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Extension of Random Matrix Theory to the

L-moments for Robust Portfolio Allocation

1 Introduction

Markowitz (1952) showed that an investor who cares only about expected returns and

volatility of static portfolio should hold a portfolio on the efficient frontier. To implement

this portfolio in practice needs to estimate both expected returns and covariance matrix

from the time series. Traditionally, the sample mean and the empirical covariance matrix

have been used for this purpose. But due to the estimation errors, the portfolio that relies

on the sample estimate typically performs poorly out of sample.

It is well known that it is more difficult to estimate expected returns than covariance

matrix (see Merton, 1980), and also that errors into the sample mean have a larger impact

on portfolio weights than errors into the sample covariance matrix. For this reason, recent

research has focused on the Global Minimum Variance Portfolio (GMVP), which relies

solely on estimation of covariance, and thus, is less vulnerable to the estimation errors

than the mean-variance portfolio. Indeed, the superiority of GMVP is highlighted by

extensive empirical evidences which show that GMVP usually performs better out-of-

sample than any other mean-variance portfolio, even when the Sharpe ratio or others

performance measures that depend on both the portfolio mean and variance are used for

evaluating performance1.

However, as Pafka and Kondor (2004) state, the empirical estimator of the covariance

matrix often suffers from the “curse of dimensions”. In practice, many times the length

of the stock returns’ time series (T ) used for the estimation is not big enough compared

to the number of stocks (N). As a result, the obtained empirical covariance matrix is

ill conditioned. Typically, an ill conditioned covariance matrix exhibits implausibly large

off-diagonal elements. Michaud (1989) points out that inverting such a matrix amplifies

the estimation errors tremendously. Furthermore, when N is bigger than T , the sample

covariance matrix is even not invertible at all (see Ledoit and Wolf, 2003). Another

limit of the empirical estimator of the covariance matrix is pointed out by DeMiguel and

Nogales (2007); the empirical covariance matrix is the maximum likelihood estimator of

1Haugen, 1999 shows that GMVP from the S&P500 universe has a better Sharpe ratio than the S&P500
index.
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the covariance matrix. If the maximum likelihood estimators are very efficient for a normal

distribution, they are very sensitive to deviation from the normal. Moreover, empirical

evidences show the non-normality of returns on the markets.

In the literature, several approaches have been proposed to deal with the problem

of estimating the large number of elements in the covariance matrix. One approach is to

impose some structure on the estimator of the covariance matrix by shrinking the empirical

covariance matrix. Ledoit and Wolf (2001) propose a weighted average estimator of the

covariance matrix between the sample covariance and a target estimator well structured2.

Fan et al. (2007) use a similar approach to give a stationary property to a time-domain3

estimator of the covariance matrix.

A second approach consists to give some structural properties to the covariance matrix

by imposing a portfolio norm constraint (see Frost and Savarino, 1988 and Chopra, 1993).

DeMiguel et al. (2007) suggest to impose a norm constraint on the portfolio program and

show some analytical relations between this constraint and the shortage threshold which

can be supported by investors.

Several empirical evidences call into question the one factor model and show that except

the market factor, others risk factors exist and should be taken into account (see Black

et al., 1972), this is at the origin of the multi-factor models. Some statistical methods

like the principal component analysis have been used by the literature to extract factors

on the historical returns, but this approach do not allows for distinguishing factors which

contain real information and noise. The Random matrix theory developed by physicians

in order to understand the energy process for which sources are unknown (see Edelman,

1989), gives a solution for filtering noise. For an application of the Random matrix theory

to the portfolio asset allocation, see Laloux et al., (1999) and Plerou et al. (2001).

Usually, the empirical variance is used to measure the portfolio volatility. But the

classical variance tends to be very sensitive to extreme values notably when the size of

the estimation window is not important in comparison with the number of assets in the

universe. An alternative method to understand moments of a distribution is obtained by a

linear combination of order statistics named L-moments. Introduced by Sillito (1951) and

popularized by Hosking et al. (1985), L-moments can be interpreted, like classical mo-

ments, as simple descriptors of the shape of a general distribution and they offer a number

of advantages over conventional moments. First, all of the population L-moments exist and

determine uniquely a probability distribution, provided that the mean of the distribution

2For instance, the one factor model of Sharpe (1963) allows to build a structured estimator of the
covariance matrix.

3The time-domain estimators take into account all observed returns to build an estimator (the sample
covariance matrix for instance), contrary to the state-domain estimators which consider only all historical
data returns close of the actual returns.
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exists (see Hosking, 1990). That is, a distribution may be specified by its L-moments, even

if some of its conventional higher-order moments do not exist. Furthermore this specifi-

cation is always unique. Second, their sample estimates are more robust to data outliers4

and more efficient than classical moments (see Hosking, 1986). Moreover, although sample

moment-based ratios can be arbitrarily large, sample standardized L-moments have alge-

braic bounds (see Hosking, 1989). Motivated by the sampling properties of L-statistics,

Hosking and Wallis (1987) have advocated that the estimation method of L-moments must

provide a better approximation of the unknown parent distribution than the traditional

moments. Serfling and Xiao (2007) develop co-Lmoment in a multivariate framework and

this makes interesting to use the Lvariance-covariance matrix in the portfolio allocation

problem.

However, Jagannathan and Ma (2003) show that imposing a short sale constraint

when minimizing the portfolio variance is equivalent to shrink the extreme elements of

the covariance matrix. This simple remedy for dealing with estimation errors performs

very well. In fact, Jagannathan and Ma (2003) find that the sample covariance matrix

(with short sale constraints) performs almost as well as those constructed using robust

estimators of the covariance matrix.

The goal of this paper is to propose an estimator of the covariance matrix which

performs well than the empirical covariance matrix, even when a short sale constraint

is imposed, by using the Random matrix theory to extract real information from the

Lvariance-covariance matrix. For this purpose, we first propose a symmetric version of

the Lvariance-covariance matrix for the Markowitz framework, then we show empirical

evidences motivating the use of the Random matrix theory to extract factors which con-

tain real information in the the Lcorrelation matrix. Finally an empirical study on the

American market shows that the GMLP (Global Minimum Lvariance Portfolio) derived

from our estimator performs well out-of-sample than the empirical covariance when a short

sale constraint is imposed.

The remainder of this paper is organized as follow. Section two presents the L-moments

and their multivariate extensions. In section three, we introduce the Random matrix

theory and explain the intuition behind their use in finance. Empirical evidences allow

us to justify the use of the Random matrix theory to extract factors which contain real

information in the Lvariance-covariance matrix, this is the fourth section. Finally, in

section five, we compare the GMLP derived from our estimator, with the GMVP derived

from the empirical estimator.

4Since they are only linearly influenced by large deviations
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2 Multivariate L-moments Definitions

2.1 L-moments Definitions and basic properties

The univariate L-moments can be defined as probability weighted moments, expectations

of order statistics or as a covariance.

2.1.1 L-moments as Probability Weighted Moments

Greenwood et al. (1979) introduce probability weighted moments PWM defined by the

following expression:

PWMp,r,s = E [Xp {F (X)}r {1− F (X)}s] (1)

where X denotes a random variable and F (.) the corresponding cumulative distribution

function. When r is equal to one and s is null, we have a new expression of the probability

weighted moments:

PWMp,1,0 = E [Xp {F (X)}] (2)

which corresponds to the traditionnal moments of order p. L-moments are obtained by

setting p equals one and s equals zero. We obtain the following expression:

βr (X) = E [X {F (X)}r]

=

∫ 1

0

x (u) urdu (3)

where x (u) denotes quantile of the cumulative distribution function. We define the L-

moment of order k denotes λk, for the random variable X by the following expression

:

λk (X) =
k−1∑
i=0

p∗k−1,i βi (X) (4)

where:

P ∗
k,i = (−1)k−i

(
k

i

)(
k + i

i

)
and P ∗

k (u) is the kth shifted Legendre polynomial, related to the usual Legendre polyno-

mials Pk (u) by P ∗
k (u) = Pk (2u− 1).

2.1.2 L-moments as Expectation of Order Statistics

Let X1:N ≤ X2:N ≤ ... ≤ Xk:N denote the order statistics of the random sample X of

size N . L-moment of order k can be expressed as a combination of the expected order
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statistics:

λk (X) = k−1

k−1∑
i=0

(−1)i

(
k − 1

i

)
E (Xk−i:k) (5)

where E (Xk−i:k) denotes the expectation of order statistics:

E (Xr:k) =
k!

(r − 1)! (k − r)!

∫ 1

0

x (u) ur−1 (1− u)k−r du (6)

2.1.3 L-moments as a Covariance

Following the L-moment’s expression as probability weighted moments, we re-express L-

moments as covariance:

λk (X) =
k−1∑
i=0

p∗k−1,i βi (X)

with:

βr (X) = E [X {F (X)}r]

Since p∗0 (.) ≡ 1 and using the orthogonality property of functions p∗k, we have a new

expression of L-moments:

λk (X) = cov
(
X, p∗k−1 (F (X))

)
+ 1{k=1}E (X) (7)

where cov (.) denotes the covariance between the random variable X and the corresponding

probability distribution F (X). For k = 2 we find the following expression:

λ2 (X) = 2cov (X, F (X)) (8)

which corresponds to the simple Gini mean difference. The following picture shows the

robust property of the second L-moment to the extreme returns in comparison with vari-

ance:

- Please, insert somewhere here Figure 1 -

2.2 Lvariance-covariance Matrix

In a multivariate framework, the Gini mean difference corresponds to the following ex-

pression:

λ2 (X, Y ) = 2cov (X, F (Y )) (9)

where Y denotes a random variable of size N . Expression above corresponds to the second

L-moment between the random variable X towards the random variable Y which is not
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the same than the second L-moment between the random variable Y towards the random

variable X described by λ2 (Y, X):

λ2 (Y,X) = 2cov (Y, F (X)) (10)

That is, the Lvariance-covariance matrix Ω̂Lmom between the multivariate random

variables (X, Y ) is obtained by the following expression:

Ω̂Lmom =

(
λ2 (X) λ2 (X, Y )

λ2 (Y,X) λ2 (Y )

)
(11)

and the derived Lcorrelation matrix Ω̂Lcorr corresponds to the following expression:

Ω̂Lcorr =

(
1 τX,Y

τY,X 1

)
(12)

where τX,Y and τY,X are respectively the Lcorrelation coefficient between the random

variable X towards the random variable Y , and the Lcorrelation coefficient between the

random variable Y towards the random variable X with:
τX,Y =

λ2 (X, Y )

λ2 (X)

τY,X =
λ2 (Y,X)

λ2 (Y )

(13)

An important result about Lcorrelation is that like traditionnal version, its values lie

between ±1 (see Serfling and Xiao, 2007).

3 Random Matrix Theory in Finance

The study of correlations between price changes of different stocks is of a scientific interest

and of a practical relevance in quantifying the risk of a given stock portfolio. The problem

is that although every pair of assets should interact either directly or indirectly, the precise

nature of interaction is unknown. In some ways, the problem of interpreting the correla-

tions between individual stock-price changes is reminiscent of the difficulties experienced

by physicists in the fifties, in interpreting the spectra of complex nuclei. Large amounts

of spectroscopic data on the energy levels were becoming available but were too complex

to be explained by model calculations because the exact nature of the interactions were

unknown.

The Random matrix theory has been developed in this context, (see Wigner, 1956,

Dyson, 1962, Dyson and Mehta, 1963, and Mehta 1991), to deal with the statistics of

9



energy levels of complex quantum systems. With the minimal assumption of a random

Hamiltonian, given by a real symmetric matrix with independent random elements, a series

of remarkable predictions were made and successfully tested on the spectra of complex

nuclei. Deviations from the universal predictions of the Random matrix theory identify

system-specific, non-random properties of the system under consideration, providing clues

about the nature of the underlying interactions.

The use of the Random matrix theory in finance finds its justification since the real

process of the stock returns is unknown, that is the cross-correlation between stocks needs

to be approached. Traditionally, the empirical estimators of the covariance matrix and

the correlation matrix have been used in this context, but they contain much estimation

errors (see Michaud, 1989), and we can expect that they are random for a large part. The

idea behind the use of the Random matrix theory in finance comes from this observation,

and the stake is to filter factors into the empirical correlation matrix, which have same

properties than factors of a random matrix, under the null hypothesis5. That is, we can

suppose that factors out of the null hypothesis contain real information. Laloux et al.

(1999) show some empirical evidences justifying the use of the Random matrix theory in

finance. Following the Edelman’s thesis (1989), Plerou et al. (2001) perform a study of

the Random matrix theory to understand cross-correlation of the high frequency financial

returns. A recent work on the Random matrix theory applied in finance comes from

Potters et al. (2005) and Conlon et al. (2008).

What is then the spectrum of a random correlation matrix? The answer is known due

to the work of Marcenko and Pastur (1967). We consider an empirical correlation matrix

C of N assets and T historical returns coming from an universe of returns characterized

by X, we have:

C =
1

N
XXT (14)

where XT denotes the transpose of X. Let R be the random correlation matrix coming

from a multivariate universe of Gaussian independent elements A of size N × T , we have:

R =
1

N
AAT (15)

By construction, R belongs the type of matrices often referred to Wishart matrices

in multivariate statistics. Statistical properties of random matrices such R are known,

particularly, when N → ∞ and T → ∞, such that q ≡ N/T is fixed, Sengupta and

Mitra (1999) show under the null hypothesis, the analytical distribution PR (e) of its

eingenvalues:

PR (e) =
q

2π

√
(e+ − e) (e− e−)

e
(16)

5The null hypothesis states that the correlation matrix in the market is the identity matrix, what does
not corresponds to the empirical evidence in the market.
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where e denotes the eigenvalue bounded within e− and e+, with e− and e+ respectively

the lowest and the largest eigenvalues of R:

e± = 1 +
1

q
± 2

√
1

q
(17)

We can expect that all eigenvalues of C coming from empirical returns X, within

[e−, e+] correspond to noise and have to be filtered, and eigenvalues which deviate from

the theoretical spectrum contain real information and must be used to estimate correlation

matrix. The following picture shows the density distribution of eigenvalues of stock returns

in the S&P500 universe:

- Please, insert somewhere here Figure 2 -

Before applying the Random matrix theory to the Lcorrelation matrix, we need first to

show that a random Lcorrelation matrix follows universal properties of random Wishart

matrices, this is the aim of the next section.

4 Properties of Random Lcorrelation Matrix: Is it

Coherent with Random Matrix Theory?

The Wishart matrices, like traditionnal correlation matrix, are symmetrics contrary to

the Lvariance-covariance matrix. Futhermore, the asset allocation process of Markowitz

(1952), uses a quadratic equation to build the optimal portfolio and the estimator of

the covariance matrix need to be symmetric in this context. In the next sub-section, we

propose a symmetric version of the Lvariance-covariance matrix.

4.1 Symmetric Version of the Lvariance-covariance Matrix

The Lvariance-covariance matrix characterizes the concomitance effects between two ran-

dom variables, and is not necessary symmetric. For instance, the following picture shows

the recursive evolution of the Lcovariance coefficients from Alcatel towards Siemens and

from Siemens towards Alcatel:

- Please, insert somewhere here Figure 3 -

We see that the Lcovariance coefficient from Alcatel towards Siemens is not the same

than the Lcovariance coefficient from Siemens towards Alcatel. This asymmetrical prop-

erty of the L-moments characterizes the concomitance effects between Alcatel and Siemens.

11



We propose a transformation of the Lvariance-covariance matrix in a symmetric matrix

by preserving the asymmetrical concomitance effects. We propose the following formula

for the Lvariance-covariance6 matrix Ω̂Lmom:

Ω̂Lmom =

(
λ2 (X) α1 [λ2 (X, Y )] + α2 [λ2 (Y,X)]

α1 [λ2 (X, Y )] + α2 [λ2 (Y, X)] λ2 (Y )

)
(18)

where (αi)i=1,2 denote respectively the weighted concomitance effects from the random

variable X towards the random variable Y and the weighted concomitance effects from

the random variable Y towards the random variable X:
α1 =

λ2 (X, Y )

λ2 (X, Y ) + λ2 (Y,X)

α2 =
λ2 (Y,X)

λ2 (X, Y ) + λ2 (Y,X)

(19)

The following picture shows the recursive evolution for the symmetric version of the

Lvariance-covariance matrix between Alcatel and Siemens:

- Please, insert somewhere here Figure 4 -

4.2 Eigenvalues’ Distribution of the Lcorrelation Matrix

The single factor model of Sharpe (1963) only takes into account the market factor for

understanding the cross-correlation in the market. We propose first to show adequacy of

the Lvariance-covariance matrix with the Random matrix theory. Let the following model:

xit = αi + βixmt + εit (20)

where parameters xit, αi, βi, xmt and εit denote respectively returns of asset i observed

at t, liquidity factor of asset i, systematic risk of asset i, the market returns observed

at t, and finally the residuals. We simulate in this controled process a T × N matrix of

returns (xit)(i,t)∈[1,...,N ]×[1,...,T ] by replacing the market returns xmt by the S&P500 index

returns, where N equals 207 and T equals 1402. The following picture shows distribution

of eigenvalues of the corresponding Lcorrelation matrix:

- Please, insert somewhere here Figure 5 -

It appears that all factors are positives and none is null, which supposed that the cor-

responding Lcorrelation matrix has an inverse. We also observe one factor which deviated

6The corresponding Lcorrelation matrix is not symmetric following our formula, however it is a regular
matrix.
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from the others. By construction, these others factors correspond to the noise because we

perform a single factor model. The theoretical upper bound e+ of the random Wishart

matrices equals 1.94 and there is only one eigenvalue higher than e+ on the figure. The

second largest eigenvalue (equals 1.39) is lower than e+ and may be considered like noise.

The theoretical lower bound e− of the random Wishart matrices equals 0.37. It appears

some eigenvalues lower than e−, we will explain this observation later.

We now consider the real asset returns of the S&P500 universe, and represent distribu-

tion of eigenvalues of the corresponding Lcorrelation matrix, and the theoretical spectrum

of the random Wishart matrices:

- Please, insert somewhere here Figure 6 -

It seems that distribution of eigenvalues of the Lcorrelation matrix has good agreement

with the theoretical spectrum of the random Wishart matrices. The number of stocks

considered in our database equals 207, that is e207 denotes the largest eigenvalue and e1

the smallest eigenvalue. There are seven eigenvalues higher than e+ which are e207, e206,

e205, e204, e203, e202, and e201. Eigenvalues within the theoretical distribution go from e200

to e66 and there are 65 (from e1 to e65) eigenvalues smallest than e−. Plerou et al. (2001)

show that eigenvectors corresponding to eingenvalues smaller than the theoretical lower

bound e−, contain as significant participants, pair of stocks which have the largest value

of correlation coefficient in the data sample. In order to conclude that eigenvalues higher

than e+ (eigenvalues lower than e+) contain real information (can be considered as noise),

we need to find good agreement between universal properties of random Wishart matrices

and eigenvalues of the Lcorrelation matrix from the S&P500 universe, lower than e+. This

is the aim of the next section.

4.3 Distribution of the Eigenvector Components

Deviations of eigenvalues from the theoretical distribution PR (e) suggest that they should

also be displayed in the statistics of the corresponding eigenvector components (see Laloux

et al. 1999). In this section, we analyze the distribution of the eigenvector components.

The distribution
{
vl

k; l = 1, ..., N
}

of eigenvectors vk for a random correlation matrix R is

Gaussian with mean zero and unit variance:

ρ (v) =
1√
2π

exp

(
−v2

2

)
(21)

We propose in this sub-section to compare distribution of eigenvectors of the Lcorrela-

tion matrix from the S&P5007 universe, within and out of the theoretical distribution. For

7We also called empirical Lcorrelation matrix.
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having good agreement between the Lcorrelation matrix and the Random matrix theory,

eigenvectors of the empirical Lcorrelation matrix within the theoretical distribution have

to agree with a Gaussian distribution, and eigenvectors out of the theoretical distribution

should not agree with a Gaussian distribution. We select two eigenvectors, the first v148

from eigenvalue e− ≺ e148 ≺ e+ and v207 from the largest eigenvalue e207 � e+. We rep-

resent their distributions and compare them with the Gaussian distribution above. The

following pictures show distribution of eigenvectors v148, and v207:

- Please, insert somewhere here Figure 7 -

We find good agreement between eigenvector v148 and the Gaussian distribution. Con-

trary to the distribution of eigenvector v207 which has extreme values deviating of the

Gaussian distribution. We also find for the others eigenvectors vi from eigenvalues e− ≺
ei ≺ e+ within the theoretical distribution good agreement with the Gaussian distribu-

tion. We illustrate on the following picture the kurtosis coefficients for all eigenvectors

distribution:

- Please, insert somewhere here Figure 8 -

Distribution of eingenvectors at the center of picture have kurtosis coefficients almost

equal to three, contrary to eigenvectors on the left and right edges. This suppose that,

within the theoretical distribution, eigenvectors of the empirical Lcorrelation matrix have

good agreement with eigenvectors of random Wishart matrices.

4.4 Interpretation of the Largest Eigenvalue and its Correspond-

ing Eigenvector

Since all components participate in the eigenvector v207 corresponding to the largest eigen-

value e207, we can hope that e207 represents the market factor. We quantitatively investi-

gate this notion by comparing the projection (scalar product) of the time series xt from

the S&P500 universe on v207, and the market portfolio which is the S&P500 index. We

compute the projection x207 (t) of the time series xj (t) on the eigenvector v207:

x207 (t) ≡
N∑

j=1

vj
207xj (t) (22)

By construction, x207 (t) is the portfolio returns defined by the largest eigenvalue e207.

In order to show that e207 corresponds to the market, we compare x207 (t) with the S&P500

index. The following picture shows returns from x207 (t) and from the S&P500 index:

14



- Please, insert somewhere here Figure 9 -

We find remarkably similar behavior between portfolio returns obtained from the

largest eigenvalue and the S&P500 index. The empirical correlation coefficient between

the two portfolios equals 0.94. We also compare x148 (t) with the S&P500 index and find

an empirical correlation coefficient equals 0.039. The following picture shows the strong

correlation between x207 (t) and the S&P500 index comparing to the weak correlation

between x148 (t) and the S&P500 index:

- Please, insert somewhere here Figure 10 -

The good agreement between x207 and the S&P500 index shows that the largest eigen-

value corresponds to the market factor. We propose in the next sub-section to study the

other deviating eigenvalues.

4.5 Interpretation of the Other Deviating Eigenvalues

In order to study the other largest eigenvalues we need to remove the effect of the most

largest eigenvalue e207 and construct a new Lcorrelation matrix. Following the one factor

model above, we replace the market return xmt by x207 and regress the universe returns:

xit = αi + βix207 + εit (23)

Using an ordinary least square regression, we estimate parameters αi, βi and the resid-

uals εit. We build a new Lcorrelation matrix using the residuals. This Lcorrelation matrix

not contain influence of the largest eigenvalue e207. The following pictures show distribu-

tion of eigenvalues before and after removed influence of the largest eigenvalue:

- Please, insert somewhere here Figure 11 -

After influence of the largest eigenvalue has been removed, it seems that some eigen-

values which was firstly in the bulk, deviate now from the theoretical distribution. This

phenomenon is mainly due by the fact that the largest eigenvalue by infuencing all stocks,

imposes high Lcorrelation coefficients by pair of stocks. The following picture shows the

distribution of Lcorrelation coefficients before and after removed contribution of the largest

eigenvalue:

- Please, insert somewhere here Figure 12 -
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We introduce now a measure coming from the localization theory (see Gurh et al. 1998)

named inverse participation ratio (IPR), to quantify the number of significant participants

of an eigenvector. For an eigenvector vl
k, the corresponding IPR is defined as:

Ik =
N∑

l=1

(
vl

k

)4
(24)

The meaning of IPR can be illustrated by two limiting cases: (i) a vector with identical

components vl
k ≡ 1/

√
N has Ik = 1/N , whereas (ii) a vector with one component vl

k ≡
1 and the remainder zero has Ik = 1. That is, the IPR quantifies the reciprocal of

the number of eigenvector components that contribute significantly. In the case (i), all

components are equally took into account, the corresponding IPR equals 1/N and the

inverse IPR (number of significant participants) equal to N . We use an identical approach

to compute the number of significant participants of our eigenvectors. The following

picture shows the number of significant participants by eingenvectors:

- Please, insert somewhere here Figure 13 -

We show that the largest eigenvalue has an influence on a large part of stocks, with a

significant participants almost equals 183 (1/I207 = 183) for an universe of 207 stocks. This

is the higher number of significant participants obtained. We also see that the smallest

eigenvalues (corresponding to the eigenvalues which deviate from the theoretical distrib-

ution on the left edge) have the lowest number of significant participants8. The number

of significant participants of eigenvectors obtained from the other deviating eigenvalues

allows for explaining them. For this purpose, we now analyze group of stocks influenced

by the other deviating eigenvalues with the following process:

• We compute the IPR by eigenvectors obtained from the other deviating eigenvalues,

and thus the corresponding number of significant participants,

• we then, choose a percentage for the number of stocks to consider among the signif-

icant participants. We obtain nk stocks where k corresponds to the eigenvalue,

• for every other deviating eigenvalues, we select the nk largest significant participants

in their eigenvector components,

• finally, we perform a sectorial analysis of each significant participant selected in the

previous step.

8This result differs of the observations of Plerou et al. (2001) which find large values of the inverse
participation ratio at the both edges of the theoretical distribution, suggesting a “random band”matrix
structure.
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For instance, the number of significant participants for eigenvectors v206 and v205 are

respectively 1/I206 ≡ 45 and 1/I205 ≡ 63. If we choose a percentage of 20%, the number

of stocks to consider for eigenvectors v206 and v205 are respectively n206 ≡ 9 and n205 ≡ 13.

That is, to interpret eigenvalue e206 (e205), we only consider the nine (thirteen) largest

components of eigenvalue v206 (v205).

We obtained for every other deviating eigenvalues a group of nk stocks. The following

picture shows market sectors of these stocks:

- Please, insert somewhere here Figure 14 -

We find that these eigenvectors partition the set of all stocks into distinct sectorial

groups. We find sectorial groups which contains stocks of firms in utilities (v206), stocks

of firms in energy (v205), a combination of healthcare and energy firms (v204), information

technology firms (v203), stocks of financial firms (v202) and finally stocks of consumer firms

(v201)
9. Plerou et al. (2001)10 find that the second largest eigenvector11 corresponds

to large market capitalization firms. In the following table, we list by eigenvectors, the

corresponding nk firms with their corresponding sectors:

- Please, insert somewhere here Table 1 -

Concerning the smallest eigenvalues out of the theoretical distribution on the left edge,

there is no evidence about a sectorial repartition. It seems that they group pair of stocks

with homogeneous concomitance effects. In addition, their corresponding number of sig-

nificant participants are low in comparison with other eigenvectors.

Our empirical observations seem to confirm expectation according to which eigenvalues

higher than the theoretical upper bound e+ contain real information, and eigenvalues

smaller than e+ can be considered as noise and have to be filtered. Since largest eigenvalues

higher than e+ contain real information, they characterize the market factors and we wish

they are stable in time. We investigate this point in the next section.

4.6 Stability of Eigenvectors

Since they characterize the market components, we expect that eigenvectors obtained from

the largest eigenvalues higher than e+ are stable in time. Let Djk a matrix of size p×N

defined as:

Djk =
{
vk

j ; j = 1, ...p; k = 1, ..., N
}

(25)

9Which is a mix between consumer staple and consumer discretionary.
10They use a more large universe of stocks in intradaily and daily frequencies.
11Corresponding in our study to e206.
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where p denotes the number of eigenvalues higher than e+. We next compute a matrix of

size p× p named “overlap matrix”whose general term Oij is defined as:

Oij (t, τ) =
N∑

k=1

Dik (t) Dik (t + τ) (26)

where t denotes initial time and τ future time. The “overlap matrix”defines the scalar

product between eigenvectors from an initial time t to a future time τ İf all the p eigenvec-

tors are perfectly non-random and stable in time we must have:

Oij (t, τ) =

{
1 i = j

0 i 6= j
(27)

The following picture illustrates “overlap matrix”obtained one week to sixteen years

of smoothing windows12:

-Please, insert somewhere here Figure 15 -

Factors are plotted on the diagonal of the picture. At the beginning (when τ equals one

week and for three years) on the left edge of the picture, we find good agreement between

the initial sample and the future sample. We also see that only five factors deviated

from the theoretical distibution. From the fourth year after the initial sample, only the

two largest eigenvalues remain stable, and one year later we observe a sixth eigenvalue,

and the second largest eigenvalue becomes unstable. From the eleventh year after the

initial sample, appears a seventh13 eigenvalue and after fourteen year, the second largest

eigenvalue is completely unstable and only the first largest eigenvalue which characterizes

the market factor remains stable in time. Out of the diagonal, the colour code seems

shown that eigenvectors are almost perpendicular by pair.

Since the empirical Lcorrelation matrix have good agreement with the Random matrix

theory, the theoretical distribution of random Wishart matrices must be used to excract

factors which contain real information in the Lcorrelation matrix, and then recover the

Lvariance-covariance matrix. We now explain how to recover the Lvariance-covariance

matrix from the Lcorrelation matrix.

12We set the initial sample window from 05/29/1981 to 05/17/1991. We compute the “overlap ma-
trix”between the initial sample window and a smooth window obtaind respectively one week later (from
06/05/1981 to 05/24/1991), one year later, two years later, until sixteen years later.

13When we consider the whole sample data, we find seven eigenvalues which deviate from the theoretical
distribution.
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5 Filtered Lvariance-covariance Estimator of the Co-

variance Matrix

The idea consists for recovering from Ω̂Lmom a new Lvariance-covariance matrix Ω̂FLmom

having the same trace. The following algorithm describes our methodology:

• From the T ×N matrix of returns, we first compute the symmetric version Ω̂Lmom

of the Lvariance-covariance matrix,

• we then compute the corresponding Lcorrelation matrix Ω̂Lcorr,

• next, we compute the eigenvalues of Ω̂Lcorr and for each eigenvalue, their percentage

in the trace of Ω̂Lcorr,

• we identify the eigenvalues lower than the theoretical upper bound14 e+
15 and we set

their values to zero,

• we then compute new values for the eigenvalues higher than theoretical upper bound

e+ from their corresponding percentage by preserving trace of Ω̂Lcorr,

• using new values of the eigenvalues, the matrix of eigenvectors and its opposite, we

compute the filtered Lcorrelation matrix Ω̂FLcorr,

• from Ω̂FLcorr, we compute the corresponding filtered Lvariance-covariance matrix

Ω̂FLmom
16.

Finally we can use Ω̂FLmom to estimate the covariance matrix. This way of doing is

better than the empirical estimation of the covariance matrix with many respects. First,

the L-moments are more robust than the standard moments. Second only real information

is taken into account because noise has been filtered.

14The theoretical upper bound is obtained from N and T .
15We neglect lowest eigenvalues because they have influence on a small number of stocks and produce

none empirical evidences.

16Since Ω̂Lcorr =

(
1 τX,Y

τY,X 1

)
where τX,Y and τY,X correspond respectively to the Lcorrelation

coefficient between the random variable X towards the random variable Y and the Lcorrelation coeffi-
cient between the random variable Y towards the random variable X from the symmetric version of the

Lvariance-covariance matrix, with:


τX,Y =

λ2 (X, Y )
λ2 (X)

τY,X =
λ2 (X, Y )
λ2 (Y )

, we recover the Lvariance-covariance matrix

from the following expression: Ω̂Lmom =

(
λ2 (X) τX,Y × λ2 (Y )

τX,Y × λ2 (X) λ2 (Y )

)
.
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In the following section, we compare performances of GMLP (obtained from our esti-

mator Ω̂FLmom) and GMVP (obtained from the empirical covariance matrix Ω̂Emp), when

a short sale constraint is imposed.

6 Application to the Portfolio Optimization

Jagannathan and Ma (2003) find that the sample covariance matrix (with short sale con-

straint) performs almost as well as those constructed using shrinkage estimators. The aim

of our paper is to propose an estimator of the covariance matrix which well performs the

empirical covariance matrix, even when a short sale constraint is imposed. In this section,

we perform an empirical study for comparing performances of the GMVP and the GMLP.

6.1 Portfolio Allocation Process

The optimization program whit a short sale constraint is given by:
Min
(wp)

(
w

′
pΩwp

)
s.t w

′
p1 =1

wpI
≥ 0, i = 1, ..., N

(28)

Our database of origin is constituted of 207 assets from 05/29/1981 to 04/11/2008 of the

S&P500 in a weekly frequency. In order to avoid in our optimization process, many weights

close to zero, we propose to consider a new database. This new database is obtained from

the significant participants for each eigenvalues which contains real information reported

in Table 1 above. The number of assets in the new database is 65 from 05/29/1981 to

04/11/2008. The empirical protocol is the following:

• From the new database, we consider data returns from 05/29/1981 to 05/23/1986,

we compute the optimal allocation and buy the corresponding portfolio,

• we then slide the estimation window for one week, that is we have a new estimation

window from 06/05/1981 to 05/30/1986,

• next, we compute a new optimal allocation from the new estimation window,

• and we balance our portfolio with weights corresponding to the new optimal alloca-

tion,

• we perform the algorithm until 04/11/2008. Finally we obtain an out-of-sample

portfolio from 06/05/1981 to 05/30/1986.
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The following picture shows the net asset values of GMVP and GMLP in basis 100

along the estimation period:

- Please, insert somewhere here Figure 16 -

We also compute three statistic indicators for the out-of-sample portfolios which char-

acterize the portfolio performances in term of risk, diversification and stability. Concerning

the risk we consider three statistics; the annualized standard deviation, the Sharpe ratio17,

and the tracking error. The following picture shows volatility of GMVP and GMLP re-

turns’ in an absolute framework and relative to the S&P500 index:

- Please, insert somewhere here Figure 17 -

The following table reports risks’s indicator of the GMVP, the GMLP and also for the

corresponding market index (the S&P500 index):

- Please, insert somewhere here Table 2 -

Concerning the portfolio diversification, we use the effective size which measures the

effective number of assets take into account in the allocation process. If the optimal

allocation is naive, the effective size is equal to N , and on the contrary, in the case

where only one asset constitutes the optimal portfolio, the effective size is equal to one.

The stability of the portfolio is measured by the turnover. The following pictures show

effective size and turnover of the GMVP and the GMLP along the estimation period.

- Please, insert somewhere here Figure 18 -

The formulas of all statistics above are available in appendix.

6.2 Comments

It appears that the raw return of the GMLP is higher than the raw return of the GMVP,

and is almost equal to the S&P500’s index raw return. Concerning the volatility, difference

between the annualized standard deviation of the GMVP and the GMLP is not relevant.

It’s seems that for an identical level of annualized standard deviation, our estimator allows

to build a global minimum volatility portfolio18 which has a relevant Sharpe ratio. Thus,

the annualized mean return of the GMLP is higher of the one of the GMVP for about 150

basis points. Better, we see that the GMLP has a lower volatility relatively to the S&P500

17No cash considered in our expression of the Sharpe ratio.
18Do not confuse with the GMVP which is the Global Minimum Variance Portfolio.

21



index than the GMVP. This result supposes that the GMLP is a global minimum volatility

portfolio which fits better with the market index. A similar result is found by Ledoit and

Wolf (2004), which show that the relative volatility of a global minimum variance portfolio

obtained from their shrinkage estimator of the covariance matrix is lower than the relative

volatility of the one from the empirical estimator of the covariance matrix, but they impose

in their allocation program a less conservative short sale constraint.

An interesting result not reported here concerns the uncertainty relative to the out-of-

sample strategy. We can measure this by computing the correlation coefficient between

the out-of-sample portfolio and its corresponding in-sample portfolio19. We note a cor-

relation coefficient of 0.92 between the in-sample and the out-of-sample GMVPs, and a

correlation coefficient of 0.96 between the in-sample and the out-of-sample GMLPs. This

result supposes that, our estimator have less uncertainty relative to the future than the

empirical estimator of the covariance matrix.

Another interesting result of our estimator is the mean effective size obtained from the

optimal weight along the estimation window. The GMLP have a mean effective size which

is equal to 24% of the whole universe, that means that in average, 24% of the assets in the

universe are effectively taken into account in the allocation process; it is equal to 17% for

the GMVP. This result highlights the capacity of our estimator to diversify the optimal

portfolio allocation. Thus, the GMLP is less sensitive to a specific stock than the GMVP,

and the portfolio risk is diffused through a large number of assets.

The turnover measures the stability of the reallocation of the optimal portfolio between

two estimation periods. The mean turnover of the GMVP is equal to 4.8% while the one

of the GMLP is equal to 3.3%. This observation supposes that the pool of stocks take into

account for the GMLP is more stable along time. A stable allocation process is important

to reduce the transaction cost.

7 Conclusion

In this paper we propose a new estimator of the covariance matrix. For this purpose, we

use an alternative method to understand moments of a distribution obtained from a linear

combination of order statistics named L-moments. The Random matrix theory allows for

extracting from the Lvariance-covariance matrix real information. Our aim is to build

a Global Minimum Lvariance Portfolio (GMLP) which remains robust relatively to the

Global Minimum Variance Portfolio (GMVP) obtained from the empirical estimator of

the covariance matrix, even when a short sale constraint is imposed in the optimization

19The corresponding in-sample global minimum volatility portfolio is empirically the best portfolio
which has the lowest volatility. He is used by practitioners for having an expected shape of their portfolio.

22



process.

Furthermore, the asset allocation process of Markowitz (1952) uses a quadratic equation

to build the optimal portfolio and the estimator of the covariance matrix need to be

symmetric in this context. We propose a symmetric version of the Lvariance-covariance

matrix.

In order to extract real information from the symmetric Lvariance-covariance matrix,

we compare the theoretical distribution of eigenvalues of the random Wishart matrices

with the distribution of the eigenvalues from the Lcorrelation matrix. This comparison

requires in anticipation to find good agreement between universal properties of the random

Wishart matrices and the Lcorrelation matrix. Some empirical evidences on the S&P500

universe confirm this point. We then extract eigenvalues from the Lcorrelation matrix

which contain real information, and first we show that each one corresponds to a market

sector of the S&P500 universe. Second, we show how to recover a filtered Lvariance-

covariance matrix.

Finally, we compare the out-of-sample GMLP (obtained from the filtered Lvariance-

covariance matrix) to the GMVP (obtained from the empirical estimator) when a short

sale constraint is set. Following our results, it seems that the GMLP outperforms the

GMVP concerning the Sharpe ratio, the tracking error relatively to the S&P500 index,

diversification and stability of the portfolio along time. Another interesting result is that,

the uncertainty between the GMLP and its corresponding in-sample portfolio is lower than

which obtained for the GMVP.

The methodology describes in this paper, can also be useful for practitioners which pre-

fer selection than allocation, by considering only the first significant participants (stocks)

which are described by each eigenvalues containing real information. A natural extension

of this paper will be to perform a more advanced study on these stocks in order to highlight

some style effects.
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9 Appendix

9.1 List of Tables

Table 1(a): Sectorials groups by deviating eigenvalues

e206 e205

Company Sectors Company Sectors

CONSTELL ENERGY Utilities SMITH INTL Energy

INTEGRYS ENERGY GROUP Utilities ROWAN COMPANIES Energy

XCEL ENERGY Utilities HALLIBURTON Energy

DUKE ENERGY Utilities QUESTAR Utilities

PUBL SVC ENTER Utilities APACHE Energy

SOUTHERN Utilities NOBLE ENERGY Energy

PROGRESS ENERGY Utilities CONOCOPHILLIPS Energy

FPL GROUP Utilities MURPHY OIL Energy

AM ELEC POWER Utilities SCHLUMBERGER Energy

CONSOL EDISON Utilities HESS Energy

xxxxxxx xxxxxxx OCCIDENTAL Energy

xxxxxxx xxxxxxx EXXON MOBIL Energy

xxxxxxx xxxxxxx CHEVRON Energy

Table 1(a): Source : Reuters, Sectorial groups of deviating eigenvectors e206, and e205,

only the first nk firms have been considered, from 207 assets of the S&P500 index, no

completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the

authors.
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Table 1(b): Sectorials groups by deviating eigenvalues

e204 e203

Company Sectors Company Sectors

PROCTER & GAMBLE Healthcare AMERICAN EXPRESS Financials

APACHE Energy ADV MICRO DEV Infotech.

BRISTOL MYERS Healthcare IBM Infotech.

HALLIBURTON Energy CORNING Infotech.

HJ HEINZ Consumer MOLEX Infotech.

ELI LILLY Healthcare JPMORGAN CHASE AND CO Financials

MURPHY OIL Energy HEWLETT PACKARD Infotech.

HESS Energy TERADYNE Infotech.

MERCK & CO Healthcare NATL SEMICONDUCT Infotech.

EXXON MOBIL Energy MERRILL LYNCH Financials

ABBOTT LABS Healthcare MOTOROLA Infotech.

CONOCOPHILLIPS Energy ANALOG DEVICES Infotech.

SCHLUMBERGER Energy TEXAS INSTRUMENT Infotech.

PFIZER Healthcare xxxxxxx xxxxxxx

CHEVRON Energy xxxxxxx xxxxxxx

JOHNSON&JOHNSON Healthcare xxxxxxx xxxxxxx

Table 1(b): Source : Reuters, Sectorial groups of deviating eigenvectors e204, and e203,

only the first nk firms have been considered, from 207 assets of the S&P500 index, In-

fotech. denotes the Information Techology sector, no completion need, from 05/22/1981

to 04/11/2008, weekly frequency, computation by the authors.
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Table 1(c): Sectorials groups by deviating eigenvalues

e202 e201

Company Sectors Company Sectors

MARSH & MCLENNAN Financials GENERAL MILLS Consumer

LENNAR CLASS A Financials DONNELLEY SONS Industrials

AON Financials NEW YORK TIMES Consumer

AMERICAN EXPRESS Financials WASHINGTON POST Consumer

LINCOLN NATL Financials GANNETT Consumer

TORCHMARK Financials CENTEX Financials

CENTEX Financials MASCO Industrials

JPMORGAN CHASE AND CO Financials CAMPBELL SOUP Consumer

BANK OF NEW YORK Financials CONAGRA FOODS Consumer

WELLS FARGO Financials WENDY’S INTL Consumer

BOA Financials PULTE HOMES Consumer

xxxxxxx xxxxxxx VARIAN MEDICAL Healthcare

xxxxxxx xxxxxxx HERSHEY CO Consumer

Table 1(c): Source : Reuters, Sectorial groups of deviating eigenvectors e202, and e201, only

the first nk firms have been considered, from 207 assets of the S&P500 index, Consumer

sector is a mix between Consumer Staple and Consumer Discretionary, no completion

need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.

Table 2: Risks’ Indicator of the out-of-sample GMVP and GMLP

GMVP GMLP S&P500 Index

Raw Return 434.00% 576.00% 597.00%

Annualized Mean Return 7.50% 9.00% 9.24%

Annualized Standard Deviation 9.80% 10.00% 13.29%

Sharpe Ratio 0.77 0.90 0.70

Tracking Error 9.00% 7.50% xxxxxxx

Table 2: Source : Reuters, Risks’ indicator of the out-of-sample GMVP and GMLP, 260

periods for the sample window, 1142 periods of estimation, from 65 assets of the S&P500

index corresponding to the sectorial groups of deviating eigenvalues, no completion need,

from 05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.
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9.2 List of Figures

Figure 1: Recursive Variance and Lvariance

Figure 1: Source : Reuters, S&P500 index, recursive variances and Lvariances, vari-

ance scales to the values of Lvariance, from 12/31/1974 to 04/30/2001, daily frequency,

computation by the authors.

Figure 2: Probability Density of Eigenvalues from the S&P500

Figure 2: Source : Reuters, distribution of eigenvalues from 207 assets, of the S&P500 in-

dex, no completion need, from 05/22/1981 au 04/11/2008, weekly frequency, computation

by the authors.
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Figure 3: Recursive Lcovariance Coefficients

Figure 3: Source : Reuters, Lvariance coefficients between two europeans stocks, from

11/04/2002 to 01/18/2008, daily frequency, no completion need, computation by authors.

Figure 4: Recursive Lcovariance Coefficients: Symmetric Version

Figure 4: Source : Reuters, Lvariance coefficients between two europeans stocks, from

11/04/2002 to 01/18/2008, daily frequency, no completion need, computation by authors.
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Figure 5: Probability Density of Eigenvalues from the Single Factor Model

Figure 5: Source : Reuters, distribution of eigenvalues for the single factor model, S&P500

as the market, number of assets equals 207, number of historical returns equals 1402, from

05/29/1981 to 04/11/2008, weekly frequency, no completion need, computation by authors.

Figure 6: Theoretical Probability Density of Eigenvalues

Figure 6: Source : Reuters, distribution of eigenvalues from 207 assets of the S&P500

index, no completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation

by the authors.
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Figure 7: Distribution of Eigenvector Components

Figure 7: Source : Reuters, comparison between distribution of eigenvectors v148 from

eigenvalue e148 inside the theoretical distribution, and v207 from the largest eigenvalue e207,

with a Gaussian distribution in dashed, (a) and (b) represent distribution of v148, (c) and

(d) represent distribution of v207, from 207 assets of the S&P500 index, no completion

need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.

Figure 8: Kurtosis Coefficients from the Eigenvector Components

Figure 8: Source : Reuters, kurtosis of the distribution of the whole eigenvectors, from

207 assets of the S&P500 index, no completion need, from 05/22/1981 to 04/11/2008,

weekly frequency, computation by the authors.
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Figure 9: The Largest Eigenvalue Portfolio and the S&P500 index

Figure 9: Source : Reuters, comparison between the S&P500 index and the returns x207

coming from the largest eigenvalue e207, from 207 assets of the S&P500 index, no comple-

tion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.

Figure 10: Correlation Between Eigenvalue Portfolios and the S&P500 Index

Figure 10: Source : Reuters, correlation between the S&P500 index and the returns x207

coming from the largest eigenvalue e207, and the returns x148 coming from an eigenvalue

inside the theoretical distribution, from 207 assets of the S&P500 index, no completion

need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.
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Figure 11: Probability Density of Eigenvalues from the S&P500 Without Contribution of

the Market Factor

Figure 11: Source : Reuters, comparison of the distribution of eigenvalues before and after

removed influence of the largest eigenvalue e207, from 207 assets of the S&P500 index, no

completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the

authors.

Figure 12: Distribution of Lcorrelation Coefficients Without Contribution of the Market

Factor

Figure 12: Source : Reuters, Lcorrelation distribution of the universe before and after

removed influence of the largest eigenvalue e207, from 207 assets of the S&P500 index, no

completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the

authors.
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Figure 13: Number of Significant Participants by Eigenvectors

Figure 13: Source : Reuters, number of significant participants by eigenvectors after

removed influence of the largest eigenvalue e207, from 207 assets of the S&P500 index, no

completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by the

authors.

Figure 14: Sectorial Repartition of Firms

Figure 14: Source : Reuters, sectorial groups of firms for eigenvalues e206 to e201, from

207 assets of the S&P500 index, no completion need, from 05/22/1981 to 04/11/2008,

weekly frequency, computation by the authors.
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Figure 15: Stability of Eigenvalues in the Time

Figure 15: Source : Reuters, stability of deviating eigenvalues through time, 520 periods

for the initial sample, from 207 assets of the S&P500 index, no completion need, from

05/22/1981 to 04/11/2008, weekly frequency, computation by the authors.

Figure 16: Returns of GMVP, GMLP and the S&P500 Index

Figure 16: Source : Reuters, net assets values in basis 100, out-of-sample GMVP and

GMLP, 260 periods for the sample window, 1142 periods of estimation window, from 65

assets of the S&P500 index corresponding to the sectorial groups of deviating eigenvalues,

no completion need, from 05/22/1981 to 04/11/2008, weekly frequency, computation by

the authors.
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Figure 17: Volatility of GMVP and GMLP

Figure 17: Source : Reuters, volatility on the top and relative volatility bottom, out-of-

sample GMVP and GMLP, 260 periods for the sample window, 1142 periods of estimation

window, from 65 assets of the S&P500 index corresponding to the sectorial groups of devi-

ating eigenvalues, no completion need, from 05/22/1981 to 04/11/2008, weekly frequency,

computation by the authors.

Figure 18: Effective Size and Turnover of GMVP and GMLP

Figure 18: Source : Reuters, effective size on the top and turnover bottom, of the out-of-

sample GMVP and GMLP, 260 periods for the sample window, 1142 periods of estimation

window, from 65 assets of the S&P500 index corresponding to the sectorial groups of devi-

ating eigenvalues, no completion need, from 05/22/1981 to 04/11/2008, weekly frequency,

computation by the authors.
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9.3 Formulas of the Performances’ Indicator

Annualized Standard Deviation: ASD

ASD =

[
1

T − 1

T∑
i=1

(xi − x̄)2

]1/2

∗
√

f

where xi denotes the portfolio returns, x̄ denotes the sample mean returns, f the estima-

tion’s frequency, and T the size of the estimation period.

Annualized Mean Return: AMR

AMR = (1 + x̄)f − 1

Sharpe Ratio: SR

SR =
AMR

ASD

Tracking Error: TR

TE =

[
1

T − 1

T∑
i=1

(yi − ȳ)2

]1/2

∗
√

f

where yi denotes the difference between the portfolio returns and the market index, ȳ

denotes the corresponding sample mean returns.

Effective Size: ES

ES =
1

N

(
N∑

j=1

(
w∗

i,j

)2)
where w∗

i,j denotes the optimal allocation for asset j at the date i, and N denotes the

number of assets in the investment universe.

Turnover: TR

TR =
1

2

N∑
j=1

∣∣w∗
i+1,j −w∗

i,j

∣∣
where w∗

i+1,j denotes the optimal allocation at the date i+1 and w∗
i,j the optimal portfolio

at the date i for asset j.
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