensive. Many

firms are omitted for the advantage of interpretation.5 In this section I add a few more

firms to the Bayesian network calculation. The firms of interest are Bear Sterns and

Merrill Lynch, which were important firms before the financial crisis, but were acquired

by other firms rather than facing a default as Lehman Brothers.

We will learn that the network structure with additional firms maintains the basic

structure, but also exhibits differences from the network learned in the previous section.

Thus, the network structure learning exercise is not a simple mechanical process, but
5For example, small firms or international firms are omitted, because intuitively they should not play an

important role in systemic risk. This will help the algorithm to learn the network structure more efficiently,

and the resulting network structure is easier to interpret.
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requires deep domain knowledge of the user to select relevant firms and interpret the

results.

5.1 Adding Bear Sterns

Bear Sterns was a prominent investment bank and securities trading and brokerage firm

that failed in the 2008 financial crisis, and was sold to JPMorgan Chase. The CDS

data for Bear Sterns are available from January 2001 to July 2008. As the network

model requires complete data for all nodes, the CDS data used for this section end on

7 July 2008 for all firms, and thus are somewhat shorter than the data used in the

analysis so far which extend to August 2008.6 The symbol for Bear Sterns is BSC.

Figure 8 shows the learned Bayesian network with Bear Sterns, and Figure 9 the

corresponding CPDAG. The network structure is similar to the previous one with GS,

MS and BAC at the top, AIG, DB and UBS at the bottom, and JPM isolated from other

nodes.7 BSC stands relatively high in the network, just below GS and MS, and can

influence CITI, LEH, WFC and BARCLAYS. LEH is now connected to BARCLAYS,

and through BARCLAYS can influence DB, AIG and UBS. Thus, under this network

structure, LEH’s default will have more impact to the financial system. Interestingly,

BSC is connected directly to LEH, indicating that when BSC is in trouble, the next

troubling firm will be LEH, which is what we observed in 2008.

Overall, the main network and connection structure remain similar to before, but

there are also a few significant changes.

5.2 Adding Merrill Lynch

Merill Lynch was another prominent financial institution that did not make it through

the financial crisis and was acquired by the Bank of America in September 2008. The

CDS data for Merrill Lynch are available from January 2001 to September 2013.8

6The shorter data may partially affect the results, as the CDS movement in August 2008 was much more

volatile than other periods. Excluding the data in this period may affect the likelihood of the network.
7Note that this is before Bear Sterns is acquired by JP Morgan Chase.
8Although Merrill Lynch agreed to be acquired by the Bank of America in September 2008, the firm is

not completely merged with the Bank of America until October 2013.
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However, as the dataset will include Bear Sterns, only the data up until 7 July 2008

are used. The symbol for Merrill Lynch is MER.

Figure 10 shows the learned Bayesian network with Bear Sterns, and Figure 11

the corresponding CPDAG. The network structure is similar to before. MER stands

relatively high in the network, just below GS and MS but above BAC. Curiously,

this connection between MER and BAC may also hint at the reason why MER was

acquired by BAC, and not other firms. LEH can still influence BARCLAYS, which

then influences DB, AIG and UBS. Curiously, this connection between LEH and BAR-

CLAYS may also hint at the reason why BARCLAYS purchased LEH’s North American

investment-banking and trading divisions (along with the headquarter building), after

bankruptcy, and not other firms.9

Interestingly, both BSC and MER can influence LEH. In fact, LEH is the only firm

directly impacted by both BSC and MER. Thus, when BSC and MER are in trouble,

the next troubling firm will be LEH. This is also what we observed during the financial

crisis. BSC and MER, however, were acquired by JPM and BAC, while LEH could

not find an acquirer and eventually had to declare bankruptcy.

Overall, the learned network structure is relatively robust to additional nodes. How-

ever, there are a few significant and nontrivial changes. Nevertheless, the network

structure reflects the relationship among firms, similar to what we observed during the

financial crisis.

The Bayesian network is useful to learn about the connection structure of firms,

and gauge the impact of a firm’s default to the rest of the network. In a perfect case,

when all the factors (or relevant nodes) are known and included in the network, with

infinite amount of data and computational power, the learned network structure will be

the true structure. In the real world, however, perhaps not all factors that drive CDS

spreads are known or observed (Das et al. (2007) and Collin-Dufresne et al. (2001)),

and it is not always clear which nodes are relevant. How to select the relevant factors

and nodes to include in the Bayesian network learning exercise, and how to interpret
9On the contrary, BSC was not acquired by its children (BARCLAYS, CITI, LEH or WFC), but by

JPM, which does not seem connected in the network structure. Thus, while the connection structure can

“curiously” predict the next event, it is not the rule.
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the results, still depend on the knowledge and judgment of the researcher.

6 Conclusion

This paper applies the probabilistic graphical model to learn the network structure of

financial institutions from CDS data. The learned structure and parameters can be

used to compute conditional default probability and expected conditional loss. The

impact of default of one firm can be gauged, allowing policy makers to make decisions

on the too-big-to-fail problem. Since the information is extracted from the CDS data,

all quantities are under the risk-neutral measure, and thus account for the market fear

that can trigger bank run.

The log transformation of the CDS data is sufficient to linearize the CDS dynamics,

yielding normal distribution for each node in the network. The algorithm to learn

the network structure searches for the network with the highest BIC score. Model

averaging is performed for robustness. The resulting network structure shows the

highly influential firms such as GS, BAC and MS on top of the network. At the

bottom of the network are less influential firms such as LEH, AIG and UBS. The

corresponding conditional default probability and expected conditional loss show that

the decision to let Lehman Brothers default was probably the right one, because it was

not too-big-to-fail.

The learned network structure is relatively robust to the choice of financial insti-

tutions. The network structure largely complies with the event observed during the

financial crisis. However, as the factors driving CDS spreads included in the model are

not comprehensive, researchers must use their own judgment on how to implement the

model and interpret the results.

Future research may include refining the distributions of each node in the network

and extend the library to include nonnormal distributions. This will improve the esti-

mates for conditional default probability and expected conditional loss. Future research

on systemic risk can be built on such platform using the learned network structure as

a starting point. Finally, the probabilistic graphical model is a generic mathematical

and computational tool which has been successfully applied in the domain of computer
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science and biology. Finance can also benefit from this well-developed tool, because

nowadays everything is connected and network is becoming increasingly important.
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Appendix: R Code
library(bnlearn)
library(Rgraphviz)

load(Data)   #CDS data (log residauls)
bootCDS =boot.strength(data=Data, R = 1000, algorithm="hc", algorithm.args=list(score="bic-g"))  
  #learn network structure, hc algorithm, BIC score
avg.bootCDS = averaged.network(bootCDS)     #model averaging

graphviz.plot(avg.bootCDS)                  #plot the learned structure           
graphviz.plot(cpdag(avg.bootResidEVix))     #plot cpdag

fitbn = bn.fit(avg.bootCDS, data=Data)      #estimate parameters 

DDList = list()          #set distance-to-default for each node
DDList$AIG = 2.87
DDList$BAC = 3.75
DDList$BARCLAYS = 3.60
DDList$CITI = 3.47
DDList$DB = 4.20
DDList$GS = 3.57
DDList$JPM = 3.85
DDList$LEH = 2.53
DDList$MS = 2.91
DDList$UBS = 3.77
DDList$WFC = 3.78
#-------------------------------------------------------
#modify standard deviation to 1

modfitbn = fitbn
disAIG = list(coef = fitbn$AIG$coefficients, sd = 1)
disBAC = list(coef = fitbn$BAC$coefficients, sd = 1)
disBARCLAYS = list(coef = fitbn$BARCLAYS$coefficients, sd = 1)
disCITI = list(coef = fitbn$CITI$coefficients, sd = 1)
disDB = list(coef = fitbn$DB$coefficients, sd = 1)
disGS = list(coef = fitbn$GS$coefficients, sd = 1)
disJPM = list(coef = fitbn$JPM$coefficients, sd = 1)
disLEH = list(coef = fitbn$LEH$coefficients, sd = 1)
disMS = list(coef = fitbn$MS$coefficients, sd = 1)
disUBS = list(coef = fitbn$UBS$coefficients, sd = 1)
disWFC = list(coef = fitbn$WFC$coefficients, sd = 1)

modfitbn$AIG = disAIG
modfitbn$BAC = disBAC
modfitbn$BARCLAYS = disBARCLAYS
modfitbn$CITI = disCITI
modfitbn$DB = disDB
modfitbn$GS = disGS
modfitbn$JPM = disJPM
modfitbn$LEH = disLEH
modfitbn$MS = disMS
modfitbn$UBS = disUBS
modfitbn$WFC = disWFC
#------------------------------------------------
#calculating unconditional default probability
cpquery(modfitbn , event = (AIG < -(DDList$AIG)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (BAC < -(DDList$BAC)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (BARCLAYS < -(DDList$BARCLAYS)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (CITI < -(DDList$CITI)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (DB < -(DDList$DB)) , evidence = TRUE, n = 10^8)
cpquery(modfitbn , event = (GS < -(DDList$GS)) , evidence = TRUE, n = 10^8)
cpquery(modfitbn , event = (JPM < -(DDList$JPM)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (LEH < -(DDList$LEH)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (MS < -(DDList$MS)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (UBS < -(DDList$UBS)) , evidence = TRUE, n = 10^7)
cpquery(modfitbn , event = (WFC < -(DDList$WFC)) , evidence = TRUE, n = 10^7)

#Conditional default probability (example)
  #AIG default probability , if LEH defaults
cpquery(modfitbn , event = (AIG < -(DDList$AIG)) , evidence = (LEH < -(DDList$LEH)), n = 4*10^7)
  #LEH default probability , if GS defaults
cpquery(modfitbn , event = (LEH < -(DDList$LEH)) , evidence = (GS < -(DDList$GS)), n = 4*10^7)
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Table 1: List of financial institutions considered in the Bayesian network model. The market

capitalization is calculated as of January 2007 (before the financial crisis).

Name Symbol Market Capitalization (Billions USD)

American International Group AIG 177.95

Bank of America BAC 234.41

Barclays BARCLAYS 3.35

Citigroup CITI 270.89

Deutsche Bank DB 70.40

Goldman Sachs GS 90.34

JPMorgan Chase JPM 176.30

Lehman Brothers LEH 43.59

Morgan Stanley MS 86.84

UBS UBS 122.29

Wells Fargo WFC 121.26
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Table 2: Summary statistics for CDS spreads, from January 2001 (or the first available date

of CDS data) to August 2008. The statistics are calculated both on raw spreads in basis

points and log of spreads.

raw spreads log spreads

Firm mean median std mean median std

AIG 45.89 28.25 53.29 3.49 3.34 0.72

BAC 37.77 29.50 25.52 3.45 3.38 0.58

BARCLAYS 24.22 13.60 28.61 2.81 2.61 0.76

CITI 37.10 27.02 35.96 3.32 3.30 0.72

DB 26.93 19.25 20.74 3.10 2.96 0.56

GS 51.33 41.38 31.36 3.80 3.72 0.51

JPM 43.90 35.55 26.85 3.62 3.57 0.56

LEH 72.06 44.80 68.33 4.00 3.80 0.68

MS 56.09 40.00 45.88 3.82 3.69 0.58

UBS 22.34 12.80 29.19 2.69 2.55 0.79

WFC 32.12 28.37 24.83 3.25 3.35 0.66
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Table 3: VAR(1) example for AIG, GS and LEH. Changes in (log) CDS spreads are regressed

on lag of changes in (log) CDS spreads. Standard errors are ported in parentheses. *, **

and *** correspond to significance at 10%, 5 % and 1 % level

Lagged Value AIG GS LEH

AIG -0.059 0.056 0.132∗

(0.069) (0.058) (0.069)

BAC 0.115 0.059 0.047

(0.091) (0.077) (0.092)

BARCLAYS 0.023 -0.068 -0.102

(0.091) (0.077) (0.091)

CITI 0.196∗ 0.162∗ 0.049

(0.105) (0.089) (0.106)

DB -0.006 -0.038 0.046

(0.088) (0.074) (0.089)

GS -0.105 −0.250∗∗ 0.102

(0.129) (0.109) (0.130)

JPM 0.035 -0.011 0.018

(0.040) (0.034) (0.040)

LEH −0.253∗∗∗ −0.162∗∗ −0.607∗∗∗

(0.092) (0.077) (0.092)

MS 0.162 0.153 0.127

(0.142) (0.119) (0.142)

UBS 0.149∗ 0.146∗∗ 0.102

(0.082) (0.069) (0.083)

WFC 0.018 −0.144∗ 0.013

(0.102) (0.086) (0.103)

N 379 379 379

Adj. R2 0.051 0.047 0.122
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Table 4: Summary statistics for CDS spread residuals from systematic risks as shown in (9).

The statistics show standard deviation (std), skewness and excess kurtosis. S&P 500 is also

shown for comparison.

Firm std skewness excess kurtosis

AIG 0.126 1.566 9.846

BAC 0.107 1.076 6.689

BARCLAYS 0.109 0.109 6.282

CITI 0.102 1.016 5.575

DB 0.114 1.145 10.219

GS 0.106 1.006 7.260

JPM 0.173 -0.283 11.730

LEH 0.132 2.598 24.138

MS 0.103 0.979 4.829

UBS 0.111 0.464 5.692

WFC 0.097 0.448 3.126

S&P 500 0.025 -0.199 1.286
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Table 6: Distance-to-default (m) implied from CDS spreads and the corresponding proba-

bility of default (PD) as of 31 July 2008.

Firm CDS Spread m PD (%)

AIG 257.71 2.87 1.433

BAC 113.78 3.75 0.746

BARCLAYS 130.82 3.60 0.209

CITI 149.22 3.47 0.362

DB 72.04 4.20 0.059

GS 135.30 3.57 0.018

JPM 102.76 3.85 0.006

LEH 346.52 2.53 4.959

MS 247.96 2.91 1.286

UBS 111.01 3.77 0.257

WFC 110.43 3.78 0.134
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Table 7: Conditional default probability. Panel A shows conditional default probability cal-

culated from the learned network structure. Panel B shows the increase in default probability

from the original default probability in Table 6.

Panel A: Conditional Probability of Default
Influence (% PD)

Firm AIG BAC BARC CITI DB GS JPM LEH MS UBS WFC

AIG

BAC 13.23 3.54 16.68 1.15 28.48 3.35 7.38

BARCLAYS 18.56 4.60 13.14

CITI 17.19 9.88 1.58 34.21 7.18 5.31

DB 25.20 17.03

GS 22.50 9.30 3.27 16.39 3.41 64.25 61.52 3.91 7.49

JPM

LEH 8.88

MS 10.81 1.45 5.47 0.55 64.25 1.63 1.34

UBS

WFC 25.17 36.87

Panel B: Increase in Probability of Default
Influence (% PD)

Firm AIG BAC BARC CITI DB GS JPM LEH MS UBS WFC

AIG

BAC 11.80 3.33 16.32 1.09 23.52 3.09 7.25

BARCLAYS 17.13 4.54 12.88

CITI 15.76 9.67 1.52 29.25 6.92 5.18

DB 23.77 16.77

GS 21.07 8.55 3.06 16.03 3.35 59.29 60.23 3.65 7.36

JPM

LEH 7.45

MS 9.38 1.24 5.11 0.49 59.29 1.37 1.21

UBS

WFC 23.74 31.91
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Figure 1: Example of a Bayesian network representing a student
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Figure 2: CDS spreads as a function of distance-to-default. The figure displays the CDS

spread computed with time to maturity T = 5, risk-free rate r = 0.025, and expected

recovery rate (R̂) = 0.4.
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Figure 3: CDS spreads as a function of distance-to-default. The figure displays the log of

CDS spread computed with time to maturity T = 5, risk-free rate r = 0.025, and expected

recovery rate (R̂) = 0.4.
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Figure 4: Time series of CDS spreads for Lehman Brothers (LEH), Goldman Sachs (GS)

and Citigroup (CITI).
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