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Résumé 

Dans cet article, nous proposons de nouveaux estimateurs inspirés d'Hausman et qui reposent 
sur des instruments optimaux construits à partir de cumulants. En utilisant ces nouveaux 
instruments robustes dans un contexte de GMM, nous obtenons de nouveaux estimateurs 
GMM que nous appelons GMM-C et GMM-hm, son homologue. Cette procédure représente 
une amélioration prometteuse de la méthode des moments pour identifier les paramètres d'un 
modèle. De plus, notre étude développe un nouvel indicateur qui signale la présence d'erreurs 
de spécification à l'intérieur d'un modèle économique ou financier. Nous appliquons notre 
batterie de tests et d'estimateurs à un échantillon d'indices de fonds de couverture HFR 
observés  mensuellement au cours de la période 1990-2005. Nos tests révèlent que des erreurs 
de spécification contaminent l'estimation des paramètres de modèles financiers de 
rendements. Par conséquent, il n'est pas surprenant que la notation des fonds de couverture 
soit très sensible au choix des estimateurs. Notre nouvel indicateur des erreurs de 
spécification se révèle lui-même très puissant pour détecter ces erreurs.  
 

Mots-clés : Modèles d'évaluation des actifs; erreurs de spécification; tests d'Hausman; 
moments supérieurs; instruments optimaux; GMM.     
 

Abstract 

This paper proposes new Hausman-based estimators lying on cumulants optimal instruments. 
Using these new generated strong instruments in a GMM setting,  we obtain new GMM 
estimators which we call GMM-C and its homologue, the GMM-hm.  This procedure 
improves the method of moments for identifying the parameters of a model. Also, our study 
gives way to a new indicator signalling the presence of specification errors in financial 
models. We apply our battery of tests and estimators to a sample of 22 HFR hedge fund 
indices observed monthly over the period 1990-2005. Our tests reveal that specification 
errors corrupt parameters estimation of financial models of returns. Therefore, it is not 
surprising that the ranking of hedge funds is very sensitive to the choice of estimators. Our 
new indicator of specification errors reveals itself very powerful to detect those errors.   

 

Keywords: Asset pricing models; specification errors; Hausman tests; higher moments; 
optimal instruments; GMM.  
 
JEL classification:  C13; C19; C49; G12; G31. 
 

1. Introduction 

The presence of specification errors is an important problem when estimating 

economic and financial models. Those errors may emanate from many sources. An obvious 

one is due to the fact that the variables of the theoretical models are often formulated in 

expected or forecasted values. As only observed values of the variables are available, the 
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explanatory variables of a financial model, like the CAPM, are then measured with error 

(Cragg, 1994, 1997; Racicot, 2003; Coën and Racicot, 2007). Another source of specification 

errors in financial models is the neglect of higher moments and co-moments of the variables 

when estimating those models (Harvey and Siddique, 2000; Chung, Johnson and Schill, 

2006). We could lengthen the list of the causes of specification errors such as the omission of 

an important factor when formulating a financial model like the illiquidity premium (Chan 

and Faff, 2005). As it is well-known, those errors lead to inconsistent estimators of the factor 

loadings of the risk variables incorporated in a financial model. Those errors may upset 

completely the conclusions derived from an OLS estimation of a model (Dagenais and 

Dagenais, 1997).  

The solutions to the problem of specifications errors are yet limited. The Generalized 

Method of Moments (GMM) is often used in finance to correct specification errors (Hansen 

and Singleton, 1982; Hansen and Jagannathan, 1997; Cochrane, 2001) but resorting to this 

procedure requires a judicious choice of instruments. However, the instruments used in the 

majority of financial studies may be considered as weak (Watson, 2003). Even the Chen-Roll-

Ross (1986) instruments derived from the arbitrage pricing theory (APT) are not very reliable.  

 In this paper, we revisit financial models of returns in the framework of the estimation 

of hedge fund returns whose distributions display a high degree of skewness and kurtosis . We 

resort to two new sets of instruments based respectively on higher moments and cumulants of 

the explanatory variables. Those instruments, which are borrowed from the method of 

moments (Geary, 1942; Durbin, 1954; Pal, 1981; Dagenais and Dagenais, 1997; Gillard, 

2006; Gillard and Iles, 2005) are quite promising as tools to analyse the distribution of returns 

or of other financial variables for which the asymmetry or kurtosis cannot be disregarded. As 

we will show in this paper, higher moments and cumulants thus qualify as optimal 
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instrumental variables (IV) to estimate financial models like the CAPM or the Fama and 

French (F&F) one by two-stage least squares (TSLS) or GMM. 

 Furthermore, the Hausman (1978) test is often invoked to detect specification errors in 

an estimated model. It is less known that a specific version of the Hausman test based on an 

artificial regression may be equivalent to a TSLS procedure (Pindyck and Rubinfeld, 1998; 

Spencer and Berk, 1981; Wu, 1973). Resorting to this equivalence, we show how we can use 

our new sets of higher moment or cumulant instruments to generate innovative versions of 

financial models which give direct information on the severity of the specification errors. We 

thus propose new procedures to generate strong instruments based on higher moments and 

cumulants of the explanatory variables. By doing so, we rehabilitate the well-known estimator 

(GMM), which uses these innovative instruments and we thus construct our new estimator, 

called the GMM-C, and its homologue, the GMM-hm (Racicot and Théoret 2008a and 

2008b).  These developments allow us to build new indicators of measurement errors, one for 

each explanatory variable.  

 This paper is organised as follows. The next section proposes two new sets of 

instruments based respectively on higher moments and cumulants and provides the 

econometric and financial foundations of these instruments. The third section shows how 

these instruments may be integrated in a Hausman test to give way to indicators of 

specification errors in the framework of the CAPM or the F&F model. These indicators are 

related to the spread between the coefficients estimated by ordinary least squares (OLS) and 

by an IV method. They supply direct information on the degree of overstatement or 

understatement of the coefficients estimated by the OLS procedure. The fourth section deals 

with the empirical validity of these Hausman-based estimators for calibrating the F&F model. 

Our sample consists in a series of 22 monthly Hedge Fund Research (HFR) indices observed 
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over the period 1990-2005, a quite long period for hedge fund returns given the short length 

of most hedge fund series. The final section concludes.  

2. In search of higher moment optimal instruments to detect and correct 
specification errors1

 
 As said previously, the aim of this paper is to propose an integrative method to detect 

and correct specification errors in a financial model. To formulate this method, we appeal to 

the econometric theory of measurements errors. According to Gillard and Iles (2005), the 

word error is an unfortunate choice for designating what should be meant by this word: a 

disturbance, a departure from equilibrium, a perturbation, a noise or a random component. 

Actually, the methods used to detect measurement errors are a subset of those used to identify 

specification errors. Both are concerned with the orthogonality between the explanatory 

variables and the innovation of a model and the resulting inconsistency of the estimators.  

That is why we speak indifferently of specification errors and measurement errors in this 

paper.  

 Let us assume that a variable, say a return, is measured with error, that is: 

ν+= R~R                               (1) 

with ν ~ N(0,1). In equation (1), R is the observed return variable and R~  is the unobserved or 

latent variable so that ν is the measurement error. Let us introduce this variable in the simple 

market model, that is: 

itmtiiit rr εβα ++=                (2) 

where rit  is the excess return2 of portfolio i; rmt, the excess return of the market portfolio and 

εt, the innovation. Obviously, the variable rm is measured with error because the financial 

models of returns are formulated using expected values of the variables and not observed 

                                                 
1 For this section, see also: Théoret and Racicot (2007); Racicot and Théoret (2006, 2007, 2008); Coën and 
Racicot (2007),  Racicot, Théoret and Coën (2007). 
2 That is the spread between the gross return of the portfolio and the risk-free rate.  
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ones3. Therefore, there is an absence of orthogonality between rm and ε, which gives way to 

an inconsistent estimator of the parameter of rm. We must thus search for additional 

information to identify the parameter of rm.  

 For the method of moments4, which was initiated by Geary (1942) for analysing 

measurement errors, this new information must be found in the higher moments of the 

variables of the estimated model. When there are no measurement errors, the first and second-

order moments are sufficient to estimate equation (2). The resulting ordinary least squares 

(OLS) estimators of αi and βi are then: 

mii rˆrˆ βα −=                 (3) 

( )
mim rrri ssˆ 12 −

=β                (4) 

with ir and  mr being respectively the first-order moments of  ri and rm and where: 

( ) ( ) ( )( mmt

n

t
iitmmtrrr rrrr,rrns,s

mim
−−−−= ∑

=

−

1

12 1 )        (5) 

with n, the number of observations on the variables. is the second-order moment of r2
mrs m and  

, the second-order co-moment of r
mi rrs i and rm.  

 In the presence of measurement errors, one possibility is to resort to moments of order 

higher than two to identify the parameters of a model. To do so, the method of moments 

defines estimators by equating the sample moments to their population equivalents which 

contain the parameters to be estimated. More specifically, the method of moments creates 

estimators by equating the sample moments to their expectations (Fuller, 1987; Cheng and 

Van Ness, 1999), that is: 

( )θmm̂ =                 (6) 

                                                 
3 Actually, there are other causes of measurement errors for this variable.  
4 On the relationship between the method of moments and the identification of the parameters in presence of 
errors in variables, see: Gillard and Iles (2005) and Gillard (2006).  
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where  are the sample moments and m̂ ( )θm  are the population moments5 which incorporate 

the parameters θ to be estimated. Durbin (1954) defined an estimator based on third order-

moment and co-moment. In the case of our market model (equation 2), this estimator, 

designated by , would be: dβ̂

3
m

imm

r

rrr
d s

sˆ =β               (7) 

where is the third-order co-moment between r
imm rrrs i and rm  and is the third-order moment 

of r

3
mrs

m , defined as:                

( ) ( ) ( )( )( 2

1

13 1 mm

n

i
iimmrrrr rrrr,rrns,s

immm
−−−−= ∑

=

− )       (8) 

 Furthermore, Pal (1980) defined an estimator based on the fourth-order moment and 

co-moment of the variables of a model defined by: 

( )
( ) 224

2

/3
/3ˆ

mm

imimmm

rmtr

rrmtrrrr
p snrs

snrs

∑
∑

−
−

=β                        (9) 

where the subtracted terms account for the normality of ν in equation (1). This estimator may 

be seen as a ratio of cumulants because its numerator and denominator combine moments and 

co-moments of different orders.  

2.1 The higher moment instrumental variables and estimation methods 

 We would now define our first class of estimators which we call the higher moment 

estimators. There is obviously a mapping which may be done from the method of moments to 

the instrumental variables (IV) estimation procedures. Let us consider equation (7), the 

Durbin estimator obtained by the method of moments.  We know that the corresponding two-

stages least squares estimator is equal to: 

( ) ( )
im r,zr,zd ssˆ 1−=β                    (10) 

                                                 
5 That is the expected values of the sample moments.  
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where z is the instrumental variable of rm, which is measured with error. By equating 

equations (7) and (10), it is obvious in this case that the instrument is ( )2rrm − , which is the 

squared value of rm expressed in deviation from its mean, an empirical measure of the second-

order moment of rm. And we could do the same exercise for the Pal's beta (Racicot, 1993, 

2003).  

 There is another easy way to show that higher moments are relevant instrumental 

variables just by resorting to the definition of such variables (Fuller, 1987). If, in the 

framework of our market model, a variable zt satisfies the following conditions: 

( )( ) ( ) ( ) 000
1

1

1

1 ≠
⎭
⎬
⎫

⎩
⎨
⎧ −=

⎭
⎬
⎫

⎩
⎨
⎧ − ∑∑

=

−

=

−
n

t
mtt

n

t
ttt rzznE;,,zznE νε        (11) 

where ∑
=

−=
n

t
tznz

1

1 , then zt is called an instrumental variable for rmt of the market model. 

Moreover, we know that the distributions of returns are not normal as it is assumed in the 

classical econometric model. Two stylised facts of asset returns, especially hedge fund returns 

which are the object of this paper, are that their distributions are asymmetric and leptokurtic. 

It is precisely in this situation that we may resort to moments and co-moments of order higher 

than two to identify the coefficients of explanatory variables contaminated with measurement 

errors (Cheng and Van Ness, 1999). As the distribution of rm is asymmetric, we may write:  

( ){ } 03 ≠−
mrtmrE μ                                    (12) 

with 
mrμ , the expected value of rm. This knowledge allows defining an instrumental variable 

for rm (Fuller, 1987). If we set ( 2
mmtt rrz −= ) , then:      

( )( ){ } ( ) ( ){ } 01 321 ≠−−=−− −
mm rmtztrtm rEnzrE μμμ         (13) 

and by the properties of the normal distribution: 

{ } { } 0== tttt zEzE νε                           (14) 
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Thus, the second-order moment, defined by ( )2mmt rr − , qualifies as an instrumental variable 

for rmt. We can follow the same reasoning to show that the third-order moment defined by 

( 3
mmt rr − ) may be a relevant instrumental variable for rmt because the distribution of returns is 

leptokurtic, that is: 

( ){ } 04 ≠−
mrtmrE μ                           (15) 

According to Fuller (1987), the co-moment ( )( )mmtiti rrrr −−  and the second-order moment of 

the dependent variable, here ( 2
iit rr − )  , may also be used as instruments. 

 Lewbel (1997) and Cragg (1994, 1997) have generalized the transposition of the 

method of moments to instrumental variables as exposed by Fuller (1987). Lewbel said that 

his paper is an extension of the method proposed by Dagenais and Dagenais (1997) to the 

generation of optimal instrumental variables but we only partially agree with this allegation 

because the Dagenais' method is the combination of previous estimators built in the context of 

the method of moments, especially the estimators of Durbin and Pal (equations 7 and 9). 

Thus, we will deal with the Dagenais' method in the next section, which constitutes a separate 

class of estimators.  

 Lewbel (1997) assumes that there exists an instrumental variable, say z, to estimate a 

one-variable model, say equation (2). This variable is different from the explanatory variable, 

here rm, the excess return of the market portfolio. Lewbel also postulates the following 

function: G = G(z), G being a linear or non-linear function of z6. Lewbel shows that the TSLS 

procedure is consistent when it uses as instruments the following moments and co-moments:  

( )GGz t −=1                 (16) 

( )( )iitt rrGGz −−=2           (17) 

( )( )mmtt rrGGz −−=3        (18) 

                                                 
6 For instance, G may be the logarithm of z or even z itself.  
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( )( )mmtiti rrrrz −−=4       (19) 

( )25 iit rrz −=         (20) 

( )26 mmt rrz −=       (21) 

  We can resort to an IV method other than the TSLS to estimate the parameters θ of a 

model. Cragg (1997) shows that the parameters can be estimated by the following procedure: 

[ ] [ ]{ })(mm̂W')(mm̂minarg~ θθθ
θ

−−=          (22) 

with ( ) ( )∑
=

−−
=

T

t

j
t

i
t

ij T
xxyym̂

1
 and W, a weighting matrix. To weight their instrumental 

variables, Dagenais and Dagenais [1997] resorted to an IV estimator suggested by Fuller 

(1987). As we will see in the section dedicated to the Dagenais and Dagenais (1997) 

estimator, which will be also used in this paper to estimate the hedge fund returns, it is very 

important to weight the higher moments because these moments might be erratic due to the 

presence of outliers in the financial return series. For our part, we will resort to the GMM 

method to weight the moment conditions related to the instrumental variables. We call this 

estimator: GMM-hm, using this notation to indicate that we resort to higher moments as 

instruments for running the GMM.  

  Using higher moments as risk factors has solid foundations in the financial literature 

(Malevergne and Sornette, 2005). Samuelson (1970), Rubinstein (1973) and Kraus and 

Litzenberger (1976) have developed an asset pricing model which incorporates higher 

moments of the market risk premium to take into account the non-normality of the 

distribution of returns, at least over short periods. This model was named the n-factor CAPM 

or alternatively, the n-moment CAPM. Rubinstein (1973) proposed the following version of 

the n-moment CAPM by assuming that the investors' expectations are identical or 

homogenous: 
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( ) ij

n

j
jfi bRRE ∑

=
+=

2
λ                    (23) 

with E(Ri) the expected return of a stock or a portfolio and Rf, the riskless rate.  

 In equation (23), bij is the systematic co-moment of order j between Ri and Rm, the 

return of the market portfolio. The parameter λj is a market measure of the degree of aversion 

towards the co-moment of order j. According to the CAPM, only systematic risk is priced by 

the market, which is measured by the co-moment of order 2 ( )
mi r,rs , that is the covariance 

between the return of  portfolio i and the market one. The non-systematic risk is not priced 

because it is diversifiable. Scott and Hovarth (1981) have shown that odd moments, like mean 

and positive asymmetry, provide positive utility to investors while even moments, like 

variance and kurtosis, provide negative utility.  

 The works done on the n-CAPM at the beginnings of the 70's have only been revived 

in the second half of the 90's7. Furthermore, the researchers were at this time more 

preoccupied by the effect of the third moment on risk even if the fourth one seems to be more 

important when the distribution of returns is not normal. But these gaps in the theory of the n-

CAPM have been filled since. 

 Several authors contributed to the elaboration of the n-moment CAPM. Rubinstein 

(1973), Ingersoll (1975, 1987), Kraus and Litzenberger (1976), Lim (1989) and Harvey and 

Siddique (2000) built the three-moment CAPM while Hwang and Satchell (1999) and Dittmar 

(2002) formulated the four-moment CAPM. There are many empirical studies on the three 

and four-moment CAPM even though these studies still seem to have a predilection for the 

third moment in spite of the importance of kurtosis in the specification of non-normal returns. 

These papers gave way to the quadratic and the cubic CAPM, respectively the empirical 

                                                 
7 On that matter, see the comments of Rubinstein in: Jurczenko and Maillet (2006).  
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versions of the third and fourth moment CAPM. The empirical version of the fourth moment 

CAPM, also called the cubic CAPM, may be written as follows: 

( ) ( ) ( ) tmmtpmmtpmmtppftit RRRRRRRR εδγβα +−+−+−+=− 32    (24) 

The coefficient γp is the exposition or loading of a portfolio to co-asymmetry while the 

coefficient δp is its exposition to co-kurtosis. According to the empirical specification of the 

CAPM given by equation (24), the higher moments are powers of returns as suggested by the 

method of moments. The empirical literature has found that higher moments are very relevant 

to explain non-Gaussian returns8. It is thus completely in line with our previous discussions 

about the use of higher moments of Rmt as instrumental variables to correct the first moment 

of the return of the market portfolio expressed as deviation from its mean for its measurement 

or other specification errors, that is its correlation with εt. In view of our theoretical 

developments on the use of higher moments as instrumental variables, equation (24) does not 

however exhaust the list of the possible higher moment instruments.  

 Higher moment estimators will be used in this paper to estimate the augmented 

version of the Fama and French (1992, 1993, 1997) model on a sample of hedge fund returns. 

This model may be written as follows: 

( ) ttttftmtftpt UMDHMLSMBRRRR μββββα ++++−+=− 4321   (25) 

with (Rpt – Rft) being the excess return of a portfolio over the risk-free rate (Rft) and (Rmt – Rft) 

being the market risk premium. The risk factors related to small cap, growth and momentum 

exposures are measured by their corresponding F&F (1992, 1993, 1997) mimicking 

portfolios9. SMB is a portfolio which mimics the "small firm anomaly", which is long in the 

returns of selected small firms and short in the returns of selected big firms;  HML  is a 

                                                 
8 See, for example: Chung, Johnson and Schill (2006). 
9 The original F&F model contained only the first two “anomalies”. The momentum anomaly, which is due to 
Carhart (1997) and Jegadeesh and Titman (1993), was introduced subsequently, to form the augmented Fama 
and French model. 
 

 12



portfolio which mimics the "income stock anomaly", which is long in returns of stocks of 

selected firms having a high (book value/ market value) ratio (value stocks) and short in 

selected stocks having a low (book value/ market value) ratio (growth stocks) and UMD, a 

portfolio which mimics the "momentum anomaly", which is long in returns of selected stocks 

having a persistent upper trend and short in stocks having a persistent downward trend. 

     We postulate that equation (25) contains specification errors which might be due to many 

causes. The most obvious is that the factors appearing on the RHS of equation (25) should 

be theoretically expected values and not observed ones. These errors may lead to biases in 

the estimation of the constant of this equation named Jensen alpha, a statistic which is very 

important for stock-picking activities or for the analysis of the performance of a portfolio 

manager, or can result in an understatement or an overstatement of the factor loadings of the 

basic factor model. These biases may thus upset the conclusions derived from the OLS 

estimation of equation (25) although the sign and the importance of the biases are not 

known theoretically because they are mixes of attenuation and contamination effects 

(Cragg, 1997, 1998). We will suggest in the section dedicated to the Hausman instrumental 

variable test a new indicator to evaluate the empirical biases caused by specification errors.  

 In choosing higher moment instrumental variables, we must thus restrict ourselves to 

a subset of them because there is an infinity of such instruments. We saw earlier that the 

instrument related to the higher moment of order two is linked to the skewness of the 

corresponding variable and the instrument of order three, to its kurtosis. As we are 

concerned above all with the third and fourth moments of the distribution of hedge fund 

returns, we will not exceed the third order moment while building our instruments. We will 

also neglect the co-moments because they are too numerous.  

 Let us suppose that x is one of the explanatory variables of the F&F model and that y 

is the dependent variable, here an excess hedge fund return. These variables are expressed in 
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deviations from their mean. The retained instruments for x are thus the following subset of 

all possible instruments: { }232
1 tttt y,x,x,x − . To this subset of instruments, we will add other 

exogenous variables like the Chen-Roll-Ross (1986) variables.   

2.2 The cumulant instrumental variables 

 In a paper published in 1997, Dagenais and Dagenais proposed a new method to 

purge a model from its measurement errors. This method was not well understood by the 

academics and that is perhaps why it was not popularized. We will present the instrumental 

variables constructed by Dagenais and Dagenais (1997) as cumulants to distinguish them 

from the higher moment instruments defined earlier. Really, there is no distinction between 

central moments and cumulants up to the fourth order10.  

 The purpose of the article of Dagenais and Dagenais (1997) was to combine the 

higher moment or cumulant estimators developed especially by Durbin (1954) and Pal 

(1980). It is well-known that the higher moments of the explanatory variables may be quite 

erratic. Incidentally, according to Cheng and Van Ness (1999), the estimates of third-order 

moments have much larger variances than the estimates of second-order moments in 

moderate samples. Smoothing  these moments by combining them may be a way to reduce 

these fluctuations. That was the approach adopted by Dagenais and Dagenais (1997). 

 We saw earlier that the instrumental variables associated to βd, that is the estimator 

developed by Durbin (1954), are: x*x, where x stands for the explanatory variables 

expressed in deviation from their mean and where the symbol * designates the Hadamard 

element by element matrix multiplication operator. Moreover, the instrumental variables 

associated to βp, that is the estimator developed by Pal (1980), are (Racicot, 1993, 2003) : 

x*x*x -3x[Plim(x'x/N)*Ik], where plim (x'x/N) may be replaced by its sample equivalent, 

that is (x'x/N),  when computing the instrumental variables. Dagenais and Dagenais add to 

                                                 
10 Some instruments used by Dagenais and Dagenais (1997), such as the Pal's ones, are ratios of cumulants. 
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these two instruments other cumulants and co-cumulants which were also used previously 

as instruments by Durbin and Pal for identifying the parameters of a model contaminated by 

measurement errors. The complete list of the cumulant instrumental variables proposed by 

Dagenais and Dagenais appears at table 1.  

Insert table 1 about here 
 

There are many ways to combine these instrumental variables so they could become 

optimal instruments. An obvious one is to use those instruments as inputs to the GMM, a 

procedure which we will adopt and in doing so we thus extend the methodology developed by 

Dagenais and Dagenais , these authors having chosen to use the Fuller's (1987) IV estimator 

in their 1997 paper, which is a standard generalized least squares.  

 Dagenais and Dagenais noticed in their article that the list of instrumental variables 

may be reduced to the triplet {z0, z1, z4} because their results seem better when using this 

subset of instruments instead of the whole set reported in table 1. We will follow this 

procedure in the empirical section of our article to reduce the number of instrumental 

variables. We have indeed four explanatory variables in our model. The number of 

instruments related to cumulants  thus amounts to eight, that is one z1 and one z4 for each 

explanatory variable of the F&F model (equation 25). The set of z variables is therefore in the 

case of our model: {z0, z11,…z14, z41,…z44}, the first index indicating the nature of the 

cumulant and the second one designating the explanatory variable. 

 Incidentally, those instruments are very relevant in the context of our sample which is 

composed of hedge fund returns. As said previously, z1, that is the Durbin's instruments, is 

associated to the degree of asymmetry of the distribution of our returns and z4, the Pal's 

instruments, are for their part related to the degree of kurtosis of the return distribution. Those 

instruments are therefore likely to convey much information on our sample of hedge funds 

whose returns are particularly asymmetric and leptokurtic. On the other hand, we will 

construct in the following section dedicated to the Hausman's instrumental variable test new 
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instruments which combine in another way z1 and z4 and which are based on the distance 

between an observed variable x and its fitted value.  As we will also use those instruments in 

the GMM estimation of our model, which is a new way to estimate this model, we will call 

this method: GMM-z.  

3. Test of specification errors in the framework of higher moments 

 To detect specification errors in our sample of hedge funds, we could use the original 

Hausman h test11. To explain this test, let us suppose the following classical model: 

εXβY +=        (26) 

with Y a (n x 1) vector representing the dependent variable; X, a (n x k) matrix of the 

explanatory variables; β, a (k x 1) vector of the parameters and ε ~ iid (0, ). 2σ

 Hausman compares two sets of estimates of the parameters vector, say, βOLS, the 

least-squares estimator (OLS), and βA, an alternative estimator which can take a variety of 

forms but which for our purposes is the instrumental variable estimator designated by βIV. 

The hypotheses to test are H0, being in our case the absence of specification errors and H1, 

being the presence of specification errors. The vector of estimates βIV is consistent under 

both H0 and H1 but βOLS  is consistent under H0 but inconsistent under H1. Under H0, βIV is 

obviously less efficient than βOLS. 

 Hausman wants to verify if "endogeneity" of some variables12, the variables 

measured with errors in our case, has any significant effect on the estimation of the vector 

of parameters. To do so, he defines the following vector of contrasts or distances: 

. The test statistic may be written as follows: OLSIV ββ −

( ) ( ) ( )[ ] ( ) ( )g~ˆˆˆˆˆˆh
T 2χOLSIV

1

OLSIVOLSIV βββVarβVarββ −−−=
−

         (27) 
                                                 
11 On the Hausman test, see : Hausman (1978), Wu (1973), MacKinnon (1992) and Pindyck and Rubinfeld 
(1998). A very good presentation of the version of the Hausman test using an artificial regression in the context 
of correction of errors in variables may be found in Pindyck and Rubinfeld (1998). This presentation is done for 
one explanatory variable. We have generalized it to a multivariate model.  
12 Therefore, the Hausman test is an orthogonality test, that is it aims to verify if plim (1/T) X’ε = 0 in large 
samples (equation 26).  
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with ( )IVβVar ˆ  and ( )OLSβVar ˆ  being respectively consistent estimates of the covariance 

matrices of IVβ̂  and OLSβ̂ . g is the number of potentially endogenous regressors. H0 will be 

rejected if the p-value of this test is less than α, with α being the critical threshold of the 

test, say 5%. 

 According to MacKinnon (1992), this test might run into difficulties if the matrix 

( ) ( )]ˆˆ[ OLSIV βVarβVar − , which weights the vector of contrasts, is not positive definite. 

Fortunately, there is an alternative way to perform the Hausman test which is much easier 

and which was used in its rudimentary form by Dagenais and Dagenais (1997). However, 

these authors did not realize that the resulting estimator is equivalent to a TSLS, a result 

which increases its robustness. That is the matter of the following developments. 

3.1 Tests based on higher moments13

 Assume a four-variable linear model which is in this paper the general form of the 

F&F model with four factors: 

tttttt xxxxy εβββββ +++++= *
44

*
33

*
22

*
110           (28) 

with ( )2,0~ σε N .  

 The variables *
itx 14 are measured with errors, that is: 

ititit xx υ+= *             (29) 

with , the corresponding observed variables which are measured with errors. By 

substituting equation (29) in equation (28), we have:  

itx

*
443322110 tttttt xxxxy εβββββ +++++=         (30) 

                                                 
13 For this section, see also: Théoret and Racicot (2007); Racicot and Théoret (2007); Coën and Racicot (2007),  
Racicot, Théoret and Coën (2007) and Racicot & Théoret (2006).  
14 As done usually in econometrics, we use the asterisks for the unobserved variables. 
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with . As seen before, estimating coefficients of 

equation (30) by the OLS method results in biased and inconsistent coefficients because 

the explanatory variables are correlated with the innovation.  

tttttt 44332211
* υβυβυβυβεε −−−−=

 Consistent estimators can be found if we can identify an instrument vector zt which 

is correlated with every explanatory variable but not with the innovation of equation (30). 

These estimators are the higher moments developed in the preceding section. Then we 

regress these four explanatory variables on zt. We have: 

itiititit wwxx ˆˆˆˆ +=+= tzγ         (31) 

with , the value of xitx̂ it estimated with the vector of instruments and , the residuals of 

the regression of x

itŵ

it on . Substituting equation (31) into equation (30), we have: itx̂

*
44332211443322110 ˆˆˆˆˆˆˆˆ tttttttttt wwwwxxxxy εβββββββββ +++++++++=         (32) 

The explanatory variables of this equation are, on the one hand, the estimated values 

of xit, obtained by regressing these four variables on the vector of instruments zt, and on 

the other hand, the respective residuals of these regressions. Equation (32) is therefore an 

augmented version of equation (30), which might be qualified of auxiliary or artificial 

regression.  

Racicot (2003) was the first to apply this approach to the market model. He 

postulates that the t test issued from the new variable  is distributed asymptotically as 

the normal distribution. According to Pindyck and Rubinfeld (1998), this test is adequate. 

Furthermore, when generalized to a multivariate dimension, this approach is different 

from the one proposed by Dagenais and Dagenais (1997) which suggested to run the test 

on the whole set of coefficients of by resorting to an F test, the usual procedure in this 

case. Moreover, the Dagenais and Dagenais method was developed for a sample of cross-

section data, what is usually the case when resorting to higher moment instrumental 

ŵ

itŵ
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variables. Racicot (2003) transposed these asymptotical results to financial time series. He 

also postulates in this context that the new model resulting from the addition of the 

artificial variable to the standard market model may be considered as a new model by 

itself, so we have a new Jensen alpha for this model. 

 It can be shown that that:  

21
ii

itit

*
tit

N
xlimp

N

ŵ
limp υσβ

υβ
ε

−=⎥⎦
⎤

⎢⎣
⎡−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∑∑

     (33) 

When there is no measurement error, and OLS leads to a consistent estimator for 

the parameter of  in equation (32), that is 

0=2
υiσ

itx̂ iβ . When there are measurement errors, 

 and therefore this estimator is not consistent.  02 ≠
iυ

σ

 We can thus build the following test to detect the presence of measurement errors. 

As we do not know a priori if there are such errors, we replace the coefficients βi of the 

variables in equation (32) by itŵ iθ . We thus have: 

*
44332211443322110 ˆˆˆˆˆˆˆˆ tttttttttt wwwwxxxxy εθθθθβββββ +++++++++=    (34) 

 But according to equation (31), ititit ŵxx̂ −= . We can therefore rewrite equation (34) 

as follows: 

( ) ( ) ( ) ( ) *
444333222111443322110 ˆˆˆˆ tttttttttt wwwwxxxxy εβθβθβθβθβββββ +−+−+−+−+++++=

                                                                                                                                               

(35) 

 If there is no measurement error for xit, then ii βθ = . If there is such error, then 

ii βθ ≠  and the coefficients of the residuals terms  will be significantly different from 

0.  

itŵ

 There is more information which we can draw from equation (35). Indeed, if the 

estimated coefficient ( )ii βθ −  is significantly positive, that indicates that the estimated 
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coefficient of the corresponding explanatory variable xit is overstated in the OLS run. 

Therefore, the estimated coefficient for this variable will decrease in equation (35). On the 

other hand, if the estimated coefficient ( )ii βθ −  is significantly negative, that indicates 

that the estimated coefficient of the corresponding explanatory variable xit is understated 

in the OLS run. Therefore, the estimated coefficient for this variable will increase in 

equation (35). The estimated parameters of the wi variables in equation (35) are thus very 

informative.  

We must notice that the coefficients βi estimated by the equation (35) are identical to 

those ones produced by a two-stage least squares (TSLS) procedure using the same 

instruments. Equation (35) is therefore another way to set up a TSLS. But in view of the 

useful information produced by equation (35), this equation opens the doors to new 

financial models. We should therefore prefer this formulation to that one represented by a 

TSLS to estimate the augmented F&F model. And we thus have a new empirical 

formulation for the F&F model.  

 We therefore proceed as follows to test for measurement errors. First, we regress the 

observed explanatory variables xit on the instruments vector to obtain the residuals . 

Then, we regress y

itŵ

t on the observed explanatory variables xit and on the residuals . This 

is an auxiliary or artificial regression. If the coefficient of the residuals of an explanatory 

variable is significantly different from 0, we may conclude that there is a measurement 

error related to this explanatory variable. We may resort to the Wald test (F test) to see if 

the whole set of 

itŵ

( ii )βθ −  coefficients is significantly different from zero.  

 We can generalize the former procedure to the case of k explanatory variables. Let X  

be a (n x k) matrix of explanatory variables which is not orthogonal to the innovation and 

let Z be a (n x s) matrix of instruments ( s> k). To perform the Hausman test based on an 

artificial regression, we first regress X on Z to obtain , that is:  X̂
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( ) XPXZ'ZZ'ZθZX Z
1 === −ˆˆ           (36) 

where PZ is the "predicted value maker". Having runned this regression, we compute the 

matrix of residuals ŵ : 

( )XPIXPXXXw ZZ −=−=−= ˆˆ        (37) 

Then we run the following artificial regression: 

λwXβy ˆ+=                    (38) 

A F test on the λ coefficients will indicate if they are significant as a group. A t test on 

individual coefficients will indicate if the corresponding β is understated or overstated, as 

discussed previously. 

 The vector of β estimated by equation (38) is identical to the TSLS estimates, that is: 

( ) yPX'XPX'ββ Z
1

ZIV
−== ˆˆ                 (39) 

 To detect specification errors in the augmented F&F model, we will run two sets of 

regressions. First, we will run the OLS one, that is: 

( ) ttttftmtftpt UMDHMLSMBRRRR εββββα ++++−+=− 4321    (40) 

 Then, we will run the following artificial regression explained previously: 

( ) *
4

1

*
4

*
3

*
2

*
1

* ˆ tit
i

itttftmtftpt wUMDHMLSMBRRRR εϕββββα +++++−+=− ∑
=

  (41) 

 The estimated coefficients iϕ  will allow detecting measurement errors and their signs will 

indicate if the corresponding variable is overstated or understated in the OLS regression. 

To estimate equation (41), we will use as instruments the higher moments discussed 

previously. We will call this estimation procedure: HAUS-hm.  

 As said previously, the β* estimated by equation (41) are equivalent to the TSLS 

estimates. But we could prefer equation (41) because it gives more information on the 

problem of measurement errors. Equation (41) is thus our new empirical version of the 

augmented F&F model. The φi are really factors of correction of the risk exposure of a 
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Fund to the ith factor of risk. If φi is positive, that means that the exposure to the ith risk 

factor is overstated in the OLS regression. The β associated to this factor will thus 

decrease in the artificial regression in comparison with the OLS one. And vice-versa if φi 

is negative. Moreover, according to our previous developments, we expect a high positive 

correlation between ( )*ˆˆ
ii ββ − , that is the estimated error on the coefficient of factor i, and 

iϕ̂ , the estimated coefficient of the corresponding artificial variable ( )iŵ . 

 We can sum up the former arguments by the following empirical equation: 

isisisSpread ςϕππ ++= 10      for s = 1 to n          (42) 

where , s being here an hedge fund specific strategy, and ς*ˆˆ
isisisSpread ββ −= is being the 

innovation of the estimation. According to equation (42), φ may thus be viewed as an 

indicator of overstatement or understatement of the OLS estimation for the coefficient 

associated to the factor i for the strategy s. We will estimate this equation for the most 

important risk factors in the empirical section of this paper. That constitutes our variant of 

the original Hausman test. The goodness of fit of equation (42) will provide information 

about the severity of the measurement error for an explanatory variable as shown in the 

empirical section.  

3.2 Test based on cumulants15

 To estimate equation (41), we would also use the triplet of instrumental variables 

{z0, z1, z4} discussed previously, what is an innovative way to proceed.  We call this 

estimator: HAUS-z. And we have also a corresponding GMM, the GMM-z. But there is 

another way to proceed which will reduce the number of instruments to the number of 

explanatory variables and which will perform quite well in the case of our sample of 

hedge fund returns. Indeed, regressing the explanatory variables on the zi , which are 

                                                 
15 For this section, see also: Coën and Racicot (2007) and Kendal and Stuart (1963).  
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cumulants, amounts to performing a polynomial adjustment on each explanatory variable, 

that is: 

ttttit zzzzx 4484151441110 ˆ...ˆˆ...ˆˆˆ γγγγγ ++++++=      (43) 

where the z were defined previously. Let us define the following distance variable, which 

we denote ivit:    

ititit x̂xiv −=                            (44) 

This variable removes from xit some of its nonlinearities. It is thus a smoothed xit which 

might be seen as a proxy for its long term expected value, the relevant variable in the F&F 

model which is theoretically formulated on expected values of the explanatory variables. 

As shown in the empirical section of this article, this new variable labelled ivit is strongly 

correlated with xit but not with the innovation of our model of returns. It is thus a very 

good candidate for an instrumental variable. Incidentally, the variable ivit may be viewed, 

in the framework of our return model, as a portfolio hedged for some extreme events 

related to the skewness and the kurtosis of returns but which retains its correlation with the 

non-hedged portfolio. To illustrate the relevance of the variables iv as instrumental 

variables, figure 1 plots the relation between the observed market risk premium and the 

corresponding iv variable, denoted by iv1.  As we may see on this figure, the correlation 

between rm and iv1 is very good but iv1 fluctuates less than rm. It is in this sense that the ivi 

variables might be considered as hedged portfolios.  

Insert figure 1 about here 

 Resorting to the iv variables allows to weight optimally the vector z of instrumental 

variables to build another instrumental variable because in fact, as mentioned earlier, it is 

based on a GLS. Indeed, as revealed by our empirical section, the vector of estimated 

coefficients { }81 ˆ,...,ˆ γγ  (equation 43) will be such that the extreme events are taken into 

account by these coefficients.  
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 But the choice between the vector z or the vector iv as optimal instruments is really 

an empirical matter. To build the Hausman equation, called HAUS-C, we resort to the 

following two-step procedure to compute the  artificial variables. As the iv variables are 

here the instruments, we regress first the explanatory variables of the F&F model on the 

ivi.  We obtain the following estimates: 

∑
=

++=
4

1j
itjtjit ivcx ζκ                       (45) 

where xit is an explanatory variable of the model; iv are the instruments and ζ is the 

innovation. The estimated residuals ζit are the of equation (41). The resulting regression 

is called HAUS-C. Table 2 sums up the list of estimators used in this study to correct 

measurement errors.  

itŵ

Insert table 2 about here 

4. Empirical results 

4.1 Description of the sample 

 Our sample of hedge funds comprises the monthly returns of 22 HFR indices 

classified by categories or groups of categories. The observation period runs from January 

1990 to December 2005, for a total of 192 observations. The risk factors which appear in 

the F&F equation, -that is the market risk premium and the three mimicking portfolios: 

SMB, HML and UMD, - are for their part drawn from the French’s website16. We used as 

instruments, among others, the Chen-Roll-Ross (1986) factors: the industrial production, 

the consumer price index, the spread between long and short term bonds, the spread 

between BBB and AAA corporate bonds and the dividend yield of the S&P500. These 

factors are drawn from the database of the Federal Reserve Bulletin and the Federal 

Reserve Bank of St-Louis.  

                                                 
16 The address of the French’s website is : 
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4.2 A first glance at the sample of hedge fund returns 

 We can get a first glance at our sample of hedge fund returns by looking at table 3, 

which gives the descriptive statistics of the 22 HFR selected indices. The period of analysis 

runs from January 1990 to December 2005. The hedge fund indices are sorted by the R2 

resulting from the OLS estimation of the F&F model over the period 1990-2005. We see that 

the F&F model performs poorly for very specialized hedge fund strategies, like the fixed 

income arbitrage, convertibles and macro ones. But it seems relevant to explain the returns of 

the strategies which dominate the hedge fund industry, that is the equity hedge17, fund of 

funds and equity non hedge strategies.  

Insert table 3 about here 

 At an annualized value of 14.5% over the 1990-2005 period, the mean return of the 

hedge fund composite index was higher than the 11.5% realized by the S&P500. However, 

there is a great diversity of returns over the strategies. The return of the short selling index 

was a meagre 4% while the equity hedge index, associated to the most important strategy in 

the hedge fund industry, displayed a return as high as 17.5%. 

 A stylised fact of the hedge fund returns is the high degree of kurtosis of their 

distribution. Actually, the kurtosis of the returns of the hedge fund composite index was 5.30 

over the 1990-2005 period compared to 3.73  for the S&P500. At table 3, kurtosis ranges from 

a high of 14.71 for the merger arbitrage index to a low of 2.46 for the market timing one. 

Incidentally, the equity hedge strategy, the most important one in the hedge fund industry, had 

a kurtosis of 3.92 over the period 1990-2005, a level comparable to the S&P500. Furthermore, 

                                                 
17 The equity hedge strategy is often called "long-short strategy".  
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the skewness of hedge fund indices is quite high for some strategies like merger arbitrage, 

event driven and fixed income arbitrage.  

4.3 The choice of instruments 

 This article distinguishes four types of instruments: the classical instruments, the 

higher moments, the z instruments and the iv ones. The classical instruments include the 

traditional predetermined variables and the Chen-Roll-Ross (1986) factors. The higher 

moments instruments add to the classical ones the following set of variables discussed 

previously: { }232 ,, ttt yxx . The derivation of the cumulant instruments, denoted by z and iv in 

table 4, was explained in the preceding section.  

Insert table 4 about here 

 Table 4 gives the adjusted R2 of the regressions of the risk factors of the F&F model 

(endogenous variables) on the categories of instruments considered in this paper. As we can 

see, the classical instruments are weak, the adjusted R2 being under 0.15 for each endogenous 

variable. Resorting only to the classical instruments is inappropriate for explaining the market 

risk premium and the returns of the mimicking portfolios which display a high degree of 

kurtosis. Nonlinear instruments like higher moments and cumulants are required. Table 4 

confirms this allegation for higher moment instruments. The adjusted R2 for the regressions of 

the endogenous variables on the set of these instruments excluding18 y2 are in a range from 

0.55 to 0.64. The adjusted R2 of the iv set of instrumental variables are even higher, being in a 

range from 0.62 to 0.80. However, the adjusted R2 of the z set of instruments are quite 

moderate, being in a range from 0.21 to 0.35.  

Table 5 gives the regressions of the F&F factors on the four iv variables. As we can see 

in this table, each risk factor has its own instrument. For instance, iv1 is the instrument of the 

market risk premium. When regressing the market risk premium on the ivi set, the variable iv1 

                                                 
18 We will explain later why we decided to exclude y2 from the set of higher moment instruments.  
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has a coefficient near 1 and the other ivi have coefficients of 0. iv2 is the instrument of the 

SMB factor, the regression of SMB on the ivi giving a coefficient of 1 to iv2 and 0 coefficients 

for the other ivi, and so on. Therefore, the iv instruments are orthogonal variables. They are 

thus very appealing in view of their characteristics.  

Insert table 5 about here 

A good instrument must also be uncorrelated with the innovation term of the OLS 

estimation of the F&F model. Table 6 gives such information for the four sets of higher 

moment or cumulant instruments in the case of each hedge fund strategy. The iv set has no 

correlation with the innovation term. They thus qualify as very good, indeed optimal, 

instruments. The other sets have also low correlation with the innovation term except the 

higher moment set including y2. It is for this reason that we will exclude this variable from the 

higher moment instrumental variables set in our following estimations.  

Insert table 6 about here 

 
 It is instructive to look at table 7 to get a better grasp of our methodology to construct 

instrumental variables with cumulants. We know that the SMB portfolio incorporates many 

nonlinearities,  being actually a long-short portfolio. Its payoffs are option-like. At table 7, we 

first show the four instruments related to the Durbin's estimator and thereafter the four 

instruments related to the Pal's estimator. As explained previously, the former are related to 

the asymmetry of a return distribution and the latter, to its kurtosis. As revealed by this table, 

the SMB factor is very sensitive to these groups of instruments. This observation suggests that 

nonlinearities are very present in this mimicking portfolio. To build the corresponding iv 

instrumental variable, we purge SMB from these nonlinearities and we obtain what we called 

a distance variable, which is more related to the expected value of SMB.  

Insert table 7 about here 

4.4 Comparison of estimation methods for the sample of 22 hedge fund indices 
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 For the following evaluation of the specification errors, the OLS method will serve as 

benchmark to estimate equation (25) for each hedge fund strategy. The higher moment and 

cumulant estimation methods used to estimate this equation were previously reported in table 

2. For the GMM regressions, we resort to the Newey-West matrix as weighting matrix. Table 

7 provides the mean results computed over the hedge fund strategies for the estimation of 

equation (25) according to the chosen estimation methods. We will firstly discuss the OLS 

estimation and we will then compare the OLS results with those of the higher moment IV 

methods.  

Insert table 8 about here 

 At 0.45, the average R2 associated to the OLS estimation is quite moderate but as we 

noticed in table 3, it varies greatly from one strategy to the other. Only the TSLS-z and the 

GMM-z estimations, which are those resorting to the z cumulants set,  involve a much lower 

R2 while the other are close to the R2 average.  

 Let us examine the coefficients averaged over the strategies for each estimation 

method. The alpha of Jensen measured by the constant of the regressions is quite stable from 

one estimation method to the other except for  the methods based on the z instruments which 

have a much lower alpha at the expense of a much higher loading for rm. Excepting the 

methods based on the z instruments, we also note that the factor loadings for the risk factors 

of the F&F model are quite close from one estimation method to the other. Therefore, 

resorting to weak instruments, which are the z ones here, may give way to biased coefficients.  

 Compared to the OLS benchmark, the results indicate that measurement errors are 

quite small when averaging the results. The ranking of the risk factors is the same over the 

methods. It is the market risk premium which impacts the most on hedge funds returns, 

followed by the SMB and HML factors. The UMD factor is not very significant as 

corroborated by other studies on hedge fund returns (Agarwal and Naik, 2000). 
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 It is interesting to look at the Hausman estimations using two kinds of instruments: the 

higher moments and the cumulants. As explained in the section related to the Hausman tests, 

we notice that the estimated coefficients are the same for the HAUS-C, TSLS-C and GMM-C 

because the parameters of these estimations are exactly identified. They are also the same for 

the HAUS-hm and TSLS-hm estimations. Without being equal, the t-statistics associated to 

the estimated coefficients are quite close. Their differences may be explained by the 

weighting matrix which differs from one estimation method to the other.  In the case of the 

TSLS, this matrix is the White one and in the case of the GMM-C, it is the Newey-West one.  

 Using the higher moment instruments (hm) suggests that hedge funds are riskier than 

using the cumulant ones except for the UMD factor which has a higher loading in the HAUS-

C equation. Indeed, the SMB and HML factor loadings are especially more important in the 

HAUS-hm estimation than in the HAUS-C one. As we will see in the next section, the two 

methods tend to identify the same hedge funds for which the F&F model is subject to 

specification errors but differ in the direction of the correction of these errors. The coefficients 

resulting from the methods using the iv variables as instruments (TSLS-C, GMM-C) are 

closer to the OLS than the method using the higher moment instruments (TSLS-hm, GMM-

hm). We can conclude from those observations that the correction of specification errors 

depends on the nature of the instruments used. As the cumulant instruments seem superior to 

the higher moment ones in this study, we could infer that the corrections performed by the 

cumulant instruments are better19.  

4.5 Hausman tests for the beta and the SMB loadings 

 We explained previously how to build a modified version of the Hausman test by 

using an artificial Hausman regression. Those regressions are useful because the estimated 

coefficients of the w variables in equation (41) are indicators of the degree of understatement 

                                                 
19 Resorting to a priori information on the values of the factor loadings might also help to judge the relevance of 
the corrections of specification errors.  
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or overstatement of the coefficient of the corresponding explanatory (endogenous) variable. 

They are all the more useful since the estimated factor loadings of these regressions are the 

same as the corresponding TSLS ones, a result which was ignored by Dagenais and Dagenais 

(1997). The spread between the OLS coefficient for a variable and its corresponding 

coefficient in the artificial Hausman regression is thus really an indicator of measurement 

error, -- overstatement or understatement--, on this variable as revealed by equation (42).  

 Tables 9 and 10 give the results of the estimations of the artificial regressions (41) for 

the market risk premium. Table 9 resorts to the iv variables to compute the residuals included 

in the artificial regression while table 10 uses the higher moments to do so. The strategies 

appearing in bold are those for which the estimated φ is significant at the 10% level.  

Insert table 9 about here 

   At table 9, where the beta is estimated by the HAUS-C method, we notice that this 

coefficient is significantly overstated by the OLS method for four strategies and significantly 

understated for two strategies. We must thus disaggregate by strategy to observe measurement 

errors because we did not suspect serious measurement errors for the beta averaged over 

strategies (table 8). As we notice in table 9, the φ coefficient associated to the w variable of 

the risk premium is actually an indicator of the degree of overstatement or understatement of 

the estimated beta. When φ is positive, the spread between the OLS and HAUS-C coefficients 

is also positive: the coefficient is overstated by the OLS method in this case. Otherwise, when 

φ is negative, the spread between the OLS and HAUS-C coefficient is negative: the 

coefficient is understated in this case. If we regress the spread over the φ appearing in table 9, 

we obtain the following regression20: 

      (29.06)    (1.04)               
162700010Spread ϕ.. +=

 

                                                 
20 Note that the t-statistics of the estimated coefficients are in parentheses.  
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The R2 of this regression is 0.97, what is almost a perfect fit. At figure 2, we can observe the 

close linear relationship between φ and the spread between the OLS and HAUS-C betas. As 

said previously, such a good fit suggests that measurement errors are far from being negligible 

for the betas of hedge funds sorted by strategy. 

Insert figure 2 about here 

 Table 10 provides the same information as table 9 for the beta coefficient except that 

the HAUS-hm method is used in this case. We notice that this table identifies more strategies 

with significant measurement errors, that is 13 instead of 6 for the HAUS-C method. And we 

must also notice that the sign of the measurement error is much related to the choice of 

instruments to discard those errors.  

Insert table 10 about here 

 According to the HAUS-hm regression, four very specialized strategies seem to suffer 

from significant measurement errors for the loading of the risk premium, actually the same 

depicted by the HAUS-C regression: the distressed securities, merger arbitrage, event driven 

and market timing strategies.  According to the HAUS-hm method, the betas of the first three 

strategies are understated while the beta of the last strategy is overstated. We obtain the 

inverse correction when using the HAUS-C method for those funds. This situation is all the 

more problematic since we know that the beta estimated by the HAUS-C method is the same 

as the TSLS one when using the cumulants as instruments for both and that the beta resulting 

from the HAUS-hm method is the same as the TSLS one when using the higher moments of 

the explanatory variables as instruments for each of these last two methods. The betas 

estimated by the artificial regressions have thus a sound foundation, being related to a well- 

known IV method (TSLS), and the direction of the correction of specification errors is 

therefore related to the choice of instruments and not to the version of the Hausman test by 

itself.  
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 As for the HAUS-C method, we can regress the spread between the OLS and HAUS-

hm beta on its corresponding φ appearing in the artificial regression. We get: 

      (20.25)    (-0.67)               
554400020Spread ϕ.. +−=

 

with a R2 of 0.95. Once again, the coefficient φ is a good indicator of the degree of 

misspecification errors. Figure 3 plots the close link between the spread and the HAUS-hm 

estimated φ.  

Insert figure 3 about here 

 We will not report the results of the artificial regressions for the other risk factors but 

let us notice that our φ indicator may also signal the absence of measurement errors on an 

explanatory variable. Figure 4 plots the association between the spread between the SMB 

coefficients estimated by the OLS and HAUS-C methods and the corresponding φ. There is 

no evidence of a linear relationship between these two variables, the estimated φ being 

incidentally not significant in the HAUS-C regressions, and we thus conclude that there are no 

measurement errors for this variable.  

Insert figure 4 about here 

 To sum up, our version of the Hausman test proves very useful for detecting 

measurement errors for the estimated parameters of the F&F model. Very often, the HAUS-C 

and the HAUS-hm methods identify the same strategies as candidates to measurement errors 

for a given risk factor. But a problem lies in the choice of the instruments because the 

correction of these errors by the IV methods is very much conditioned by this choice. On the 

basis of our previous developments, the cumulants of the variables of the F&F model seem 

more relevant than the higher moments to remove specification errors from a model.  

5. Conclusions 
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In this paper, we proposed new versions of the Hausman artificial regression to detect 

and remove specification errors while estimating financial or economic models. These new 

estimators constitute also new empirical versions of these models, like the well-known CAPM 

or the Fama and French one. These estimators are equivalent to a TSLS procedure and lead to 

a new indicator of the spread between the OLS and corrected coefficient of an explanatory 

variable, this spread being a measure of the measurement error. Therefore, in addition to 

detecting the variables contaminated with measurement errors, our Hausman-based artificial 

regression provide a correction of those errors.  It is in this sense that those kinds of 

regressions are very useful empirical versions of existing models.  

 To set up these tests, we resorted to two new sets of instruments: higher moments and 

cumulants. These instruments reveal themselves much more powerful than the classical 

instruments frequently used in the empirical financial literature, like the Chen-Roll-Ross 

(1986) ones. Our new instruments take into account the high degree of kurtosis which is 

present in the distributions of financial returns, especially hedge fund returns, what is not the 

case for the classical instruments. 

 As shown in this paper, the correction of specification errors in a financial model is 

much related to a judicious choice of instruments. Our two sets of instruments, higher 

moments and cumulants, tend to identify the same strategies for which the Fama and French 

model seems misspecified. Those strategies are not the dominant strategies of the hedge fund 

industry but instead very specialised ones, like the distressed securities, the fixed income or 

the event driven strategies. But it is one thing to identify specification errors in an estimated 

model. It is another thing to correct them. Incidentally, the two sets of  instruments used in 

our study differ when correcting those errors. Where a set of instruments has identified an 

overstatement in regard to the exposure of a strategy to a risk factor, the other set tends to 

diagnose an understatement for the exposure. This result is important because it signals that 
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the correction process done by an IV method is much conditioned by the set of instruments 

used.  

In view of this problem, it appears relevant to choose a set of instruments. On the basis 

of our empirical works, the choice of cumulants over higher moments seems preferable in 

view of the strict orthogonality between these instruments and the innovation term of the 

estimated financial models and to the parsimonious character of these instruments, their 

number being restricted to the number of explanatory variables of a model. The cumulants are 

also an optimal combination of two well-known estimators, those of Durbin (1954) and Pal 

(1981). They are distance variables for which an optimal matrix is used to weight the 

instruments related to these estimators. That is a way to increase the robustness of higher 

moment instruments which are considered not very robust and which therefore tend to be 

neglected. Our study of hedge fund returns shows that such instruments may be very relevant 

if they are combined optimally. They are also especially relevant when the distributions of the 

studied variables deviate substantially from the Gaussian one like in this paper.  

 Summing up, our study reveals that we must account for specification errors when 

estimating a financial model. The method we suggest to do so looks very promising because it 

integrates new developments in the theory of financial risk in the estimation process of 

financial models.  
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Tables 
  
 
 
 
 
Table 1 List of the cumulant instrumental variables proposed by Dagenais and Dagenais 
(1997) 
 
 z0 ιN

z1 x*x (Durbin) 
z2 x*y 
z3 y*y 
z4 x*x*x-3x[E(x'x/N)*Ik]   (Pal) 
z5 x*x*y-2x[E(x'y/N)*Ik]-y{ι'k[E(x'x/N)*Ik]} 
z6 x*y*y-x[E(y'y/N]-2y[E(y'x/N] 
z7 y*y*y-3y[E(y'y/N)] 

 
 
 
 
 
 

* ι stands for a vector of one. Ik is the identity matrix of dimension 
(k x k).  
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Table 2 List of higher moment  and cumulant estimators used to correct specification errors*

 
Method Instruments 

Hausman-hm higher moments: { }232
1 tttt y,x,x,x −  and other exogenous 

variables like the Chen-Roll-Ross (1986) factors 

Hausman-C the distance variables called cumulants: {iv1,…,iv4} 
TSLS-hm higher moments: { }232

1 tttt y,x,x,x −  and other exogenous 
variables like the Chen-Roll-Ross (1986) factors 

TSLS-z {z0, z11,…z14, z41,…,z44}, which are the Durbin and Pal 
instruments 

TSLS-C the distance variables called cumulants: {iv1,…,iv4} 
GMM-hm higher moments: { }232

1 tttt y,x,x,x −  and other exogenous 
variables like the Chen-Roll-Ross (1986) factors 

GMM-z {z0, z11,…z14, z41,…,z44}, which are the Durbin and Pal 
instruments 

GMM-C the distance variables called cumulants: {iv1,…,iv4} 

* The variables which enter in the computation of higher moments and cumulants are expressed in deviation from their mean. For the 
GMM estimations, the weighting matrix used to weight the moment conditions is the Newey West one.   
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Table 3 Descriptive statistics of the HFR indices, 1990-2005*

 
 

  
Mean return 

(ann) Median (ann) s.d. (ann) skewness kurtosis R2

Fixed income arbitrage 8.14 8.52 5.22 -1.07 13.93 0.01 
Funds of funds (FoF) Market defensive 9.43 8.82 5.89 0.18 4.35 0.06 
Convertibles 10.00 11.64 3.74 -1.27 6.61 0.16 
Macro 13.51 11.28 8.77 0.43 3.82 0.19 
Relative Value Arbitrage 11.70 10.68 3.70 0.08 10.30 0.28 
FoF Conservative 8.31 8.94 3.23 -0.47 6.50 0.31 
Merger Arbitrage 10.48 12.9 4.59 -2.61 14.71 0.32 
Fixed income high yield 8.65 8.82 6.16 -0.44 8.98 0.34 
Market Neutral Statistical Arbitrage 8.00 8.94 3.95 -0.26 3.67 0.36 
Fixed income total 11.70 11.76 4.14 0.06 6.35 0.40 
Equity Market Neutral 9.76 9.12 3.60 -0.10 5.16 0.42 
FoF diversified 9.02 8.46 5.94 -0.10 7.30 0.42 
Distressed Securities 14.42 13.56 6.14 -0.67 8.46 0.44 
FoF total 10.25 9.72 4.60 -0.33 7.13 0.45 
FoF strategic 12.85 14.82 8.91 -0.38 6.74 0.49 
Market timing 12.94 11.94 7.25 0.14 2.46 0.58 
Event Driven 14.72 16.98 7.07 -1.24 7.60 0.73 
Sector 19.38 21.66 12.78 0.11 6.19 0.75 
Equity hedge 17.46 19.38 9.90 0.17 3.92 0.76 
Short selling 4.00 -0.90 23.10 0.26 5.10 0.78 

Equity non hedge 16.91 21.84 15.45 -0.42 3.98 0.91 

Average 11.51 11.85 7.34 -0.38 6.82 0.45 

Hedge fund weighted composite 14.51 18.18 7.01 -0.51 5.30 0.82 

S&P500 11.09 15.06 14.31 -0.45 3.73   
 
* The statistics appearing in this table are computed on the monthly returns of the HFR indices over the period running from January 1990 to December 2005. 
The weighted composite index is computed over the whole set of the HFR indices. The R2 are those of the OLS estimations of the F&F model for each 
strategy. The strategies are sorted by increasing value of R2. 
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Table 4 Adjusted R2 of the OLS regressions of the explanatory variables of the F&F model on instrument 
catogories*

 
  classical hm with y2 hm without y2 z iv 

rm 0.10 0.61 0.56 0.21 0.80 
SMB 0.11 0.48 0.55 0.35 0.62 
HML 0.09 0.61 0.64 0.23 0.74 

UMD 0.05 0.53 0.51 0.32 0.65 
* In this table, hm stands for higher moments.  
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Table 5 Regressions of the explanatory  variables of the F&F model on the cumulant instruments (iv)*

 
  rm SMB HML UMD 

iv1 1.02 0.01 -0.01 -0.01 
  23.93 0.27 -0.15 -0.12 
iv2 0.01 1.00 -0.01 -0.01 
  0.20 17.01 -0.05 -0.04 
iv3 0.01 0.00 0.99 -0.01 
  0.17 0.03 19.30 -0.03 
iv4 -0.01 -0.01 0.01 1.00 

  -0.08 -0.02 0.02 18.49 

R2 adj. 0.80 0.62 0.74 0.65 

DW 1.87 2.52 2.40 2.22 
* The t-statistics of the coefficients are in italics.  
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Table 6 Correlation between the residuals of the OLS estimation of the F&F model and instrument sets 
 
 

  z iv hm with y2 hm without y2

Convertibles 0.10 0.01 0.41 0.08 
Distressed 0.14 0.02 0.31 0.04 
Equity hedge 0.05 0.01 0.32 0.00 
Equity Market Neutral 0.06 0.00 0.42 0.01 
MN Stat Arbitrage 0.06 0.00 0.44 0.04 
Equity non hedge 0.10 0.03 0.48 0.04 
Event Driven 0.12 0.01 0.35 0.06 
Fund of Funds 0.08 0.01 0.32 0.05 
Macro 0.05 0.01 0.59 0.05 
Market timing 0.19 0.02 0.60 0.10 
Merger Arbitrage 0.14 0.01 0.45 0.08 
Relative Value Arb. 0.11 0.01 0.42 0.05 
Short selling 0.05 0.01 0.46 0.01 
Sector 0.05 0.01 0.29 0.00 
Fixed income tot. 0.09 0.01 0.49 0.06 
Fixed income arb. 0.05 0.01 0.42 0.00 
Fixed income high yield 0.08 0.01 0.42 0.03 
FOF Conservative 0.12 0.01 0.42 0.02 
FoF diversified 0.08 0.01 0.36 0.00 
FoF Market def. 0.08 0.01 0.47 0.00 
FoF strategic 0.09 0.01 0.37 0.02 

FWC 0.08 0.01 0.27 0.02 
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Table 7 Regression of SMB over the instrumental z variables  
 

    Coefficient t-Statistic p-value 

  z1 -0.0397 -3.86 0.00 
Durbin's  z3 0.0205 1.29 0.20 
instruments z5 -0.0020 -2.01 0.04 

  z7 -0.0035 -2.13 0.03 

  z2 -0.0295 -3.23 0.00 
Pal's z4 0.0275 3.47 0.00 
instruments z6 0.0015 3.37 0.00 
  z8 0.0008 2.06 0.04 
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Table 8  F&F model estimated  by OLS and several higher moment IV methods over 22 HFR 
indices, 1990-2005*

 
  c rm SMB HML UMD R2 DW 

OLS 0.4283 0.2016 0.1226 0.0739 0.0378 0.45 1.60 
  4.22 10.42 5.51 2.55 2.70    
TSLS-hm 0.4030 0.2304 0.1727 0.1346 0.0118 0.45 1.61 
  3.44 8.15 4.26 2.23 2.22    
TSLS-z 0.3713 0.2884 0.1186 0.0912 0.0375 0.32 1.70 
  2.71 4.70 1.75 1.30 1.47    
TSLS-C 0.4241 0.1910 0.1175 0.0734 0.0506 0.45 1.61 
  3.44 6.98 3.55 1.90 2.01    
GMM-hm 0.4309 0.2133 0.1565 0.0972 0.0144 0.42 1.62 
  4.20 7.50 6.60 2.80 2.93    
GMM-z 0.3963 0.2799 0.1106 0.0867 0.0380 0.32 1.70 
  2.53 4.20 2.05 1.51 1.36    
GMM-C 0.4241 0.1910 0.1175 0.0734 0.0506 0.45 1.61 

  3.44 8.15 4.26 2.23 2.22    

Average 0.4090 0.2341 0.1331 0.0928 0.0317 0.40 1.64 

  3.42 7.19 4.07 2.10 2.15     

HAUS-hm 0.4030 0.2304 0.1727 0.1346 0.0118 0.48 1.62 
  3.77 7.91 4.97 2.68 1.82    
HAUS-C 0.4241 0.1910 0.1175 0.0734 0.0506 0.47 1.61 

  4.43 9.54 4.90 2.30 2.53     
* This exhibit gives the mean results computed over the 22 hedge fund strategies for each estimation method retained in this paper. There are nine 
estimation methods appearing in this exhibit: the ordinary least squares (OLS) and the eight methods shown at table 2. To avoid overloading this table, 
we did not report the J-stat and their corresponding p-value for overidentified GMM, which are the GMM-hm and the GMM-z in this table. The J-tests 
indicate that the instruments are relevant for each GMM method used. By the way, the GMM-C estimation is exactly identified. The t-statistics of the 
coefficients are in italics.  
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Table 9 HAUS-C test for the market risk premium*

 
  OLS HAUS-C Spread φ t(φ) 

Macro 0.28 0.33 -0.04 -0.25 -1.91 
Market timing 0.35 0.39 -0.04 -0.25 -3.35 
MN Stat Arbitrage 0.19 0.19 0.00 0.01 0.20 
Equity Market Neutral 0.09 0.09 0.00 -0.01 -0.16 
FoF Market def. 0.04 0.03 0.00 0.00 -0.01 
Equity hedge 0.49 0.48 0.01 0.05 0.58 
Fixed income arb. -0.03 -0.04 0.01 0.03 0.40 
FOF Conservative 0.12 0.11 0.01 0.07 1.55 
Equity non hedge 0.85 0.84 0.01 0.05 0.69 
Fund of Funds 0.18 0.17 0.01 0.07 1.29 
FoF diversified 0.22 0.21 0.01 0.07 0.95 
Fixed income tot. 0.16 0.15 0.01 0.06 1.16 
Convertibles 0.10 0.09 0.01 0.06 1.08 
Hedge fund weighted comp.  0.38 0.36 0.02 0.11 2.31 
Sector 0.51 0.49 0.02 0.13 1.25 
Fixed income high yield 0.24 0.22 0.02 0.11 1.27 
Short selling -1.02 -1.04 0.02 0.08 0.47 
FoF strategic 0.34 0.32 0.03 0.16 1.54 
Merger Arbitrage 0.19 0.16 0.03 0.16 2.55 
Relative Value Arb. 0.12 0.09 0.03 0.18 3.58 
Event Driven 0.40 0.37 0.03 0.18 3.09 

Distressed 0.24 0.20 0.04 0.24 3.32 
* The spread (measurement error) is the difference between the OLS coefficient and the corresponding Hausman coefficient resulting 
from the estimation of the Hausman artificial regression  (equation 41). For each spread, we provide the coefficient φ of the 
corresponding artificial variable. The funds having a significant φ at the 10% level are bold-faced. Note the strong positive relationship 
between the spread and φ, the strategies being reported in increasing order of the spread.  

 45



Table 10  HAUS-hm  test for the market risk premium*

 
  OLS HAUS-hm Spread φ t(φ) 

Distressed 0.24 0.37 -0.13 -0.19 -3.64 
Fixed income high yield 0.24 0.34 -0.10 -0.14 -2.33 
Merger Arbitrage 0.19 0.28 -0.09 -0.18 -3.98 
Event Driven 0.40 0.49 -0.09 -0.14 -3.29 
FoF strategic 0.34 0.41 -0.07 -0.14 -1.77 
Convertibles 0.10 0.17 -0.07 -0.11 -2.80 
Fixed income arb. -0.03 0.04 -0.06 -0.10 -1.56 
FoF diversified 0.22 0.26 -0.05 -0.10 -1.77 
FWC 0.38 0.42 -0.04 -0.07 -1.86 
FOF Conservative 0.12 0.16 -0.04 -0.08 -2.47 
Relative Value Arb. 0.12 0.16 -0.04 -0.07 -1.87 
FoF Market def. 0.04 0.07 -0.03 -0.11 -1.56 
Fund of Funds 0.18 0.21 -0.03 -0.07 -1.73 
Equity Market Neutral 0.09 0.11 -0.03 -0.05 -1.61 
Fixed income tot. 0.16 0.19 -0.03 -0.03 -0.67 
Equity non hedge 0.85 0.87 -0.02 -0.02 -0.29 
MN Stat Arbitrage 0.19 0.19 0.00 0.01 0.38 
Equity hedge 0.49 0.48 0.01 0.01 0.14 
Macro 0.28 0.26 0.03 0.06 0.65 
Sector 0.51 0.46 0.05 0.06 0.81 
Short selling -1.02 -1.08 0.07 0.09 0.71 

Market timing 0.35 0.21 0.14 0.28 5.19 
* The spread (measurement error) is the difference between the OLS coefficient and the corresponding Hausman coefficient resulting 
from the estimation of the Hausman artificial regression  (equation 41). For each spread, we provide the coefficient φ of the 
corresponding artificial variable. The funds having a significant φ at the 10% level are bold-faced. Note the strong positive relationship 
between the spread and φ, the strategies being reported in increasing order of the spread.  
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Figures 
 
 
 
 

 
Figure 1 Relation between the market risk premium and its corresponding iv variable (iv1) 
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Figure 2  Relation between the spread and the corresponding φ estimated by HAUS-C for the 
market risk premium*
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* The data used to build this figure are reported at table 9.   
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Figure 3 Relation between the spread and the corresponding φ estimated by HAUS-hm for 
the market risk premium*
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* The data used to build this figure are reported at table 10.   
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Figure 4  Relation between the spread and the corresponding φ estimated by HAUS-C for the 
SMB factor 
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