
Unifying Behavioral Biases Under a Market Probability

Measure with an Application to Analysts’ Forecasts∗

Roger K. Loh†and Mitch Warachka‡

April 2006

Abstract

We provide a methodology for examining the existence and magnitude of behavioral

biases in an asset’s return distribution. The influence of behavioral biases is modeled using

a firm-specific market probability measure which represents the market’s beliefs regarding

the possibility of a price increase. Behavioral biases which distort this market probability

create predictable abnormal returns. Distortions of the market probability also cause realized

returns to be excessively volatile, although ex-ante return volatility is underestimated. Using

analyst forecasts and revisions, proxies for representativeness, conservatism, overconfidence,

and biased self-attribution are constructed. A trading strategy derived from their joint

influence yields an annual return of 13.56% after accounting for size, book-to-market, and

momentum characteristics. Furthermore, the susceptibility of individual stock returns to

behavioral biases is industry-specific and time-varying.
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1 Introduction

Despite the preponderance of psychological evidence that individuals exhibit systematic errors

when making decisions, one cannot immediately conclude that behavioral biases influence stock

returns since the market may be superior to any individual when processing information. Indeed,

even if the majority of investors commit behavioral biases, the tenets of market efficiency are

preserved whenever the marginal investor responsible for determining prices is rational.1

Equally as important, provided behavioral biases are detected in stock returns, determining

their relative magnitude is essential. Several biases have been proposed in the behavioral finance

literature to explain anomalies such as momentum (Jegadeesh and Titman (1993)). Using repre-

sentativeness and conservatism, Barberis, Shleifer, and Vishny (1998) generate over-reaction and

under-reaction in stock returns. Daniel, Hirshleifer, and Subrahmanyam (1998) obtain similar

return patterns for an overconfident investor exhibiting biased self-attribution. Therefore, it is

critical to ascertain whether investor psychology influences stock returns, and if so, which be-

havioral biases are most important. This paper provides a methodology for examining these two

central issues in behavioral finance.

The cornerstone of our framework is a firm-specific market probability measure which estab-

lishes a general relationship between behavioral biases and the distribution of an individual asset’s

return. This probability represents investor beliefs regarding price movements next period. Un-

der binomial price dynamics, the market probability is summarized by the probability of a price

increase. With regards to behavioral finance, this probability is distorted when the market con-

ditions on superfluous information which has no bearing on the true price (return) process. As

an illustration, consider a fair coin whose probability of heads is thought to differ from one-half

because the previous three realizations have all been heads. In a financial context, a sequence

of positive earnings surprises could improperly influence the market probability measure due to

representativeness if investors falsely perceive a trend in this firm’s earnings. In general, any

behavioral bias has the potential to distort the market probability.

1Although limits to arbitrage can prevent certain market participants from exploiting mispricings, the assump-

tion of no-arbitrage only requires a small number of patient well-funded investors to exist. Therefore, it is difficult

to reject market efficiency by studying a subset of investors unless their trading behavior can be generalized to all

market participants.
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There are several theoretical implications of a biased market probability measure. Fluctuations

in the market probability across time cause realized returns to be excessively volatile, although

ex-ante return volatility is underestimated. Distortions of the market probability also generate pre-

dictable abnormal returns. However, our methodology does not assume investors commit specific

psychological biases. Instead, we study whether abnormal returns documented in the empirical

asset pricing literature are explained by behavioral biases. Thus, our methodology enables re-

searchers to investigate the link between psychology and asset returns. The market probability is

also capable of incorporating investor preferences such as loss aversion and Shefrin and Statman

(1985)’s disposition effect. Furthermore, a slight generalization of the market probability measure

relaxes the assumption of risk neutrality.

Market probabilities can be estimated experimentally, as in Bloomfield and Hales (2002), or

with historical return data.2 To facilitate our empirical study, we construct proxies for repre-

sentativeness, conservatism, overconfidence, and biased self-attribution using analysts’ earnings

forecasts and revisions for 2,087 firms from 1986 to 2004. Calibrating the market probability is

accomplished via a non-linear regression involving firm-specific returns and volatilities.

Linear regression is a restrictive special case of our probability approach, in which several im-

portant economic implications and parameter interpretations are lost. Furthermore, the statistical

relationship between behavioral biases and stock returns depends on an individual stock’s return

volatility at various points in time. However, a linear regression of stock returns on the behav-

ioral bias proxies ignores variation in a firm’s return volatility over time, and further assumes this

parameter is identical across different stocks. These misspecifications are corrected by our market

probability framework.

As a direct “out-of-sample” test of our ability to exploit behavioral biases, we sort firms ac-

cording to their estimated market probabilities in calendar-time. Trading strategies which buy

(sell) stocks whose estimated market probabilities are above (below) certain thresholds are im-

plemented. These strategies attempt to profit from the behavioral biases underlying our market

probability estimates for individual stocks. Market probabilities arising from a combination of

representativeness and conservatism as well as overconfidence and biased self-attribution are stud-

ied, in conjunction with a past return control variable. The inclusion of past returns enables us

2Asparouhova, Hertzel, and Lemmon (2005) re-examine and extend the experimental market of Bloomfield and

Hales (2002).
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to ascertain the marginal impact of behavioral biases on stock returns.

Empirically, when all behavioral biases are incorporated into a firm-specific market probability,

the corresponding trading strategy yields an average cross-sectional return of 13.56% per annum

after adjustments for book-to-market, size, and momentum characteristics. A trading strategy that

focuses on representativeness and conservatism generates an even larger annual return of 14.45%

on average, while a strategy derived from overconfidence and biased self-attribution produces

positive but insignificant trading profits. In contrast, cross-sectional returns derived from linear

regression models are always much smaller and insignificant. Overall, risk proxies and alternative

return benchmarks cannot explain the significance of our trading profits.

We also implement a trading strategy when market probabilities are conditioned on the un-

derlying earnings surprises and revisions of each firm. The insignificant trading profits from this

strategy confirm the importance of our behavioral bias proxies since analysts’ forecasts and revi-

sions alone cannot generate significantly positive cross-sectional returns.

Furthermore, fluctuations in the market probability measure create excess return volatility

averaging 4.75% per annum across the stocks in our sample. These fluctuations also yield positive

as well as negative return autocorrelation with return predictability being induced on average. The

above empirical results originate from a cross-sectional calibration within 66 different industries

over four-year subperiods. Empirically, the susceptibility of individual stock returns to behavioral

biases appears to vary across time and between industries.

To summarize, our market probability methodology is designed for empirical studies regarding

the influence of investor psychology on stock returns. Furthermore, the estimation of firm-specific

market probabilities facilitates trading strategies capable of exploiting behavioral biases.

The remainder of this paper begins with the introduction of the market probability framework

and its return implications in Section 2. Section 3 describes the implementation of our method-

ology, while endogenous and exogenous specifications for the behavioral biases we investigate are

the subject of Sections 4 and 5 respectively. Empirical results are reported in Section 6, with

Section 7 offering our conclusions and suggestions for future research.
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2 Market Probability Measures and Return Distributions

Price dynamics are described in discrete-time since our methodology is intended for empirical

implementations. The binomial approximation to the lognormal Brownian motion process (Cox,

Ross and Rubinstein (1979)), defines up and down price movements as

Ut = exp {μt + σt}
(1)

Dt = exp {μt − σt} ,

where μt and σt > 0 represent the asset’s true expected return and its volatility. More formally,

these coefficients equal μtΔ and σt

√
Δ where Δ denotes the time interval between observations.

For notational simplicity, this horizon is incorporated into the μt and σt parameters by setting

Δ = 1 until the model’s estimation.

The market probability
{
PU (t), PD(t)

}
below defines the probabilities assigned to the Ut and

Dt price movements in equation (1)

PU (t) =
1

1 + e−αzt

(2)

PD(t) = 1 − PU (t) ,

which are both elements of the [0, 1] interval and sum to one. Non-zero α coefficients imply

the market probability conditions on a superfluous information set denoted zt. For example, an

element of zt may indicate a trend in a firm’s earnings surprises which enables representativeness to

alter its market probability. The role of zt is elaborated on in the next subsection.3 Furthermore,

other functions besides equation (2) yield identical economic conclusions. In particular, the results

of Propositions 1 and 2 introduced later in this section are valid for any PU (t) specification. For

emphasis, equation (2) represents an a firm-specific market probability that aggregates over the

beliefs of individual market participants. Thus, individual investors are able to commit behavioral

3Shefrin (2000) examines the role of heterogeneity among investor beliefs in a multiperiod economy whose

implications are illustrated using the binomial model. This paper also provides a formal definition of investor

sentiment as a log ratio of two probability measures.
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biases without distorting the market probability if their biases offset one another. For example,

the beliefs of a contrarian and momentum trader can neutralize one another.4

Two probability measures exist simultaneously in our framework, both of which are indexed

by their respective α vector. The first is referred to as the reference probability which has α = 0.

By definition, the reference probability is not influenced by superfluous information. Therefore, if

returns are influenced by behavioral biases, they cannot be generated by the reference probability.

Instead, the market probability with α �= 0 describes their distribution.

Each probability measure implies a conditional expected return E
[
Return|PU (t)

]
denoted yt,

along with its conditional variance V ar[yt]. Combining equation (1) and equation (2) with α = 0

implies the conditional expected return under the reference probability measure equals

yt|
PU (t)=

1
2

= ln (Ut)
1

2
+ ln (Dt)

1

2

=
1

2
[μt + σt + μt − σt]

= μt . (3)

Thus, under the reference probability, the asset’s true expected return is recovered. In contrast,

for α �= 0, the market probability measure implies the following conditional expected return

yt|
PU (t) �=1

2
= ln (Ut) PU(t) + ln (Dt)PD(t)

= [μt + σt] P
U (t) + [μt − σt]P

D(t)

= μt + 2σt

[
PU (t) − 1

2

]
, (4)

since PU (t) − PD(t) = 2
[
PU (t) − 1

2

]
. The return decomposition in equation (4) is interpreted as

market’s expected return = true expected return + distortion when α �= 0 .

Thus, the market’s conditional expected return yt is determined by the μt and σt parameters in

equation (1) as well as PU (t) in equation (2). For ease of exposition, yt refers to the conditional

expected return under the market probability throughout the remainder of this paper, while μt

corresponds to the reference probability.

4In addition, a non-zero α vector could produce P U(t) = 1
2 if the inner product αzt in equation (2) is zero.

Thus, even if every investor commits an identical set of behavioral biases, the biases themselves could offset one

another to eliminate any distortion in the market probability.
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According to equation (4), abnormal returns are defined as

yt − μt = 2σt

[
PU (t)− 1

2

]
, (5)

under the PU (t) specification in equation (2). The inequalities

−σt ≤ yt − μt ≤ σt (6)

arise from equation (5) since PU (t) is contained in the [0,1] interval. Thus, abnormal returns

are bounded by the true volatility of the asset’s nominal return (usually 30% to 60% per annum

for stocks) which is independent of all behavioral biases. The definition of abnormal returns

in equation (5) is modified slightly when a reference probability measure different from
{

1
2
, 1

2

}
is studied in Appendix A but the model’s underlying economics are preserved. Equation (5)

illustrates that the α coefficients underlying PU(t) in equation (2) capture the source of abnormal

returns. Moreover, non-zero values of PU (t) − 1
2

in equation (5) are scaled by twice the asset’s

return volatility. Consequently, for a given distortion in the market probability, more volatile stocks

generate larger abnormal returns. This relationship serves an important role in our estimation of

the α coefficients but undermines the appropriateness of simply regressing the yt − μt deviations

on zt as illustrated in the next section.

Besides generating abnormal returns, non-zero α coefficients also cause ex-ante return volatility

to be underestimated. These assertions are formalized in the next proposition.

Proposition 1. Non-zero α coefficients imply:

1. Abnormal expected returns.

2. Underestimation of ex-ante return volatility.

Proof: From equation (5), abnormal returns yt − μt are positive (negative) when PU (t) > 1
2(

PU (t) < 1
2

)
, while the variance of the conditional expected return equals5

V ar[yt] = PU (t) [μt + σt − yt]
2 + PD(t) [μt − σt − yt]

2

= PU (t)
[
σt − 2σt

[
PU(t) − 1

2

]]2
+ PD(t)

[−σt − 2σt

[
PU (t)− 1

2

]]2

= σ2
t + 4σ2

t

[
PU (t)− 1

2

]2
+

[
PD(t) − PU(t)

]
4σ2

t

[
PU(t) − 1

2

]
= σ2

t − 4σ2
t

[
PU (t)− 1

2

]2
. (7)

5The statistical intuition behind equation (7) follows from p = 1
2 being the minimum of p (1 − p) which equals

the variance of a Bernoulli distribution.
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Thus, the asset’s conditional return volatility is underestimated when α �= 0.

Observe that an upward bias in the market probability, PU(t) > 1
2
, causes yt to exceed μt.

Intuitively, positive abnormal returns are created by this “optimism” regarding next period’s

price movement. Next period, PU (t + 1) may continue to increase or revert towards one-half.

Thus, expected returns in the future remain dependent on the market probability measure.

Furthermore, although non-zero α coefficients cause the market to underestimate return volatil-

ity, this property is not identical to overconfidence. The market probability represents the aggre-

gate beliefs of the market, while overconfidence stems from the beliefs of individual investors

regarding their ability to access and interpret information.

2.1 Role of Superfluous Information

We define irrelevant information as anything which has no bearing on an asset’s true expected

return. In contrast, the asset’s true expected return μt is defined by fundamental information.

The return decomposition in equation (4) illustrates the economic repercussions of non-zero α

coefficients, regardless of whether zt contains irrelevant or fundamental information.

In particular, non-zero α coefficients imply

1. The market conditions on irrelevant information.

2. Fundamental information is incorrectly processed by the market.

In the first scenario, irrelevant information in zt which alters the market’s expected return yt,

but not μt, distorts PU (t) according to equation (5). As a result, non-zero α coefficients reveal the

market improperly conditions on irrelevant information when forming its beliefs regarding future

price movements.

The market’s ability to correctly process fundamental information is evaluated in the second

scenario. Intuitively, after being incorporated into μt, fundamental information cannot alter the

market probability. Thus, all information becomes superfluous after being correctly incorporated

into the asset’s true expected return. Consequently, provided μt reflects the proper processing of

available fundamental information, only α = 0 is consistent with its correct interpretation by the
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market.6 Otherwise, the market is overreacting or underreacting to the release of fundamental

information.

The behavioral literature often distinguishes between biases in beliefs versus preferences with

examples of the later being loss aversion and investor disposition. Loss aversion consistent with

Tversky and Kahneman (1992)’s prospect theory is documented by Coval and Shumway (2005).

Empirical evidence of Shefrin and Statman (1985)’s disposition effect is reported in Barber, Odean,

and Zhu (2003) as well as Shumway and Wu (2005) who demonstrate the predictive power of

unrealized gains for returns. When the superfluous information set has zt elements representing

unrealized gains or prior losses, the market probability infers the influence of biased preferences

on returns. Therefore, our probability approach is able to examine biased beliefs as well as

preferences.7

For clarification, the superfluous information set is not necessarily comprised of residuals which

are zero on average. Regardless of |zt|’s magnitude, α = 0 prevents superfluous information from

distorting the market probability.

2.2 Return Predictability and Excess Volatility

The market probability approach also enables us to analyze the time series properties of returns.

In particular, the second term of equation (4) may generate predictability and excess volatility

(Shiller (1981)) is realized returns. In Proposition 2 below, we examine the contribution of non-zero

α coefficients to these properties.

For notational simplicity, define Bt as 2σt

[
PU (t) − 1

2

]
, and consider a sequence of returns

y1, . . . , yt conditioned on PU (1), . . . , PU(t) respectively. The next proposition examines the time

series characteristics of returns attributable to the B1, . . . , Bt sequence which arises from non-zero

α coefficients.

6If the market ignores fundamental information, then μt is altered while yt remains unchanged. This scenario

also requires a bias in the market probability measure, and therefore non-zero α coefficients.
7Barberis and Huang (2004) examine security pricing when objective probabilities are transformed via a weight-

ing function into a probability distribution whose tails are overweighted. Their approach focuses on a permanent

transformation of objective probabilities. In contrast, we examine time-varying distortions in a probability that

result from conditioning on superfluous information.
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Proposition 2. Within a sequence of returns, non-zero α coefficients imply:

1. Excess return volatility.

2. Autocorrelated returns.

Proof: Denote the sample variance for the time series of true expected returns μ1, . . . , μt as σ2
μ.

According to equation (4), the sample variance for the corresponding time series of market returns

y1, . . . , yt equals

V ar
[
y1, . . . , yt|PU(1), . . . , PU(t)

]
= V ar [μ1, . . . , μt] + V ar [B1, . . . , Bt] + 2Cov [{μ1, . . . , μt} , {B1, . . . , Bt}] . (8)

When the covariance term above is negative, excess return variability remains positive provided

V ar [B1, . . . , Bt] is larger than twice the absolute value of Cov [{μ1, . . . , μt} , {B1, . . . , Bt}]. Other-

wise, behavioral biases reduce return volatility. A negative covariance in equation (8) is consistent

with the market underreacting to fundamental information. Conversely, a positive covariance in

equation (8) indicates the market overreacts to fundamental information. When α = 0, the asset’s

return variance reduces to V ar [μ1, . . . , μt] since the B1, . . . , Bt sequence is identically zero. The

variance decomposition in equation (8) is interpreted as

realized variance = true variance + excess variability attributable to α �= 0 .

Similarly, return autocorrelation in the yt, . . . , y1 sequence is defined as

Corr
[{μt + Bt, . . . , μ2 + B2} ,

{
μt−1 + Bt−1, . . . , μ1 + B1

}]
(9)

which equals

Corr
[{μt, . . . , μ2} ,

{
μt−1, . . . , μ1

}]
+ Corr [{μt, . . . , μ2} , {Bt−1, . . . , B1}] + Corr

[{
μt−1, . . . , μ1

}
, {Bt, . . . , B2}

]
(10)

+ Corr [{Bt, . . . , B2} , {Bt−1, . . . , B1}] .

When α = 0, equation (10) reduces to the autocorrelation of μt, . . . , μ1 in the first term, while the

second and third lines of equation (10) result from non-zero α coefficients.

10



To clarify, the second implication of Proposition 1 concerns the ex-ante underestimation of

next period’s return volatility while Proposition 2 applies to a sequence of returns. Non-zero α

coefficients can also generate skewness and kurtosis in return data although these higher order

moments are not investigated in this paper.

3 Calibrating the Market Probability Measure

This section demonstrates that the α coefficients in equation (2) can be calibrated from a non-

linear regression involving historical returns. The estimation of alternative reference probabilities

is also addressed as well as the advantages of our probability approach over linear regression.

3.1 Non-Linear Calibration

Each α coefficient determines the relative influence of a behavioral bias on an asset’s conditional

return distribution. The main result of this section is the following corollary of Proposition 1

which inserts PU(t) from equation (2) into the return decomposition of equation (4).

Corollary 1. The α coefficients may be estimated by the following non-linear regression

yt − μt = 2σt

(
1

1 + e−αzt
− 1

2

)
+ εt , (11)

where εt are i.i.d. error terms. Equation (11) is equivalent to

yt − μt

2σt
+

1

2
=

1

1 + e−αzt
+ εt , (12)

once σt is specified for an individual firm.

Corollary 1 illustrates the explicit relationship between abnormal returns and superfluous in-

formation which results from the market probability. The need to normalize yt −μt by 2σt before

estimating the α coefficients is a crucial.8

Of interest to future research, a time series of probabilities PU (t) could be elicited from an

experimental market. For example, Bloomfield and Hales (2002) as well as Asparouhova, Hertzel,

8The return implications of Proposition 2 could also facilitate the calibration of our market probabilities. How-

ever, equations (8) and (10) require sample estimates for the respective variance and autocorrelation of the μt, . . . , μ1

sequence. The accuracy of these sample moments is compromised when the α coefficients are computed cross-

sectionally over short horizons as in Section 6. Therefore, our estimation procedure focuses on equation (4).

11



and Lemmon (2005) have subjects set prices equal to their estimated probability of an upward price

movement. This experimental approach eliminates the need to specify yt−μt

2σt
in equation (11) when

calibrating the α vector. Thus, the joint-hypothesis regarding abnormal returns and the correct

model of market equilibrium is circumvented. Instead, α coefficients can be estimated directly

from the PU (t) probabilities reported by participants in a laboratory market using equation (2).

3.2 Special Case of Linear Regression

We now contrast our proposed methodology with linear regression to highlight its economic and

statistical advantages. Specifically, regressing the yt−μt deviations on the superfluous information

set

yt − μt = α0 + α zt + εt , (13)

is a special case of our market probability since inserting the linear formulation

PU (t) =
1

2
− λ

2σt
+

α

2σt
zt , (14)

into the market’s conditional expected return given by equation (4) yields

yt − μt = −λ + αzt , (15)

which parallels the expectation of the linear regression in equation (13). Although the role of −λ

in equation (15) appears similar to the α0 intercept in equation (13), the economic significance of

λ is considerable and the subject of the next subsection.

3.3 Altering the Reference Probability

A non-zero λ parameter, independent of the superfluous information, can generalize equation (2)

as follows

PU (t) =
1

1 + eλ−αzt
. (16)

The λ intercept in equation (16) indexes the reference probability measure. Specifically, when

λ �= 0, the reference probability measure
{
PU (t), PD(t)

}∣∣
α=0

equals
{

1
1+eλ , eλ

1+eλ

}
instead of

{
1
2
, 1

2

}
.

Thus, a positive λ parameter implies the relationship PU (t) < 1
2

< PD(t) when α = 0, with

larger PD(t) − PU (t) > 0 values for the reference probability indicating greater risk aversion. A
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negative estimate for λ implies the opposite inequalities for the reference probability, and may be

interpreted as the investor being either risk-seeking or optimistic. A slight extension of equation

(12) in Corollary 1 estimates the λ intercept in equation (16) using the following procedure

yt − μt

2σt
+

1

2
=

1

1 + eλ−αzt
+ εt . (17)

Non-zero yt−μt deviations in equation (17) may therefore be attributable to the λ intercept as well

as the α coefficients. Further details regarding the reference probability measure are available in

Appendix A which slightly adjusts the definition of abnormal returns in equation (5) for non-zero

λ parameters.

3.4 Advantages of the Market Probability Approach

Besides the generality of the market probability, our approach has several advantages over a linear

regression of stock returns on superfluous information.

First, the regression formulation in equation (13) is only a statistical exercise, while Proposi-

tions 1 and 2 provide economic consequences for non-zero α coefficients in the market probability.

For example, linear regression cannot result in the underestimation of ex-ante return volatility

nor excess realized volatility. Indeed, although the α coefficients are statistical estimates, their

implications for the conditional return distribution are causal.

Second, the market probability provides an economic interpretation for the λ intercept and

recognizes the crucial role of volatility when examining the relationship between stock returns

and superfluous information. Unlike α0 in equation (13), the λ intercept in equation (16) indexes

the reference probability measure and therefore incorporates risk preferences. Furthermore, firm-

specific volatility scales any distortion in the market probability measure attributable to non-zero

α coefficients. In contrast, the linear regression in equation (13) ignores variation in σt across

time for individual firms, and differences in σt between firms when calibrating the α coefficients

cross-sectionally.9

Third, the market probability measure may be inferred experimentally, which eliminates the

need to specify firm-specific dependent variables yt−μt

2σt
in equation (17). Thus, the joint-hypothesis

9The standard deviation for the time series of εt residuals in equation (13) is unrelated to σt in equation (14)

since the asset’s true volatility is independent of α and zt. Therefore, even if equation (15) describes the true

relationship between yt − μt and zt, the asset would not be riskless despite the εt residuals being identically zero.
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confounding the estimation of expected returns and a model of market equilibrium is circumvented.

Indeed, by providing the return implications of distorted market probabilities that summarize in-

vestor beliefs, our methodology facilitates further studies into the relationship between psychology

and stock returns.

Fourth, from an econometric perspective, the “linear probability” in equation (14) is inappro-

priate since its right side is not constrained to lie within the [0, 1] interval. To avoid misspecification

errors, additional constraints on the α coefficients must be imposed by the estimation procedure.

Although the PU (t) probability in equation (17) can be approximated as

1

1 + eλ−αzt
≈ 1

2
− λ

4
+

αzt

4
, (18)

using equation (39) in Appendix B, this linear approximation does not imply that linear regression

is appropriate for examining the relationship between abnormal returns and superfluous informa-

tion. Indeed, the ability of equation (18) to depart from the [0,1] interval subjects this linear

probability to the same criticism as equation (14).

More importantly, equation (12) and its generalization in equation (17) are implications of our

market probability approach since they normalize yt −μt by 2σt and center this ratio around one-

half. Therefore, the linear approximation in equation (18) is not equivalent to a linear regression

of abnormal returns on superfluous information. In contrast, our market probability is designed to

examine whether abnormal returns are explained by superfluous information influencing investor

beliefs. Our empirical results in Section 6 attest to the inferiority of regressing yt − μt on zt when

attempting to profit from behavioral biases.

To clarify, standard linear regression is inappropriate for studying the relationship between be-

havioral biases and abnormal returns. However, linear multifactor models can define the abnormal

returns underlying the dependent variable in equation (17).

4 Four Common Behavioral Biases

Barberis, Shleifer, and Vishny (1998) consider a single asset model with one risk neutral investor.

Although earnings, hence prices, evolve as a random walk, representativeness causes investors to

perceive a nonexistent trend in these sequences. When the pattern reverses, conservatism emerges

as the investor reacts timidly to the arrival of recent observations. Consequently, underreaction
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results from the perception that earnings are generated by a mean reverting model, while overre-

action occurs when investors perceive a trend in earnings.

Daniel, Hirshleifer, and Subrahmanyam (1998) assume an overconfident investor’s processing

of private information exhibits biased self-attribution. Specifically, instances where public infor-

mation confirms a private signal is attributed to skill while disconfirming events are discounted.

This asymmetry results in short-term momentum with long-term reversal occuring when the true

value of the risky security is revealed.

In the next two subsections, we describe representativeness, conservatism, overconfidence, and

biased self attribution using previous price movements and their respective market probabilities.

This analysis motivates our proxies for these biases constructed from earnings data in the next

section. For expositional simplicity but without loss of generality, we assume λ = 0 in equation

(16) and employ the
{

1
2
, 1

2

}
reference probability for the remainder of this section.

4.1 Representativeness and Conservatism

Under the reference probability measure
{

1
2
, 1

2

}
, price movements follow a random walk. There-

fore, three consecutive upward price movements occurs with probability
(

1
2

)3
= 1

8
. However, the

market may become optimistic and increase PU (t) beyond 1
2

after the occurrence of this sequence.

Therefore, when zt indicates a trend in a stock’s price or the firm’s underlying earnings, the

potential for representativeness to influence the market probability is captured.

Conditional on the appearance of a trend in a firm’s earnings or its associated price move-

ments, the
{

1
2
, 1

2

}
reference measure implies that its continuation and reversal are equally-likely.

When zt indicates a reversal in a sequence of realized earnings or price movements, the impact of

conservatism on the market probability may be assessed.

4.2 Overconfidence and Biased Self-Attribution

Denote the private probability measure of an individual investor as
{
PU

pr(t), P
D
pr(t)

}
versus the ref-

erence probability
{

1
2
, 1

2

}
. Equation (7) details the extent of an individual investor’s overconfidence

when 4σ2
t

[
PU

pr(t)− 1
2

]2
results from private information manifested in PU

pr(t). Thus, overconfidence

arises whenever PU
pr(t) and 1

2
diverge due to an investor’s access to private information or their

interpretation of public information.
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The incorporation of biased self-attribution into the our framework compares PU
pr(t) with the

realized price movement at t + 1. A confirming signal occurs when PU
pr(t) > 1

2
and the subsequent

price movement is up, while a disconfirming signal has a downward price movement following

PU
pr(t) > 1

2
. Similarly, a confirming (disconfirming) signal results when a downward (upward) price

movement follows PD
pr(t) < 1

2
.

5 Proxies for Behavioral Biases Using Analysts’ Forecasts

We construct proxies for behavioral biases from analysts’ forecasts of quarterly earnings, which are

particularly well-suited to this purpose for at least three reasons. First, there is ample evidence in

the literature that the market reacts improperly to realizations of fundamental information such

as earnings. For example, Barth, Elliot, and Finn (1999) find that firm-specific price-earnings

multiples have dynamics consistent with both representativeness and conservatism, while Chan,

Frankel, and Kothari (2004) detect conservatism but not representativeness using portfolios con-

structed from accounting variables.10

Second, analysts’ forecasts allow us to gauge market expectations regarding earnings. This

feature is important since stock returns are driven by changes in expectations about future funda-

mentals. For example, Chan, Jegadeesh, and Lakonishok (1996) attribute a significant fraction of

momentum profits to earnings momentum as measured by earnings forecast revisions. Daniel and

Titman (2005) also document that tangible information derived from realized earnings growth is

unable to predict stock returns. In contrast, intangible information, which is presumably com-

prised of expectations regarding future earnings, has predictive ability.

Third, the possibility that analysts’ forecasts are biased is immaterial to our methodology.

Richardson, Teoh, and Wysocki (2004) find that analysts walk-down their earnings forecasts to al-

low firms to exceed their final forecast. However, if the market is processing information efficiently,

the market probability should not react to trends in earnings surprises.

In forming the behavioral bias proxies, we deliberately avoid using returns (price movements)

since returns are already included in the dependent variable of equations (12) and (17). Instead,

10The α coefficients easily ascertain the marginal influence of various behavioral biases on stock returns, and

may be conditioned on cross-sectional or industry characteristics. This flexibility and level of precision cannot be

duplicated by sorting stocks into portfolios.
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a stock’s nominal return from the prior quarter is included in the superfluous information set to

examine its role in generating future returns versus the marginal contribution of our behavioral

bias proxies. We also refrain from utilizing returns to define these proxies due to the potential

release of fundamental information around the earnings announcement date. For example, a

negative earnings revision coinciding with a positive stock return (or vice-versa) suggests that

information besides earnings may have become public. Therefore, we limit our attention to the

market’s processing of analysts’ earnings forecasts by having positive (negative) earnings revisions

and surprises constitute good (bad) private and public signals respectively.

5.1 Data

Our data consists of analysts’ earnings forecast data for earnings announced from January 1st,

1986 to September 30th, 2004 from the Institutional Brokers Estimate System (I/B/E/S) Sum-

mary unadjusted file. The unadjusted file addresses the problem of imprecise forecasts caused by

I/B/E/S’s practice of rounding to the nearest cent when adjusting historical forecasts after stock

splits (see Diether, Malloy, and Scherbina (2002)).

The earnings surprise St is defined as the actual announced earnings less the consensus mean

earnings forecast immediately prior to the earnings announcement denoted Ft, scaled by the stock

price from the Center for Research in Security Prices (CRSP) at day -2. Day 0 is defined as

the earnings announcement date or the next trading day whenever this date is a non-trading

day. We define the forecast revision Rt as Ft less the consensus forecast two months before the

announcement date, scaled by price in the same manner as St. Following Clement and Tse (2005),

we remove forecast errors greater than 40% of price, and forecast revisions greater than 10%

of price, to guard against data input errors by I/B/E/S. As in Diether, Malloy, and Scherbina

(2002), the dispersion of analyst forecasts denoted Dt is the reported standard deviation of earnings

forecasts in I/B/E/S divided by the absolute value of the mean estimate. If the mean estimate is

zero, the firm’s dispersion for that quarter is coded as the maximum dispersion reported throughout

the firm’s history.11 We also remove firm-quarter observations when the consensus forecast involves

fewer than two analysts.

We obtain each firm’s previous fiscal year-end book-to-market ratio (B/M) from the CRSP /

11We also scaled dispersion by the firm’s stock price at day -2 and obtained similar empirical results.
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Compustat Merged Industrial Annual File. This ratio is constructed as the book value of common

equity (item #60) divided by the market capitalization from CRSP. Firm-quarter observations

where the previous fiscal year-end B/M ratio is zero or negative are removed. Two-digit SIC codes

are also obtained for each stock with a total of 66 different industries being represented in our

sample.

After applying the above screens, we select firms having at least 24 observations for every

element of the superfluous information set defined in this section. In total, the final sample

contains 2,087 unique firms providing 94,242 firm-quarter observations. 34.9% of earnings surprises

are negative, 51.2% are positive, and the remaining 13.9% are zero. In contrast, 29.4%, 16.9%,

and 53.7% of earnings revisions are negative, positive, and zero respectively. These percentages

are consistent with walk-downs in earnings forecasts.

5.2 Proxies for Representativeness and Conservatism

When constructing proxies for representativeness and conservatism, we consider three consecutive

earnings surprises. Besides maintaining model parsimony, this horizon approximates the nine-

month horizon typical of return anomalies such as momentum and post-earnings announcement

drift. As a consequence, we focus on trends consisting of consecutive positive or negative earnings

surprises over three periods as well as a reversal for the third realization. Furthermore, the

evolution of firm-specific earnings surprises resembles a random walk, which is the true process

underlying Barberis, Shleifer, and Vishny (1998)’s theoretical model.12

The zt element pertaining to representativeness involves a trend in earnings surprises

zrep
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

St+St−1+St−2

3
If all three surprises are positive or negative Trend

0 Otherwise No Trend .

The magnitude of the trend is summarized by the average earning’s surprise over the last three

12Across the 2,087 firms in our sample, the average autocorrelation in the sequence of firm-specific earnings

surprises is 0.118, with 21.3% and 35.1% of these autocorrelations being significant at the 1% and 5% levels

respectively. These autocorrelations are positive for 70.44% of the firms in our sample and negative for the remaining

29.56%. In addition, slight negative skewness of -1.49 on average is detected in the earnings surprises.
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quarters. This definition of representativeness is expressed more succinctly as

zrep
t =

(
St + St−1 + St−2

3

)
1{All three surprises are positive or negative.} . (19)

A positive α coefficient for zrep
t is consistent with the market extrapolating further positive (neg-

ative) earnings surprises when the representativeness proxy is positive (negative). Conversely,

a negative coefficient for zrep
t indicates the market expects an earnings trend to reverse rather

than continue. Asparouhova, Hertzel, and Lemmon (2005) find empirical evidence consistent with

individuals anticipating reversals after short trends.

In contrast to zrep
t , our conservatism proxy considers an earnings surprise that contradicts the

previous two surprises

zcon
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
St −

(
St−1+St−2

2

)]
If St is of the opposite sign as St−1 and St−2 Reversal

0 Otherwise No Reversal

which is equivalent to

zcon
t =

[
St −

(
St−1 + St−2

2

)]
1{St is of the opposite sign as St−1 and St−2.} . (20)

The conservatism proxy has an identical sign as the most recent earnings surprise, and coincides

with a reversal from the previous two surprises. When the α coefficient associated with zcon
t is

negative, a positive (negative) conservatism proxy leads to negative (positive) abnormal returns

in the absence of other biases. Intuitively, this relationship is consistent with the market focusing

on the firm’s previous two earnings surprises rather than the most recent surprise. In contrast,

a positive coefficient for zcon
t suggests the market responds more to the actual reversal. By con-

struction, zrep
t and zcon

t are not simultaneously non-zero since St cannot have the identical and

opposite sign as the firm’s previous two earnings surprises.

5.3 Proxies for Overconfidence and Biased Self-Attribution

With overconfidence defined as market participants overestimating the precision of their private

information, forecast revisions and analyst dispersion reflect the magnitude and variability of

private information respectively. Specifically, the arrival of good (bad) private information is

indicated by an upward (downward) earnings revision.
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Higher earnings dispersion is conducive to overconfidence. Barron, Kim, Lim, and Stevens

(1998) demonstrate that earnings dispersion captures the level of disagreement between analysts

as well as their individual forecast uncertainty. However, decomposing a firm’s forecast dispersion

σ2
pr(t) into these separate components is unnecessary since both of these elements are subject to

overconfidence. Our overconfidence proxy zoc
t is defined as

zoc
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rt σ
2
pr(t) If |Rt| > 0 and σ2

pr(t) �= 0 Disagreement over private information

0 If Rt = 0 or σ2
pr(t) = 0 No Disagreement

which simplifies to

zoc
t = Rt σ

2
pr(t) . (21)

Clement and Tse (2005) report that bold revisions, defined as large deviations from the concensus

forecast, have a greater likelihood of originating from private information. Conversely, forecasts

which result from herding contain less private information and reduce dispersion.13 The results

of Clement and Tse (2005) are consistent with our overconfidence proxy in equation (21) as bold

revisions arising from private information increase |Rt| as well as σ2
pr(t). The coefficient for zoc

t

may be negative since disagreement over the return implications of private signals, namely the

sign of Rt, is easier to detect as overconfidence.

Observe that the sign of an earnings revision versus the subsequent surprise is irrelevant to

overconfidence. In contrast, the biased self-attribution signal evaluates the consistency between

private and public information since positive (negative) surprises indicate the realization of good

(bad) public signals.

A disconfirming signal occurs when an earnings surprise follows a non-zero revision. In con-

trast, a confirming signal begins with a non-zero forecast revision, signifying the release of private

information, but is not followed by an earnings surprise. Consequently, the proxy for biased

13In contrast to Diether, Malloy, and Scherbina (2002), our overconfidence proxy in equation (21) supplements

earnings dispersion by multiplying this measure for differences of opinion by earnings revisions.

20



self-attribution equals

zbsa
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt If |Rt| > 0 and St = 0 Confirming Signal

γRt If |Rt| > 0 and |St| > 0 Disconfirming Signal

0 Rt = 0 No Signal

for 0 < γ < 1 which represents the extent to which disconfirming signals are underweighted by the

market. Hence, disconfirming public signals are underweighted in comparison to their confirming

counterparts which implicitly have γ equal to one. This definition of biased self-attribution is

equivalent to

zbsa
t = Rt

[
1{St=0} + γ 1{|St|>0}

]
. (22)

In our empirical implementation, the zbsa
t entries are defined with γ equaling one-half. However,

our empirical results are robust to different values of this parameter within the [0,1) interval.

Thus, our choice of γ = 1
2

is without loss of generality.

For our sample period, the percentage of confirming and disconfirming signals implied by equa-

tion (22) are 9.41% and 90.59% respectively. An alternative definition for biased self-attribution

considers the interval [-0.002, 0.002] surrounding St when defining the confirming, hence discon-

firming, public signals

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt If |Rt| > 0 and St ∈ [−0.002, 0.002] Confirming Signal

γRt If |Rt| > 0 and St /∈ [−0.002, 0.002] Disconfirming Signal

0 Rt = 0 No Signal .

Under this weaker definition for a confirming signal, 58.09% of the signals are confirming with

the remaining 41.91% being disconfirming. However, our empirical results are not sensitive to the

demarcation between confirming versus disconfirming signals. In particular, the economic role of

the biased self-attribution proxy is insensitive to the magnitude of |St| used in its construction.
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5.4 Summary of Superfluous Information

The last element of the superfluous information set, zpr
t is the firm’s return from the previous

quarter defined over the [−63,−2] interval. As alluded to earlier, this variable is included to

examine the marginal explanatory power of representativeness, conservatism, overconfidence, and

biased self-attribution in generating abnormal returns beyond simple return extrapolation.

In summary, the zt vector representing the set of superfluous information we study equals

zt =
{
zrep

t , zcon
t , zoc

t , zbsa
t , zpr

t

}
, (23)

which has five associated α coefficients. The importance of the behavioral bias proxies is confirmed

by our empirical results in the next section.

6 Estimation Methodology and Empirical Results

After an earnings announcement, abnormal returns are defined over the subsequent [δ1, δ2] = [6,26]

day interval. The δ1 > 0 parameter allows market participants to update μt with respect to the

fundamental information contained in the earnings announcement before the yt − μt deviations

are computed. In an efficient market, the release of earnings information should have no bearing

on returns after five days. Moreover, expected returns are unrelated to the zt elements in equation

(23). With regards to earlier material after equation (1), the time increment Δ is defined as δ2−δ1

which equals 21 days in our empirical study.

Table 1 provides summary statistics for the behavioral bias proxies. The reported averages are

computed for the non-zero elements of zbias
t , along with their frequency. Recall that representative-

ness and conservatism cannot simultaneously be non-zero by construction, while their combined

frequency equals 44.5% on average. This percentage is comparable to 42.4% for overconfidence and

44.0% for biased self-attribution. The percentage of periods in which the superfluous information

set has 1, 2, 3, and 4 non-zero entries is 31.3%, 23.4%, 23.4%, and 21.9% respectively.

6.1 True Expected Returns and Volatilities

Estimating the true expected return μt involves adjusting a firm’s nominal return by its counterpart

for the market. We begin by regressing the daily returns yi of each firm on the corresponding
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market return denoted RMi over the [−200,−11] horizon as in Bailey, Karolyi, and Salva (2005)

yi = β0 + β1 RMi + εi for i = −200, . . . ,−11 . (24)

The β1 coefficient estimated in equation (24) computes a firm’s daily expected return during the

subsequent 21 day horizon as14

μ̂k = β̂1 RMk for k = 6, . . . , 26 . (25)

The product (1 + μ̂6) · · · (1 + μ̂k) · · · (1 + μ̂26) − 1 obtained from equation (25) is denoted μ̂t, and

comprises a firm’s expected return in quarter t.

The volatility for each firm-quarter is estimated as the daily standard deviation of returns over

the previous quarter which corresponds to the [-63,-2] interval. This standard deviation is then

scaled by
√

21 for compatibility with the calibration period of μ̂t to form the return volatility

estimate denoted σ̂t.

Once μ̂t and σ̂t are calibrated, estimates for the α coefficients as well as the λ intercept are

estimated via equation (17) as follows

L̂t = PU (t) + εt =
1

1 + eλ−αzt
+ εt , (26)

where L̂t is defined as

L̂t =
yt − μ̂t

2σ̂t

+
1

2
, (27)

with summary statistics for this dependent variable reported in Table 1. Starting values for the

non-linear estimation of λ and α are zero, although our empirical results are insensitive to these

initial settings. The market model is sufficient for estimating abnormal returns since the inclusion

of additional factors could only explain non-zero α estimates if they are correlated with elements

of the superfluous information set in equation (23). Nonetheless, we invoke the Fama and French

(1993) three factor model augmented with Carhart (1997)’s momentum factor to adjust the cross-

sectional returns generated by trading strategies derived from our estimated market probabilities.

In our empirical implementation, violations of the upper (lower) bound in equation (6) imply

14The μ̂k estimate in equation (25) only reflects publically available information. Semi-strong and strong forms

of market efficiency can be tested after incorporating private information.
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equation (26) produces a positive (negative) ε̂t residual.15 However, equation (6) is an ex-ante

relationship, while L̂t in equation (27) is constructed from ex-post estimates of the asset’s true

expected return and volatility. Hence, violations of the inequalities in equation (6) may stem

from parameter uncertainty. Therefore, although equation (16) prevents superfluous information

from generating market probabilities below zero or above one, dependent variables L̂t outside the

[0,1] interval are not removed from the sample.16 Instead, we verify that the residuals from our

non-linear estimation procedure are symmetric and sum to zero.

Finally, when ex-post historical returns are contaminated by behavioral biases, their role in

calibrating μ̂t in equation (25) and σ̂t may be suspect. Indeed, any empirical study that attempts

to explain abnormal returns confronts this limitation. This concern motivates an experimental

study to elicit the market probabilities which avoids estimating the moments of an asset’s true

return distribution.

6.2 Pooled Coefficient Estimation

We first determine if behavioral biases affect stock returns in our sample by estimating the market

probability coefficients over the entire sample period. To account for cross-correlation across firms,

we follow the Fama-MacBeth (1973) procedure by calibrating equation (17) each quarter using all

earnings announcements that fall within a calendar quarter. Each parameter’s significance is then

determined from the empirical distribution of its time series using Newey-West t-statistics.

Table 2 reports strong evidence in favor of representativeness, with conservatism, overconfi-

dence, and biased self-attribution also detected at the 10% significance level in our joint estimation.

In contrast, the contribution of past returns is insignificant. When the effects of the biases are

estimated individually, the coefficients for representativeness and conservatism remain significant

while the other zt elements have an insignificant role in creating abnormal returns.17

15Equation (6) implies 0 ≤ yt − μt + σt ≤ 2σt after adding σt to both inequalities. Dividing this result by 2σt

yields 0 ≤ yt−μt

2σt
+ 1

2
≤ 1. Thus, when μt and σt are known parameters, equation (6) implies yt−μt

2σt
+ 1

2
is contained

in the [0,1] interval.
16Small fluctuations in L̂t could result from fundamental information released after the earnings announcement

date. However, this effect cannot bias our estimates for α unless the zt elements, which are known five days prior

to the calibration of these coefficients, constitute “unprocessed” fundamental information.
17The limited empirical support for overconfidence and biased self-attribution may be overcome in future research

by constructing their proxies from long-term growth projections (LaPorta (1996)) or price targets (Brav and Lehavy
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We confirm that our results are qualitatively similar with or without the estimation of the λ

intercept, implying a reference probability different from one-half is unnecessary. Consequently, for

expositional simplicity, we report our empirical findings under the market probability in equation

(2). Interestingly, when elements of zt are studied individually, the λ̂ estimates are identical to

two decimal places. This commonality is important since the reference probability is required to

be independent of any psychological bias.

The results in Table 2 assume the true α coefficients are constant and identical across all

2,087 stocks. Therefore, this assumption ignores a stock’s investor clientele. However, even if the

behavioral biases committed by individual investors are time-invariant, transactions can induce

time-varying coefficients when buyers and sellers are not equally as susceptible to behavioral

biases. For example, the investors who owned Internet stocks during and after the bubble period

may differ. This time-variation is formalized in Appendix C for an individual stock (but not an

individual investor). In the next subsection, we overcome the deficiencies of our pooled procedure

by estimating time-varying coefficients during non-overlapping four-year subperiods. We also

calibrate industry-specific coefficients using subsamples constructed from two-digit SIC codes.18

Finally, in an earlier version of the paper, firm-specific α̂ coefficients are calibrated using

time series data for individual stocks. However, this estimation procedure is complicated by the

percentage of zero elements in the superfluous information set. In particular, requiring a firm to

have a minimum of ten non-zero entries for each element of equation (23) reduces our sample size

significantly.

6.3 Trading Strategies

To ascertain the cross-sectional return implications of behavioral biases, calendar-time portfolios

from January 1st, 1990 to December 31st, 2004 are formed from firm-specific estimated market

probabilities each firm-quarter. Buy and sell portfolios in calendar-time are formed from the esti-

mated market probabilities P̂U(t) = 1
1+e−α̂zt

of individual stocks after their earnings announcement

(2003)) which are closer to Daniel and Titman (2005)’s notion of intangible information.
18In contrast to industry-specific coefficients, conditioning on B/M and size characteristics does not capture a

stock’s susceptibility to behavioral biases. However, the 2,087 firms we study are recorded in the I/B/E/S database

which is orientated towards large firms. Thus, caution should be exercised when generalizing our findings to a

wider universe of stocks.
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date in quarter t. The first superfluous information set examined is the zt vector in equation (23).

The non-linear model in equation (12) provides time-varying α̂ estimates from the prior four-year

non-overlapping period. These estimated coefficients are also industry-specific. For example, the

first estimation period is 1986 to 1989, with these estimates applied to firms in the same industry

during the subsequent 1990 to 1993 horizon.

A stock is bought (sold) for 1-month, specifically the [6,26] day interval, in quarter t whenever

its estimated market probability is above xmp = 0.54 (below 1 − xmp= 0.46). A threshold xmp

higher than 0.50 accounts for estimation error in the market probabilities. Daily returns for the

buy and sell portfolios are computed as the value-weighted (using the lagged market capitalization)

return of all stocks in the respective portfolio. We exclude firm-days where the lagged price is less

than $5.

Daily portfolio returns are then compounded to monthly returns which are regressed against

the four-factor model. Data on these four-factors (MKTRF, SMB, HML, and UMD) are obtained

from Kenneth French’s website. The buy, sell, and cross-sectional returns generated by our trad-

ing strategies are recorded in Table 3 after adjustments by the four-factor model. The average

returns in Panel A result from estimated market probabilities using the entire set of superflu-

ous information in equation (23). A trading strategy that buys (sells) stocks whose estimated

market probabilities are above xmp = 0.54 (below 1 − xmp= 0.46) yields significantly positive re-

turns. Specifically, the combined influence of superfluous information generates an annual return

of 13.56% on average after adjustments for book-to-market, size, and momentum.

The results in Panels B and C involve estimated market probabilities for a combination of

representativeness and conservatism as well as overconfidence and biased self-attribution, in con-

junction with past returns. The inclusion of past returns enables us to investigate the marginal

contribution of behavioral biases on stock returns after accounting for return extrapolation.19 A

trading strategy that focuses on representativeness and conservatism generates an annual return of

14.45% on average, while the combination of overconfidence and biased self-attribution produces

positive but insignificant trading profits.

We also implement a separate trading strategy focusing exclusively on past returns for compar-

19Econometrically, having past returns in the superfluous information set also stabilizes the α̂ estimates given

the percentage of zero entries for the representativeness, conservatism, overconfidence, and biased self-attribution

proxies.
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ison. As recorded in Panel D, this strategy has the worst return profile, a property which attests

to the importance of our behavioral bias proxies. As a further robustness test, we replace the zt

vector in equation (23) with analysts’ forecasts and revisions, {St, Rt}. Once again, the insignifi-

cant trading profits arising from this strategy in Panel E confirm the importance of constructing

our behavioral bias proxies. Indeed, analysts’ forecasts and revisions alone are not responsible for

our earlier trading profits. Instead, their arrangement into proxies for behavioral biases enables

them to generate positive cross-sectional returns.

Regarding transaction costs, the long and short portfolios underlying our trading strategy are

not populated by large numbers of stocks. Nonetheless, idiosyncratic risk is likely mitigated by

having an average of 57.5 and 43.0 stocks in the long and short portfolio respectively. Therefore,

our strategies perform well with relatively few stocks, approximately 50 on average. In addition,

our cross-sectional returns are not driven by short-selling. Instead, our market probabilities are

identifying stocks with high future returns as a result of behavioral biases. Finally, three-year

non-overlapping windows produce similar cross-sectional although they become insignificant when

a shorter two-year window is considered. Thus, a longer estimation window reduces the noise in

our calibration procedure, resulting in more precise market probabilities that consistently generate

positive trading profits.

To clarify, the holding period of our trading strategy is not required to coincide with the

[δ1, δ2] = [6, 26] estimation interval. Indeed, cross-sectional returns are similar when the trading

strategy purchases or sells stocks on the actual earnings announcement day, which coincides with

the [1,26] horizon. Therefore, our reported trading profits are not driven by short-term effects

that disappear once the market has been given sufficient time to interpret the firm’s earnings

announcement and update its expected return. Moreover, a longer 42-day holding period over the

[6,47] interval produces nearly identical trading profits as those reported in Table 3. Consequently,

the cross-sectional returns from our trading strategies are robust to different holding periods within

the quarter.

Note that our buy and sell portfolios arise entirely from non-zero α̂ estimates which are not

sources of risk. Indeed, the buy and sell portfolios select stocks according to their α̂zt elements, not

B/M nor size characteristics. The only caveat is the dependence of these coefficients on μ̂t, hence

an assumed model of market equilibrium. However, our market probability approach is motivated

by previous empirical studies that document abnormal returns under the joint-hypothesis. In
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addition, an omitted risk factor would have to be correlated with an element of zt to explain its

non-zero α̂ coefficient. Furthermore, when implementing our trading strategies, stocks are sorted

according to their estimated market probabilities rather than 2σ̂t

[
P̂U(t) − 1

2

]
in equation (5) to

avoid any potential association between their profitability and idiosyncratic volatility.

6.4 Return Benchmarking

For benchmarking the cross-sectional returns from our market probability, we replicate the method-

ology in the previous section with a linear regression of individual stock returns on the zt elements

comprising our superfluous information set

yt − μ̂t = φ0 + φzt + εt , (28)

as in equation (13). We then form buy and sell portfolios based on predicted abnormal returns

that are attributable to behavioral biases. These predicted abnormal returns are computed as

̂yt+1 − μt+1 − φ̂0 = φ̂zt+1 , (29)

using the φ̂ estimates. Although this methodology appears to simply replace equation (17) with

equation (28), natural thresholds for the buy and sell portfolios are unavailable in the linear

regression analysis. Therefore, stocks are placed into buy (sell) portfolios whenever their predicted

abnormal return φ̂zt+1 from the linear regression in equation (29) is above (below) xlr = 0.03 (−xlr

= -0.03). The xlr threshold forms portfolios containing an average of about 50 stocks per day,

which is comparable to the market probability strategy in Panel A of Table 3. This consistency is

important to ensure return differences are not the result of idiosyncratic risk arising from having

fewer stocks in the buy and sell portfolios.

Recall from Section 3 that linear regression is a special case of our market probability which

assumes no cross-sectional differences in return volatility across stocks, and further assumes this

volatility is constant across time for individual stocks. Moreover, the market probability and linear

regression procedures would not select identical stocks for their respective buy and sell portfolios.20

In particular, stocks whose market probability at time t exceeds the threshold xmp = 0.54 are not

20Sorting stocks according to whether their zt values are positive or negative cannot replicate the trading strategies

derived from our market probabilities, or the linear regression in equation (28), since this technique assumes the

true α and φ coefficients are identically one for every element of the superfluous information set.
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necessarily the same as those whose predicted returns φ̂zt+1 are above xlr = 0.03. This disparity

holds for any pair of xmp and xlr values. Empirically, we find that linear regression produces

smaller and insignificant cross-sectional returns.

6.5 Return Predictability and Excess Volatility

Our market probabilities enable us to investigate the excess volatility and return predictability

attributable to non-zero α̂ coefficients. The time series of firm-specific PU (t) probabilities is

identical to those underlying our calendar-time trading strategy. Proposition 2 implies the excess

volatility attributable to the α̂ coefficients equals

√
4V ar

(
σ̂t

[
P̂U (t)− 1

2

]∣∣∣ t = 1, . . . , n
)

+ 2Cov
(

μ̂t , 2 σ̂t

[
P̂U (t)− 1

2

]∣∣∣ t = 1, . . . , n
)

, (30)

while the return predictability induced by these biases is

Corr
(

μ̂t , σ̂t−1

[
P̂U(t − 1) − 1

2

]∣∣∣ t = 2, . . . , n
)

+ Corr
(

μ̂t−1 , σ̂t

[
P̂U(t) − 1

2

]∣∣∣ t = 2, . . . , n
)

+ Corr
(

σ̂t

[
P̂U (t)− 1

2

]
, σ̂t−1

[
P̂U(t − 1) − 1

2

]∣∣∣ t = 2, . . . , n
)

. (31)

Table 4 contains summary statistics for the time series properties of the market probability

measure. We document substantial excess return volatility resulting from the market having

conditioned on superfluous information. In economic terms, the average excess return volatility

attributable to behavioral biases is 4.75% per annum. Furthermore, these biases induce negative

and positive serial return correlation with return predictability on average. In particular, return

predictability is more pronounced than return reversals.

Finally, we examine the extent to which the market underestimates ex-ante return volatility

in equation (7) by calculating

2 σ̂t

√[
P̂U (t)− 1

2

]2

= 2 σ̂t

∣∣∣P̂U (t) − 1
2

∣∣∣ for t = 1, . . . , n (32)
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for each firm-quarter. Firm-specific summary statistics are then computed with their average

values across the firms in our sample presented in Table 4. On average, return volatility is under-

estimated by 1.62% per annum due to behavioral biases.

7 Conclusion

We introduce a market probability measure to unify the influence of psychological biases on returns.

This probability represents a reduced-form expression for the market’s beliefs regarding future

price movements. Every behavioral bias can potentially distort the market probability which

facilitates empirical investigations into the origin and magnitude of abnormal returns. Therefore,

our methodology provides greater resolution on whether behavioral biases influence stock returns,

and if so, which biases are the most prevalent.

There are several theoretical implications associated with distortions in the market proba-

bility attributable to investor psychology. Besides abnormal returns, they cause ex-ante return

volatility to be underestimated. Furthermore, fluctuations in the market probability induce return

predictability and excess return volatility.

After constructing proxies for representativeness, conservatism, overconfidence, and biased

self-attribution from earnings forecasts and revisions, we find empirical evidence supporting their

ability to explain abnormal returns. Furthermore, sorting stocks into buy and sell portfolios ac-

cording to the combined influence of all behavioral biases on their estimated market probabilities

generates a 13.56% annual return after adjustments for book-to-market, size, and momentum

factors. An even higher 14.45% return is produced when the trading strategy focuses on repre-

sentativeness and conservatism in conjuction with past returns, while overconfidence and biased

self-attribution yield positive but insignificant trading profits. Furthermore, a trading strategy

derived from analysts’ forecasts and revisions does not generate significant trading profits. This

result confirms the importance of arranging these earnings realizations into behavioral bias proxies.

In addition, fluctuations in the market probability measure attributable to behavioral biases

yield excess annualized return volatility of 4.75% on average. These market probability distortions

also induce positive as well as negative return autocorrelation, with return predictability occuring

on average.

Examining additional behavioral biases and alternative methods for constructing their proxies
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is an important topic for future empirical research. For example, long-term growth rate projec-

tions (LaPorta (1996)) or price targets (Brav and Lehavy (2003)) could replace analysts’ earnings

forecasts and revisions over quarterly horizons. Biases such as overconfidence may become more

salient when their proxies are defined by these variables whose properties are closer to Daniel

and Titman (2005)’s notion of intangible information. The superfluous information set could also

be expanded to include media coverage whose role in financial markets is studied by Barber and

Odean (2005) as well as Bhattacharya, Galpin, Ray, and Yu (2004).

Another avenue for future study would extract market probabilities from subjects in an labora-

tory experiment to circumvent the estimation of an asset’s true return distribution. These market

probabilities could then classify stocks trading on financial exchanges into buy and sell portfolios.

Provided these two approaches examine common superfluous information, the experimental esti-

mation of market probabilities and the implementation of trading strategies on historical return

data are separated. The profitability of trading strategies conditioned on experimental parameter

estimates gauges the relevance of laboratory experiments to financial market.
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Appendices

A Altering the Reference Probability Measure

Instead of equation (2), consider the market probability PU (t) in equation (16). A non-zero λ

intercept in equation (16) alters the reference probability from
{

1
2
, 1

2

}
to

{
PU (t), PD(t)

}∣∣
α=0

=
{

1
1+eλ , eλ

1+eλ

}
. (33)

By being independent of zt, the λ parameter indexes the reference probability in equation (33),

while the α coefficients continue to indicate whether the market conditions on superfluous infor-

mation. The λ intercept and the α coefficients define the following probability measures

1. Risk Neutral Reference Probability with λ = 0 and α = 0: This
{

1
2
, 1

2

}
measure refers

to a risk neutral market in the absence of any behavioral biases.

2. General Reference Probability with λ �= 0 and α = 0: This probability remains inde-

pendent of behavioral biases and replaces
{

1
2
, 1

2

}
with equation (33).

The two reference probabilities above are mutually exclusive since λ is either zero or non-zero

while α = 0 by definition.

3. Market Probability with α �= 0: Regardless of the λ intercept, superfluous information

distorts the market probability away from the appropriate reference measure.

To clarify, there is only one underlying binomial tree with two probabilities indexed by α and

λ existing on this lattice. When α �= 0, each probability implies a distinct conditional expected

return and variance.21 Furthermore, the return decomposition in equation (4) is valid for any

PU (t) probability. In particular, inserting equation (16) with α = 0 and λ > 0 into equations (4)

21Unlike changes of probability in the derivatives pricing literature, μt does not equal the riskfree interest rate

since a riskless portfolio is not constructed through hedging. Furthermore, since the Ut and Dt magnitudes are

identical under the reference and market probability measures, the change of probability induced by non-zero α

coefficients alters the risky asset’s conditional expected return and its variance.
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and (7) implies the following relationships22

μt + σt

(
1 − eλ

1 + eλ

)
< μt (34)

2σ2
t

1 + cosh(λ)
< σ2

t . (35)

Thus, a more “risk-averse” market lowers its conditional expected return and variance by increasing

the λ intercept. According to equation (33), positive λ parameters imply PU (t) < 1
2

< PD(t) when

α = 0, with the disparity PD(t) − PU(t) > 0 in the reference probability increasing with λ. A

negative estimate for λ implies the opposite inequalities for the reference probability, and may be

interpreted as the investor being either risk-seeking or optimistic.

For α = 0, the conditional expected return under the reference probability measure is

yt = μt + σt

(
1 − eλ

1 + eλ

)
, (36)

which equals μt if the asset is riskless (σt = 0) or the market is risk neutral (λ = 0). When λ �= 0

and α �= 0, abnormal returns are defined according to equation (36) as

yt −
[
μt + σt

(
1 − eλ

1 + eλ

)]
(37)

instead of equation (5), while ex-ante return volatility is compared with
2σ2

t

1+cosh(λ)
in equation (35)

instead of σ2
t .

The impact of αzt on the asset’s conditional expected return and its variance is plotted in Figure

1 for both a positive and negative λ parameter. Observe that over the (0, 2λ) interval for λ > 0

and the (2λ, 0) interval for λ < 0, the variance of the conditional expected return under the market

probability measure is overestimated. Intuitively, the effects of behavioral biases summarized by

αzt offset the non-zero λ intercepts in these intervals to yield conditional variances higher than

2σ2
t

1+cosh(λ)
in equation (35). The 2λ boundaries result from cosh(λ − αzt) being equal to cosh(−λ),

hence cosh(λ), when αzt = 2λ. This minor modification to the second implication of Proposition

1 is the only theoretical difference arising from a non-zero λ parameter in equation (16). Indeed,

when λ is constant, this parameter cannot influence the variance, covariance, and correlation terms

in Proposition 2.

22The function cosh(x) is defined as exp(x)+exp(−x)
2 with the properties cosh(0) = 1 and cosh(x) = cosh(−x).
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If time-varying λt parameters are estimated using equation (17), the results of Proposition 2

remain valid. In particular, equation (38) in Appendix B with x = λt − αtzt implies abnormal

returns are approximately 2σt

[
αt zt

4

]
= σt αt zt

2
, with this term inducing excess realized return

volatility and return autocorrelation.

B Taylor Series Expansion of Probability

To obtain a linear approximation of PU (t) in equation (16), consider the Taylor series expansion

of f(x) = 1
1+e−x = (1 + e−x)−1 whose first and second derivatives evaluated at x = 0 are

f ′(x = 0) = −(1 + e−x)−2(−e−x)
∣∣
x=0

=
1

4

f ′′(x = 0) = 2(1 + e−x)−3(−e−x)2 − (1 + e−x)−2(e−x)
∣∣
x=0

=
2

8
− 1

4
= 0 ,

which implies

1

1 + e−x
=

(
1

0!
· 1

2

)
+

(
1

1!
· 1

4

)
x +

(
1

2!
· 0

)
x2 + h.o.t. ≈ 1

2
+

x

4
. (38)

For completeness, the coefficient for the cubic term equals 1
3!
f ′′′ (0) x3 = −x3

48
. Therefore, with

x = −λ + αzt, the probability PU(t) in equation (16) has the following linear approximation

PU (t) ≈ 1

2
− λ

4
+

αzt

4
, (39)

whose accuracy extends to the third order.

C Aggregating Individuals into a Market Probability

This appendix extends our previous analysis by considering two types of investors whose prob-

abilities are PU
1 (t) and PU

2 (t) respectively. Generalizing the economy to contain N > 2 traders

is straightforward. Aggregating multiple probability measures into the market probability mea-

sure allows our methodology to obtain time-varying α coefficients. In addition, investor-specific

probabilities regarding future price increases that are obtained from experimental markets can be

aggregated into market probabilities.

Denote the fraction invested by the two types of traders in the asset as f1(t) ∈ [0, 1] and

f2(t) = 1 − f1(t). Assumptions are not imposed on the wealth of the traders nor the fraction of
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their wealth invested in the asset since the fj(t) functions for j = 1, 2 are subsumed by time-varying

coefficients for the market probability.23

In particular, conditional on any fj(t) allocation, the market probability measure equals

PU (t) = f1(t)PU
1 (t) + f2(t)PU

2 (t) , (40)

since a convex combination of two probability measures forms another probability. Time-variation

in the fj(t) allocation causes the α and λ coefficients of PU (t) in equation (40) to be time-varying.

As an illustration, equation (39) in Appendix B enables equation (40) to be approximated as

PU (t) ≈ f1(t)

(
1

2
− λ1

4
+

1

4
α1zt

)
+ f2(t)

(
1

2
− λ2

4
+

1

4
α2zt

)

=
1

2
− 1

4
[f1(t)λ1 + f2(t)λ2] +

1

4
[f1(t)α1 + f2(t)α2] zt (41)

=
1

2
− λt

4
+

αt zt

4

≈ 1

1 + eλt−αtzt
,

since f1(t) + f2(t) = 1. Consequently, time-varying αt coefficients defined as f1(t)α1 + f2(t)α2

in equation (41) capture fluctuations in the positions of the traders. Thus, the composition of the

investor clientele for an asset may change over time when traders with different beliefs regarding

future price increases transact with one another. However, it is unnecessary to calibrate the

individual α1, α2, f1(t), and f2(t) components separately. Instead, estimating time-varying αt

coefficients is sufficient. An identical property follows for the λt intercept.

23Feedback trading may occur when the fj(t) functions are elements of the superfluous information set zt.
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Figure 1: Errors in the market’s conditional expected return equal the difference between equation

(4) and equation (34), while errors in the variance of this conditional expectation are computed

as the difference between equation (7) and equation (35). The σt parameter equals 0.60 in all

four plots, while all errors are independent of μt. The sum of behavioral biases along the x-axis is

defined as αzt in equation (16). The two plots in the top row (Positive) have λ = 0.15 while those

in the bottom row (Negative) have λ = −0.15. Thus, the variance of the market’s conditional

expected return is slightly overestimated when αzt lies in either the (0, 2λ) or (2λ, 0) interval.

39



Table 1 
 

Summary Statistics for Abnormal Returns and Behavioral Bias Proxies 
 

This table reports summary statistics for the dependent variable  and the behavioral bias proxies in zL̂t t 

for the 2,087 firms (94,242 firm-quarter observations) during our 1986 to 2004 sample period. The de-

pendent variable is defined as ˆ 1ˆ
ˆ2 2

t t
t

t

yL μ
σ
−

= +  where yt is the firm’s 1-month nominal return, while ˆtμ  de-

notes the stock’s expected return from the market model. Volatility is measured as the annualized stan-

dard deviation of daily returns over the previous quarter. For each firm, averages for the components of 

the superfluous information set and the firm-specific dependent variables are computed for those entries 

which are non-zero, along with this percentage. Summary statistics for these averages and non-zero per-

centages are reported below across the 2,087 firms in our sample.  The annualized volatility, abnormal 

return, dependent variable and past return are always non-zero.  
 

Variable Description Mean Median Std. Dev. 25th 

Percentile 
75th  

Percentile 

Return Volatility  Annualized 0.3853 0.3386 0.1970 0.2459 0.4761 

Abnormal Return (yt - ˆtμ ) 1-month 0.0069 0.0033 0.1006 -0.0457 0.0544 

Dependent Variable ( ˆ
tL ) 1-month 0.5352 0.5176 0.4479 0.2682 0.7860 

Representativeness ( ) rep
tz Average -0.0007 0.0003 0.0051 -0.0014 0.0013 

 
% non-zero 32.0% 31.5% 14.1% 22.0% 40.0% 

Conservatism ( ) con
tz Average 0.0009 0.0002 0.0087 -0.0016 0.0027 

 
% non-zero 12.5% 12.1% 6.6% 7.7% 17.1% 

Overconfidence ( ) oc
tz Average -0.0011 -0.0002 0.0045 -0.0008 0.0000 

 
% non-zero 42.4% 40.0% 20.6% 26.7% 56.4% 

Biased Self-Attribution ( ) bsa
tz Average -0.0008 -0.0004 0.0012 -0.0010 -0.0001 

 
% non-zero 44.0% 41.5% 20.0% 29.2% 57.8% 

Past Return ( ) pr
tz Average 0.0468 0.0428 0.0335  0.0286 0.0618 

       
 

 



Table 2 
 

Evidence of Behavioral Biases from Pooled Estimation 
 

This table reports on the presence of behavioral biases in stock returns using a pooled sample of quarterly 

earnings announcements from 1986 to 2004.  The α estimates below arise from the non-linear regression 

in equation (12). Summary statistics for the dependent variable  and the zˆ
tL t vector of behavioral bias 

proxies constructed from analyst forecasts are reported in Table 1.  The estimates for α  are obtained from 

a Fama-MacBeth (1973) procedure by first estimating coefficients using all firms that announce earnings 

in each calendar quarter, and then computing their time-series average. The significance of the time-series 

averages is determined by Newey-West t-statistics. Panel A records the α estimates from a joint estima-

tion involving the entire superfluous information set in equation (23), while Panel B contains estimates 

from separate calibrations using single elements of the zt vector. The asterices *, **, and *** denote a 

coefficient’s statistical significance at the 10%, 5%, and 1% levels respectively.  
 

 
Fama - MacBeth Estimates 

 

 

 
Time-Series Average 
 

Newey-West t-statistic p-value 

  
Panel A: Joint Estimation of Biases 

 
Representativeness 9.714*** (2.74) 0.0078 
 
Conservatism 7.782* (1.98) 0.0519 
 
Overconfidence 9.075* (1.67) 0.0982 
 
Biased Self-Attribution -20.036* (-1.77) 0.0807 
 
Past Return 0.000 (0.01) 0.9959 

 
 

Panel B: Separate Estimation of Biases 
 

Representativeness 9.215** (2.27) 0.0261 
 
Conservatism 8.090** (2.13) 0.0361 
 
Overconfidence -15.593 (-1.50) 0.1386 
 
Biased Self-Attribution -13.924 (-1.38) 0.1703 
 
Past Return 0.006 (0.07) 0.9451 
    

 



Table 3 
 

Returns from Calendar-Time Portfolios formed using Biased Market Probabilities 
 

Calendar-time portfolios from 1990 to 2004 are formed from firm-specific market probabilities each firm-

quarter. A stock is bought (sold) for 1-month, specifically the [6,26] day interval, in quarter t if the market 

probability  is above 0.54 (below 0.46) where  is defined in equation (2). The superfluous in-

formation z

)(ˆ tPU )(ˆ tPU

t is the vector of behavioral bias proxies constructed from analyst forecasts and a stock’s prior 

return during the previous quarter. The required estimates for α are obtained by applying the non-linear 

model in equation (12) to cross-sections of firms in different two-digit SIC industries over the prior four-

year non-overlapping period. For example, the first four-year calibration period is 1986 to 1989, with 

these corresponding estimates for α resulting in market probabilities  for firms in the same industry 

during the subsequent 1990 to 1993 subsample. Daily value-weighted (using the firm’s lagged-day mar-

ket capitalization) returns for these portfolios are compounded to monthly returns, excluding firm-days 

where the lagged price is less than $5. Monthly portfolio returns are then regressed against the four-factor 

model with their corresponding loadings reported below. Panel A reports the portfolio returns using the 

entire z

)(ˆ tPU

t vector to compute  while Panels B to D focus on subsets of the z)(ˆ tPU
t vector. The results in 

Panel E arise from a trading strategy which replaces the zt vector with the underlying analysts’ forecasts 

and revisions defining our behavioral bias proxies. The asterices *, **, and *** denote significance of the 

coefficients at the 10%, 5%, and 1% levels respectively with the absolute value of their t-statistics in pa-

rentheses. All t-statistics use zero as the null except for the MKTRF coefficient of the buy and sell portfo-

lios which uses one.  
 

 
Portfolio 

 
Intercept 

(%) 

 
MKTRF 

 
SMB 

 
HML 

 
UMD 

 
Adj-R2

Average  
Firms per  

Day 

Number 
of Months 

 
Panel A: Entire Superfluous Information Set 

 

Buy 0.787** 1.02 0.195** 0.083 -0.042 0.527 57.5 179 

 (2.34) (0.22) (2.09) (0.72) (0.63)    
 
Sell -0.343 1.169* 0.045 0.376*** -0.104 0.484 43.0 179 

 (0.90) (1.70) (0.42) (2.87) (1.39)    
 
Buy-Sell 1.130** -0.15 0.151 -0.293* 0.062 0.022 100.5 179 

 (2.22) (1.13) (1.06) (1.67) (0.62)    
         

 

 



 

Table 3 (Continued) 
 

 
Portfolio 

 
Intercept 

(%) 

 
MKTRF 

 
SMB 

 
HML 

 
UMD 

 
Adj-R2

Average 
Firms per  

Day 

Number of 
Months 

 
Panel B: Representativeness, Conservatism and Past Return 

 
Buy 0.781** 1.001 0.210* 0.074 0.002 0.451 46.0 179 
 (2.04) (0.01) (1.97) (0.56) (0.02)    
 
Sell -0.423 1.176* 0.128 0.418*** 0.202*** 0.506 37.6 179 
 (1.11) (1.77) (1.21) (3.19) (2.70)    
 
Buy-Sell 1.204** -0.175 0.082 -0.344** 0.204** 0.052 83.6 179 
  (2.40) (1.33) (0.58) (1.99) (2.06)      

 
 

Panel C: Overconfidence, Biased Self-Attribution and Past Return 
 

Buy 0.532 1.044 0.257** 0.132 -0.104 0.498 45.6 179 
 (1.44) (0.46) (2.50) (1.03) (1.44)    
 
Sell -0.116 1.186* -0.142 0.379*** -0.067 0.450 34.8 179 
 (0.29) (1.75) (1.26) (2.72) (0.85)    
 
Buy-Sell 0.648 -0.141 0.399** -0.247 -0.037 0.051 80.5 179 
  (1.16) (0.97) (2.58) (1.29) (0.34)       

 
 

Panel D: Past Return 
 

Buy 0.323 0.98 0.316** 0.136 -0.032 0.303 32.3 179 
 (0.62) (0.15) (2.19) (0.76) (0.31)    
 
Sell 0.078 1.09 -0.015 0.276* -0.227** 0.389 27.3 179 
 (0.17) (0.75) (0.12) (1.75) (2.52)    
 
Buy-Sell 0.245 -0.111 0.331* -0.14 0.195 0.037 59.6 179 
  (0.39) (0.68) (1.91) (0.66) (1.60)       

         
 

Panel E: Analysts’ Forecasts and Revisions 
 

Buy 0.526 1.210* 0.111 0.491*** -0.312*** 0.501 22.2 179 
 (1.29) (1.97) (0.97) (3.49) (3.88)    
 
Sell 0.116 1.201* 0.207 0.735*** -0.171* 0.397 19.3 179 
 (0.25) (1.67) (1.61) (4.63) (1.88)    
 
Buy-Sell 0.411 0.009 -0.096 -0.244 -0.141 -0.001 41.5 179 
  (0.71) (0.06) (0.60) (1.23) (1.25)       

         



    Table 4 
 

Excess Return Volatility and Autocorrelation 
 
This table summarizes the implications of market probability fluctuations induced by behavioral biases on 

nominal return volatility and autocorrelation. The α coefficients underlying the market probabilities are 

identical to those employed in constructing the calendar-time trading profits in Table 3 when the super-

fluous information set consists of all five zt  elements in equation (23). The resulting estimates for  

are then used to compute the excess return volatility in equation (30) as well as the return autocorrelation 

in equation (31) attributable to behavioral biases.  In addition, firm-specific summary statistics are com-

puted for equation (32) which pertains to the underestimation of ex-ante return volatility. The average of 

each summary statistic across the individual firms is reported below in the bottom row.  

ˆ ( )UP t

 

Percentiles Variable Mean Std. Dev. 
25th 50th 75th

Number of 
Firms 

Annualized Excess Volatility 0.0475 0.0205 0.0130 0.0350 0.0700 2,085 

Autocorrelation 0.0728 0.0753 -0.1566 0.0769 0.3098 2,085 

Underestimated  Ex-Ante Volatility  0.0162 0.0165 0.0063 0.0114 0.0197 2,085 

 

 

 

 

 
 

 


