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Measuring Intra-Daily Market Risk: A Neural Network Approach

Abstract

The value at risk (VaR) measure often relies on an assumption about the return (or price) dis-
tribution of the underlying risky assets. Different distributional assumptions may produce widely
different computed VaR values. When estimating VaR using intra-daily equity returns, the question
arises as to what assumption should be made about the return distribution. Because of the difficulty
of decomposing trading noise, it is very hard to identify the return distribution at the tick-by-tick
level. In this paper, we circumvent the difficulty of making a distributional assumption of intra-daily
market fluctuations by specifying a neural network approach. With this approach, no distributional
assumption regarding the return distribution is required for estimating and forecasting the VaR using
intra-daily data. Using this approach, we forecast VaR using high-frequency data for the German
equity market index. Our neural network forecasts, evaluated on the basis of several statistical per-
formance measures and compared with alternative time-series models, suggest that the performance
of the neural network approach in VaR computation dominates that of the commonly used time-series
models.

Keywords: High Frequency, Intra-daily Data, Neural Network Approach, Value at Risk

JEL Classification: C15, C46, C52, G15
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1. Introduction

Value at risk (VaR) serves as a commonly used methodology for managing market risk. VaR is defined
as the lowest quantile of the potential loss over a specified time period. The advantages of VaR as a
measure of risk have been well documented in the literature (see, for example, Jorion (2007)), so to save
space we will not review them here. The VaR methodology has been endorsed by regulators and financial
industry advisory groups, as well as being adopted by financial institutions in their risk management
operations and nonfinancial corporations for risk reporting. VaR estimates have been used in making
decisions regarding capital resource allocation, setting position limits, and performance evaluation 1.

The standard VaR computation (e.g., delta-normal VaR) requires that the underlying return-
generating processes for the risky assets be normally distributed, where the moments are time invariant
and can be estimated with historical data. Despite the increased use of the VaR methodology, it does
have well-known drawbacks. VaR is not a coherent risk measure and does not provide insight into
the risk beyond the quantile.2 The empirical work by Beder (1995) clearly demonstrates how different
VaR models can lead to dramatically different VaR estimates. Moreover, when employing the VaR
methodology, it is possible for a decision maker, unintentionally or not, to decrease portfolio VaR while
simultaneously increasing the expected losses beyond the VaR (i.e., by increasing the “tail risk” of a
portfolio or position).3 There are superior measures to VaR for measuring market risk, such as aver-
age value at risk (AVaR). This risk measure – also called conditional value at risk (CVaR) and, for
continuous distributions called expected tail loss (ETL) – is a coherent risk measure that overcomes
the conceptual deficiencies of VaR.4 Even with these well-known limitations, however, VaR remains the
most popular measure of market risk employed by risk managers 5.

Different arguments about the distributional assumption of the underlying risky assets have been
proposed in the literature. Neftci (2000) points out that extreme events are structurally different from
the return-generating process under normal market conditions. Höchstötter et al. (2005) and Rachev
et al. (2005b, 2007b) make the same argument, focusing on the stylized fact that returns are heavy
tailed. Brooks et al. (2005) argue that heavy tailedness might lead to an underprediction of both the
size of extreme market movements and the frequency with which they occur. Sun et al. (2008) propose
a methodology for computing VaR based on the fractional stable model.

With the availability of intra-daily price data (i.e., high-frequency data), researchers and practi-
tioners have focused more attention on market microstructure issues to understand and help formulate
strategies for the timing of trades. Intra-daily data have many problemic stylized facts, they are often
heavy tailed and their variance is heteroscedastic with a dependence pattern (see, for example, Sun et
al (2007, 2008b)). The major characteristic of intra-daily data is that they exhibit erratic arrival that
contains several distinct types of noise. Such noises reflect the trading behavior and information flows in
the market. Due to the difficulty of decomposing the different types of noises, an iterated process such

1Sun et al. (2008b) provide a review of the adoption of VaR for measuring market risk. A more technical discussion

of market risk can be found in Khindanova and Rachev (2000), Khindanova et al. (2001), and Gamrowski and Rachev

(1996).
2See Artzner et al. (1999).
3See Martin et al. (2003) and the references therein.
4See, for example, Acerbi and Tasche (2002) and Rachev et al. (2005a).
5See Dowd (2002) for the characteristics of VaR that make it appealing to risk managers
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as a neural network model might be more suitable for prediction purposes. In this paper, we propose
an approach for calculating VaR with high-frequency data that utilizes the neural network model. The
empirical evidence we present suggests that this approach outperforms the three most popular paramet-
ric models (autoregressive model, moving average model, and autoregressive moving average-GARCH
model) used in practice to estimate VaR. Our findings are consistent with several empirical studies
reported in the literature 6.

We have organized the paper as follows. In Section 2, we introduce the methodology of the neural
network models employed in our study for estimating and evaluating VaR. In Section 3, we specify
the parametric and nonparametric methods investigated in our study utilized to compute VaR. We
describe the methods to assess the relative performance of the VaR estimates in Section 4. The study’s
data, empirical methodology, and results are covered in Section 5. Our empirical analysis is based on
high-frequency data (1-minute level) for the German DAX index. We summarize our findings in Section
6.

2. Neural Networks in Modeling Market Fluctuation

A neural network (NN) is a mathematical model or computational model based on biological neural
networks. It consists of an interconnected group of artificial neurons and processes information using
a connectionist approach to computation. In most cases, a NN is an adaptive system that changes its
structure based on external or internal information that flows through the network during the learning
phase. In contrast to the k-nearest neighbor method, neural network is a type of eager learning. In
more practical terms, neural networks are nonlinear statistical data modeling tools used to characterize
highly complex and convoluted relationships between inputs and outputs or to find correlation patterns
in financial data. In finance, NN models have been used for various tasks. Kantardzic (2003) identify
several asset management firms that employ NN technology for data mining.

Like the linear and polynomial approximation methods, a neural network relates a set of input
variables xi, i = 1, . . . , k to a set of one or more output variables yj , j = 1, . . . , k. Neural networks are
essentially mathematical models defining a function f : X → Y . Each type of NN model corresponds
to a class of such functions. The difference between a NN model and other approximation methods
is that NN take advantage of one or more hidden layers, in which the input variables are transformed
by a special function known as a logistic or logsigmoid transformation; that is, the function f(x) is a
composition of other functions gi(x) that can further be defined as a composition of other functions.
Functions f(x) and gi(x) are composed of a set of elementary computational units called neurons, 7

which are connected through weighted connections. These units are organized in layers so that every
neuron in a layer is exclusively connected to the neurons of the proceding layer and the subsequent layer.
Every neuron represents an autonomous computational unit and receives inputs as a series of signals
that dictate its activation. All the input signals reach the neuron simultaneously and the neurons can
receive more than one input signal. Following the activation dictated from input singals, the neurons
produce the output signals. Every input signal is associated with a connection weight which determines
the relative importance of the input signals in generating the final impulse transmitted by the neuron.

6See, for example, Bolland and Connor (1997).
7Sometimes such elementary computational units are called nodes, neurodes, units, or processing elements (PEs).
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Formally, the algorithm mentioned above can be expressed as follows:

nk,t = wk,0 +
i∗∑

i=1

wk,i xi,t (1)

Nk,t = G(nk,t) (2)

yt = γ0 +
k∗∑

k=1

γk Nk,t (3)

where G(·) represents the activation function and Nk,t stands for the neurons. In these system, there
are i∗ input variables x and k∗ neurons. A linear combination of these input variables observed at time
t, i.e., xi,t, i = 1, . . . , i∗, with the coefficient vector (i.e., a set of input weights) wk,i, i = 1, . . . , i∗, and a
constant term wk,0 form the variable nk,t. This variable nk,t is transformed by the activation function
G(·) to a neuron Nk,t at time (or observation) t. The set of k∗ neurons at time (or observation) index
t are combined in a linear way with the coefficient vector γk, k = 1, . . . , k∗ and taken with a constant
term γ0 to form the output value yt at time t. In defining a NN model, the activiation function G(·) is
typically one of the elements to specify. Giudici (2003) summarizes three commonly employed types of
activiation functions: linear, stepwise, and signoidal.

The neurons of a NN model are organized in layers. There are three types of layers: input, output,
and hidden. The input layer receives information only from the external information, i.e., an explanatory
variable xi. There is no any calculation performed for the input layer. It only transmits information
to the next level. The output layer only produces the final results sent by the network to outside of
the system, i.e., response variable yj . Between the input and output layers there can be one or more
intermediate layers, called hidden layers, so named because these layers are not directly connected with
the external information. Giudici points out that the architecture of a NN model refers to the network’s
organization: (1) the number of layers, (2) the number of neurons belonging to each layer, (3) the
manners in which the neurons are connected, and (4) the direction of flow for the computation.

Different information flows lead to different types of network. The NN model can by divided into to
types based on the information flow: feedforward networks and recurrent networks. In the feedforward
network, the information moves in only one direction: from the input layer through the hidden layer
and to the output layer. There are no cycles or loops in this type of network. Equations (1)-(3) describe
the feedforward networks. In contrast to feedforward networks, recurrent networks are models with
bi-directional information flow which allow the neurons to depend not only on the input variable xi but
also on their own lagged values nk,t−p at order p. McNelis (2005) shows that the recurrent network
builds “memory” in the evolution of the neurons. Replacing equation (1) with the following equation,
the system of a recurrent network can be formed,

nk,t = wk,0 +
i∗∑

i=1

wk,i xi,t +
k∗∑

k=1

φk nk,t−p (4)

McNelis notes that the recurrent network has an indirect feedback effect from the lagged unsquashed
neurons to the current neurons, not a direct feedback from lagged neurons to the level of output.

A NN model modifies its interconnection weights by applying a set of learning (training) samples.
The learning process leads to parameters of a network which represent implicitly stored knowledge from
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the data. More generally, given a specific task to solve and a class of functions F , learning means using
a set of observations (learning/training samples) in order to find f∗ ∈ F which solves the task in an
optimal sense. This entails defining a cost function C : F → < such that, for the optimal solution f∗,
C(f∗) ≤ C(f) ∀f ∈ F ; that is, no solution has a cost less than that of the optimal solution. Since
NN models learn from data, the cost function must be a function of the observations (see, for example,
Kantardzic 2003).

3. Estimation of VaR (and AVaR)

Given α ∈ (0, 1], R is random loss of an investment in certain period, VaR of a random variable R 8 at
level of α is the absolute value of the worst loss not to be exceeded with a probability of at least α. More
formally, if α-quantile of the loss L = −R is qα(L) = inf{r ∈ < : P [L ≤ r] ≥ α}, the VaR at confidence
level α of R is V aRα(R) = qα(L). Arztner et al (1999) proposed the concept of a coherent risk measure.
A risk measure is called coherent if it is monotonous, positively homogeneous, translation invariant, and
subadditive. Rockafellar and Uryasev (2002) demonstrate that CVaR or AVaR is coherent and can be
expressed as CV aRα(L) = E(L|L > V aRα(R)).9 That is, for a loss L with E(|L|) < ∞ and distribution
function FL, the conditional value at risk at confidence level α ∈ (0, 1) is defined as

CV aRα(−R) = AV aRα(L) =
1

1− α

∫ 1

α
qu(F−R)du =

1
1− α

∫ 1

α
V aRu(F−R)du (5)

where qu(F−R) is the quantile function of FL.

3.1 Non-parametric approach of VaR (and AVaR) estimation

Because VaR is the quantile of loss distribution of a risky asset, estimation of VaR requires the estimation
of the loss distribution. The kernel estimator is the basic methodology used to estimate density (see
Silverman (1986)). If a random variable X has density f(x), then

f(x) = lim
a→0

1
2a

P (x− a < X < x + a) (6)

By counting the proportion of sampling observations falling in the interval of (x−a, x+a), the probability
P (x− a < X < x + a) can be estimated for any given a. Defining kernel function K for∫ ∞

−∞
K(x)d(x) = 1 (7)

in which, K(x) is usually regarded as a symmetric probability density function, for example, the normal
desity. The kernel estimator is defined by

f̃(x) =
1
na

n∑
i=1

K

(
x−Xi

a

)
(8)

where a is the window width and n is the sample size. The kernel estimator can be looked as a sum
of bumps placed at the observations Xi. Kernel function K(x) determines the shape of the bumps and
the window width a determines the width of bumps.

8R represents the return, while L = −R is the loss.
9See also Rachev et al. (2007) for additional references.
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For evaluating the quality of the estimate, the mean-square error (MSE) is defined as:

MSEx(f̃) = E
(
f̃(x)− f(x)

)2
=
(
Ef̃(x)− f(x)

)2
+ var

(
f̃(x)

)
(9)

The global closeness of the fit of f̃(x) to f(x) is found by intergrating the MSE over x; the mean
integrated square error (MISE) is defined as

MISEx(f̃) = E

∫ (
f̃(x)− f(x)

)2
dx =

∫ (
Ef̃(x)− f(x)

)2
dx +

∫
var

(
f̃(x)

)
dx (10)

Given a symmetric kernel function K,
∫

tK(t)dt = 0 and
∫

t2K(t)dt = k2 6= 0, Silverman (1986) shows
that the approximation of MISE is:

1
4
a4k2

2

∫
f ′′(x)2dx +

1
na

∫
K(t)2dt

It is clear the bias in the estimation of f(x) depends on the window width. The optimal window
width aopt can be chosen by minimizing the MISE. Silverman (1986) shows that

aopt = n−1/5 k
−2/5
2

(∫
f ′′(x)2dx

)−1/5 (∫
K(t)2dt

)1/5

(11)

and also shows that the optimal solution is given by the Epanechnikov kernel KE(x):

KE(x) =


3

4
√

5
(1− x2

5 ), −
√

5 ≤ x ≤
√

5

0, otherwise
(12)

A drawback of the kernel estimator is its inefficiency in dealing with long-tailed distributions. Since
across the whole sample, window width is fixed, a good degree of smoothing over the cernter of the
distribution will often leave spurious noise in the tails (see Silverman 1986 and Dowd 2005). Silverman
(1986) offers some solutions to this drawback such as nearest neighbor method and vairable kernel
method. For the former method, the window width placed on an observation depends on the distance
between that observation and its nearest neighbors. For the kernel estimator, the density f(x) is
estimated using:

f̃(x) =
1
n

n∑
i=1

1
ahi,k

K

(
x−Xi

ahi,k

)
(13)

where hi,k is the distance between Xi and the kth nearest of the other data points. The window width
of the kernel placed on Xi is proportional to hi,k. Therefore, flatter kernels will be placed on more
sparse data.

3.2 Parametric approach of VaR (and AVaR) estimation

Parametric approach of VaR estimation is based on the assumption that financial returns Rt are a
function of two components µt and εt. That is, Rt = f(µt, εt). Rt can be regarded as a function of εt

conditional on a given µt; typically, this function takes a simple linear form Rt = µt + εt = µt + σtut.
Usually µt is called the location component and σt the scale component. ut is a i.i.d random variable
that follows a probability density function fu. VaR based on information up to time t is

˜V aRt := qα(Rt) = −µ̃t − σ̃ qα(u) (14)
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where qα(u) is the α-quantile implied by fu.

Unconditional parametric approaches set µt and σt as constants, and the returns Rt are i.i.d random
variables with density σ−1fu(σ−1(Rt − µ)). Conditional parametric approaches set the location com-
ponent and the scale component as functions not constants. Typical time-varying conditional location
setting is the ARMA(r, m) processes. That is, for the conditional mean equation is

µt = α0 +
r∑

i=1

αi Rt−i +
m∑

j=1

βjεt−j . (15)

The typical time-varying conditional variance setting is a GARCH(p,q) process; that is,

σ2
t = κ +

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε2
t−j (16)

εt = σtut where ut are N(0, 1).

4. Evaluation of VaR (and AVaR) estimators

Backtesting is the usual method to evaluate the VaR estimators and its forecasting quality. It can
be performed for in-sample estimation evaluation and for out-of-sample interval forecasting evaluation.
The backtesting is based on the indicator function It which is defined as It(α) = I(rt < −V aRt(α)).
The indicator function shows violations of the quantiles of the loss distribution. The process {It}t∈T is
a process of i.i.d Bernoulli variables with violation probability 1− α. Christoffersen (1998) shows that
evaluating the accuracy of VaR can be reduced to checking whether the number of violations is correct
on average and the pattern of violations is consistent with i.i.d processes. In other words, an accurate
VaR measure should satisfy both the unconditional coverage property and the independent property.
The unconditional coverage property means that the probability of realization of a loss in excess of the
estimated V aRt(α) must be exactly α%, that is, P (It(α) = 1) = α. The independent property means
that previous VaR violations do not presage future VaR violations.

Kupiec (1995) proposes a frequency of failures test that checks how many times an estimated VaR
is violated in a given time period. If the observed frequency of failures of the estimated VaR differs sig-
nificantly from α×100%, the underlying risk measure is less reliable. Using a sample of T observations,
Kupiec’s test statistic K is derived from

K = 2[`(α̃; I1, I2, ..., IT )− `(α; I1, I2, ..., IT )] ∼ χ2
1 (17)

where `(·) is log binomial likelihood, the observed frequency of violations is α̃ = I(α)/T , and I(α) =∑T
t=1 It(α) is the number of violations in the sample. Then equation (17) can be transferred as:

K = 2 log
(
(1− α̃)T−I(α) α̃I(α)

)
− 2 log

(
(1− α)T−I(α) αI(α)

)
(18)

= 2 log

((
1− α̃

1− α

)T−I(α) ( α̃

α

)I(α)
)

Note that if the frequency of violations from estimated VaR α̃×100% is exactly equal the preset α×100%,
the test statistic is zero; otherwise, the test statistic shows the over-estimation or under-estimation of
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VaR. Kupiec (1995) also proposes the Wald variant z of the likelihood ratio statistic, which is

z =
√

T (α̃− α)√
α(1− α)

∼ N(0, 1) (19)

If there is no violation, the K statistic cannot cover such case since log 0 is undefined.

The shortcoming of the backtesting proposed by Kupiec (1995) is that it does not focus on the
independence property. In order to detect violations of the independence property of an estimated VaR
measure, say, It(α), Christoffersen (1998) suggests the Markov test. The Markov test detects whether
the likelihood of a VaR violation depends on another VaR violation occurred on the previous time
period. The assumption behind the Markov test is that if the VaR estimate accurately reflects the
underlying risk situation, then (1) the chance of violating the current period’s VaR should not depend
on whether or not the previous period’s VaR was violated and (2) the chance of violating the current
period’s VaR should not influence next period’s violation.

Christoffersen (1998) defines It as a binary first-order Markov chain with transition probability
matrix Θ, that is:

Θ =

[
1− θ01 θ01

1− θ11 θ11

]
and θij = P (It = j|It−1 = i). Defining nij as the number of transitions from state i to state j,
nij =

∑T
t=2 I(It = i|It−1 = j), the Christoffersen test statistic C is

C = 2[`(Θ̃; I2, I3, ..., IT |I1)− `(θ̃2; I2, I3, ..., IT |I1)] ∼ χ2
1 (20)

where ` is the log binomial likelihood function and under the null hypothesis of testing independence,
θ01 = θ11 = θ2. For

θ̃01 =
n01

n00 + n11
; θ̃11 =

n01

n10 + n11
; θ̃2 =

n01 + n11

n00 + n11 + n10 + n01
,

C = 2 log
(
(1− θ̃01) n00 θ̃01

n01(1− θ̃11) n10 θ̃11
n11

)
− 2 log

(
(1− θ̃2)(n00+n11) θ̃2

(n00+n11)
)

(21)

Christoffersen (1998) also suggests combining test statistic K and C in order to check unconditional
coverage and independence together, that is

LR = 2[`(Θ̃; I2, I3, ..., IT |I1)− `(α; I2, I3, ..., IT |I1)] ∼ χ2
2 (22)

5. Empirical analysis

In this section, we describe the data and methodology employed in our study and present the empirical
results.

5.1 The data

We study a time series sampled at one-minute frequency level of the German DAX index in 2003.10 Since
the data are not equally spaced, we aggregate the data to the equally spaced time series. The aggregation

10The DAX index is a stock market index whose components include 30 blue chip German stocks that are traded on the

Frankfurt Stock Exchange.
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algorithm is based on the linear interpolation 11 introduced by Wasserfallen and Zimmermann (1995).
That is, given a non-equally spaced series with times ti and values ϕi = ϕ(ti), the index i identifies
the irregularly spaced sequence. The target homogeneous time series is given at times t0 + j∆t with
fixed time interval ∆t starting at t0. The index j identifies the regularly spaced sequence. The time
t0 + j∆t is bounded by two times ti of the irregularly spaced series, I = max( i |ti ≤ t0 + j∆t) and
tI ≤ t0 + j∆t > tI+1. Data are interpolated between tI and tI+1. The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI

tI+1 − tI
(ϕI+1 − ϕI).

In order to transform the data to return series, we use the continuous compounding transformation
as follows:

yt = log
Xt

Xt−1
= log Xt − log Xt−1

where yt is the return series and Xt is the normal time series of the DAX index in price level. Figure 1
illustrates the time series of the DAX index level for a random portion of 200 intra-daily observations
for 2003 while Figure 2 shows the corresponding return series. Later we will see that the pattern shown
in Figure 2 is forecasted better by using the NN model than the three time series models.

Figure 1: DAX index in level Figure 2: DAX index in return

5.2 The Methodology

We apply three time series model and the neural network model to compute one-step ahead VaR value.
Three time series models applied in this section are the autoregressive model which we denote by AR(1),
the moving average model that we denote by MA(1), and the ARMA(1,1)-GARCH(1,1) model. The
NN model used is the feedforward network model with 10 hidden layers.

The AR(1) model is

yt = α0 + α1yt−1 + εt

11Dacorogna et al. (2001) point out that linear interpolation relies on the forward point of time and Müller et al. (1990)

suggests that linear interpolation is an appropriate method for stochastic processes with i.i.d. increments.
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and the MA(1) model is

yt = α0 + β1εt−1,

where α0 is a constant and εt is assumed to be a white noise series.

The ARMA(1,1)-GARCH(1,1) model is:

yt = a0 + a1 yt−1 + εt + b1εt−1.

σ2
t = b0 + γ1 σ2

t−1 + θ1 ε2
t−1.

where a0 and b0 are constants.

The feedforward network model is

yt = f(yt−1, yt−2, . . . , yt−10, θ) + εt

where εt is distributed with zero mean and one variance. Explicitly, the function f(·) is:

yt = f(yt, θ) + εt

= F
(
α0 +

10∑
j=1

αi G(θi0 +
10∑

j=1

θijyj,t)
)

+ εt

where F (·) and G(·) are known activation functions.

Cross-validation has been used for model assessment in our study. We split the data into two parts,
the training set and the forecasting set. We define N as the length of the sample. The sub-sample
series used for the in-sample (training) analysis is randomly selected by a moving window of length T

(1 ≤ T ≤ N). Replacement is allowed in the sampling. Letting TF denote the length of the forecasting
set, we perform one-step ahead out-of-sample forecasting (1 ≤ T ≤ T + TF ≤ N). In the empirical
analysis, sub-sample length (i.e., the window length) of T was chosen for the training period and TF

for the out-of-sample forecasting (see Sun et al. (2007)). The training set contains 2,000 observations
(T = 2, 000) and the forecasting set contains 200 observations (TF = 200). The comparison is done
for the four models only based on the forecasting set. The reason we only focus on the forecasting
set is that in practice, what banks do in risk management is to control future loss based on historical
observations. Therefore, only the forecasting power of the four models used for the VaR computation
is of interest.

We first use the training set (2,000 observations) to establish the models (i.e., to estimate the
parameters). After the model has been estimated, we use it to predict (in this case, 200 observations).
We compute the VaR values based on the predicted value.

We use the following goodness of fit tests suggested in the model assessment literature: the Anderson-
Daring (AD) distance, the Cramer Von Mises (CVM) distance, the Kolmogorov-Simirnov (KS) distance,
the Kuiper distance (K), and the MSE. Specifically, these criterion are defined as follows:

AD = sup
x∈<

|Ms(x)− M̃(x)|√
M̃(x)(1− M̃(x))

,
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CV M =
∫ ∞

−∞

(
Ms(x)− M̃(x)

)2
dM̃(x),

KS = sup
x∈<

|Ms(x)− M̃(x)|,

and

K = sup
x∈<

(
Ms(x)− M̃(x)

)
+ sup

x∈<

(
M̃(x)−Ms(x)

)
,

where Fs(x) denotes the empirical sample distribution and F̃ (x) is the estimated distribution function
of the computed VaR values.

5.3 The Results

The mean computed 95% VaR values for the four models as well as the actual VaR computed from the
actual observations (i.e., the forecasting set) by using a nonparametric method are summarized below:

Actual AR model GARCH model MA model NN model

V aR95% 3.3662× 10−4 1.6300 1.7031 2.1449 3.8605× 10−4

As can be seen, only the VaR value computed using the NN model is close to the observed (actual)
value. As we mentioned in Section 4, the VaR value depends on the underlying data-generating process.
In other words, the more the predicted data generated by the underlying model is close to the actual
forecasting set, the more the VaR value computed by the underlying model is close to the actual VaR
value.

In order to compare the VaR values computed from the predicted data set and that from the
forecasting set, we use the tests described above. The results, reported in Table 1, indicate that the
NN model outperforms the three time series models based on the smaller values in all the computed
test values for the NN model. The VaR values computed by the NN model are close to the actual VaR
value from the actual observations under different statistical criterion.

Table 1: Model assessment with statistical goodness-of-fit tests.
Model

Test AR GARCH MA NN

KS 0.5276 0.5276 0.5377 0.0704
AD 7.3909 7.3910 7.5331 0.2148

CVM 8.3543 8.3732 8.4394 0.0089
Kuiper 0.9899 1.0000 1.0000 0.1156
MSE 0.7395 0.8656 0.9891 2.5066× 10−4

The four panels in Figure 3 show the 200 forecasted values for the four models. A comparison of
Figure 2 with the four panels in Figure 3, clearly suggests that the NN model looks closer in shape to
the actual observations.
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Table 2: Model assessment in respect of VaR computation.
Model

Test AR GARCH MA NN

Kupiec Test 0.7660 0.6900 0.8810 0.5750
Christoffersen Test 1.2586 0.2847 0.3104 0.1412

Table 2 shows the results for the two tests to evaluate VaR. The Kupiec test shows the violation
ratio. The NN model is the closest one to a 5% confidence level. The Christoffensen test rejects the
null hypothesis of dependent violation for the four models investigated.

Figure 3: Model forecasting 200 returns using three time series models and the NN model.

6. Conclusion

There is considerable interest in computing VaR for market risk management. In order to estimate
market risk at the intra-daily level, we propose a neural network approach for computing high-frequency
VaR. We investigate the one-step ahead risk forecast for the German DAX index using three time series
models (i.e., the AR model, the MA model, and the ARMA-GARCH model) commonly utilized in risk
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management and a neural network model. The statistical tests we employ clearly find that the neural
network model outperforms the three time series models.

Why do the underlying three time series models dramatically underperform the NN model? The
reason is that time series models have several drawbacks. First, standard time series models require the
residuals follow a normal distribution. As we noted earlier, the preponderance of the empirical evidence
from real-world financial markets clearly rejects the hypothesis that returns are normally distributed.
Second, time series models do not have a memory while the NN model can memorize the dynamics
of the observation and save it with hidden layers. The normal distribution for a random variable
cannot capture the memory effect contained in the observations. Because neither the model structure
nor the error term can capture the memory effect, the accuracy of the model is reduced. Third, the
NN model allows us to use very accurate computing methods, i.e., a recursive method referred to as
backpropogation, while the maximum likelihood estimation for the time series models is less accurate
in its applicable algorithm.
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