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Abstract 

I study the profitability and determinants of relative mispricings between pairs of com-

peting, nearly-identical Exchange-Traded Funds (ETFs) listed on US exchanges between 

2007 and 2016. I find that prices sometimes diverge to an extent allowing to profitably 

trade on these deviations, with historical excess returns of up to 4 percent net of common 

fee estimates, suggesting considerable inefficiencies in the pricing of ETF shares. Price 

gaps are significantly larger among less liquid pairs, pairs with inactive primary markets, 

and on days with negative liquidity shocks. Though ETF pairs exhibit minimal conver-

gence risk, arbitrage profits are positively related to holding costs as proxied by idiosyn-

cratic risk. Altogether, common proxies for limits to arbitrage can explain up to 20 percent 

of the variation in arbitrage profits. 

Keywords: law of one price, arbitrage, limits to arbitrage, market efficiency, Exchange-

Traded-Funds, ETFs, pairs trading 
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1 Introduction 

With the ongoing shift from active to passive investing, Exchange-Traded Funds (ETFs) experience an 

increasing attention among both investors and academics. In 2015, assets under management surpassed 

hedge fund assets for the first time1, and ETF shares are now accounting for about 30 percent of the 

overall US trading volume.2 Besides providing low-cost access to diversification across all common 

asset classes, an often-cited key feature of ETFs is that they combine the benefits of both closed- and 

open-ended funds. Like closed-end funds, ETF shares can be traded intraday. Like open-ended funds, 

additional ETF shares can be created (or existing shares redeemed) through the “creation/redemption 

mechanism”. The combination of these two characteristics provides a natural arbitrage channel: once 

the ETF share price diverges from the underlying net asset value (NAV), arbitrageurs buy the less ex-

pensive of both assets, convert it into the more expensive one and sell it, generating an (almost) imme-

diate arbitrage profit (Ben-David, Franzoni and Moussawi 2016). This practice is also referred to as 

“primary market arbitrage”, as it involves a change in the number of outstanding ETF shares. 

Given this mechanism that by design intends to eliminate any mispricing within a short time, academics 

and practitioners long time paid little attention to potential ETF premiums and discounts. However, 

recent evidence suggests that assuming ETFs to always trade at their NAV may be a quite expensive 

mistake. Angel, Broms, and Gastineau (2016) argue that NAV deviations can be much greater than the 

bid-ask spread and thus, ETF transaction costs are often higher than investors realize. In fact, the aggre-

gate of these hidden transaction costs is remarkable: in the US, investors pay approximately $40 billion 

each year for trading at premiums or discounts (Petajisto, 2017). On the one hand, there is evidence that 

these deviations can at least to some extent be linked to common limits to arbitrage (e.g., Madhavan and 

Sobczyk, 2016; Fulkerson, Jordan, and Riley, 2014), providing a rational explanation for the existence 

of premiums and discounts. On the other hand, even if deviations could be entirely explained by limits 

to arbitrage, these studies suggest that prices do not always reflect all available information, casting 

doubt on the efficiency of the ETF markets. 

While focusing on price-NAV deviations as a measure of mispricing is certainly the most intuitive way 

to test the law of one price, another view is that competing ETFs, i.e. funds tracking the same benchmark, 

should sell at the same price. In other words, if the market for ETF shares is truly efficient, then it should 

neither be possible to profitably arbitrage ETFs against their underlying basket, nor against each other. 

In a perfect market without any impediments to arbitrage, there must be a linear combination in which 

the price spread between two competing funds is always zero, as otherwise, risk-free arbitrage profits 

would be possible. In real markets, of course, transaction and holding costs make arbitrage risky (e.g., 

                                                           
1 “Stock Market Milestone: ETFs One-Up Hedge Funds As Investor Assets Hit $3 Trillion”, Forbes Online, May 

8, 2015. 
2 „ETFs are eating the US stock market“, Financial Times Online, January 1, 2017. 
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Pontiff, 2006), giving rise to temporary price deviations. Nevertheless, when ETFs are priced correctly, 

an arbitrage strategy in the secondary market for ETF shares should not allow to generate positive excess 

returns. This is the rationale underlying this paper. I select pairs of ETFs tracking the same benchmark, 

perform pairwise co-integration tests, and subsequently bet on price reversals between co-integrated 

funds. The high product homogeneity in the ETF market is somewhat unique and lends itself to view 

mispricings in relative terms. For example, as of April 4, 2017, NYSE Arca alone lists 45 ETFs tracking 

US technology stocks. Some funds are virtually duplicates: iShares, RBS, State Street and Vanguard all 

offer their own funds tracking the S&P MidCap 400 index. As illustrated in Figure 1, about 20 percent 

of all US-listed ETFs track indices that are also covered by at least one more fund. In value terms, 

approximately half of the total US assets under management are invested in funds that have at least one 

competitor tracking the same benchmark. This provides a fertile ground for arbitrage. 

Viewing ETF pricing in relative terms is interesting for two reasons. First, as introduced by Petajisto 

(2017), considering an ETF’s price distance to similar funds as a measure of mispricing rather than the 

distance to its NAV prevents the results being biased by NAV staleness. To provide an intuitive exam-

ple, consider the SPDR S&P Russia ETF (ticker RBL). On April 17, 2014, RBL traded at a remarkable 

premium of roughly 350 basis points on its NAV. Was RBL actually mispriced? As the last NAV was 

recorded on Russian market close at 3:45 pm and the ETF closing price at 9:00 pm (UTC), the NAV 

lagged the ETF share price by approximately 5 hours. Within this timeframe, the Russian government 

agreed on a pact to defuse the Ukraine Crisis. This agreement is priced in the ETF share, but not in the 

last available NAV. Thus, the observed premium most likely reflected an informational gap, and focus-

ing on the premium alone would have falsely suggested a mispricing. On the contrary, RBL was not 

mispriced in relative terms: the share prices of competing funds were all up by nearly the same amount.3 

Second, evidence suggests that primary market arbitrage activities are rather scarce. Share creations and 

redemptions for a randomly selected ETF can only be observed on 6 to 13 percent of all trading days, 

and changes in ETF premiums or discounts are largely unrelated to prior share creations and redemptions 

(Fulkerson, Jordan, and Travis, 2017; Petajisto, 2017). Besides, there is evidence that primary market 

activity in a given ETF declines after new competitors enter the market (Box, Davis, and Fuller, 2016). 

These findings suggest that a substantial part of price correction happens in the secondary market alone, 

potentially even more when there are competing funds. Studying arbitrage opportunities between these 

funds might help understanding the role of secondary market arbitrage in enforcing efficient ETF prices.4 

The contribution of this paper is twofold. First, I contribute to the literature on ETF pricing. While the 

idea of testing ETF prices in relation to competing funds is not new (see, in particular, Petajisto, 2017), 

                                                           
3 Two competing ETFs are the iShares MSCI Russia and VanEck Vectors Russia ETF, tickers ERUS and RSX. 
4 Note that in the context of American Depositary Receipts (ADRs), where a conversion feature similar to the 

ETF creation/redemption mechanism exists, Alsayed and McGroarty (2012) find secondary market trading to be 

the major price-correcting mechanism to maintain stock-ADR price parity. 
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comprehensive evidence, covering a wide range of funds and properly studying the role of cross-sec-

tional and time-varying limits to arbitrage simultaneously, is missing so far. For example, Marshall, 

Nguyen, and Visaltanachoti (2012) examine intraday mispricings between two S&P 500 ETFs. Fulker-

son, Jordan, and Riley (2014) study whether similar bond ETFs can be arbitraged against each other. 

More recently, Petajisto (2017) used the cross-sectional average price of similar funds as a staleness-

adjusted estimate for the NAV of a given ETF. He finds that the typical ETF trades in 100 bps range 

around this average price 95 percent of the time, implying that it is not unusual for competing funds to 

exhibit different prices. There are several important issues that have not been examined so far. First, are 

price deviations between competing funds really mispricings that can be profitably exploited net of 

transaction and other arbitrage costs? To which extent are these returns attributable to (other) cross-

sectional and time-varying limits to arbitrage? How do potential mispricings emerge, i.e. what happens 

on the day prices diverge? How are they corrected subsequently? These are the questions I seek to an-

swer. It is important to note that in contrast to most the aforementioned papers, I solely focus on pairs 

of near-perfect substitutes rather than “similar” funds. 

Second, by addressing these issues, I also contribute to the more general literature on empirical asset 

pricing anomalies, where pairs of similar securities trade at different prices. For example, Schultz and 

Shive (2010) analyze price differentials between pairs of dual-class shares. Gagnon and Karolyi (2010) 

focus on price-parity among cross-listed shares. De Jong, Rosenthal, and Van Dijk (2009) study arbi-

trage returns in the context of dual-listed companies (“Siamese twins”). These papers have in common 

that though examining close substitutes, the paired-up securities are still exposed to some fundamental 

differences. Dual-class shares usually have different voting rights. Cross-listed shares in the US and 

their corresponding home-market shares as well as shares of dual-listed companies often trade in mar-

kets with different institutional features, such as disparately binding short-selling constraints, taxes, cur-

rency controls, or ownership limits (e.g., Gagnon and Karolyi, 2010; DeJong, Rosenthal, and Van Dijk, 

2009; Froot and Dabora, 1999). The bottom line is that arbitrage profits can at least to some extent be 

attributed to fundamental risk, i.e. the risk that prices remain disconnected for an extended period of 

time. Two aspects make ETF pairs an interesting setting to study the profitability and limits to relative-

value arbitrage. First, as already pointed out in Marshall, Nguyen, and Visaltanachoti (2012) and dis-

cussed in more detail later in this article, fundamental risk among ETF pairs should be minimized, if 

competing funds do not differ in their ability to track their benchmark index. At the same time, as I focus 

on pairs of assets trading in the same market, cross-market differences in institutional features should 

neither play a role. Second, in contrast to stocks, ETFs come with a two-tier liquidity structure, providing 

another dimension to examine how asset prices relate to liquidity (as will also be discussed in more 

detail in section 3). 

The major results can be summarized as follows. First, though the magnitude of mispricings only aver-

ages to approximately 1 percent, they occur frequently enough for a profitable implementation of long-
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short arbitrage: trading on these deviations historically generated excess returns in the order of 2.5 to 4 

percent p.a. net of fees. Pairs are typically equity ETFs, and the majority of funds considered in a pair 

portfolio is from the highest size and liquidity decile. Though 38 percent of all pairs employ different 

replication methodologies, fundamental risk is not a concern: arbitrage opportunities are typically trig-

gered by a difference in premiums and discounts, while NAVs are quite close on the day of divergence, 

and pairs using explicitly different replication methodologies are not exposed to higher fundamental or 

other convergence risk than pairs with matching replication methods. Across all types of pairs, 82 per-

cent of all price gaps converge within the defined trading periods, and prices are typically corrected 

within 4 days. Short sale constraints also play a negligible role in explaining why price deviations per-

sist. However, I find a strong relation to cross-sectional differences in transaction costs, as arbitrage 

profits are substantially larger among more illiquid pairs. In particular, pairs with inactive primary mar-

kets, where a larger part of price correction is left to secondary market trading, tend to exhibit larger 

price gaps. Arbitrage profits are also related to idiosyncratic risk, tend to be larger on days with sudden 

drops in pair-level liquidity and on days with higher market-wide impediments to arbitrage. In combi-

nation, the limits to arbitrage proxies considered can explain up to 20 percent of the variation in arbitrage 

profits, providing a plausible explanation for price gaps.  

The remainder of this article is structured as follows. The next section describes the ETF creation/re-

demption mechanism and provides a short review of the literature on ETF pricing. Section 3 briefly 

discusses the case for secondary market ETF arbitrage. Section 4 provides the sample and methodology 

employed. Results are presented in section 4 and section 5 concludes the paper. 

2 ETF Pricing and the Creation/Redemption Mechanism 

2.1 The Creation/Redemption Mechanism 

In a frictionless market, an asset always trades at its fundamental value, as the concept of arbitrage 

implies that mispricings are corrected immediately. In real markets, however, arbitrage is limited to the 

extent that (i) both cognitive biases and constraints may impede information diffusion (e.g., Barberis 

and Thaler, 2003) and (ii) transaction and holding costs make arbitrage costly (e.g., Pontiff, 2006). 

Holding costs include the opportunity cost of capital, short-selling fees and idiosyncratic risk, with the 

latter often being considered as “the single largest cost faced by arbitrageurs” (Pontiff, 2006). The ex-

istence of holding costs implies that arbitrage in real markets is risky, as it makes the profitability of 

positions even in obviously mispriced assets contingent upon the time till convergence.  

As mentioned in the introduction, the combination of intraday tradability and an open-ended structure 

underlying ETFs facilitates arbitrage activities. Specifically, primary market arbitrage is implemented 

as follows. Arbitrageurs monitor the price spread between the ETF share and the underlying basket. 

Once the spread gets too large, the arbitrageur buys the less expensive of both assets and short sells the 
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more expensive one. At market close (09:00 P.M. UTC), the arbitrageur delivers the less expensive asset 

to the ETF sponsor in exchange for the more expensive one, covering the short sale and realizing an 

arbitrage profit at market close. Thus, the creation/redemption mechanism allows to exploit mispricings 

at minimum holding costs and, by design, aims to eliminate any observable price-NAV deviation in a 

short time. In a word, by creating or redeeming ETF shares in response to premiums, arbitrageurs can 

adjust the supply of ETF shares in a way that the fund trades close to the value of its underlying basket.5  

In order to engage in the primary market arbitrage mechanism, i.e. to trade directly with the ETF’s 

capital market desk, it is necessary to become an “Authorized Participant” (AP) by entering into an 

agreement with the fund sponsor first. An AP is typically a large institution, such as an investment bank 

or a broker-dealer. While most funds do not disclose their APs, estimates suggest that there are only a 

handful of institutions acting as APs worldwide.6 

As shown by Petajisto (2017), share creations/redemptions are typically subjected to large minimum 

quantities between 50,000 to 100,000 shares, often requiring APs to accumulate their position over some 

days before submitting the creation/redemption order. Thus, in practice, they face uncertainty with re-

spect to the timing of the simultaneous transaction in the underlying and the ETF as well as the costs 

associated with these trades (Petajisto, 2017). He finds that overall, the typical ETF only exhibits share 

creations/redemptions on between 6 and 13 percent of all trading days. 

2.2 A Review of the Literature on ETF Premiums and Discounts 

Academic literature on ETFs grew considerably in recent years. It can be broadly split into two different 

categories. First, there is controversy whether the increasing number of assets managed by ETFs may 

increase or reduce the efficiency of underlying security prices. Some studies suggest that the rise of 

ETFs enhances price discovery in the underlying markets (e.g., Madhavan and Sobczyk, 2016 and 

Glosten, Nallareddy, and Zou, 2016, to name a few). However, since ETFs played a major role in recent 

events of extreme market turbulence (such as the May 2010 Flash Crash), there are also concerns 

whether the creation/redemption mechanism may serve as a shock propagator. Indeed, there is evidence 

that due to their high liquidity and low trading costs, ETFs attract a clientele of short-term noise traders 

(Broman and Shum, 2016). Non-fundamental demand shocks caused by these noise traders may poten-

tially be transmitted to underlying security prices through the arbitrage channel. Ben-David, Franzoni, 

and Moussawi (2017) provide evidence for this concern by showing that securities with higher ETF 

ownership exhibit higher non-fundamental volatility.  

                                                           
5 An intuitive explanation on the creation/redemption mechanism is provided by the Investment Company Insti-

tute (ICI), see https://www.ici.org/viewpoints/view_12_etfbasics_creation. 
6 Financial Times Alphaville, “Who exactly are authorised participants, anyway?”, https://ftal-

phaville.ft.com/2010/05/18/235011/who-exactly-are-authorised-participants-anyway/  

https://www.ici.org/viewpoints/view_12_etfbasics_creation
https://ftalphaville.ft.com/2010/05/18/235011/who-exactly-are-authorised-participants-anyway/
https://ftalphaville.ft.com/2010/05/18/235011/who-exactly-are-authorised-participants-anyway/
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The second strand of research is concerned with the pricing efficiency of ETFs themselves. Engle and 

Sarkar (2006) were among the first to study ETF premiums. Focusing on equity ETFs, they develop a 

statistical model to account for mismatches in timing between the last NAV and the last ETF share price. 

The overall finding is that once these mismatches are accounted for, premiums for ETFs tracking do-

mestic benchmarks are generally small and short-lived. On the other hand, premiums for international 

equity ETFs are typically larger and often last for several days. Delcoure and Zhong (2007) support 

these results by showing that international ETFs trade at significant premiums even after controlling for 

differences in transaction costs. Ackert and Tian (2008) find that premiums of international equity ETFs 

are related to fund-level momentum, illiquidity, and size effects. Levy and Lieberman (2012) use intra-

day data to study mispricings of US-listed international equity ETFs. They show that the ETF share 

price follows the NAV during times of overlapping trading hours. However, in times the market of the 

underlying basket is closed, the ETF share price tends to follow the S&P 500. More recently, Hilliard 

(2014) and Angel, Broms, and Gastineau (2016) also observed higher and more persistent premiums 

among international ETFs, especially among funds tracking emerging markets. 

The major part of the literature on ETF pricing is so far focused on share price-NAV deviations. How-

ever, there are some papers studying ETF prices relative to each other. First, Broman (2016) shows that 

premiums and discounts co-move across funds in similar investment styles. He argues that this is due to 

the correlated non-fundamental demand of noise traders, who are attracted by the relatively high liquid-

ity of ETFs. Consistently, co-movements are stronger for funds with high commonality in demand 

shocks and attractive liquidity characteristics. Second, there are a number of papers specifically studying 

whether similar ETFs sometimes trade at different prices. Fulkerson, Jordan, and Riley (2014) study 

whether bond ETFs in similar investment categories can be arbitraged against each other. They find that 

a monthly rebalanced and equally weighted portfolio, buying the 10% of bond ETFs with the lowest 

premium and short selling the 10% with the highest premium, historically generated an alpha of approx-

imately 11% per year before trading costs. More recently, Petajisto (2017) uses the cross-sectional av-

erage price of similar funds (though not necessarily funds tracking the same index) to estimate the “true”, 

staleness-adjusted NAV of an ETF on a given date. Though the focus of his research is to provide stale-

ness-adjusted premium estimates, he implicitly shows that the typical ETF trades in a range between -50 

and +50 bps around the average price of competing funds, implying that it is not unusual for similar 

funds to trade at different prices. Petajisto (2017) finally shows that a simple, daily rebalanced portfolio 

strategy, buying funds trading at a discount and short-selling similar funds trading at a premium, histor-

ically generated excess returns of up to 16% before trading costs. 

My paper is probably closest to Marshall, Nguyen, and Visaltanachoti (2013), who use intraday data to 

study the microstructure of price deviations between two large and highly liquid S&P 500 ETFs. They 

find that there are only few and small-in-magnitude arbitrage opportunities, typically corrected within 
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minutes. Mispricings are related to a fall in liquidity together with an increase in liquidity risk. Annual-

ized, the profitability of exploiting these mispricings amounts to around 6 percent net of fees (but unad-

justed for systematic risk). 

In contrast to Marshall, Nguyen, and Visaltanachoti (2013), I use daily data, allowing me to cover a 

wide range of different funds, and thus to draw a more comprehensive picture on the efficiency of ETF 

prices and the role of both cross-sectional and time-varying limits to arbitrage. Are price deviations 

frequently and large enough to be traded profitably net of trading costs? To which extent can returns be 

linked to other limits to arbitrage, such as short-selling constraints, idiosyncratic risk, and illiquidity? 

For example, Petajisto (2017) does not address the contribution of leveraged and inverse ETFs to the 

returns of his strategy, though there is evidence that they are quite difficult to borrow (Avellanada and 

Dobi, 2013) and subjected to strict margin requirements.7 Finally, what happens on the day price gaps 

emerge, and how are price deviations corrected subsequently? These are the questions I seek to answer.  

3 Risks and Costs Involved with Secondary Market ETF Arbitrage 

Secondary and primary market arbitrage are related to a different set of costs and risks. In particular, 

arbitraging ETFs against each other involves convergence risk. First, there is the risk that prices do not 

converge at all, because the funds may not be entirely identical. Compared to relative-value arbitrage in 

other settings (for example, dual-class shares), this fundamental risk (e.g., Mitchell, Pulvino, and Staf-

ford, 2002) should be fairly low. As discussed in Marshall, Nguyen, and Visaltanachoti (2012), funda-

mental differences among ETFs tracking the same benchmark index are limited to only a handful a fund 

characteristics. For example, funds may use different methods to replicate their benchmark. While some 

funds physically buy all index constituents, others only hold a representative sample or employ a deriv-

ative-based approach. There may also be differences in the frequency in which dividends and other 

income received are reinvested or distributed to investors. Besides, some funds allow their securities to 

be lend to other market participants, while other funds do not participate in security lending activities. 

Luckily, whether a price deviation is fundamental or not can be measured in the context of ETF pairs 

by comparing NAV differences on the day of price divergence. 

Second, even if prices certainly converge, it is ex ante unclear how long it will take (synchronization 

risk, see Abreu and Brunnermeier, 2002). In the meantime, noise traders may cause prices to diverge 

even further (see De Long et al., 1990), potentially forcing arbitrageurs to provide additional equity to 

their margin account or unwind the position. While these three risks play a negligible role in primary 

market arbitrage (as discussed in section 2.1), they are at least theoretically a concern when attempting 

                                                           
7 For example, Interactive Brokers and Merrill Edge both multiply their margin requirements for common ETFs 

by the underlying leverage. Merrill Edge even prohibits trading ETFs that are leveraged three times or larger on 

margin.  
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to arbitrage ETFs against each other. Consequently, returns should be to some extent related to common 

proxies for holding costs, most importantly idiosyncratic risk (e.g., Pontiff, 2006). 

Price deviations between competing funds should also be smaller among funds with higher liquidity, as 

liquidity is tied to transaction costs. Compared to other settings in which similar assets trade at different 

prices (e.g., dual-listed stocks), ETFs are somewhat special in that they have a two-tier liquidity struc-

ture. First, just like stocks, ETF shares can be traded in the secondary market, and the more actively the 

funds forming a pair are traded in the secondary market, the easier shares can be purchased or sold 

throughout the trading day. Second, even if “on-screen” liquidity is zero, ETF shares may be traded 

through the creation/redemption mechanism (see section 2.1). There is vast evidence that premiums and 

discounts (i.e. absolute mispricings) are related to underlying liquidity (e.g., Petajisto, 2017; Ackert and 

Tian, 2008; Engle and Sarkar, 2006), as more illiquid underlyings impede arbitrage through the primary 

market. 

However, the impact of primary market liquidity on the persistence of relative price deviations between 

two competing funds is less straightforward and depends on the nature of mispricing. To the extent that 

both funds always have the same NAV and price gaps are solely due to diverging premiums or discounts, 

relative price deviations should ceteris paribus be more pronounced among fund pairs with illiquid un-

derlyings. To provide some intuition, consider the extreme example of a fund with zero primary market 

activity. This could be either because the fund is always priced efficiently, or because primary market 

transactions are limited by underlying liquidity. In the latter case, price correction is entirely left to 

secondary market arbitrageurs. As secondary market arbitrage in contrast to primary market arbitrage 

involves convergence risk, relative price deviations should be larger among ETF pairs with illiquid un-

derlyings in order to compensate for the additional arbitrage risk.  

4 Data and Methodology 

4.1 Data 

I combine Morningstar Direct and Thomson Reuters Datastream to construct my sample. First, I use 

Morningstar Direct to obtain a list of all dead and alive US ETFs ever traded between 2007 and 2016. 

The choice of the sample period follows Petajisto (2017) and is thought as a compromise between the 

time period covered and the number of possible fund pairs. I limit my sample to funds listed on NYSE 

Arca, NASDAQ and BATS, as these are the major US trading places for ETFs, listing 1,973 of all 1,977 

alive US ETFs (as of Dec 31, 2016). This initial sample covered a total of 2,531 dead and alive funds 

(dead: 558, active: 1,973). I then screened out a number of funds to obtain my final sample. First, I only 

retain primary shares to avoid pairs of different share classes. Second, as I utilize the funds’ benchmark 

indices to form pairs, I remove all remaining funds that do not disclose a benchmark index in their 

prospectus. More precisely, I delete all funds which Morningstar classifies as “actively managed” or 
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“enhanced index funds”. I do however retain funds grouped as “strategic beta”, which weigh constitu-

ents according to their factor exposures rather than market capitalization, as these funds always track a 

benchmark index. Overall, these filters reduced the sample size from an initial 2,531 to 2,262 funds. As 

of December 31, 2016, and across all share classes, the funds in my sample managed approximately 

$2.5 trillion, accounting for close to 99% of the total assets under management across all US ETFs. For 

the remaining funds, I again used Morningstar Direct to obtain other qualitative fund characteristics, 

such as style categories8 and replication methods, as well as daily shares outstanding, total net assets, 

and NAVs. For funds that Morningstar classified as “leveraged” or “inverse” (317 funds in total), I hand-

collected the corresponding leverage ratios from the fund prospectuses.  

Second, I downloaded daily bid and ask prices, dividends and trading volumes using Datastream. For a 

total of 143 funds, Datastream has no coverage, further reducing the sample from 2,262 to 2,119 ETFs.9 

For the remaining funds, I compute daily bid-ask mid-quotes. Following the ETF literature (e.g., Engle 

and Sarkar, 2006; Broman, 2016), I use these throughout the paper, which also prevents my results being 

biased by the bid-ask bounce (e.g, Gatev, Goetzmann, and Rouwenhorst, 2006; Jegadeesh and Titman, 

1995; Jegadeesh, 1990). In line with Petajisto (2017), I then define daily premiums and discounts as 

percentage difference of the daily mid-quotes from the corresponding NAV. I also follow the convention 

and subsequently use “premiums”, even for negative observations (i.e. discounts). 

To mitigate the effect of potentially erroneous quotes on my results, I apply a number of data filters 

closely following the related literature studying relative-value arbitrage in other contexts (e.g., Schulz 

and Shive, 2010; Marshall, Nguyen, and Visaltanachoti, 2012). For each fund, I discard all trading days 

where at least one of the following applies: 

1. the bid quote, the ask quote, or both are missing, 

2. the bid quote is equal to or greater than the ask quote,  

3. the ask quote is exceeding the bid quote by more than 10 percent, 

4. the ask or bid quote is below $5, as many brokers prohibit shorting “penny stocks”.  

Finally, I also remove all observations where premiums are larger than 20 percent in absolute terms, as 

these are likely to be erroneous (see Broman, 2016 and Petajisto, 2017). Trading is only allowed on the 

remaining days. Table 1 provides some sample characteristics. 

[Insert Table 1 here.] 

Panel A from Table 1 shows that at the end of 2016, the median ETF has $78 million assets under 

management. However, there is a large disparity: while the smallest fund has only $0.2 million in assets, 

                                                           
8 Morningstar offers both Global and US categories. For my study, I use the US category classifications. 
9 Of the 143 removed funds, 53 were Exchange-Traded Notes. Besides, 95 of these 143 funds were active and 48 

were dead as of December 31, 2016. Note that since my results base on long-short returns, survivorship bias is 

not a concern.  
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the largest fund (the SPDR S&P 500 ETF, ticker SPY) manages $225 billion. A similar pattern can be 

observed for trading activity and liquidity measures. For example, daily trading volumes range from 

zero to $24 billion for the most actively traded ETF. The most liquid ETF has an average spread of only 

1 bp. On the other hand, there are also funds trading at spreads in the order of several percent. 

Both the mean and median premium are close to zero, indicating that the typical ETF trades quite close 

to its NAV on an average day. However, premiums vary substantially over time: the median ETF ex-

hibits a premium volatility of 46 bps, implying that 95 percent of the time, the typical ETF fluctuates in 

a range of -90 to +90 bps around its NAV. Thus, ETFs occasionally trade at an economically quite 

significant premium. These observations are quantitatively and qualitatively very similar to those by 

Petajisto (2017). 

4.2 Methodology 

A distinctive feature of ETFs is that similar funds can be easily identified by comparing benchmark 

indices. Thus, the basic idea to find ETF pairs is as follows. In the first step, I consider all possible pairs 

of funds tracking the same benchmark index as provided by Morningstar. While this should already 

result in a set of carefully pre-selected pairs, there are still two important implementation issues remain-

ing. 

First, the paired-up funds may employ a different leverage or even bet on different market directions. 

While this would not be an issue in case of a static (“set and forget”) leverage, it is a major concern 

when considering to pair up leveraged or inverse ETFs. To provide some intuition, consider the example 

of (a) a two times leveraged position with static leverage and (b) an unleveraged position in the same 

asset, with both portfolios having an equity value of $100. In this case, portfolio (b) could always be 

replicated by holding a position worth $50 in portfolio (a) and $50 in cash. In the case of leveraged and 

inverse ETFs, however, this logic does not hold. The reason is that leveraged and inverse ETFs aim to 

deliver a multiple of the daily (sometimes monthly or quarterly) benchmark index return. Thus, these 

funds periodically reset their leverage, resulting in a volatility drag in the cumulative return of leveraged 

and inverse ETFs (e.g., Charupat and Miu, 2011; Jiang and Peterburgsky, 2017). As a result, prices of 

leveraged and inverse funds and their unleveraged counterparts certainly diverge over time, but for rea-

sons other than mispricing. In other words, though tracking the same benchmark, they cannot be con-

sidered substitutes in price space. For this reason, I screen out all same-index pairs from the pre-selec-

tion, where the two funds either bet on different market directions or bet on the same direction, but 

employ a different leverage. 

Second, the paired-up funds may charge different management fees. As these are subtracted from the 

fund’s NAV pro rata on daily basis, prices will certainly disconnect over time in this case (see also 

Marshall, Nguyen, and Visaltanachoti, 2013). On the other hand, if both ETFs are indeed identical and 
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do not charge different fees, potential prices deviations must be reverting to a constant mean.10 Thus, I 

perform pairwise Engle-Granger co-integration tests (Engle and Granger, 1987). Only pairs that pass 

these tests are considered near-perfect substitutes and thus selected to be traded subsequently. The pair-

wise OLS regressions performed in the first step of these tests also allow to deal with the fact that similar 

ETFs are often divided into a different number of shares, implying that simply forming portfolios with 

equal share quantities in both legs may be inadequate.  

More specifically, the matching algorithm is as explained below and inspired by the general literature 

on pairs trading (e.g., Jacobs and Weber, 2015; Gatev, Goetzmann, and Rouwenhorst, 2006). In accord-

ance with this literature and to avoid a look-ahead bias, the algorithm is implemented rolling in two 

stages: pairs are formed based on 12 months of historical data (formation period) and traded in the 

subsequent 6-month period (trading period). The co-integration framework as outlined below follows 

Do and Faff (2016). 

4.2.1 Formation Period 

In each formation period, I first follow Petajisto (2017) and screen out the most illiquid funds, defined 

as having a daily average trading volume below $100,000 over the 12-month period. Of the remaining 

funds, I pre-select duplicate pairs as outlined above. I then perform co-integration tests for all pre-se-

lected pairs. For this purpose, I use cum-dividend prices, i.e. cumulative total return indices with the 

initial index value set to the current ETF share price at the beginning of the formation period.11 Based 

on these price series, I estimate the following model for each pre-selected pair 𝑘:  

 𝑃𝑘,1,𝑡 = 𝛼𝑘 + 𝛽𝑘𝑃𝑘,2,𝑡 + 𝜖𝑘,𝑡 , (1) 

where 𝑃𝑘,1,𝑡 and 𝑃𝑘,2,𝑡 are cum-dividend prices on day 𝑡 for the two funds forming pair 𝑘. Augmented 

Dickey-Fuller tests are then applied to the residual, and all pre-selected pairs where the null hypothesis 

of non-cointegrated price series must be rejected at the 5%-level enter the final pair selection. For these 

pairs, the spread time series {𝑃𝑘,1,𝑡 − 𝛽𝑃𝑘,2,𝑡} is mean reverting. The estimated co-integration beta 𝛽̂𝑘, 

as well as the historical price-spread mean 𝜇̂𝜖,𝑘 and standard deviation 𝜎̂𝜖,𝑘, are recorded and serve as a 

trigger for opening and closing positions in the subsequent trading period (see also Rad, Low, and Faff, 

2016). 

  

                                                           
10 The presence of co-integrated price series is a necessary condition for two assets to be considered substitutes 

(Engle and Granger, 1987). While it is not a sufficient condition, the pre-selection based on qualitative criteria 

should lead to quite close substitutes. 
11 I use total return indices for testing on co-integration in order to account for differences in the distribution pol-

icy of funds. This inspired by the vast literature studying relative-value arbitrage in other contexts (e.g., Gatev, 

Goetzmann, and Rouwenhorst, 2006). 
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4.2.2 Trading Period 

All pairs selected over the formation period are then eligible for trading in the subsequent 6-month 

trading period. During the trading period, the last recorded cum-dividend price from the formation pe-

riod is updated based on current total returns. The normalized spread for a pair 𝑘 on given day 𝜏 of the 

trading period, computed as 

 
(𝑃𝑘,1,𝜏−𝛽̂𝑘𝑃𝑘,2,𝜏)−𝜇̂𝜖,𝑘

𝜎̂𝜖,𝑘
, (2) 

is monitored, and once it exceeds +2 or drops below -2, a long-short position is established. In general, 

which of the two funds has to be shorted depends on the sign of 𝛽̂𝑘. However, as I screened out pairs of 

funds betting on different market directions, 𝛽̂𝑘 can only be positive in my case. Thus, I buy one share 

of ETF 1 and sell short 𝛽̂𝑘 shares of ETF 2, when the normalized spread drops below -2. If, on the other 

hand, the spread exceeds +2, I sell short one share of ETF 1 and buy 𝛽̂𝑘 shares of ETF 2.12 I close out 

the position when (i) the normalized spread returns to zero, (ii) a fund is delisted, or (iii) at the latest by 

the end of the current six-month trading period. When a pair completes a whole roundtrip within the 

trading period, it is eligible for another trade and subjected to the same methodology again. For the 

purpose of conservatism, it is assumed that a pair earns zero interest if it does not actually trade, i.e. 

capital not allocated to a pair is not invested at the risk-free rate. 

It should be noted that in some cases, a price spread exceeding two historical standard deviations may 

only amount to a few basis points and thus be too small to cover trading costs. However, in order to 

avoid data snooping, I chose to follow simple instead of optimal trading rules. Whether price deviations 

are large enough to cover trading costs or not, I henceforth often refer to these observations as “mispric-

ings”, though the spread volatility may sometimes be too small to profitably trade on these deviations.   

4.2.3 Return Calculation 

As ETF pairs form long-short portfolios, computing returns is a non-trivial issue for two reasons. First, 

depending on the magnitude of 𝛽̂𝑘, co-integrated pairs are not necessarily dollar-neutral. In a frictionless 

market, dollar-neutral portfolios are self-financing, i.e. the long position could be financed by the pro-

ceeds of the short sale. Second, even if pairs were dollar-neutral, real markets require arbitrageurs to 

post collateral for both long and short positions. Thus, I follow the vast literature concerned with arbi-

trage in other settings (e.g., Marshall et al., 2012; Schultz and Shive, 2010; De Jong et al., 2009; Mitch-

ell, Pulvino, and Stafford, 2002) and calculate the return of a pair based on the capital that is required to 

                                                           
12 For the sake of completeness: for pairs with 𝛽̂𝑘 < 0 (i.e. pairs that combine an inverse with a long ETF), one 

would buy both one share of ETF 1 and 𝛽̂𝑘 shares of ETF 2, when the spread drops below -2. If the spread ex-

ceeds +2, one would have to short both one share of ETF 1 and 𝛽̂𝑘 shares of ETF 2 (see Rad, Lo, and Faff, 

2016). 
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bring up the position. Specifically, I assume that arbitrageurs have to meet Regulation T (Reg T) margin 

requirements. According to Reg T, investors are required to bring up 50 percent of the long and 50 

percent of the short market value as initial margin.13 Additionally, I assume a maintenance margin re-

quirement of 30 percent for both the long and short position. For the sake of simplicity, I liquidate the 

position in a pair once the equity in either the short or long position drops below 30 percent of the 

position value. 

Pair returns are then obtained by dividing the sum of payoffs from the long- and short-positions by the 

required equity. For the largest part of my analysis, I use net-of-fee returns, i.e. the payoffs considered 

in the nominator are net of spreads, commissions, short rebates and any interest paid on margin borrow-

ing. Specifically, positions are marked-to-market daily by dividing the daily net-of-fee payoffs by pre-

vious day’s equity. As I use mid-quotes to compute prices at both position entry and position close, bid-

ask spreads are already accounted for. Commissions have been fairly low in recent years and are thus 

typically ignored in the related literature (e.g., Marshall, Nguyen, and Visaltanachoti, 2013). For exam-

ple, investors with direct access to NYSE Arca are charged between 0.1 and 0.3 cents per traded share.14 

However, not all institutional investors are provided a direct access. Thus, I follow the more general 

estimates provided by the Investment Technology Group (ITG). According to ITG,15 commissions av-

erage to approximately 5 bps for my sample period. Thus, as a whole roundtrip involves four transac-

tions, commissions amount to 20 bps in total. Finally, as short rebate data are difficult to obtain for 

ETFs, I rely on the estimates provided by Stratmann and Welborn (2013), who report an average rebate 

rate of -1.13 percent per year for US ETFs. In other words, on average, ETF short sellers pay 1.13 

percent per year to the lender, reflecting that ETFs are typically hard to borrow. As a proxy for the 

margin borrow interest on the long position, I use the Fed Open Rate on a daily basis plus 50bps (see, 

e.g., De Jong, Rosenthal, and Van Dijk, 2009). Though representative, these estimates may of course be 

inappropriately low or high for some ETF pairs. I will thus address the sensitivity of my results towards 

short selling constraints and liquidity in section 5. 

Daily pair returns are then used to compute daily returns for the portfolio of all pairs. For this purpose, 

I assume that all pairs have the same weight at the beginning of the trading period. However, weights 

may change over time, since I assume that proceeds from previous trades within the same trading cycle 

are reinvested. I compute two different portfolio return measures: return on committed capital (ROCC) 

and return on employed capital (ROEC). ROCC adjusts the pair payoffs by the number of pairs that 

were selected for trading, while ROEC adjusts by the number of pairs that actually traded. To ease 

                                                           
13 In some cases, the arbitrageur may decide to provide more capital in order to reduce leverage. 
14 NYSE Arca fees and charges can be found at https://www.nyse.com/publicdocs/nyse/markets/nyse-

arca/NYSE_Arca_Marketplace_Fees.pdf. 
15 The preliminary version of the 2017 Global Cost Review is available at https://www.itg.com/as-

sets/ITG_Global-Cost-Review-2017Q2-Prelim-BrokerCostUpdated.pdf. 

https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE_Arca_Marketplace_Fees.pdf
https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE_Arca_Marketplace_Fees.pdf
https://www.itg.com/assets/ITG_Global-Cost-Review-2017Q2-Prelim-BrokerCostUpdated.pdf
https://www.itg.com/assets/ITG_Global-Cost-Review-2017Q2-Prelim-BrokerCostUpdated.pdf
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interpretation, I follow the convention of the pairs trading literature (e.g., Gatev, Goetzmann, and 

Rouwenhorst, 2006) and compound daily portfolio returns to monthly returns before reporting.  

As in the momentum and pairs trading literature, the above trading cycle is implemented in a manner 

that a six-month trading period begins every month (except in the first 12 months of the sample, which 

solely serve as an initial formation period for the first trading period). The result is a set of monthly 

return series for overlapping six-month trading periods, giving rise to six different return observations 

for each month. The actual monthly return on the pair portfolio is computed as the average across these 

six returns. While portfolio returns most appropriately capture the profits earned by an average arbitra-

geur trading on relative ETF mispricings, the impact of cross-sectional and time-varying limits to arbi-

trage can be more precisely studied based on single trades. The reason is that portfolios can be thin in 

some trading cycles, and in results unreported for brevity I found that portfolio size varies strongly over 

time. Thus, following the pairs trading literature (Engelberg, Gao, and Jagannathan, 2009; Jacobs and 

Weber, 2015), I report “position returns” in a large part of my analysis instead, which are simply the 

returns of single trades (either gross or net of fees). 

5 Results 

5.1 Descriptive Pairs Statistics and Co-Integration Parameters 

Table 2 reports the pair frequency, characteristics of paired-up ETFs, and pairwise co-integration statis-

tics. As can be seen from Panel A, from a total of 4,476 eligible pairs, about 3,677 were found to be co-

integrating. On average, 39 out of 32 possible pairs were selected for trading each month. Hence, about 

82 percent and thus the vast majority of pre-selected pair combinations actually co-integrate.  

 [insert Table 2 here] 

Panel B shows descriptive statistics for co-integrated pairs. The key insights can be summarized as fol-

lows. First, the average ETF matched into a pair has about $7 billion in net assets and is thus from the 

highest size quartile (see Table 1). The median amounts to a substantially smaller $636 million, which 

is still in the top quartile. Second, compared to all funds, the typical pair constituent is from the highest 

liquidity quartile, with a median bid-ask spread of merely 5 bps and a daily trading volume of $4 million. 

Besides, pair-funds exhibit close-to-zero premiums and a below-median premium volatility of 33 bps 

on average. Premiums of paired-up funds typically exhibit a correlation of 0.4 and are significantly 

correlated in 65 percent of all cases. These results suggest a co-movement in premiums among compet-

ing funds as in Broman (2016). 

Panel C provides insights into the estimated coefficients of the co-integration regression presented in 

equation (1), performed during the formation periods. As can be seen from the co-integrating beta, the 

number of shares to be held in both ETFs to obtain the mean-reverting pair portfolio is quite balanced. 

For the typical pair, the ratio of shares to be held in both ETFs is approximately 1-to-1 (as measured by 
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the median). The average is somewhat higher and suggests a typical ratio of 1-to-1.6. The mean price-

spread under the co-integrating relationship is close to $1 for the average pair. Thus, the price difference 

between the two funds in a typical pair is small in dollar terms. The residual volatility is close to $0.50 

for the average pair, implying that the price spread fluctuates within a 100-percent range around the $1 

mean 95 percent of the time. Besides, the price spread crosses its time-series average on 24% of all 

trading days. Finally, the last row shows that of all pairs selected during the formation period, 75 percent 

remain co-integrated over the subsequent trading period, implying that a long-short strategy as outlined 

in section 4.2.2 should – at least gross of fees – generate positive returns. 

5.2 Risk and Return 

Table 3 summarizes the portfolio returns for the arbitrage strategy outlined in section 4.2. Panel A shows 

that regardless of the portfolio return measure used and whether fees are accounted for or not, the strat-

egy exhibits both statistically and economically significant positive returns. When adjusting using em-

ployed capital, net-of-fee returns average to 36 bps per month, which is an annualized 4.4 percent. Using 

the more conservative approach to compute portfolio returns, i.e. adjusting with committed capital, leads 

to an average net-of-fee return of 27 bps per month (annualized: 3.3 percent), which is still significant 

in both economic and statistical terms. Unsurprisingly, gross-of-fee portfolio returns are 8-12 basis 

points larger. In all cases, returns remain significantly positive after subtracting the risk-free rate. 

[insert Table 3 here] 

The overall market return (gross of fees) averages to 67 bps per month. Compared to the most conserva-

tive profitability measure for the ETF arbitrage strategy, the net-of-fee return on committed capital, the 

average market return is twice as large. However, the strategy exhibits a substantially lower risk, regard-

less of the risk measure used. The realized market return volatility is 458 bps per month, whereas the 

strategy’s return volatility amounts to a mere 70-100 bps. This disparity persists when adjusting with 

downside risk measures. For example, the strategy experienced negative net-of-fee returns in only 22 

percent of all months, whereas a buy-and-hold market investor suffered losses 40 percent of the time. 

Consequently, as reported in Panel B, the strategy outperformed the market, regardless of the perfor-

mance measure used. 

[insert Table 4 here] 

Table 4 shows that only a small portion of the excess returns reported in Table 3 can be attributed to 

common equity risk factors. As a market-neutral strategy, arbitrage profits are not significantly exposed 

to the equity risk premium. Exposures to other factors are mostly insignificant, with two exceptions: 

returns are weakly related to the conservative-minus-aggressive factor and load negatively and signifi-

cantly on the momentum factor. Nevertheless, regardless of the return measure and factor model used, 

net-of-fee alphas are statistically and economically significant, ranging from 21 bps to 33 bps per month 
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(annualized: between 2.5 and 4 percent). It should be noted that the magnitude of returns is similar to 

the results obtained by Marshall, Nguyen, and Visaltanachoti (2012) for intraday arbitrage between two 

S&P 500 ETFs, who report returns in the order of 6 percent per year (unadjusted for systematic risk). 

On the other hand, these returns are considerably smaller than those found in previous papers using daily 

data without accounting for trading costs. For example, Petajisto (2017) finds excess returns in the order 

of 16 percent per year. Fulkerson, Jordan, and Riley (2014) focus on bond ETFs and report an historical 

alpha of approximately 11 percent per year. Nevertheless, the fact that we observe systematic excess 

returns even net of fee estimates indicates that there are noticeable inefficiencies in the pricing of ETFs. 

Using equity factors to adjust for systematic risk would be inappropriate if the majority of selected pairs 

were non-equity ETFs. Thus, Table 5 provides several information on the composition of pair portfolios 

selected for trading, averaged across all trading cycles. From Panel A it can be seen that about two-

thirds of all funds selected in a pair portfolio are from the largest three size deciles, as measured by the 

total net assets at the end of the preceding formation periods. 85 percent of portfolio constituents record 

above-median net assets. Similar proportions can be observed in terms of liquidity: the majority of funds 

considered in a typical portfolio trades at low bid-ask spreads relative to all ETFs investable at that time. 

Thus, on average, portfolios primarily consist of relatively large and liquid funds. However, at the same 

time, about three-quarter of all pairs consist of ETFs from different size and liquidity deciles, reflecting 

that for many indices, there is one market-leading fund and a number of smaller competing products. 

On average, paired-up funds differ by 2.7 size and 2.5 liquidity deciles. 

[insert Table 5 here] 

Panel B reports the weight of pairs according to their underlying asset class and index type. 80 percent 

and thus the vast majority of all pairs selected for trading consist of funds tracking stock indices. The 

remaining 20 percent are divided equally in commodity and fixed income pairs. Close to 40 percent of 

all pairs are comprised of funds tracking factor-weighted instead of traditional cap-weighted indices, 

reflecting the substantial growth in “smart beta” products in recent years. Panel C shows that paired-up 

funds are typically competing, i.e. ETFs issued by different sponsors, and the majority of pairs (62 per-

cent) employs the same methodology to replicate their underlying indices. On the other hand, the latter 

implies that 38 percent of all pairs certainly hold different security baskets to track their benchmark 

indices. In this case, there is the risk that both funds sometimes differ in their tracking ability, implying 

a fundamental risk of permanent price disconnects. 

[insert Table 6 here] 

However, in line with matching replication methodologies for the majority of pairs, Table 6 shows that 

price deviations are rather driven by diverging premiums than NAV discrepancies. While the total price 

deviation between the short and the long leg on the day positions are opened averages to 1.2 percent, 
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only 16 bps can be attributed to NAV differences. Premiums differ by an average of 95 bps on position 

opening. It should be noted that price discrepancies are right-skewed, as the median difference is sub-

stantially smaller in all cases. Nevertheless, the observation holds that price gaps are typically driven by 

diverging premiums rather than diverging NAVs. Besides, prices subsequently converge by a decay of 

differences in premiums, whereas NAV distances remain almost constant, and changes in average NAV 

differences are both insignificant in economic and statistical terms. 

[insert Table 7 here] 

Table 7 provides insights into the frequency and profitability these price disconnects. From a total num-

ber of 5,308 price deviations, 82 percent converged within the six-month trading periods. The median 

time-till-convergence of 4 days suggests that price gaps are corrected quickly, compared to other settings 

where similar assets trade at different prices. For example, prices of dual-listed companies typically 

remain disconnected for 22 days, and in rare cases the time till convergence amounts to several years 

(De Jong, Rosenthal, and Van Dijk, 2009).  The average convergence time is 10 days and thus consid-

erably higher than the median, implying that in some ETF pairs, mispricings persist for an extended 

period of time. On average, about 60 percent of all pairs trade during the six-month trading period, and 

there are typically 1.4 arbitrage opportunities within an average pair. If a pair opens, it experiences two 

roundtrip trades on average. The average gross-of-fee return of single positions averages to 1.26 percent, 

while net-of-fee returns are around 30 bps smaller on average. Losses occur in only about 25 percent of 

all trades and are typically small. However, as can be seen from the first percentile, prices can in rare 

cases diverge further, involving a loss of 1.5 percent or larger. There is also a large disparity among 

profitable trades: while the median return is 60 bps net-of-fees, 25 percent of all trades generate a net 

return exceeding 1.8 percent. 

5.3 The Role of Cross-Sectional Limits to Arbitrage 

5.3.1 Fundamental Risk 

Considering the high convergence probability and quite limited losses, combined with the observation 

that NAV deviations are typically small on days where relative mispricings occur, it can be inferred that 

fundamental risk is negligible among pairs of similar ETFs. To provide further insights, I split all trades 

into those executed within pairs using the same and pairs using explicitly different replication method-

ologies. If fundamental risk were a major concern, non-converging, loss-making trades should occur 

more frequently and be more pronounced among pairs employing different replication methodologies. 

However, the results reported in Table 8 do not support this notion. While pairs of funds employing 

different replication methodologies indeed exhibit a significantly lower return, this difference is rather 

attributable to a lower profitability of converging trades than more frequently striking arbitrage risks, 

implying that mispricings are typically smaller among these pairs. The average loss of unconverged 
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trades is significantly larger among same-replication pairs, and mispricings more likely converge among 

pairs using different replication methodologies. Besides, the standard deviation of position returns is 

significantly smaller. 

[insert Table 8 here] 

Overall, these results suggest an overall lower convergence risk for fund pairs with different replication 

methods, and thus point in the opposite direction of what would have been expected if these pairs were 

exposed to considerable fundamental risk. I infer from these results that fundamental risk cannot be a 

major concern discouraging arbitrageurs from eliminating mispricings. 

5.3.2 Short Sale Constraints 

While the baseline analysis already assumed a short rebate rate of -1.13 percent per year, considering 

that ETFs are typically hard to borrow (see Stratmann and Welborn, 2013), there is anecdotal evidence 

that short selling may be even more difficult or sometimes impossible for some types of funds. In par-

ticular, Avellanada and Dobi (2013) report that the costs for borrowing leveraged and inverse ETFs are 

rather ranging from 250 to 850 bps. Besides, in 2009, FINRA implemented stricter margin requirements 

for leveraged and inverse ETFs.16 Some brokers even entirely exclude a subset of these funds from 

margin trading.17 Similar concerns hold for margined positions in Exchange-Traded Notes (ETNs), 

which in contrast to ETFs are debt instruments and do not involve a claim in an underlying pool of 

assets.18 

[insert Table 9 here] 

If short sale constraints can explain why price gaps persist, deviations should be driven by an overpricing 

in hard-to-borrow ETFs, and returns should be primarily stem from the short leg of the position (e.g., 

Gatev, 2006). Panel A of Table 9 shows that this is indeed the case for price deviations in leveraged or 

inverse funds. The net-of-fee return, averaged across all trades in leveraged or inverse pairs (subse-

quently “leveraged” for brevity), amounts to a statistically significant 134 bps. When looking at the long 

and short leg separately, it can be seen that only the short leg experienced a significant 244 bps return 

on average, while the long leg on average suffers a (though insignificant) loss. In contrast, trades exe-

cuted within pairs of unleveraged funds tracking the same indices covered by at least one leveraged fund 

pair exhibit a significantly different return profile. For these trades, returns are primarily driven by the 

long leg. 

                                                           
16 See Regulatory Notice 09-53, effective as of December 1, 2009. As a consequence, margin requirements for 

leveraged and inverse funds increased by a factor commensurate with their leverage. 
17 For example, Merrill Edge prohibits trading ETFs that are leveraged three times or larger on margin.  
18 For ETNs, the issuer typically alone has the right to decide on the number of outstanding shares. 
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For ETNs, however, Panel B suggests that short sale constraints are not a major impediment to arbitrage. 

For both, pairs involving at least one ETN, and pairs exclusively consisting of ETFs, returns primarily 

stem from the long leg. Short position returns are even significantly negative in either case. Panel C 

shows that the results do not significantly change when excluding leveraged pairs and pairs involving 

ETNs, which is unsurprising given that trades in these pairs represent only about 2 percent of all identi-

fied mispricings. Besides, looking at the long and short leg of the remaining trades separately reveals 

that arbitrage profits can on average be attributed to the long position, while short position returns are 

even negative on average. Thus, pair returns are typically driven by an underpricing in one of the two 

ETFs, and short selling constraints cannot explain why relative mispricings between similar funds per-

sist. 

5.3.3 Cross-Sectional Differences in Holding and Transaction Costs 

In order to test whether price discrepancies are related to arbitrage costs, I construct a number of holding 

and transaction cost proxies. First, while fundamental risk is minimized, trading on relative ETF price 

deviations does still involve some convergence risk. As discussed in section 5.2, 18 percent of all devi-

ations do not converge within the six-month trading periods, and even for pairs that do converge within 

this time frame, it is ex ante unclear how many days it will take for prices to be corrected. Thus, though 

limited, arbitrageurs do face holding costs, and returns should be related to common holding cost prox-

ies. The most important and most frequently used holding cost proxy in the literature is idiosyncratic 

risk (e.g., Pontiff, 2006), reflecting the risk of the arbitrage position that is unrelated to systematic factors 

and any other available hedge portfolio. It is far from clear how to precisely measure the idiosyncratic 

risk of an arbitrage position (see Gagnon and Karolyi, 2010). The approach I use in this paper closely 

follows Jacobs and Weber (2015), who use pair-level averages of residual standard deviations from 

factor regressions as idiosyncratic risk proxy associated with a long-short position in related stocks. 

However, in the case of ETFs it should be noted that a fundamental part of fund returns could theoreti-

cally be hedged holding the underlying index. Thus, I only consider the differential between ETF and 

NAV returns. The resulting excess return series are regressed on the corresponding Fama and French 

(1992) factors. I then compute for each fund the residual standard deviation from these regressions. 

Finally, equally weighted pair-averages across individual residual standard deviations are used as a 

proxy for the idiosyncratic risk attached to a pair. Factor regressions are performed separately for each 

of the 12-month formation periods. 

Second, if transaction costs contribute to the persistence of price deviations, returns should be related to 

liquidity. As ETF liquidity is multi-faceted (see the discussions in section 2 and 3), I construct a variety 

of different proxies. First, I compute the natural logarithm of pair-average total net assets, recorded on 

the last day of the preceding formation period. Second, I use the median of daily bid-ask spreads as a 

proxy for transaction costs involved with normal-sized quantities. Third, I compute Amihud illiquidity 
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ratios (Amihud, 2002) to measure the price impact costs associated with larger transactions. Fourth, I 

employ both the median of daily turnover ratios and the natural logarithm of average daily trading vol-

umes as an overall proxy for trading activity. The aforementioned variables primarily capture secondary 

market liquidity. However, ETF shares are also tradable through the primary market by using the crea-

tion/redemption mechanism. As discussed by Broman and Shum (2016), the relation between primary 

market and secondary market liquidity measures is less straightforward. For example, if newly created 

shares are not loaded off in the secondary market, share creations lead to a decrease in turnover ratios, 

as the denominator (shares outstanding) grows, but the nominator is unaffected. In the opposite case of 

share redemptions, turnover ratios increase. Similarly, trading volumes only reflect share creation activ-

ity if newly created share are regularly sold in the secondary market. Thus, to capture all different facets 

of ETF liquidity, it is necessary to proxy for primary market liquidity as well, which ultimately depends 

on the liquidity of the underlying assets. Unfortunately, underlying liquidity data is difficult to obtain 

from common databases, especially for more exotic indices. Hence, I follow Broman and Shum (2016) 

and proxy primary market liquidity by the share creation/redemption activity, computed as  

 𝑃𝑟𝑖𝑚𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖,𝑇 = log (1 +
1

𝑇
∑

|𝑆𝐻𝑅𝑖,𝑡−𝑆𝐻𝑅𝑖,𝑡−1|

𝑆𝐻𝑅𝑖,𝑡−1

𝑇
𝑡=1 ), (3) 

where 𝑆𝐻𝑅𝑖,𝑡 is the number of shares of ETF 𝑖 outstanding on day 𝑡. All of the aforementioned liquidity 

variables are first measured individually for the paired-up funds over the preceding 12-month formation 

periods, and the individual measures are then used to compute equally-weighted pair-level averages. 

Table 10 shows how arbitrage profits relate to cross-sectional differences in transaction and holding 

costs. For this purpose, I split all trades into the highest and lowest quintiles with respect to the proxies 

discussed above. The results show that returns are indeed significantly related to a number of different 

arbitrage costs. First, pairs carrying relatively high idiosyncratic risk exhibit substantially higher returns 

than pairs that are only slightly exposed to idiosyncratic risk, with the latter even suffering losses on 

average. The difference of 206 bps on average is highly significant in both economic and statistical 

terms. Thus, though convergence risk is quite limited compared to other contexts (such as cross-listings, 

e.g. Gagnon and Karolyi, 2010), relative ETF price gaps are related to holding costs as proxied by idio-

syncratic risk. 

[insert Table 10 here] 

Second, returns are also significantly related to four out of six liquidity proxies. Mispricings are more 

profitable among pairs trading at larger bid-ask spreads and for pairs with higher market impact costs as 

measured according to Amihud (2002). With respect to trading activity measures, evidence is rather 

mixed: while returns do not significantly differ for pairs with high and low dollar trading volume, they 

are at least slightly related to turnover. Besides, pairs with little share creation/redemption activity gen-
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erate a 119 bps and thus considerably larger return than pairs with a rather active primary market. Fi-

nally, though having the predicted sign, there is no statistically significant difference in the profitability 

of mispricings in small and large funds. 

[insert Table 11 here] 

To better isolate the effect of primary market liquidity from the impact of other arbitrage costs, I also 

perform two-way sorts. Specifically, I first sort all trades into quartiles with respect to their primary 

market activity. Within these four buckets, I then sort all trades again into quartiles, this time separately 

by one of the remaining arbitrage costs proxies discussed above. Returns were then reported separately 

for each group. The results are presented in Table 11 and can be summarized as follows. First, regardless 

of the arbitrage cost proxy used for the second sort, price gaps are consistently more profitable within 

pairs having relatively inactive primary markets. Return differences are in all cases significantly larger 

among pairs from the lowest compared to the highest primary market activity quartile, in both economic 

and statistical terms. It should be noted that in principal, funds can have inactive primary markets either 

because they are always priced efficiently, or because there are frictions impeding the creation or re-

demption of shares. The observation of significantly higher arbitrage profits within low-activity pairs 

rather supports the first implication. If arbitrage using the creation/redemption mechanism is impeded, 

price correction is left to secondary market trading, ultimately forcing arbitrageurs to take convergence 

risk (see section 3). Consequently, mispricings have to be larger among these pairs in order to compen-

sate for the additional risk. In results unreported for brevity, I found that low-activity pairs often track 

indices that may at least occasionally be difficult to trade, including non-domestic equities, small caps 

with factor tilts, aggregate bond indices, or physically-backed precious metal funds. In the latter case, 

share creations literally involve a physical delivery of bullions into the vault of the fund’s custodian, 

which especially for large transactions may be more difficult than accumulating exchange-traded under-

lyings.19 

Table 11 also reveals that within each primary market activity quartile, mispricings are significantly 

more pronounced within fund pairs exhibiting higher bid-ask spreads, higher Amihud (2002) illiquidity, 

and higher idiosyncratic risk. Evidence is mixed with respect to total net assets, trading volume, and 

turnover. Mispricings are larger among smaller and more actively traded fund pairs. However, this ob-

servation does not hold consistently for all primary market activity quartiles likewise. For pairs with 

                                                           
19 A closer look at the data also revealed that there is no substantial difference in the frequency of primary mar-

ket transactions between precious metal and other ETFs, but quantities (measured in percent of the shares out-

standing) are typically smaller for these funds. Besides, significantly higher average returns for low-activity 

funds can still be observed when only focusing on equity ETFs. The results are available upon request. 
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below-median primary market activity, mispricings are more pronounced among larger and more ac-

tively traded pairs. On the contrary, pairs with active primary markets tend to exhibit larger mispricings 

among smaller and less actively traded pairs. 

Overall, I infer from these findings that idiosyncratic risk, primary market activity, and the variety other 

liquidity proxies used proxy for different facets of arbitrage costs and risks, i.e. reflect separately binding 

impediments to arbitrage that contribute to the persistence of relative ETF price gaps. 

5.3.4 Within-Pair Liquidity Differences 

The results so far provided insights into the relation between pair-level differences in arbitrage costs 

and profitability. However, as discussed in section 5.2, the vast majority of pairs exhibits considerable 

within-pair differences with respect to size and liquidity. If long-short positions typically consisted of 

long positions in illiquid ETFs and short positions in relatively liquid ETFs, arbitrage profits could be 

interpreted as a premium for providing liquidity (see Schultz and Shive, 2010). For this reason, Table 

12 reports net-of-fee returns separately for both trades where the more liquid fund is the position’s long 

leg and trades where the more illiquid fund forms the long leg. The results have two implications. First, 

at least when measuring liquidity by bid-ask spreads, Amihud illiquidity or turnover ratios, there is 

indeed evidence that returns are significantly larger for arbitrage positions in which the more illiquid of 

both funds is held long. Nevertheless, returns remain positive and significant for mispricings in which 

the more liquid ETF is the position’s long leg, implying that arbitrage profits can only in part be con-

strued as premium for liquidity provision. Second, as illiquid assets are typically more difficult to bor-

row, these findings provide additional evidence that short-sale constraints cannot explain why price gaps 

persist. Otherwise, returns should be larger for positions where illiquid funds are held short. The results 

point in the opposite direction. 

[insert Table 12 here] 

5.4 Time-Varying Limits to Arbitrage and Multivariate Evidence 

Aside from cross-sectional differences in the level of liquidity, it is widely discussed in the literature 

that asset prices should also be linked to liquidity shocks, i.e. sudden changes in the level of liquidity 

(e.g., Campbell, Grossman, and Wang, 1993; Engelberg, Gao, and Jagannathan, 2009). In particular, 

Marshall, Nguyen, and Visaltanachoti (2013) show that there is a negative liquidity shock in the minutes 

surrounding intraday arbitrage opportunities between two S&P 500 ETFs. 

Besides the time-varying liquidity of single assets, it is also well-known that time-varying market-wide 

impediments to arbitrage contribute to the persistence of mispricings in a variety of settings (e.g., As-

ness, Moksowitz, and Pedersen, 2013; Jacobs, 2015). The most widely used measures to proxy for mar-

ket-level limits to arbitrage are the CBOE Volatility Index (VIX) and the TED spread (e.g., Brun-

nermeier, Nagel, and Pedersen, 2008), both capturing the overall availability of arbitrage capital. In the 
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context of ETFs, it is known that premiums and discounts are related to the VIX (e.g., Petajisto, 2017; 

Ben-David, Franzoni, and Moussawi, 2012). Given that relative ETF price gaps are typically attributable 

to diverging premiums and discounts (see section 5.2), it is reasonable to assume that secondary market 

arbitrage profits are also larger in times of a high VIX. The time-series of daily pair portfolio returns 

and the VIX as plotted in Figure 2 are a first indication supporting this assumption. 

Figure 3 provides some initial evidence that relative ETF price deviations are also related to liquidity 

shocks. For the typical price gap, the pair-average bid-ask spread begins to increase slightly a few days 

before and peaks on the day the arbitrage opportunity occurs. Subsequently, spreads typically revert to 

the pre-event level. 

To disentangle the effect of market-wide limits to arbitrage, liquidity shocks and cross-sectional differ-

ences in arbitrage costs, I follow Engelberg, Gao, and Jagannathan (2009) and perform multivariate 

regressions with the returns of single arbitrage positions as unit of observation. As explanatory variables, 

I use a number of proxies for cross-sectional differences in limits to arbitrage from section 5.3, the VIX 

on the day the price gap emerges, as well as two measures proxying for liquidity shocks on that day. 

Specifically, I follow Engelberg, Gao, and Jagannathan (2009) and compute 

(i) the change of the pair-level average bid-ask spread, measured over the 5 days preceding the 

price gap, minus the pair’s average daily spread over the 12-month formation period preceding 

the current trading period, 

(ii) the change of the pair-level average turnover, measured over the 5 days preceding the price gap, 

minus the pair’s average daily turnover over the 12-month formation period preceding the cur-

rent trading period. 

I also include a number of commonly used control variables, such as daily factor premia on the event-

day and indicator variables for year, month, day of the week and the underlying index. The results are 

presented in Table 13 and can be summarized as follows. First, the estimated coefficients on the proxies 

for cross-sectional differences in arbitrage costs largely support the results discussed in section 5.3.2. 

Returns are consistently related to cross-sectional differences in the level of liquidity when proxied using 

the pair-average bid-ask spread and turnover. Besides, the observation that arbitrage profits are nega-

tively related to primary market activity as already discussed in section 5.3.3 even holds in a multivariate 

setting. However, the economic magnitude is small compared to the other liquidity proxies considered: 

a one standard deviation decrease in primary market activity implies a 5 to 15 bps increase in arbitrage 

profits. Returns are also larger for pairs with higher idiosyncratic risk, providing further evidence that 

though convergence risk is quite limited among ETF pairs (see section 5.2), holding costs still tend to 

be an important impediment to arbitrage. Nevertheless, the economic magnitude is small compared to 

liquidity as measured by the bid-ask spread. A one standard deviation increase in idiosyncratic risk 

implies a 31-44 bps rise in arbitrage profits, compared to 78 to 90 bps for the bid-ask spread. Thus, it 
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can be inferred that in economic terms, the most important impediment contributing to the persistence 

of relative ETF price gaps are transaction costs. 

It is hence not surprising that price deviations are not only larger among pairs with a lower level of 

liquidity, but with one exception also related to sudden drops in liquidity: mispricings are typically as-

sociated with an increase in bid-ask spreads and a decrease in turnover. Finally, arbitrage profits increase 

with market-wide limits to arbitrage as measured by the VIX on the day of divergence. Thus, price gaps 

tend to be larger in times of a high VIX, when the overall availability of arbitrage capital is limited.  

For all regressions performed, intercepts are positive and highly significant in both statistical and eco-

nomic terms. Nevertheless, the estimates strongly suggest that impediments to arbitrage are often bind-

ing, providing a rational explanation for the persistence of mispricings. Altogether, the limits to arbitrage 

proxies considered can explain up to 20 percent of the entire variation in arbitrage profits.  

6 Conclusion 

As the combination of intraday tradability and open-endedness provides a natural arbitrage channel, 

ETFs were long time assumed to be priced quite efficiently. However, more recent evidence shows that 

ETFs can and frequently do trade at premiums or discounts on their NAV. In this paper, I evaluate the 

pricing efficiency of ETFs by studying the profitability and determinants of an arbitrage strategy in the 

secondary market for ETF shares. I combine qualitative criteria and formal co-integration tests to care-

fully identify near-perfect substitute funds, and subsequently open long-short positions in these pairs 

once prices diverge by more than two historical standard deviations. The underlying notion is that if 

ETFs are priced efficiently, prices should not only be aligned with NAVs, but it should neither be pos-

sible to profitably arbitrage nearly identical funds against each other. While relative ETF mispricings 

have already been subject of discussion in previous studies (Marshall, Nguyen, and Visaltanachoti, 

2012; Petajisto, 2017), my paper is the first to provide comprehensive evidence by covering a wide 

range of properly selected substitute-funds, accounting for trading costs, and studying the extent to 

which price deviations can be attributed to cross-sectional and time-varying limits to arbitrage. 

I find that though price deviations amount to only about 1 percent on average, they occur frequently 

enough to allow for a profitable implementation of a long-short arbitrage strategy exploiting these dis-

crepancies. On a portfolio level, such a strategy historically generated excess returns in the order of 2.5 

to 4 percent per year, net of bid-ask spreads and common estimates for commissions, short rebates and 

margin interest. These results cast serious doubt on the efficiency of ETF prices, though the returns 

reported in this paper are considerably smaller than in previous studies that implemented more simple 

strategies and did not account for trading costs (e.g., Fulkerson, Jordan, and Riley, 2014). 
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Arbitrage profits can neither be explained by fundamental risk, nor do they disappear when excluding 

funds that may be notoriously difficult to borrow. Given that there is no convincing evidence for funda-

mental risk, and considering that the selected pairs trade in the same market, ETF pairs are a somewhat 

unique setting to examine the profitability and limits of relative-value arbitrage as a price-correcting 

mechanism (see also Marshall, Nguyen, and Visaltanachoti, 2012). In previously studied contexts, asset 

pairs either were fundamentally different (e.g. dual-class shares, Schultz and Shive, 2010) or traded in 

different markets, i.e. were subjected to different institutional features (e.g., dual-listed companies as in 

De Jong, Rosenthal, and Van Dij, 2009; cross-listings as in Gagnon and Karolyi, 2010). 

However, while fundamental risk is negligible among ETF pairs, arbitrage positions are still exposed to 

some convergence risk. Consistent with the latter observation, I find that arbitrage profits are strongly 

related to cross-sectional differences in holding costs as proxied by idiosyncratic risk. Besides, I also 

find that price gaps are significantly larger among more illiquid pairs as measured by a variety of dif-

ferent liquidity proxies. In particular, returns are substantially larger for pairs with low “on-screen” li-

quidity as measured by the bid-ask spread, turnover, and among pairs with low primary market activity, 

i.e. pairs where arbitrage through the share creation/redemption mechanism is likely to be impeded. 

Mispricings also tend to be larger on days with sudden drops in pair-level liquidity and on days with 

larger market-wide impediments to arbitrage. Together, these limits to arbitrage proxies can explain up 

to 20 percent of the variation in arbitrage profits. Overall, the results suggest that the persistence of 

relative ETF mispricings can at least to a notable extent be attributed to the existence of impediments to 

arbitrage.  

Though unable to explain the entire return variation, these findings provide a plausible justification for 

the persistence of mispricings. However, even if arbitrage profits could be entirely explained by limits 

to arbitrage, one cannot ignore the fact ETF prices are not efficient in the proper sense. The existence of 

arbitrage costs and risks, imposing an impediment for information diffusion, can solely explain why 

ETF prices do not always fully reflect all available information, but they do not allow to reconcile price 

deviations with the concept of market efficiency (see also Pontiff, 2006). The most intuitive implication 

of my research for investors is that they are well-advised to compare the prices of competing funds 

tracking the desired index before trading, as it is not unusual for two nearly identical funds to exhibit at 

considerably different prices in both statistical and economic terms. This should be a particular concern 

for individuals using ETFs for short-term trading rather than long-term investing, which is a behavior 

apparently applying to many ETF investors.20 

Future versions of this paper could be improved by further examining the conditions prevailing on the 

day the mispricing occurs. What drives the observed liquidity shocks at all? In the context of stock pairs 

trading, Jacobs and Weber (2015) suggest that arbitrage profits primarily stem from the asynchronous 

                                                           
20 See, for example, the Vanguard research paper „ETFs: For the better or the bettor?“, released in July 2013. 
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reaction to information affecting both securities likewise. Another interesting extension would be to 

further examine the interaction between relative price gaps and the intensity index competition. Does 

the magnitude and frequency of price deviations decrease with the number of similar funds due to com-

petition effects, or does the segmentation of liquidity actually lead to an increase? 
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Appendix 1 – Figures 

 

Figure 1: Index Homogeneity in the US ETF Market (2005-2016) 

 
This figure illustrates the homogeneity of the US ETF market over time. More specifically, it plots the (i) ratio of unique in-

vestable indices to investable ETFs, as well as (ii) the market share of unique ETFs, i.e. funds for which there is not a single 

competing fund tracking the same index. 

 

Figure 2: Daily Portfolio Returns and VIX Over Time (2007-2016) 

 
This figure plots daily net-of-fee portfolio returns (measured as return on employed capital) against daily VIX levels. Daily VIX 

series were obtained from the St. Louis Fed Database (FRED Economic Data). Portfolio returns are computed as outlined in 

section 4.2.3. 
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Figure 3: Bid-Ask Spread Around the Event-Day 

 

This figure plots the pair-level bid-ask spread for the 20 trading days around the day of the mispricing, i.e. around the day 

where positions are initiated. Spreads were computed by first taking the equally weighted pair-level average spreads for the 

20 days surrounding a specific mispricing in that pair. The figures plotted were then obtained by separately computing the 

median for each of the event-window days across all mispricings. 
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Appendix 2 – Tables 

 

Table 1: Sample Characteristics 

   Percentiles 

  Mean StdDev Min 5 25 50 75 95 Max 

Panel A: 2007-2016                   

Net assets ($ millions) 1,405.8 7,365.3 0.2 1.8 11.8 77.5 489.9 6,250.6 224,820.2 

Daily volume ($ millions) 33.3 534.5 0.0 0.0 0.1 0.5 2.8 61.3 23,816.1 

Daily turnover (%) 59.8 1,833.1 0.0 0.2 0.8 1.3 2.2 13.5 64,745.9 

Bid-ask spread (bps) 44 75 1 4 11 22 50 133 843 

Premium (bps) 2 75 -1,985 -25 -1 2 12 43 517 

Premium volatility (bps) 59 59 0 5 21 46 79 154 774 

                   

Panel B: 2007-2011                   

Net assets ($ millions) 814.7 4,175.6 0.5 2.5 10.3 50.1 287.7 3,104.8 95,397.4 

Daily volume ($ millions) 67.0 825.9 0.0 0.0 0.2 0.9 5.1 133.3 26,211.3 

Daily turnover (%) 7.6 41.0 0.0 0.5 1.0 1.6 3.0 15.8 625.5 

Bid-ask spread (bps) 35 64 1 4 10 20 34 101 792 

Premium (bps) 5 100 -1,879 -27 -1 3 16 62 1,041 

Premium volatility (bps) 84 71 0 16 38 65 107 209 774 

This table shows cross-sectional ETF characteristics for the full sample period (Panel A) as well as the first five years of the 

sample (Panel B). Net assets are recorded at the end of the respective period. Daily volume, turnover and premium are com-

puted as means throughout the period, whereas bid-ask spread is the time-series median and premium volatility is the time-

series volatility. 
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Table 2: Descriptive Pair Statistics 

Panel A: Pair Frequency     

Number of tested pairs 4,476   

Number of selected pairs 3,677   

Average number of tested pairs 39   

Average number of selected pairs 32   
      

Panel B: Characteristics of Paired-Up Funds     

Net assets ($ mil) 7,386 (636) 

Bid-ask spread (bps) 13 (5) 

Volume ($ mil) 501 (4) 

Premium (bps) 2 (1) 

Premium volatility (bps) 33 (17) 

Premium correlation 0.39 (0.30) 

Pairs with significant correlation (%) 65  
      
Panel C: Co-Integration Statistics for Selected Pairs   

Co-integrating beta (slope coefficient) 1.62 (0.98) 

Constant ($) 0.86 (0.09) 

Residual volatility ($) 0.47 (0.21) 

Days where mean is crossed (%) 24   

Co-integrated in trading period (%) 75   

This table shows the frequency of pairs, liquidity and premium characteristics of the funds selected in pair, and pairwise co-

integration statistics, pooled across all trading cycles. Panel A reports the frequency of pairs. Panel B shows cross-sectional 

characteristics for all funds selected in at least one pair. Net assets are recorded at the end of the respective formation 

periods. Daily volume and premium are computed as fund-level means throughout the respective formation periods, whereas 

bid-ask spread is the time-series median and premium volatility is the time-series volatility. Premium correlation is the pair-

wise Pearson correlation coefficient for the premium/discount series over the formation period.  “Pairs with significant cor-

relation” refers to the share of pairs, whose premium/discount series are significantly correlated at the 5-percent-level. Panel 

C shows the estimated coefficients of the co-integration regression (see equation (1)), estimated over the respective for-

mation periods. “Co-Integrated in trading period” refers to the share of pairs that remain statistically co-integrated during 

the trading period, i.e. where the hypothesis of co-integration cannot be rejected at the 1-percent-level in both the formation 

and subsequent trading period. In both Panel B and C, means are reported. Values in parentheses represent median values.  

 

  



 

34 

 

Table 3: Monthly Return Distribution and Performance Measures (2007-2016) 

  Gross-of-fee Returns   Net-of-fee Returns   Market 

    ROCC   ROEC       ROCC   ROEC         

Panel A: Return Distribution                             

Average Return   0.0035   0.0048       0.0027   0.0036     0.0067   

t-Statistic   3.5701 *** 3.7737 ***     3.0077 *** 2.9883 ***   1.5723 * 

Average Excess Return   0.0031   0.0043       0.0022   0.0032     0.0063   

t-Statistic   3.3398 *** 3.5362 ***     2.6575 *** 2.6834 ***   1.4669 * 

Return Distribution                             

Standard Deviation   0.0072   0.0105       0.0068   0.0101     0.0458   

Median   0.0018   0.0030       0.0013   0.0022     0.0124   

Skewness   0.4500   -0.6511       0.2734   -0.7956     -0.6537   

Kurtosis   9.4845   9.3043       10.1580   9.9862     4.2731   

Min   -0.0284   -0.0440       -0.0289   -0.0449     -0.1715   

Max   0.0335   0.0403       0.0307   0.0388     0.1135   

Observations < 0   0.0948   0.0948       0.2241   0.2155     0.3879   

Value-at-Risk   -0.0064   -0.0151       -0.0066   -0.0161     -0.0812   

Conditional Value-at-Risk   -0.0148   -0.0275       -0.0152   -0.0284     -0.1054   

                              

Panel B: Risk-Adjusted Performance                          

Sharpe Ratio   0.4255   0.4172       0.3299   0.3127     0.1372   

Excess Return on VaR   0.4793   0.2882       0.3383   0.1967     0.0771   
Excess Return on CVaR   0.2063   0.1582       0.1474   0.1113     0.0594   

Summary statistics for the monthly returns on the ETF arbitrage strategy and for monthly market returns. Market returns are 

obtained from the Kenneth French Data Library. “ROCC” is return on committed capital, whereas “ROEC” is return on em-

ployed capital. Both value-at-risk and conditional value-at-risk are computed using a 0.95 confidence level. ***, **, * means 

statistically significant on a 1 percent, 5 percent and 10 percent level according to the 𝑡-statistic, respectively. t-statistics 

reported are computed using Newey-West standard errors with six-lag correction. 

 

Table 4: Systematic Risk for Net-of-Fee Portfolio Returns (2007-2016) 

 Return on Committed Capital (ROCC)  Return on Employed Capital (ROEC) 

  (1) (2) (3)   (1) (2)  (3) 

Factors                           

Intercept 0.0021 ** 0.0021 ** 0.0023 ***   0.0030 ** 0.0030 ** 0.0033 *** 

Market 0.0396   0.0325   0.0323     0.0500   0.0399   0.0355   

SMB -0.0032   -0.0018   0.0056     0.0311   0.0331   0.0441   

HML 0.0050   -0.0142   0.0379 *   0.0088   -0.0183   0.0621 * 

MOM     -0.0258 ***           -0.0366 ***     

RMW         0.0133             0.0134   

CMA         -0.1049 *           -0.1865 ** 

R-Squared 0.07   0.10   0.11     0.07   0.10   0.12   

This table provides alphas and systematic risk exposures for the ETF arbitrage strategy, based on monthly net-of-fee returns. 

Specification (1) corresponds to Fama-French three-factor model (Fama and French, 1992), whereas (2) refers to the Carhart 

four-factor model (Carhart, 1997). Specification (3) is the Fama-French five-factor model (Fama and French, 2015). All factor 

premiums are sourced from the Kenneth French Data Library. ***, **, * means statistically significant on a 1 percent, 5 per-

cent and 10 percent level according to the 𝑡-statistic, respectively. 𝑡-statistics are computed using the Newey-West standard 

errors with six-lags correction. 
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Table 5: Pair Portfolio Composition  

Panel A: Size and Liquidity   
Weight of funds in top three size deciles 0.64 
Weight of funds in top five size deciles 0.85 
Weight of funds from different size deciles 0.74 
Size decile difference 2.77 
Weight of funds in lowest three spread deciles 0.66 
Weight of funds in lowest five spread deciles 0.83 
Weight of funds from different spread deciles 0.76 
Spread decile difference 2.47 
    
Panel B: Asset Class and Index Type   
Weight of equity fund pairs 0.79 
Weight of commodity fund pairs 0.11 
Weight of fixed income fund pairs 0.10 
Weight of "smart beta" fund pairs 0.39 
    
Panel C: Other   
Weight of same-brand pairs 0.02 

Weight of pairs with same replication method 0.62 

This table provides information on the characteristics of pairs portfolios, averaged across all trading periods. Panel A shows 

the average weights of funds that meet certain liquidity and size characteristics. Panel B shows the average weight of pairs 

according to their underlying asset class and index type (cap-weighted or “smart beta”, i.e. factor-weighted). Panel C show 

the average weight of pairs, in which both ETFs are issued by the same fund sponsor or where both use the same index 

replication methodology. 

 

Table 6: Price and NAV Deviations on Event Days 

    Open  Close  Diff p-Val  

Relative price deviation Mean 0.0120 -0.0005 -0.0126 0.0001 *** 
  Median 0.0080 -0.0004 -0.0084     

Relative NAV deviation Mean 0.0016 0.0015 -0.0001 0.2323   
  Median 0.0006 0.0007 0.0001     

Premium difference Mean 0.0095 -0.0031 -0.0126 0.0001 *** 
  Median 0.0061 -0.0007 -0.0068     

This table reports relative price and NAV deviations as well as premium differences for both the days positions are established 

and the days positions are closed, measured across all trades triggered between 2007 and 2016. Relative price (NAV) devia-

tions are defined as percentage difference between the mid-quote prices (NAVs) of the short and long leg. Premium differ-

ences are defined as premium of the short leg minus the premium of the long leg. p-Values refer to paired-sample t-tests 

with heteroskedasticity-adjusted standard errors. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 

percent level according to t-tests with standard errors clustered for the day where the mispricing occurs and adjusted for 

heteroskedasticity. 
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Table 7: Trading Statistics and Position Return Distribution 

Total number of total trades   5,308   Mean return (gross of fees) 0.0126 *** 

Total number of converged trades   4,353   Net-of-fee returns     

Convergence probability   0.82   Mean 0.0100 *** 

     Mean: converged trades 0.0128 *** 

     Mean: unconverged trades -0.0029 *** 

Duration of converged trades (days) Mean 9.5   Standard deviation 0.0185   

 Median 4.0   Min -0.3502   

Number of pairs traded per period Mean 19   P01 -0.0145   

 Median 17   P10 -0.0023   

Share of pairs traded per period Mean 0.59   P25 -0.0004   

 Median 0.65   P50 0.0063   

Number of trades per pair Mean 1.4   P75 0.0190   

 Median 1.0   P90 0.0303   

Number of roundtrips per traded pair Mean 2.0  P99 0.0529   

 Median 1.0  Max 0.2048   

This table shows the frequency of mispricings (left side) and the distribution of single position returns (right side), pooled 

across all trading cycles. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent level according to 

t-tests with standard errors clustered for the day where the mispricing occurs and adjusted for heteroskedasticity. 

 

 

Table 8: Differences in Replication Methods and Convergence Risk 

  Same Replication Diff. Replication Difference 

Number of trades 2,935   2,373   562   

Mean return 0.0117 *** 0.0074 *** 0.0043 *** 

Mean return (converged) 0.0155 *** 0.0090 *** 0.0065 *** 

Mean return (unconverged) -0.0044 *** -0.0012 * -0.0032 * 

Standard Deviation 0.0215   0.0134   0.0081 ### 

Convergence probability 0.8061   0.8373   -0.0312   

Duration of converged trades (days) 14.11   14.96   -0.85   

This table reports the frequency of mispricings as well as their profitability and risk for both pairs of funds employing the 

same and explicitly different replication methodologies. Returns are single position net-of-fee returns. “Avg. maximum draw-

down” measures the maximum relative decline from the peak position value over the position’s holding period, averaged 

across all trades. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent level according to t-tests 

with standard errors clustered for the day where the mispricing occurs and adjusted for heteroskedasticity. ###, ##, # means 

statistically significant on a 1 percent, 5 percent and 10 percent level according to the two-sample F-test for equal variances. 
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Table 9: Single Position Returns and Short-Selling Constraints 

     Return 
  N (%)  Total Long Leg Short Leg 

Panel A: Leveraged Funds           
Pairs of leveraged funds  35 1  0.0134 *** -0.0108  0.0244 * 

Pairs of non-leveraged equivalents  1,289 24  0.0096 *** 0.0149 *** -0.0050 *** 

Return difference     0.0038 * -0.0257 *** 0.0295 *** 

           
Panel B: Exchange-Traded Notes           
Pairs of ETNs  78 1  0.0071 *** 0.0175 *** -0.0102 *** 

Pairs of equivalent ETFs  1,102 21  0.0100 *** 0.0136 *** -0.0034 *** 

Return difference     -0.0029 ** 0.0040  -0.0069 * 

           
Panel C: Total           
All pairs  5,308 100  0.0100 *** 0.0116 *** -0.0016 *** 

Without leveraged funds and ETNs  5,211 98  0.0099 *** 0.0115 *** -0.0017 *** 

     0.0063  0.0093  0.0008  

Difference in average returns     -0.0001  -0.0001  0.0001  

This table shows the frequency and profitability of mispricings for different subsamples of pairs. For each subsample, returns 

are separately reported for both the long and short leg of the position. Returns are single position net-of-fee returns. Panel 

A shows leveraged and inverse fund pairs (for brevity grouped under “leveraged funds”) versus equivalent unleveraged pairs, 

i.e. pairs tracking the same indices as those covered by leveraged/inverse pairs, but without leverage. Panel B contrasts pairs 

involving at least one Exchange-Traded Note to equivalent pairs made up entirely of Exchange-Traded Funds, i.e. ETF pairs 

tracking the same indices to those covered by pairs involving ETNs. Panel C shows how the results change when excluding 

leveraged/inverse pairs and pairs involving at least one ETN. Values reported in italics are medians. ***, **, * means statisti-

cally significant on a 1 percent, 5 percent and 10 percent level according to t-tests with standard errors clustered for the day 

where the mispricing occurs and adjusted for heteroskedasticity. 
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Table 10: Single Position Returns and Cross-Sectional Differences in Arbitrage Costs 

                Difference   

High idiosyncratic risk 0.0194 ***   Low idiosyncratic risk -0.0011 ***   0.0206 *** 

  0.0214       -0.0013     0.0228   

Low net assets 0.0101 ***   High net assets 0.0095 ***   0.0006   

  0.0100       0.0036     0.0063   

High bid-ask spread 0.0129 ***   Low bid-ask spread 0.0055 ***   0.0073 *** 

  0.0104       0.0005     0.0099   

High Amihud ratio 0.0214 ***   Low Amihud ratio 0.0058 ***   0.0156 *** 

  0.0196       0.0017     0.0179   

Low turnover ratio 0.0103 ***   High turnover ratio 0.0086 ***   0.0016 ** 

  0.0083       0.0034     0.0048   

Low trading volume 0.0100 ***   High trading volume 0.0100 ***   0.0000   

  0.0093       0.0044     0.0050   

Low primary market activity 0.0195 ***   High primary market activity 0.0076 ***   0.0119 *** 

  0.0198       0.0035     0.0163   

This table reports average returns conditioned on subsamples formed based on seven different arbitrage cost proxies, 

whereas “low” refers to the lowest and “high” to the highest quintile with regard to the respective measure. Numbers written 

in italics are median values. Idiosyncratic risk is computed as residual volatility of a time-series regression, where daily pair-

wise return differences are regressed on the corresponding Fama and French (1992) factors. Amihud ratio is computed as in 

Amihud (2002). Primary market activity is defined as in equation (3). All variables are estimated using daily data over the 

preceding formation period, except for total net assets, which are recorded on the last day of the formation period. ***, **, 

* means statistically significant on a 1 percent, 5 percent and 10 percent level according to t-tests with standard errors clus-

tered for the day where the mispricing occurs and adjusted for heteroskedasticity. 
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Table 11: Two-Way Sorts By Primary Market Activity and Other Arbitrage Cost Proxies 

Primary Market Activity Low 2 3 High All 
High 

minus low   

Panel A: By Bid-Ask Spread Quartiles             

Low 0.0165 0.0047 0.0059 0.0047 0.0069 0.0118 *** 

2 0.0118 0.0073 0.0078 0.0070 0.0098 0.0049 *** 

3 0.0142 0.0085 0.0095 0.0109 0.0104 0.0034 *** 

High 0.0311 0.0062 0.0081 0.0075 0.0119 0.0236 *** 

High minus low spread 0.0146 0.0015 0.0022 0.0028 0.0050     

  *** * ** ** ***     

                

Panel B: By Amihud Quartiles             

Low 0.0162 0.0037 0.0033 0.0018 0.0064 0.0145 *** 

2 0.0084 0.0029 0.0024 0.0050 0.0041 0.0034 *** 

3 0.0216 0.0023 0.0086 0.0068 0.0078 0.0148 *** 

High 0.0275 0.0178 0.0171 0.0164 0.0207 0.0111 *** 

High minus low Amihud 0.0112 0.0141 0.0138 0.0146 0.0143     

  *** *** *** *** ***     

                

Panel C: By Idionsyncratic Risk Quartiles             

Low 0.0067 -0.0019 -0.0007 -0.0002 -0.0008 0.0070 *** 

2 0.0162 0.0025 0.0055 0.0076 0.0088 0.0086 *** 

3 0.0264 0.0157 0.0153 0.0145 0.0141 0.0119 *** 

High 0.0243 0.0107 0.0113 0.0081 0.0184 0.0162 *** 

High minus low idio risk 0.0176 0.0126 0.0120 0.0083 0.0192     

  *** *** *** *** ***     

This table presents average net-of-fee returns of single positions, sorted by primary market activity as defined in equation (3) 

and six different arbitrage cost proxies, namely bid-ask spreads, Amihud (2002) illiquidity ratios, idiosyncratic risk, total net 

assets, trading volumes, and turnover ratios. Specifically, all trades are first sorted into quartiles with respect to their primary 

market activity. Within these four groups, trades are then sorted by pair-level averages of the aforementioned proxies. All 

measures are computed as in Table 10. “High minus low” refers to differences in average returns of trades in the highest 

quartile and trades in the lowest quartile. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent 

level according to t-tests with standard errors clustered for the day where the mispricing occurs and adjusted for heteroske-

dasticity. 
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Table 11 (continued) 

Primary Market Activity Low 2 3 High All 
High 

minus low   

Panel D: By Size (Net Assets)             

Low 0.0136 0.0061 0.0082 0.0098 0.0080 0.0038 *** 

2 0.0070 0.0036 0.0070 0.0067 0.0075 0.0003   

3 0.0150 0.0045 0.0028 0.0019 0.0068 0.0131 *** 

High 0.0145 0.0036 0.0021 0.0007 0.0053 0.0138 *** 

High minus low size 0.0009 -0.0025 -0.0062 -0.0091 -0.0027     

    *** *** *** ***     

                

Panel E: By Volume             

Low 0.0118 0.0040 0.0085 0.0103 0.0072 0.0015 * 

2 0.0100 0.0040 0.0047 0.0054 0.0077 0.0045 *** 

3 0.0103 0.0053 0.0047 0.0034 0.0066 0.0070 *** 

High 0.0179 0.0045 0.0023 0.0000 0.0060 0.0179 *** 

High minus low volume 0.0061 0.0005 -0.0062 -0.0103 -0.0012     

  ***   *** *** ***     

                

Panel C: By Turnover             

Low 0.0135 0.0031 0.0063 0.0056 0.0074 0.0080 *** 

2 0.0113 0.0024 0.0043 0.0089 0.0055 0.0023 *** 

3 0.0063 0.0066 0.0047 0.0045 0.0074 0.0019 *** 

High 0.0189 0.0057 0.0049 0.0000 0.0064 0.0189 *** 

High minus low turnover 0.0054 0.0027 -0.0015 -0.0055 -0.0010     

  *** *** ** *** **     

All trades 0.0125 0.0045 0.0051 0.0048 0.0069 0.0077 *** 

This table presents average net-of-fee returns of single positions, sorted by primary market activity as defined in equation (3) 

and six different arbitrage cost proxies, namely bid-ask spreads, Amihud (2002) illiquidity ratios, idiosyncratic risk, total net 

assets, trading volumes, and turnover ratios. Specifically, all trades are first sorted into quartiles with respect to their primary 

market activity. Within these four groups, trades are then sorted by pair-level averages of the aforementioned proxies. All 

measures are computed as in Table 10. “High minus low” refers to differences in average returns of trades in the highest 

quartile and trades in the lowest quartile. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent 

level according to t-tests with standard errors clustered for the day where the mispricing occurs and adjusted for heteroske-

dasticity. 
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Table 12: Liquidity Differences and Arbitrage Profitability 

      

By 
Bid-Ask Spread 

  
By 

Amihud Ratio 
  

By 
Turnover 

  
By Primary 

Market Activity 

                            

Long liquid ETF N   2,818     2,711     2,591     2,519   

  Mean   0.0081 ***   0.0089 ***   0.0096 ***   0.0105 *** 

                            

Long illiquid ETF N   2,490     2,597     2,367     2,439   

  Mean   0.0116 ***   0.0106 ***   0.0106 ***   0.0097 *** 

                            

Liquid minus illiquid Difference   -0.0035 ***   -0.0017 ***   -0.0010 **   0.0008  
                            

This table presents average net-of-fee returns of single positions separately for trades where the more liquid or the more 

illiquid of both ETFs is held long. Liquidity is either measured by bid-ask spreads, Amihud illiquidity ratios, turnover, or primary 

market activity. Liquidity measures are computed as in Table 10. “Liquid minus illiquid” refers to differences in average re-

turns between both types of mispricings. ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent 

level according to t-tests with standard errors clustered for the day where the mispricing occurs and adjusted for heteroske-

dasticity. 
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Table 13: Cross-Sectional Regressions of Position Returns on Arbitrage Cost Proxies 

  (1)   (2)   (3)   (4)   (5)   (6)   (7) 

Intercept 0.0089 ***   0.0083 ***   0.0084 ***   0.0079 ***   0.0085 ***   0.0084 ***   0.0076 *** 
  18.66     19.55     19.18     19.81     18.40     19.32     20.84   

Bid-ask spread       0.0090 ***         0.0092 ***         0.0090 ***   0.0078 *** 
        8.58           8.64           8.40     7.38   

Turnover -0.0023 ***   -0.0011 ***   -0.0026 ***   -0.0013 ***   -0.0023 ***   -0.0011 ***   -0.0018 *** 
  -6.72     -3.30     -7.40     -3.75     -6.46     -3.16     -5.71   

Amihud ratio 0.0011 **   -0.0008 **   0.0012 ***   -0.0007 **   0.0011 **   -0.0007 **   -0.0004   
  2.44     -2.34     2.62     -2.13     2.35     -2.13     -1.30   

PrimActivity -0.0011 ***   -0.0005 **   -0.0015 ***   -0.0009 ***   -0.0011 ***   -0.0005 **   -0.0013 *** 
  -3.14     -2.09     -4.05     -3.56     -3.09     -2.20     -3.62   

Idiosyncratic risk 0.0043 ***         0.0044 ***         0.0041 **         0.0031 ** 
  2.69           2.75           2.53           2.14   

VIX             0.0023 ***   0.0022 ***               0.0026 *** 
              3.50     3.16                 3.96   

ΔSpread                         0.0007 *   0.0015 ***   0.0012 *** 
                          1.68     4.65     3.02   

ΔTurnover                         -0.0007     -0.0008 *   -0.0007 * 
                          -1.45     -1.95     -1.66   

Adjusted R2 0.1286     0.1626     0.1451     0.1778     0.1326     0.1326     0.1935   

This table provides results from cross-sectional regressions, where single position net-of-fee returns are regressed on a number of proxies for cross-sectional differences in arbitrage costs, as well 

as the volatility index (VIX) and the TED spread on the day the position is initiated. Cross-sectional arbitrage cost proxies include the bid-ask spread, the Amihud illiquidity ratio (Amihud, 2002), 

primary market activity (PrimActivity) as measured in equation 3, and idiosyncratic volatility. These variables are computed as in Table 9. Daily VIX and TED spread data were downloaded from the 

St. Louis Fed Database (FRED Economic Data). As control variables, I included daily factor premia in line with Fama and French (1992) measured on the day where the position is opened and indicator 

variables for year, month, day of the week and index underlying the respective fund pair. Factor premiums were obtained from the Kennneth French Data Library. Explanatory variables are stand-

ardized to have zero mean and unit variance.  ***, **, * means statistically significant on a 1 percent, 5 percent and 10 percent level according to t-tests with standard errors clustered for the day 

where the mispricing occurs and adjusted for heteroskedasticity. 


