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Abstract 
 
This study uses the two-factor valuation framework of Longstaff and Schwartz (1992a) to 

model the stochastic evolution of credit spreads and price European-type credit spread 

options. The level of the credit spread is the first stochastic factor and its volatility is the 

second factor. The advantage of this setup is that it allows the fitting of complex credit 

curves. Calibration of credit spread options prices is carried out using a replicating strategy. 

The estimated credit spread curves are then used to imply default probabilities under the 

Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull (1997) credit risk models.   
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1. Introduction 
 

Credit spread options are contracts, which “bet” on the potential movement of 

corporate bond yields relative to the movement of government bond yields. Credit 

spreads can be thought of as the compensation investors receive to accept all the 

incremental risks inherent in holding a particular bond instead of some “riskless” 

benchmark. Spread options are often used in the market for speculation and hedging 

of credit risk; ever since credit risk was commoditised, they constitute one of the 

better OTC instruments to replicate spread movements with controlled downside risk 

depending on the employed hedging strategy. 

In theory, the pricing of a European credit spread option resembles the valuation of an 

interest rate option. Assuming a complete market / no-arbitrage framework, the 

standard approach is to take the expectation under the “risk-neutral” probability 

measure of the contingent claim’s terminal payoff function. Hence, deriving the risk –

neutral distribution of the dynamics of the spread is the major step in obtaining a 

closed-form solution for credit spread options. So far, both the structural and reduced-

form credit risk modelling approaches failed to provide a closed-form expression for 

such contingent claims. For that reason, most research into the pricing of credit spread 

options has concentrated in numerical solutions. 

In this paper, we propose a “spread-based” framework for pricing credit spread 

options in which the short term credit spread rate (i.e., the rate at which corporations 

arrange their short term financing) and its volatility are the two stochastic variables 

that drive the underlying uncertainty within the Longstaff and Schwartz (1992a) –

hereafter LS- general equilibrium two-factor interest rate model (see Rebonato (1996) 
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for a survey of interest rate models). An obvious advantage of our approach is a 

unified pricing framework for both interest rate sensitive and credit sensitive 

securities. Furthermore, the estimation of the credit spread curves using the LS model 

facilitates in implying probabilities of default using the Jarrow and Turnbull (1995) 

framework -hereafter JT- and the transition rating matrix using the Jarrow, Lando and 

Turnbull (1997) model –hereafter JLT. In that sense, we differ from Arvanitis, 

Gregory and Laurent (1999) in that implied probabilities of default are obtained 

directly from credit spreads rather than bond prices. 

Interest rate models have been used before to model the dynamics of credit spreads 

(e.g., Duffie and Singleton (1994)). Our view is that the choice of the modelling 

framework has to be congruent with the observed credit spread characteristics. 

Pringent, Renault and Scaillet (2001) report that credit spread series show strong 

mean reversion. Furthermore, Duffie (1999) found that credit spread volatilities 

display GARCH-type effects.  

The LS framework has several advantages that make it attractive as a candidate for 

modelling credit spreads and pricing credit spread options, notably it is an affine 

model, thus enabling closed-form solutions for contingent claims, it can accommodate 

mean reversion and stochastic volatility and may give rise to complex shapes of credit 

curves. Longstaff & Schwartz (1995), following an empirical investigation into credit 

spreads, proposed a mean reverting model for the logarithm of the credit spread. The 

specification of their latter model is such that it provides closed form valuation 

expressions for risky bonds as well as risky floating rate debt. It is a two-factor model 

where one factor is the default free rate and the second factor (possibly correlated 

with the first) is the (default) risky rate. In essence, two yield curves can be estimated 

simultaneously based on observed default-free and defaultable bond prices. Whilst 
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appealing, the Longstaff and Schwartz (1995) framework has the main drawback that 

it only allows for monotonically increasing or hump shaped curves to be estimated, 

types that are clearly at odds with the observed characteristics of credit spreads.  

The remainder of the paper is organized as follows. Section 2 describes the LS (1992) 
 
two-factor equilibrium interest rate model, our preferred estimation method and way 
 
of inferring the risk-neutral density for option pricing. Section 3 outlines our 
 
adaptation of the LS framework in modelling the stochastic evolution of credit 
 
spreads and pricing credit spread options. Section 4 presents the data set and empirical 
 
results. Section 5 extents our credit spread approach in extracting implied 
 
probabilities of default and transition matrices. Finally, Section 6 concludes the paper.  
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2. The Theoretical Model  

2.1 The Longstaff and Schwartz Model 

The LS model considers a stylised version of the economy in which interest rates are 

obtained endogenously in an equilibrium set up. In their model, agents (investors) are 

faced at each point in time with the choice between investing or consuming the single 

good produced in the economy. If C(t) represents consumption at time t, the goal of 

the representative investor is to maximise, subject to budget constraints, his additive 

preferences of the form:  

)][exp( )(ln)( dssCs
tE ρ−   (1) 

Consumption at a future time s is ‘discounted’ to the present time t by a logarithmic 

utility discounting rate ρ. Consumption or reinvestment decisions have to be made 

subject to budget constraints of the form: 

Cdt
Q
dQWdW  -   =   (2) 

i.e., the infinitesimal change in wealth W over time dt is due to consumption (-Cdt) 

and returns from the production process (dQ / Q), scaled by the wealth invested in it 

(hence the constant-return-to-scales technology assumption). The returns on the 

physical investment (the only good produced by the economy) are in turn described 

by a stochastic differential equation of the form  

1  )  (  XdzdtYX
Q
dQ σθµ ++=    (3) 

, where dz1 is the Brownian motion increment, µ,  θ and σ are constants, and X and Y 

are two state variables (economic factors) chosen in such a way that X is the 

component of the expected returns unrelated to production uncertainty (i.e., to dz1), 
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and Y is the factor correlated with dQ. X and Y are described by the following 

stochastic differential equations  

2  )  (  XdzdtXadX γβ +−=   (4) 

3  )  (  Y YdzdtYd φεδ +−=    (5) 

Given the assumptions made, there is no correlation between the processes dz1 and 

dz2, on the one hand, and between dz2 and dz3 on the other. If one accepts that the 

optimal consumption is ρW (see Cox Ingersol and Ross (1985) –CIR henceforth), 

direct substitution of (3) and of the optimal consumption in the budget constraint 

equation (2) gives the stochastic differential equation for the dynamics of wealth: 

1  ) -  (  WYdzWdtYXdW σρθµ ++=    (6) 

Having obtained the stochastic differential equation obeyed by the wealth process of 

the representative investor, following CIR (1985), the partial differential equation  

that any contingent claim, H, satisfies is given by 
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, where x = X / c2 , y = Y / f2 , g = a / c2 ,  e = ξ ,  δ = b, η = d / f2, r is the 

instantaneous riskless rate, and the market price of risk is endogenously derived to be 

proportional to y, rather than exogenously assumed to have a certain functional form. 

The set of equations and assumptions described above provide a general equilibrium 

model for the economy as a whole. Contingent claims are priced in this framework as 

endogenous components of the economy, and their prices are therefore equilibrium 

prices.  

In particular, for the case of a zero-coupon bond, F, with terminal condition  

 F(r, V, 0) = 1, following separation of variables, equation (7) yields: 

(8)     ))()(exp()()(),,( 22 VDrCBAVrF ττκττττ ηγ ++=  
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The expression for the continuously compounded yield of a zero-coupon bond, Y, can 

be directly obtained as the negative of log(F(T)) / T 

 

(9)     )()()(log2)(log2)(
T

VTDrTCTBTATTY ++++−
=

ηγκ  

For practical option pricing applications, achieving a good fit to the term structure of 

volatilities can be as important as fitting the yield curve correctly. The volatility of 

rates of different maturities can be obtained by deriving the volatility of zero-coupon 

bond prices for different maturities, and then applying Ito’s lemma to convert the 

price volatility to yield volatility. Hence, the instantaneous volatility of bond returns is 
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2.2 Estimation of the Longstaff-Schwartz Model 

Earlier studies by Hordahl (2000) and Rebonato (1996) propose that a mixed 

(historical/implied) parametrisation procedure should be used for the calibration of the 

LS model. A purely implied approach is the one which regards the two state variables 

and the six parameters as fitting quantities, whereas a historical/implied approach 

involves the estimation of the short-rate volatility using time series and applying it to 

the model having only the six parameters as fitting quantities. 

In practice, the LS model is frequently estimated using cross-sectional data on T-bills 

and bonds/swaps for some specific point in time. This results in a new set of 

parameters each time the model is estimated. Using cross-sectional data rather than a 

time series approach to estimate the parameters of the model could possibly capture 
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changes in the dynamics of the term structure in a much more timely manner. Whilst 

this approach is not entirely compatible with the equilibrium set up of the model, it is 

nevertheless used in order to fit the model to observed bond prices as closely as 

possible. 

The estimation procedure relies on (8), which provides a closed form solution for the 

discount function. Using this expression, the six parameters of the LS model can be 

estimated with cross-sectional bond price/swap rate data, given initial values of the 

two state variables r and V. As a first step, the initial values of r and V are determined 

as follows: The short rate r is represented by the average of the yield of the most 

liquid short term instrument, i.e., a T-bill over the examined period, whereas the 

initial value of the variance of interest rate changes is estimated using a simple 

GARCH(1,1) model, assuming a constant conditional mean: 
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, where Ωt-1 denotes the information set at time t-1. 

Once the initial values of r and V are estimated, the next step is to estimate the six 

model parameters using cross-sectional data on T-Bills and Bonds across the Euro 

area for a reference date. Assuming that the observed market prices of these 

instruments differ from the prices obtained by the LS model (the “true” specification) 

by an error term with expected zero value, the estimates of the parameters of the LS 

model are obtained by minimizing the distance between the observed market prices 

and the model’s theoretical prices of bills and bonds: 
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, where Pi denotes the observed price of bill/bond(i) among the n different securities  

and Pi (r, V, Θ) is the corresponding LS price given the current values of r, V and the 

parameter vector.   

 
2.3 Option pricing using the Longstaff-Schwartz Density 

Given the well documented problems (see Rebonato (1996)) of the closed form 

approach suggested by LS (1992a,b) for estimating the risk neutral density, we have 

employed the Monte Carlo methodology of Hordahl (2000). Discretised versions of 

the processes for the short rate and its variance are used to simulate possible future 

realisations of r and V. Specifically, by using an Euler approximation and assuming 

weekly time steps, discrete versions of the continuous-time dynamics are obtained as 

follows: 
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, where ∆t = 1/52 (weekly interval) and ε1,t+∆t , ε2,t+∆t  are drawn from two independent 

standard normal distributions. Note that since we have assumed that the local 

expectations hypothesis holds, the above processes are approximations of the risk 

neutral dynamics of r and V.  

The above equations were used to simulate future values of r and V, in a recursive 

manner starting form the initial values r0 and V0, as outlined in the previous section. 

In this study, a time horizon of up to half a year is chosen, which means that 26 future 

values of r and V are simulated, given the choice of ∆t = 1/52. This process is then 

repeated 20,000 times with the same parameter values. Hence, for each of the 26 
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future weeks following the date of estimation, the described procedure produces a 

simulated sample consisting of 20,000 r’s and 20,000 V’s.  

The next step is to obtain an estimate of the risk neutral distribution (RND) of the 

future short-term interest rate at each time, which was done by using a simple 

histogram. In turn, under the RND of the short rate we can price European call, 

C(t,T), and put options, P(t,T), on bonds using: 
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Hence, using the Monte Carlo simulation we can use the discrete approximations of 

(15) and (16) to calculate option prices: 
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, where ∆t is the time step in the Monte Carlo simulation.  

 
 
3. The Methodology 

3.1 Credit Spread Curves  

There is sufficient empirical evidence to indicate that credit spreads and credit spread 

indices exhibit characteristics found in default free interest rates. Recent studies by 

Pedrosa and Roll (1998) and Koutmos (2002) point out that credit spreads show mean 

reversion in levels, term structure, time variation and jump characteristics in their 

respective volatilities.  
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Following the lead of Ramaswamy and Sundaresan (1996) who used a direct 

assumption about the stochastic process followed by the credit spread, we adapt the 

two-factor framework of LS to model the dynamics of the level of the short term 

credit spread and its instantaneous volatility: 

tttt

tttt
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 (19) 

This two-factor model is a very flexible tool to capture the stochastic evolution of 

credit spreads as it can accommodate both the mean reversion and the time varying 

volatility features of credit spreads (and credit spread indices). 

The estimation of credit spread curves is carried out using bond prices of various 

European corporates and EUR denominated government benchmark bonds (see next 

Section).  We apply a standard  bootstrapping methodology to the benchmark and 

corporate bonds in order to obtain market zero coupon discount factors. Once the 

discount factors of all the bonds were obtained, the spread discount factors were 

calculated by: 

 default. of casein  rate)(recovery  or default  no is  thereifmaturity at unit currency  1 paying
 of assumption under the i rating of bondcoupon  zerorisky  a is ),0(

maturityat unit currency  1 paying bondcoupon  zero freerisk  a is ),0(
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Note that the spread zero discount factor should always be positive. This is mainly 

insured by the fact that the benchmark discount curve is usually higher than the risky 

discount curves. In cases where this difference is less than zero then a potential 

mispricing has occurred.  
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Finally, we estimate the volatilities of the risk free short rate and of the respective 

short term credit spreads using the GARCH(1,1) model in (11) and (12).  

 
3.2 Pricing Credit Spread Options 

We adopt an engineering approach and assume that the price of an at-the-money 

credit spread option is equivalent to two vanilla options written on two assets, a 

government bond and a corporate bond. Hence, for a call on a credit spread we 

assume that the following condition holds when at the money: 

Spread(i) = yield(i) – yieldBenchmark

Call on spread(i) = Call on yield(i) + Put on yieldBenchmark   (21)

Note that this approximation is carried out for calibration purposes only and it holds 

theoretically if both the risk free and the defaultable bonds are discounted by the same 

risk free curve  

To illustrate, consider a call on the AA+ spread. This call option could be replicated 

by going long a call on a AA+ corporate yield and long on a put on the respective 

government benchmark yield. This just replicates the position on the underlying 

which is long the AA+ credit spread or just long AA+ calls.  

 
4. Empirical Results 
 
4.1 Credit Spread Data 

Two years of daily data were collected from Bloomberg between 07/05/02 – 07/05/04 

for the 6M Euro-LIBOR rate, and 6M AAA, AA+, AA-, BBB, BB, B credit spreads. 

All the corporate bonds were from the industrial sector apart from the AAA which 

was from the financial sector. The date, which we fitted the 6 different credit spread 

curves was the 7th of May 2004. The bonds were stripped to create the zeroes using a 
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bootstrapping procedure. All the bonds used to fit the credit spread curves are listed in 

Appendix 1. Figure 1 plots the 6M credit spreads over time. 

 
 

Figure 1: 6M credit spreads (May-02 – May-04)
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It is quite clear from the Figure above that the B spread is the highest of all. The 

higher rated spreads such as the 6M AAA and 6M AA+, 6M AA- are often quite low, 

as low as zero. This usually occurs when there is a huge amount of liquidity in the 

corporate market, which makes the short term financing among highly rated 

institutions “almost” risk free. This increased liquidity is related to the monetary 

policy by the European Central Bank, which reduced the level of interest rates during 

the period examined. Arguable, in periods of low interest rates there is an increased 

risk appetite since the cost of borrowing is quite low. 

Figure 2 plots the volatilities of the credit spreads. 
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Figure 2:  Credit Spread Volatility Curves (07/05/04) 
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4.2 Estimating Credit Spread Curves 

As before, the date of our analysis is the 7th of May 2004. After a long time of low 

credit spreads and continuous spread tightening we see the first signs of a reversal in 

the credit markets. The first 5 months of 2004 have been quite interesting since the 

increased liquidity and the global deflation theme has taken its toll. Investment in 

2004 is not a “sure thing” anymore across all asset classes and especially in credit 

where careful selection of credit –based investments superseded the theme of going 

long in all types of corporate bonds. During the period of examination, credit spread 

curves showed the first signs of spread widening. 

Table 1 shows the estimated parameters of the spread-based model in (19) using the 

discretized Monte Carlo approach in (14) and the minimization procedure in (13). The 
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first two rows report the initial average spread levels and their volatilities. The last 

four rows report parameter values that indicate that the spread reverts to its long term 

mean and so its volatility. 

Table 1: Estimation of the Parameters of the Spread-Based Model. 
 

 AAA 
Finance 

AA+ 
Industrials

AA- 
Industrials

BBB 
Industrials

BB 
Industrials

B 
Industrials 

Mean Spread 0.11% 0.12% 0.14% 0.46% 0.72% 3.44% 
V 27.72% 12.87% 12.21% 8.33% 19.55% 5.53% 
α 0.114 0.085 0.123 0.089 0.042 0.097 
β 18.515 11.973 14.995 21.995 22.000 15.759 
γ 0.070 0.184 0.100 0.167 0.052 0.112 
δ -0.179 0.109 -0.086 -0.001 -0.307 -0.432 
ε 0.001 -0.001 -0.001 -0.002 0.000 -0.001 
η 3.459 1.691 2.346 0.768 0.741 -21.009 

 

Table 2 shows the estimated spread discount factors and credit spreads based on the 

estimated parameters for the AA+, following the approach outlined in (20). The 

optimisation has worked quite well since reported differences between observed and 

estimated spread discount factors are quite small. 

 

Table 2:  Spread Discount Factors for EUR AA+ spread curve (07/05/04) 
 

Maturity /years Observed spread 
discount factors 

Estimated spread 
discount factors 

Estimated credit 
spreads in % 

0.25 0.00051 0.00124 0.510% 
0.5 0.00093 0.00163 0.364% 
1 0.00105 0.00170 0.211% 
2 0.00306 0.00272 0.152% 
3 0.00514 0.00429 0.164% 
4 0.00632 0.00708 0.189% 
5 0.01009 0.00983 0.214% 
7 0.01352 0.01282 0.254% 
8 0.01449 0.01436 0.268% 
9 0.01362 0.01690 0.281% 
10 0.02210 0.01976 0.291% 
 

In Figure 3 we observe the difference between the observed B-rated Industrial credit 

spread curve and spread-based model estimated credit spread curve. The fit is 
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surprisingly good even for a complex curve like this, enforcing our choice of model. 

Liquidity effects on the examined corporate bonds could be responsible for the actual 

shape or simply it is a reflection of expectations. 

  

 

Figure 3: EUR B Industrial Credit Spread Curve (07/05/04) 
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Figure 4 shows the estimated discount factors per credit spread curve including the 

estimated benchmark discount factor curve. The natural observation is that the spread 

zero discount factors are upward sloping curves as opposed to the downward slope of 

the benchmark discount factor curve. The absence of monotonic patterns in the 

discount functions of the credit spread curves is striking. It is clear that the shape of 

the credit curves is quite complex. Possible reasons are liquidity, which is always a 

major factor in the cash market of fixed income securities and potential arbitrage 

opportunities due to market mispricing. 
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Figure 4: Zero Discount Factors (07/05/04) 
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Figure 5 shows the spread-based model estimated credit spreads. Comparing it to the 

actual credit spreads shown in Figure 1, one observes that the estimated credit spreads 

are very close to the recorded ones.  

Figure 5: Estimated Credit Spread Curves (07/05/04) 
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The only serious mispricing occurs for the AAA curve. During the 2 – 7 year period 

the spread is higher than AA-. This is something that does not occur in the observed 

credit curves since the level of risk of holding AAA credit compared to AA- asset is 

always lower. A possible explanation is that the volatility of the AA+ and AA- curves 

is quite low relative to the AAA volatility for the period examined (see Figure 2). 

Another reason could be that the 2 to 7 year slice of the AA+ and AA- curves has not 

moved for some time, i.e. lack of liquidity or even lack of activity.   

The fact that the part of the AAA curve yields higher than the AA+ and AA- shows 

that although the spread-based LS model can fit complicated curve shapes and takes 

into account the volatility of credit spreads, nevertheless there is no guarantee that (i) 

the credit spread discount curves are strictly positive and (ii) the premium of holding a 

higher rated security is lower than the premium of holding a lower rated security. 

The main reason for this shortcoming is that the spread-based model is only 

concerned with fitting an observed credit spread term and its volatilities. However, the 

previously documented ability of the model to fit complex spread curves can be used 

to one’s advantage since, as we shall see later, there is quite a lot of information that 

can be extracted out of the estimated credit spread curves. Furthermore, the estimated 

credit spread curves can give us good insight in where the “equilibrium” of the short 

credit spread might be and also where the level of the forward credit spreads are. 

 

4.3 Pricing Credit Spread Options 

The estimated credit spread curves are in turn used to provide the forward structure of 

the credit spread with the view to pricing credit spread options; in line with our 

adopted approach, we assume that the spread is a stochastic variable which follows 

the diffusion equations in (16). Figure 6 shows the risk-neutral implied probability 
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density function (RND) for 3M and 6M AA+ industrials using the methodology 

outlined in Section 2.3. 

 

Figure 6: RND of Future 3M and 6M Credit spreads for AA+ Industrials (07/05/04). 
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Using the pricing methodology of Section 3.2, we price options on different credit 

spreads. The “calibration” of the credit spread options was performed via “Greeks” 

replication. The at-the-money spread options were replicated by buying 1 unit of an 

at-the-money corporate bond of rating (i) and buying ½ a unit of a government bond. 

For example the combination of the VMG bond and the OBL government bond 

options(see Appendix 1) will yield a Total Delta = (1x Duration(i) x Delta of option) 

+ (0.5 x Duration x Delta of Option), i.e., Total Delta of strategy = 1 x 2.574 x 0.5009 

+ 0.5 x 2.276 x (-0.499) = 0.50254, which is matched but the ATM spread option.  

Naturally, for different option moneyness, appropriate weights should be used to 

account for delta (and the rest of the Greeks) matching and for the payoff of credit 

spread options. 
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As a general rule, the two bonds are chosen to be of similar duration (see Table 3) and 

the options are struck at the at-the-money implied forward level, as extracted from the 

observed discount curve of the 07/05/04. The respective deltas are 0.5009 for the calls 

and -0.4999 for the puts. 

The maturity of the bonds is approximately 3Y and 2Y and the option maturities are 

3M, in other words, the credit spread options priced are 3M options on 3Y and 2Y 

underlyings, respectively. The spread options were struck at the same spread strike as 

the replicating strategy and the option implied volatility of the strategy was matched 

as well.    

 
Table 3:  Underlying Government and Corporate Bonds   

Strike Call Strike Put Government 
Bond Coupon Corporate 

Bond Coupon Duration 
Government 

Duration 
Corporate 

2.61 2.52 OBL 4 VMG 4 2.574 2.276 

2.77 2.57 BKO 2 Total 3.875 1.728 1.864 

2.96 2.57 BKO 2 Bosch 5.25 1.728 1.964 

3.27 2.57 BKO 2 Renault 5.125 1.728 1.972 

 
 

The total cost of the strategy (see Table 4) was expected to be higher than the 

respective option prices out of the spread-based model. The reason is that the 

fractional difference in the time value between the combination of the two options 

compared to the single spread option would increase the overall premium by almost 

the same amount. This small difference between the model-induced spread option 

values and the replicating strategy is shown in Table 4. The advantage of the spread-

based model over the industry’s standard Black’s (1976) model is mainly that our 

two-factor framework accounts for the stochastic nature of the volatility function. 
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Table 4:  Credit Spread Option Prices 

Rating Option Maturity/ 
Spread Maturity 

Price 
Difference 

LS Price 
(decimals)

Cost of 
Strategy 

(decimals) 

Government 
Bond Put 

Option 

Corporate 
Bond Call 

Option 

Spread 
Strike (bp)

AA 3M_3Y 0.008 0.553 0.545 0.499 0.295 9 

AA- 3M_2Y -0.006 0.367 0.374 0.315 0.216 20 

BBB 3M_2Y -0.003 0.403 0.406 0.315 0.248 39 

BBB 3M_2Y -0.013 0.541 0.555 0.315 0.397 70 

 
Longstaff and Schwartz (1995) arrive to an interesting result about credit spread 

options. Based on their proposed model, which assumes that credit spreads are 

conditionally log-normally distributed, they conclude that the value of call credit 

spread options can be less than the their intrinsic value. Based on our results, this 

finding is questionable. Table 4 reports that the value of credit spread options is 

higher than its intrinsic value. The reason is that, in our framework, the pricing of 

credit spread options is no different than the pricing of interest rate option, a clear 

advantage over the LS (1995) specification. 

 

5. Implied Probabilities of Default and Transition Matrices 

Arguably, one of the end results of credit risk modelling is to infer the survival 

probabilities and, possibly, transition matrices in order to price credit sensitive 

contingent claims. Credit spreads have been closely linked to the survival 

probabilities by many researchers, for example, JT (1995), JLTurnbull (1997), Madan 

and Unal (1994). Prior to using our estimated credit spreads in order to derive the 

survival probabilities2 we need to formally outline our choice of the theoretical credit 

risk model.  

                                                 
2 Since in these models first the implied probabilities are derived and then the credit spreads.  
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5.1`An Iterative Procedure to Extract Default Probabilities 

from Credit Spreads 

 
Within the JT (1995) equivalent recovery model in which the recovery rate δ is taken 

to be an exogenous constant, we assume that both the riskless interest rate r(t) and the 

spread s(t) evolve under the LS (1992) framework. Let B(t,T) be the time t price of a 

default-free zero-coupon bond paying 1 currency unit at time T. The money market 

account accumulates returns at the spot rate as: 

∫=
t

     dssrTtB
0

)(exp),(  in the continuous case
3

  (22) 

Let D(t,T) be the time t price of a risky zero-coupon bond promising to pay 1 

currency unit at time T if there is no default, and if default occurs it pays the recovery 

rate δ < 1. Following the assumption that the stochastic processes for default-free spot 

rate and bankruptcy are statistically independent under the risk neutral probability 

measure Q, we arrive at the standard equation: 
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Assuming that default hasn’t already occurred, the survival probability is: 

)1(
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−
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Since both D(t,T) and B(t,T) are zero-coupon bonds, we can express the difference 

between the two zeroes in terms of their instantaneous spread s(t,T): 
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Minor re-arrangement of the above expression relates the default probabilities with 

the forward credit spreads: 

∫
−=−

−
T

t

dts

t eTtQ
ττ

δ
),(

1)1)(,(    (26) 
 
Furthermore, for a small time dt, the short-term credit spreads are directly related to 

local default probabilities q(t,t+dt). Local default probabilities are the probability of 

default between t and t + dt, conditional on no default prior to time t. In addition, we 

can relate the probability of default to the intensity of the default process as in 

Arvanitis, Gregory and Laurent (1999): 

dt
dtttqt ),()( +

=λ      (27) 

The next step is to use the spread discount factors obtained under our spread-based 

model to derive the local default probabilities and, subsequently, the conditional 

default probabilities. The following iterative procedure will be used in order to extract 

the survival probabilities out of the term structure of credit spreads. 

 

 

 

 

 

 

 

For t < τ  < T      
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Following the determination of the local default probabilities we can now determine 

the cumulative survival probabilities taking into account again the two possibilities at 

each time point: default and no-default. 
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In the following subsection, using the ratings model of Jarrow, Lando and Turnbull 

(1997) – hereafter JLT-, we will demonstrate how the risk premia as estimated using 

the LS (1992) model can be used to derive the implied ratings transition matrix. 
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5.2 Inferring Transition Probabilities from Credit Spreads 

In JLT (1997), the dynamics of K- possible credit ratings are represented by a Markov 

chain. The first state of the Markov chain corresponds to the best credit quality and 

the (K-1) state the worst before default. The Kth state represents default and is an 

absorbing state, which pays the recovery rate δ times the security’s par value.  

The dynamics of credit ratings are characterised by a set of transition matrices Q’(t,T) 

( k x k matrices) for any period between time t and T with each of their elements 

qij(t,T) representing the probability of migrating from rating i at time t to rating j at 

time T. The last column of Q’(t,T) ( qik(t,T)) gives the default probabilities.  

In JLT (1997) and Arvanitis, Gregory and Laurent (1999), the transition probability 

matrix is expressed exponentially: 

)](exp[),(' tTTtQ −Λ=    (30) 

The matrix Λ ( k x k) is called the generator of transition matrices Q’(t,T) and is 

assumed to be diagonalisable4. JLT (1997) postulated that the generator matrix, under 

the equivalent martingale measure, may be expressed as: 

)()()( ttUt Λ=Λ    (31) 

, where U(t) is the vector of the risk premia which transform the historical generator 

matrix to the risk neutral. The elements of the generator matrix are directly related to 

probabilities: The probability of staying to the same rating i from time t to t + dt is 1 + 

λii dt. The probability of going from rating i to rating j (i≠j) is λij dt and the 

probability from rating i to default is λik dt (j≠k). The transition probabilities are 

                                                 
4 For example Λ = Σ D Σ−1 where D is a diagonal matrix 
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constrained by further assumptions is order to ensure the proper evolution of credit 

spreads5.  

Since the generator matrix is diagonalisable, using (30) we get: 

1)](exp[).(' −Σ−Σ= tTDTtQ    (32) 

, where D represent the eigenvalues of the generator matrix and Σ represent its’ 

eigenvectors.  

Using (27) the probabilities of default are being expressed: 
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Hence, using (28) we can write: 
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Using (28) and (29), we can solve for the credit spread of rating i: 
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Equation (35) shows how the credit spreads are related to the eigenvectors and 

eigenvalues of the generator matrix. Furthermore, it provides the term of credit 

spreads based on a given generator matrix. JLT (1997) did outline a procedure that 

could be used to estimate the above using as inputs market prices of default free zero-

coupon bonds, risky zero-coupon bonds and the historical generator matrix. The 

procedure involves estimating the risk premia using the observed market prices and 

                                                 
5 λij >= 0 always. The sum of transition probabilities , is equal to 

one.  The k-th state is absorbing, i.e., λ

∑
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then multiplying the risk premia diagonal matrix (diag(π1,.....πΚ−1,1)) by the historical 

generator matrix. In this way the Q’(0,t) matrix is calculated and subsequently the 

Q’(0,t+1) matrix can be calculated using: 

))()1,,....(exp(),(' 11 tTdiagTtQ k −Λ= −ππ   (36)   

This iterative procedure produces the risk neutral transition matrix based on current 

risk premia. Their next step is to minimise the risk premia by minimising the 

difference between the theoretical risky zero-coupon bond prices estimated using the 

risk-neutral transition matrix and the observed risky zero-coupon bond prices.  

Along similar lines, following the estimation of the credit spreads we minimise the 

difference between our estimated spreads and the spreads derived (using (27)) under 

the historical transition matrix6 as published in JLT (1997). Essentially, we use the 

risk premia as derived from our estimated spread curves in order to derive the risk 

neutral generator matrix.  

 

5.3. Implied Probabilities of Default: The Results 

By estimating zero-coupon spreads and given a historical recovery rate, we extract  

default probabilities in the same way as one would use risky zero-coupon bonds and 

default free zero-coupon bonds. Using the estimated spread curves (see Section 4.2), 

the relevant Bloomberg data7 and the weighted recovery rate (0.3265) as used by JLT 

(1997), we are in a position to infer the cumulative probabilities of default. 

The pattern of the cumulative default probabilities follows the risk premia one as 

obtained from the estimated spread discount factors. The probability of default is 

higher for lower ratings and increases with time. If we take a closer look at Figures 7 

                                                 
6 This is the historical transition matrix as published by Moody’s. Other rating agencies such as S&P 
also publish similar matrices on a regular basis. 
7 See appendix 2 as the default probability curves were obtained for the 7th of May 2004. 
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and 8 for example, we will realise that the probabilities are not straightforward 

exponential curves as one would expect, instead there is a higher level of convexity. A 

potential explanation may be the inclusion of the volatility of the spread when the 

curves were estimated.  

Figure 7: Cumulative Default Probabilities 
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Figure 8: Implied Cumulative Default Probability Curve of Rating B 
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Hence the shape of the implied probability of default, which shows that the term 

structure of default is directly related to the term structure of the credit spread curves, 

both statically and dynamically. This is easily deduced since our inputs are the credit 

spreads themselves. 

 Figure 9 shows plots of weekly time series of the implied default probabilities. It is 

evident that default risk is relatively low during the period examined. This is in 

accordance with the environment of low interest rates (US and Euro area), which 

allows corporations to borrow money at historically low interest rates, thus making 

their debt servicing cost very low. 

 

Figure 9: Evolution of 2Y implied default probabilities 
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An interesting observation is that for a brief period of time the probability of default 

of rating BBB+, as implied from the estimated credit spreads, was lower than the 

probability of default of rating A. This is clearly in violation of no-arbitrage. 

However, in our case this could be due to a mis-pricing that, thankfully, did not last 
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long. Alternatively it could be the result of market pricing in a rating upgrade event 

for the sample of bonds examined.  This could make sense since a number of 

corporations (again fuelled by a low interest rate environment) were placed on a 

positive outlook by major rating agencies. 

5.4. Implied Transition Ratings Matrix: The Results 

Table 5 shows the 1-year historical transition matrix reported in JLT [1997], whereas 

Table 6 reports our results for the implied transition ratings matrix using the spread 

risk premia as obtained from the spread-based model.  

Table 5 ( JLT (1997): 1 Year Historical Transition Matrix) 
 

 AAA AA A BBB BB B CCC D 
AAA -0.1154 0.1020 0.0083 0.0020 0.0032 0.0000 0.0000 0.0000 
AA 0.0091 -0.1043 0.0787 0.0104 0.0031 0.0031 0.0000 0.0000 
A 0.0009 0.0308 -0.1172 0.0688 0.0107 0.0048 0.0000 0.0010 
BBB 0.0006 0.0046 0.0714 -0.1711 0.0701 0.0174 0.0020 0.0049 
BB 0.0004 0.0023 0.0086 0.0814 -0.2531 0.1181 0.0144 0.0273 
B 0.0000 0.0020 0.0034 0.0075 0.0568 -0.1929 0.0478 0.0753 
CCC 0.0000 0.0000 0.0126 0.0131 0.0223 0.0928 -0.4319 0.2856 
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 

Table 6:  Implied Transition Rating Matrix (07/05/04) 
 AAA AA A BBB BB B CCC D 

AAA -0.1302 0.1148 0.0092 0.0022 0.0035 0.0001 0.0001 0.0001 
AA 0.0158 -0.1815 0.1370 0.0180 0.0052 0.0053 0.0001 0.0002 
A 0.0017 0.0584 -0.2214 0.1298 0.0203 0.0090 0.0002 0.0018 
BBB 0.0007 0.0057 0.0954 -0.2292 0.0938 0.0233 0.0027 0.0065 
BB -0.0001 0.0013 0.0055 0.0495 -0.1540 0.0718 0.0087 0.0165 
B -0.0001 0.0018 0.0025 0.0056 0.0425 -0.1445 0.0356 0.0563 
CCC -0.0001 0.0003 0.0043 0.0041 0.0066 0.0275 -0.1278 0.0845 
D 0.0000 -0.0001 -0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 
 

 

There are striking differences between the two generator matrices especially in the 

last column, which shows the implied cumulative probability of default. The historical 

matrix seems to produce much higher probabilities of default in comparison to the 

implied generator matrix. This is easily explained by the fact that the levels of credit 
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spreads at 07/05/04 are very low. One could argue that default risk, as being viewed 

by the market (risk premia), is quite low with a tendency to increase, since the 

probabilities of being at the same rating after 1 year are lower than the historical 

transition probabilities.  

Table 7 shows the model-based input spreads in comparison to the spreads implied 

using the risk neutral generator matrix (Table 6). 

 

Table 7:  Credit Spreads used for Calibration to Infer the Transition Ratings Matrix 
 

Rating 

Spread as 
estimated from 

historical matrix in 
bp 

Spread as 
estimated 
from risk-

neutral 
matrix in bp

Model-based 
Spread in bp

Difference in 
bp 

AAA 21 1 7 6 
AA 29 1 11 10 
A 46 12 12 0 
BBB  50 44 41 -3 
BB 89 112 107 -5 
B 472 386 375 -11 
CCC 1698 586 578 -8 

 

In absolute terms, the differences seem quite small. An interesting point however, is 

that the 1Y AAA and AA spreads as implied from the rating matrix are 1bp whereas 

the model-based are six to ten times higher. 

On the other hand, the implied spreads using the historical generator matrix are very 

much different as it can be seen by looking at the default probabilities (last column in 

Table 5). This shows again that the current risk premia are much different than the 

historical averages, hence the big difference between the spreads. 

This difference between the spreads needs to be thought carefully when one is 

measuring risk and even when one is marking to market. As we’ve just seen, 

historical default data show that the “fair value” of credit spreads is much higher than 
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they are at the point of our evaluation. However, one cannot measure risk based on 

that “fair value” because market rates fluctuate according to market expectations.  

What is mainly important when measuring risk is the time horizon, the volatility of 

the underlying rates over the specified horizon and the details of the risky position 

(maturity, size, direction). An examination of the dynamic evolution of the 

eigenvalues of the generator  matrix (see Figure 10), derived from the weekly credit 

spreads as obtained from our spread-based model, helps in understanding how the risk 

neutral transition probability matrix shapes up over time.  

 

Figure 10: Weekly Evolutions of Eigenvalues 
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6. Conclusion 
 
In this paper, using the flexible framework of LS (1992), we propose a two-factor 

model for the dynamic evolution of credit spreads. The credit spread level and its 

instantaneous volatility are the two stochastic factors. It was shown that, as a 

theoretical model, it is capable of providing a fairly accurate pricing framework, 
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where complex credit curve shapes can be accommodated, thus reflecting observed 

market rates, as well as the volatility term structure making the model quite appealing 

for option pricing applications.  

We fitted the model to benchmark and corporate data and estimated its parameters 

using a cross-section / Monte Carlo simulation approach. Using a replication strategy, 

we carried on pricing credit spread options. Furthermore, the credit spread curves 

were used to infer default probabilities and transition matrices, showing an alternative 

way for their extraction based directly on spread data rather than bond prices. 

The reported results are quite encouraging for the ability of our framework to deal 

with real issues in credit markets and form the basis of a valuation and credit risk 

management system. What remains for future research is to explore as to whether 

similar reassuring results could be found in different epochs of the credit markets.   
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Appendices 
 
Appendix 1: List of Bonds at 07/05/2004  

 

Coupon Coupon 
Frequency Maturity Time to 

Maturity Name Price Moody's 
Rating 

2 1 20-Oct-04 1.48 GERMAN TREASURY BILL 99.066 Benchmark 

2.5 1 18-Mar-05 1.89 BUNDESSCHATZANWEISUNGEN 100.225 Benchmark 

2 1 10-Mar-06 2.88 BUNDESSCHATZANWEISUNGEN 98.971 Benchmark 

4 1 16-Feb-07 3.84 BUNDESOBLIGATION 102.754 Benchmark 

4.25 1 15-Feb-08 4.85 BUNDESOBLIGATION 103.42 Benchmark 

3.25 1 17-Apr-09 6.03 BUNDESOBLIGATION 98.596 Benchmark 

5.375 1 4-Jan-10 6.76 BUNDESREPUB. DEUTSCHLAND 108.367 Benchmark 

5.25 1 4-Jan-11 7.78 BUNDESREPUB. DEUTSCHLAND 107.77 Benchmark 

5 1 4-Jan-12 8.79 BUNDESREPUB. DEUTSCHLAND 105.994 Benchmark 

4.5 1 4-Jan-13 9.81 BUNDESREPUB. DEUTSCHLAND 102.044 Benchmark 

4.25 1 4-Jan-14 10.82 BUNDESREPUB. DEUTSCHLAND 99.555 Benchmark 

6.25 1 4-Jan-24 20.96 BUNDESREPUB. DEUTSCHLAND 117.212 Benchmark 

4.75 1 4-Jul-34 31.61 BUNDESREPUB. DEUTSCHLAND 96.144 Benchmark 

4.5 1 11-Aug-04 0.27 LEASE ASSET BACKED SECS 100.69 AAA 

5 1 28-Jan-05 0.74 VAUBAN MOBILISATION GAR 101.94 AAA 

7.4 1 13-Apr-05 0.95 CSSE DE REF DE L'HABITAT 104.54 AAA 

3.625 1 19-Sep-05 1.39 CDC IXIS 101.47 AAA 

2.75 1 6-Mar-06 1.86 CIF EUROMORTGAGE 100.07 AAA 

6 1 6-Jun-06 2.11 CSSE DE REF DE L'HABITAT 106.21 AAA 

6.75 1 24-Jul-06 2.24 FI MORTGAGE SECURITIES 108.10 AAA 

4 1 30-Oct-06 2.52 VAUBAN MOBILISATION GAR 102.18 AAA 

4 1 30-Jul-07 3.28 VAUBAN MOBILISATION GAR 101.98 AAA 

3.5 1 12-Nov-07 3.57 CIF EUROMORTGAGE 100.74 AAA 

5.375 1 28-Jan-08 3.78 VAUBAN MOBILISATION GAR 106.43 AAA 

5 1 25-Apr-08 4.03 CSSE DE REF DE L'HABITAT 105.67 AAA 

2.75 1 26-Jun-08 4.20 CDC IXIS 97.22 AAA 

5 1 15-Jul-08 4.25 COLONNADE SECURITIES BV 105.49 AAA 

4.4 1 9-Oct-08 4.49 CDC FINANCE - CDC IXIS 102.98 AAA 

4.5 1 28-Oct-08 4.54 VAUBAN MOBILISATION GAR 103.41 AAA 

4.75 1 29-Oct-08 4.54 CIF EUROMORTGAGE 104.76 AAA 

4.5 1 12-Nov-08 4.58 SAGESS 103.44 AAA 

4.375 1 28-Apr-09 5.05 VAUBAN MOBILISATION GAR 102.27 AAA 

4.25 1 15-Jul-09 5.26 COLONNADE SECURITIES BV 101.91 AAA 

5.8 1 21-Jul-09 5.28 CDC FINANCE - CDC IXIS 109.16 AAA 

4 1 25-Oct-09 5.55 CAISSE REFINANCE HYPOTHE 100.67 AAA 

5.875 1 15-Apr-10 6.03 COLONNADE SECURITIES BV 109.96 AAA 

5.75 1 25-Apr-10 6.05 CSSE DE REF DE L'HABITAT 108.76 AAA 

3.625 1 16-Jul-10 6.28 CIF EUROMORTGAGE 98.21 AAA 

6.125 1 2-Aug-10 6.33 CDC IXIS CAPITAL MARKETS 110.48 AAA 

4.375 1 25-Apr-11 7.07 CREDIT D'EQUIPEMENT PME 102.04 AAA 

4.2 1 25-Apr-11 7.07 CSSE DE REF DE L'HABITAT 100.59 AAA 

5.25 1 27-Apr-11 7.07 SAGESS 106.46 AAA 

5.375 1 6-Jul-11 7.27 CDC IXIS 107.37 AAA 
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6 1 28-Oct-11 7.58 VAUBAN MOBILISATION GAR 110.79 AAA 

9 1 4-Jun-12 8.19 CDC FINANCE - CDC IXIS 131.62 AAA 

5.25 1 30-Jul-12 8.35 VAUBAN MOBILISATION GAR 105.69 AAA 

4.625 1 11-Oct-12 8.55 CIF EUROMORTGAGE 102.22 AAA 

4.25 1 25-Feb-13 8.93 SAGESS 98.46 AAA 

3.75 1 29-Jul-13 9.36 VAUBAN MOBILISATION GAR 94.07 AAA 

5 1 25-Oct-13 9.61 CSSE DE REF DE L'HABITAT 104.11 AAA 

4.625 1 29-Oct-13 9.62 GE CAPITAL EURO FUNDING 100.35 AAA 

4.5 1 10-Dec-13 9.73 CIF EUROMORTGAGE 100.30 AAA 

4.25 1 25-Oct-14 10.62 CSSE DE REF DE L'HABITAT 97.54 AAA 

5.625 1 5-Oct-04 0.42 TOTAL S.A. 101.27 AA+ 

5.375 1 2-Jun-05 1.09 TOTAL S.A. 102.9797 AA+ 

5.75 1 29-Sep-05 1.42 TOTAL S.A. 104.1994 AA+ 

3.875 1 5-May-06 2.02 TOTAL S.A. 102.025646 AA+ 

3.5 1 28-Jan-08 3.78 TOTAL CAPITAL SA 100.3972 AA+ 

6.75 1 25-Oct-08 4.53 TOTAL S.A. 112.359751 AA+ 

4.5 1 23-Mar-09 4.95 ELF AQUITAINE 103.1601115 AA+ 

5.125 1 21-Jul-09 5.28 TOTAL S.A. 105.8525402 AA+ 

3.75 1 11-Feb-10 5.85 TOTAL CAPITAL SA 98.84618 AA+ 

6 1 15-Jun-10 6.19 DEUTSCHE BAHN FINANCE BV 110.095819 AA+ 

5.375 1 31-Jul-12 8.35 DEUTSCHE BAHN FINANCE BV 106.290683 AA+ 

4 1 15-Jul-13 9.32 CORES 96.07047325 AA+ 

5.125 1 28-Nov-13 9.70 DEUTSCHE BAHN FINANCE BV 104.194642 AA+ 

4.25 1 8-Jul-15 11.33 DEUTSCHE BAHN FINANCE BV 95.409185 AA+ 

4.75 1 14-Mar-18 14.05 DEUTSCHE BAHN FINANCE BV 99.0625 AA+ 

5.75 1 25-Jul-05 1.23 BASF AG 103.7633 AA- 

5 1 4-Jul-06 2.19 SIEMENS FINANCIERINGSMAT 104.1403 AA- 

5.25 1 19-Jul-06 2.23 ROBERT BOSCH GMBH 104.6612 AA- 

5.5 1 12-Mar-07 2.89 SIEMENS FINANCIERINGSMAT 107.501 AA- 

6 1 12-Nov-09 5.60 AGBAR INTERNATIONAL BV 109.5807945 AA- 

6.125 1 9-Jun-10 6.18 ENI SPA 111.2364045 AA- 

3.5 1 8-Jul-10 6.26 BASF AG 97.08931 AA- 

5.75 1 4-Jul-11 7.26 SIEMENS FINANCIERINGSMAT 106.0491085 AA- 

5.25 1 3-Jul-12 8.28 POSTE ITALIANE SPA 106.1753285 AA- 

4.625 1 30-Apr-13 9.11 ENI SPA 100.43 AA- 

4.375 1 8-Jul-13 9.30 SCHIPHOL NEDERLAND B.V. 98.3458685 AA- 

5 1 12-Jul-04 0.18 METRO FINANCE BV 100.459494 BBB 

4.375 1 15-Jul-04 0.19 LAFARGE 100.1325 BBB 

5.1 1 3-Feb-05 0.76 LAFARGE 101.7728837 BBB 

4.625 1 4-Mar-05 0.84 LAFARGE SA 101.662287 BBB 

5.875 1 14-Apr-05 0.95 CASINO GUICHARD PERRACH 102.823 BBB 

5.875 1 4-Jul-05 1.18 COCA COLA ERFRISCHUNGETR 104.325139 BBB 

4.75 1 8-Nov-05 1.53 VEOLIA ENVIRONNEMENT 102.883294 BBB 

5.125 1 16-Dec-05 1.63 WOLTERS KLUWER NV 102.755013 BBB 

5.8 1 20-Dec-05 1.64 RENAULT S.A. 104.32669 BBB 

5.75 1 9-Mar-06 1.86 METRO FINANCE BV 104.4988325 BBB 

5.125 1 26-Jun-06 2.17 LAFARGE SA 104.002809 BBB 

5.75 1 5-Jul-06 2.19 ACCOR 104.8090935 BBB 

4.75 1 6-Jul-06 2.19 CASINO GUICHARD PERRACH 103.253698 BBB 

5.25 1 14-Jul-06 2.22 THYSSENKRUPP FINANCE BV 103.273288 BBB 

5.125 1 21-Jul-06 2.24 RENAULT S.A. 104.0950895 BBB 

5.75 1 4-Dec-06 2.61 REPSOL INTL FINANCE 105.934727 BBB 
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5 1 20-Dec-06 2.66 ACCOR 103.521971 BBB 

6 1 7-May-07 3.04 IMERYS SA 106.9570215 BBB 

6.25 1 11-Jun-07 3.14 WOLTERS KLUWER NV 105.646174 BBB 

6.375 1 26-Jul-07 3.26 LAFARGE SA 108.0797 BBB 

6.375 1 19-Oct-07 3.50 RENAULT S.A. 108.650034 BBB 

5.875 1 23-Nov-07 3.60 CASINO GUICHARD PERRACH 106.73 BBB 

5.4 1 3-Feb-08 3.80 LAFARGE SA 105.213752 BBB 

5.125 1 13-Feb-08 3.83 METRO AG 104.23 BBB 

6 1 6-Mar-08 3.89 CASINO GUICHARD PERRACH 107.75 BBB 

6.125 1 10-Apr-08 3.98 ARCELOR FINANCE 107.31 BBB 

5.875 1 27-Jun-08 4.20 VEOLIA ENVIRONNEMENT 107.6119 BBB 

5.875 1 6-Nov-08 4.57 LAFARGE SA 107.2164 BBB 

4.5 1 19-Nov-08 4.60 SES GLOBAL SA 102.1875 BBB 

4.8 1 22-Dec-08 4.69 LOTTOMATICA SPA 100.2632495 BBB 

6.125 1 26-Jun-09 5.21 RENAULT S.A. 108.7227 BBB 

5.875 1 10-Jul-09 5.25 SOCIETE DES CIMENTS FRAN 106.76686 BBB 

6.35 1 1-Oct-09 5.48 UPM-KYMMENE CORP 109.443937 BBB 

5.25 1 28-Apr-10 6.06 CASINO GUICHARD PERRACH 103.8952 BBB 

6 1 5-May-10 6.08 REPSOL INTL FINANCE B.V. 108.08 BBB 

4.625 1 28-May-10 6.14 RENAULT S.A. 101.1394 BBB 

5.125 1 24-Sep-10 6.48 ARCELOR FINANCE 102.1968 BBB 

6.125 1 23-Jan-12 7.83 UPM-KYMMENE CORP 108.165776 BBB 

5.875 1 1-Feb-12 7.85 VEOLIA ENVIRONNEMENT 107.2922 BBB 

6 1 27-Feb-12 7.92 CASINO GUICHARD PERRACH 106.6245 BBB 

4.875 1 28-May-13 9.19 VEOLIA ENVIRONNEMENT 99.44154 BBB 

5 1 22-Jul-13 9.34 REPSOL INTL FINANCE 99.99 BBB 

5.448 1 4-Dec-13 9.72 LAFARGE SA 102.56 BBB 

5.375 1 28-May-18 14.26 VEOLIA ENVIRONNEMENT 98.75 BBB 

6.125 1 25-Nov-33 29.98 VEOLIA ENVIRONNEMENT 99.76 BBB 
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Appendix 2: FMC Definition (Bloomberg) 

 

FMC curves are created using prices from new issue calendars, trading/portfolio 

systems, dealers, brokers, and evaluation services which are fed directly into the 

specified bond sector databases on an overnight basis. All prices are used.  

All bonds for each sector are then subject to option adjusted spread (OAS) analysis 

and the option-free yields are then plotted from the fair market yield curve without 

any yields being distorted by embedded calls, puts, or sinks. This allows bonds with 

very different structures to be compared on an equivalent basis. A best fit curve is 

then drawn from the option-free yields, resulting in a specific yield curve for each 

bond category. 

Debt issues are divided into hundreds of sectors that are grouped by several variables 

such as rating or industry type. The sectors are numbered, and an option-free yield 

curve is constructed daily for each sector. The ratings categories for each sector are 

expressed as Bloomberg Composite Ratings, which are blends of Moody’s Investor 

Service and Standard & Poor’s ratings. 
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