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Window Dressing in Mutual Funds: New Evidence 

 

 

Abstract 

Fund managers around the world cosmetically adjust their portfolio just prior to the 

declaration date to make it look more attractive to the investors. This behaviour is called 

Window dressing. The existing literature has identified multiple ways through which fund 

managers window dress. We propose a new unified framework to study Return window 

dressing, buying winner and selling looser stocks just prior to the declaration date; and 

Risk-shifting window dressing, reducing the risk of the portfolio just prior to the 

declaration date. We follow Barras, Scaillet, and Wermers (2010) to control for false 

discoveries in identifying window dressing in our multiple hypothesis testing framework. 

While Risk-shifting window dressing has not received much attention in equity fund 

literature, we find that it is in fact three times more prevalant than Return window 

dressing. Our empirical results suggest that investment choices of retail investors are not 

impacted by window dressing.    

 

EFM Classification: 370, 530 
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I. Introduction 

Investors primarily look at past performance in evaluating a fund. However, past 

performance is limited by the noise in stock returns in detecting managerial skill. 

Therefore, regulators around the world (e.g., SEBI in India, SEC in the US) mandate funds to 

periodically disclose their portfolio holdings. The underlying belief is that investors use 

fund holdings data, in addition to past returns, in evaluating a fund. However, this causes a 

common agency problem called window dressing whereby, fund managers cosmetically 

adjust their portfolio just before the portfolio declaration date. Literature has identified 

several ways through which fund managers window dress. A fund manager may window 

dress  

1. by reducing the risk of the portfolio just before the declaration date called Risk-shifting 

window dressing (RSWD) and  

2. by picking recent winner stocks and selling looser stocks just before the portfolio 

declaration date called Return window dressing (RWD) 

3. by buying stocks already held in the portfolio to inflate the value of portfolio artificially 

just before declaration date called “Portfolio pumping”1.  

The first two forms of window dressing involve changing the composition of securities in 

the portfolio with no special effort to affect changes to prices of securities itself. However, 

in “portfolio pumping” fund managers try to affect changes to prices of securities held in 

the portfolio without changing the composition of the portfolio itself. In this essay, we focus 

on return and risk-shifting window dressing in equity mutual funds.  

Risk shifting window dressing has been discussed primarily in the context of bond funds. 

Musto (1997, 1999) show that bond funds reduce the risk of the portfolio around 

disclosure dates. However, Ortiz, Ramírez, and Sarto (2013) show that Spanish bond funds 

reduce the exposure to public debt around disclosure dates. While evidence for RSWD in 

bond funds is unclear, ours is the first paper to explore RSWD in equity funds. The rationale 

for risk-shifting window dressing is that fund managers show a low risk portfolio to the 

                                                           
1
 “Portfolio Pumping” is also commonly known as “Net Asset Value (NAV) inflation”, “Marking up”, “Painting the 

tape” etc.  



investors to justify the low returns over the reporting period. While there are several risk 

factors that have been identified in the literature, fund managers would have most 

incentive to reduce risk along the risk dimensions which investors are aware of. We 

therefore restrict ourselves to three popular risk factors as identified in Fama and French 

(1992) i.e., Market risk, Size risk and BE/ME or Value-Growth risk. We refer to these as 

Market RSWD, Size RSWD and Value-Growth RSWD respectively. 

The evidence for return window dressing in equity funds is mixed. Lakonishok et al. (1991, 

LSTV) and He, Ng, and Wang (2004) find evidence in support of return window dressing, 

while Sias and Starks (1997) and Poterba and Weisbenner (2001) argue that the observed 

“turn-of-the-year” can be attributed to tax motivated selling. Return window dressing has 

traditionally been measured by comparing holding of the portfolio across various quarters 

(Lakonishok et al. 1991) or in relation to “turn-of-the-year” effect (Sias and Starks 1997). 

More recently, Meier and Schaumburg (2006) and Agarwal, Gay, and Ling (2014, AGL) 

compare holdings data with NAV return of the fund to identify window dressing.   

Agarwal, Gay, and Ling (2014) propose a return window-dressing measure, Backward 

Holding Return Gap (BHRG), defined as difference in returns of a hypothetical portfolio 

declared at the end of the quarter with actual gross returns of the fund. However, if a fund 

manager simultaneously reduces the risk of the portfolio while indulging in return 

window-dressing, their measure wouldn’t be able to detect it. Similar to Meier and 

Schaumburg (2006), we argue that studying the return series at a daily frequency will help 

us in better identifying window dressing. We propose a new variable, Daily Return Gap 

(DRG), which is very similar in spirit to AGL’s BHRG measure but calculated daily. Daily 

Return Gap (DRG) is defined as difference between daily holding return of a hypothetical 

portfolio at the end of the month (DBHR) and actual gross return of the fund.  

𝐷𝑅𝐺𝑡 = 𝐷𝑎𝑖𝑙𝑦 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐷𝐵𝐻𝑅𝑡) − 𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐺𝑅𝑡)     …. (1) 

For every portfolio declaration we calculate the above variable, DRGt. We then regress our 

Daily Return Gap variable on Fama-French-Carhart’s (FFC) four factor model. The 

underlying idea is that, if a fund manager declares a portfolio which has significantly lesser 

market risk than actual portfolio held during the course of the month we would find the 



coefficient of market risk (𝛽𝑀𝐾𝑇) to be negative and significant in equation below.  Similar 

logic can be extended to Size and Value-Growth risk factors. On the other hand, if a fund 

manager buys winners and sells losers just before the declaration date we would expect 

coefficient of momentum factor (𝛽𝑊𝑀𝐿) to be positive and significant.  

𝐷𝑅𝐷𝑡 = 𝛼 +  𝛽𝑀𝐾𝑇 ∗ 𝑟𝑀𝐾𝑇,𝑡 + 𝛽𝑆𝑀𝐵 ∗ 𝑟𝑆𝑀𝐵,𝑡 + 𝛽𝐻𝑀𝐿 ∗ 𝑟𝐻𝑀𝐿,𝑡 + 𝛽𝑊𝑀𝐿 ∗ 𝑟𝑊𝑀𝐿,𝑡 + 𝜖𝑡    …. (2) 

We repeat the above process for every portfolio declaration. We control for false 

discoveries in our multiple hypothesis testing using the False Discovery Rate (FDR) 

framework of Storey (2002) and Barras, Scaillet, and Wermers (2010). We discuss our 

methodology in detail in section V. Our method has some advantages over the simple AGL’s 

BHRG measure. First, we can identify if a fund manager has window dressed even if he 

indulges in return and risk-shifting window dressing simultaneously. Second, we can 

identify the risk dimensions along which fund manager window dress the most.  Our 

results suggest that 21.3%, 1.1% and 10.9% of the portfolio declarations are Market RSWD, 

Size RSWD and Value-Growth RSWD respectively. Our results are consistent with Barber, 

Huang, and Odean (2016) who show that investors attend most to market risk when 

evaluating funds. Therefore funds have most incentive to reduce the market risk of the 

portfolio. Similarly we find that 7.5% of the declarations are return window dressed, 

consistent with Ortiz, Ramírez, and Sarto (2013) who find 7% of Spanish portfolio 

declarations are return window dressed. 

It is argued that window dressing makes the portfolio more attractive to the investors and 

helps managers attract more fund flow. However it is not clear why investors do not see 

through the discrepancies between portfolio holdings and fund performance. Window 

dressing has some implicit and explicit costs to the investors. First, cosmetic rebalancing of 

a portfolio attracts transaction costs. Second, investors might be misled into investing in 

funds managed by subpar managers or even holding portfolio not appropriate for their risk 

profile. Therefore, the decision to window-dress a portfolio by a fund manager depends on 

a careful cost-benefit analysis of costs of portfolio churning vis-a-vis benefits of masking 

the portfolio.  



Our paper contributes to the window dressing literature in two ways. First, we provide the 

first evidence for risk-shifting window dressing in equity mutual funds. In fact, we show 

that market risk RSWD is three times more prevalent than return window dressing. 

Second, we provide a frame work to simultaneously identify both risk-shifting and return 

window dressing.  

Rest of the paper is organized as follows. In section II, discusses the relevant literature. In 

Section III we briefly motivate the use of Indian data and introduce Indian Mutual fund 

industry. Section IV describes our data and fund selection process. We discuss our 

methodology in detail in Section V. We present our results in section VI and conclude in 

section VII.  

II. Literature Review 

Window dressing has been observed across industries in different forms. Non- financial 

firms are known to window dress their financial statements to smoothen reported earnings 

(Healy and Wahlen 1999), banks window dress to upward adjust their assets at the end of 

each quarter (Allen and Saunders 1992) and companies window dress their sales figures to 

alter their primary industry classification (Chen, Cohen, and Lou 2016). In this paper, we 

focus window dressing in equity mutual funds. Specifically we focus on risk-shifting 

window dressing and return window dressing.  

While risk-shifting window dressing in bond funds has been studied earlier, to our 

knowledge, we are the first to study it in equity funds. Risk shifting behaviour of the equity 

fund managers has been studied earlier in the context of “mutual fund tournaments”. 

Brown, Harlow, and Starks (1996) and Chevalier and Ellison (1997) argue that career 

concerns and performance incentives of fund managers may increase the risk of their 

portfolio in the later part of the year. Risk-shifting window dressing differs from “mutual 

fund tournaments” literature in two ways. First, while the mutual fund tournaments 

literature argues that funds with poor performance at the reference point increase their 

risk, we argue that funds reduce the risk of the portfolio around disclosure dates. Second, 



while we focus on risk shifting for a few days around the portfolio disclosure, tournaments 

literature focuses on risk shifting over a much longer horizon. 

Musto (1999) finds that funds hold more government issues around disclosure date 

consistent with the theory that funds prefer to declare safer portfolios. Musto (1997) finds 

that commercial papers maturing next calendar year trade at an extra discount while 

Treasury bills do not. This is consistent with risk shifting window dressing hypothesis. 

However, Griffiths and Winters (2005) argue that these can be explained using preferred 

habitat hypothesis. Morey and O’Neal (2006) use quarterly survey data from Morningstar 

to compare credit quality of disclosed and undisclosed US bond funds and find evidence 

consistent with Musto (1999). Contrary to expectation, Ortiz, Sarto, and Vicente (2012) find 

that Spanish bond funds hold less public debt around disclosure dates.  

While return window dressing has received some attention in the literature the evidence is 

still mixed. Return window dressing has been primarily studied in the form of anomalies in 

literature. Fund managers generally have the greatest incentive to window dress at year 

end, post which investors are more likely to evaluate fund performance. However fund 

managers may also sell poorly performing stocks in their portfolio at year end to book 

capital losses and reduce tax. Lakonishok et al. (1991) show weak evidence that the pace of 

dumping poorly performing stocks in the portfolio increase in fourth quarter consistent 

with return window dressing. He, Ng, and Wang (2004) find that institutions which invest 

internally like pension funds and universities, tend to window-dress less when compared 

to institutions like mutual funds and banks who manage client money, consistent with 

window dressing hypothesis. Meier and Schaumburg (2004) compare the realized return 

with the hypothetical return of the portfolio declared by the fund.  They find that the 

hypothetical fund returns are higher than the realized return which indicates window 

dressing. Sias and Starks (1997) find that stocks dominated by individual investors 

experience greater turn of the year effect. This is more consistent with tax-loss selling 

hypothesis. Poterba and Weisbenner (2001) exploit changes in tax laws to find that tax loss 

selling contributes to turn of the year effect. Sias (2007) shows that both window dressing 

and tax-loss selling contribute to stock return momentum.  



Thus evidence for window dressing is at best mixed. The rationale for window dressing is 

that it helps the portfolio manager to avoid awkward questions regarding his stock 

selection ability and probably improve fund inflow by showing a better picture to the fund 

investors. Agarwal, Gay, and Ling (2014) argue that mutual fund managers take a risky bet 

on fund performance while indulging in window dressing. Solomon, Soltes, and Sosyura 

(2014) show that mutual fund holdings with high past returns are rewarded by investors, 

with higher fund inflow, only if they feature in the media. Their evidence shows that media 

coverage leads to investors chasing past performance and that is the primary mechanism 

through which window dressing becomes effective. Wang (2014) finds investors have 

limited attention and make investment decisions based on the performance of top 10 

portfolio holdings. Wang also shows that mutual fund managers realise investor’s 

behaviour and manipulate their disclosure accordingly. We follow this section with a brief 

introduction to Indian mutual fund industry. 

III. Indian mutual fund industry  

We use Indian mutual fund data for our analysis. There are some advantages of using 

Indian data. First, Indian Mutual funds disclose their portfolio at the end of every month 

compared to quarterly disclosure by US mutual funds. Elton et al. (2010) show that 

quarterly holdings data misses about 18.5% of all trades found using monthly data. They 

find that using monthly data can change and in some cases even reverse conclusions of 

some popular hypothesis. Second, due to differences in tax regimes, our tests of window 

dressing are not confounded by tax loss selling like in the US. In US, all mutual funds have 

to distribute their gains at least once a year. Also, the treatment of gains as long term or 

short term depends on the holding period of the security by the mutual fund. However, in 

India, the treatment of gains as long term or short term is not dependent on the holding 

period of the assets by mutual funds. Capital gains are considered long term if the investor 

holds his investments with the mutual fund for more than a year and short term otherwise 

(Section 10(23D), Income Tax Act). Hence, mutual funds have no reason to indulge in tax 

loss selling.  



Securities Exchange Board of India (SEBI), the Indian equivalent of SEC, regulates the 

mutual funds in India. The Indian mutual fund history can be broadly divided in four 

distinct phases2. In the first phase (1964-1987) only Unit Trust of India (UTI), a 

government of India entity, was allowed to float mutual funds. The second phase (1987-

1993) saw the entry other public sector banks. In the third phase (1993-2003), SEBI 

(Mutual fund) regulations act, 1993 allowed the entry of private sector companies into 

mutual fund industry. In the fourth phase (2003-present), which started with the repealing 

of UTI act, the Assets Under Management (AUM) of the industry has grown from Rs. 891.7 

billion in February 2003 to Rs 13.8 trillion as of 31st May 2016, i.e. more than 15 fold 

increase in 13.25 years.3  

As of 31st March 2016 there are 35.75 million non-institutional accounts4 only in equity 

oriented schemes in India and 47.2 million across all types of funds. The Indian mutual 

fund industry has total assets under management (AUM) of about 160 billion dollars which 

accounts for less than 0.5% of the 38.6 trillion dollars AUM worldwide5. With gross savings 

at 31% of GDP6 and AUM/GDP ratio less than 10%7, the Indian Mutual fund industry has 

tremendous potential for growth in near future. 

IV. Data 

We get all our mutual fund data from Lipper for Investment Management database. 

Agarwalla, Jacob, and Varma (2013) provide risk factor returns of Fama-French-Carhart’s 

four-factor model, and risk-free rate. Indian listed equity securities data is taken from 

Prowess - CMIE. Following the extant literature, we consider equity mutual funds with 

investment focus and domicile in India. We remove all Closed-ended funds, Index tracking 

funds, Fund-of-Funds. 

                                                           
2
 Association of mutual funds In India (AMFI) 

3
 Unless otherwise mentioned we use AMFI definition of mutual fund which includes money market funds as 

mutual funds 
4
 A single person may have multiple accounts. 

5
 https://ici.org/research/stats - Quarterly Worldwide Mutual Fund Market – First Quarter of 2016 data – Accessed 

on 02/07/2016 – Mutual Fund as defined by ICI 
6
 World bank’s World Development Indicators. 2015 estimates. 

7
 Source: RBI’s – ‘Handbook of Statistics on Indian Economy 2014-15’. All statistics are as of 31st March, 2015 

(AUM = 1082,757 Crores, GDP = 11550240 Crores). 



Indian mutual funds typically offer three different plans for distributing the money back to 

the investors. Namely, Dividend, Dividend reinvestment, and Growth plans. In a dividend 

plan, investors receive a periodical dividend according to the pay-out policy of fund. In a 

Dividend reinvestment plan, the fund automatically reinvests the dividends into the fund. 

In a growth plan, mutual funds do not give any dividends, and the only way for the 

investors to get their money back is to sell the mutual fund units/shares. Further, 

depending on the channel used for investing, mutual funds offer two options, Direct and 

Standard. As the name suggests, when an investor directly approaches the mutual fund to 

invest it is called ‘direct’ option. When an investor invests in the fund through an 

intermediary/investment advisor, it is called ‘standard’ option. Since the mutual fund 

companies have to compensate the intermediaries for bringing business to them, ‘standard’ 

options charge higher fees than their counterpart ‘direct’ option. However, the underlying 

portfolio for all the six sub-classes (3 plans * 2 options) of a given fund is same. Rarely 

funds also offer sub-classes for Institutional investors too. Since our unit of analysis is a 

portfolio, we use only the primary sub-class of each fund in our analysis so that we do not 

over-sample our data. Primary sub-class in Lipper is the oldest sub-class with the largest 

amount of assets, which is typically a growth plan with standard option. Using the above 

filtering criteria and removing multiple sub-classes for same fund we narrow our analysis 

to 566 unique funds. Of these, we remove funds less than 2 years old and hybrid funds 

classified by AMFI as either balanced or Income funds. We only consider declarations 

where equities as percentage of total declared assets lie between 85% and 105%. We 

further remove declarations with less than 20 securities and where at least 80% of the 

portfolio composition data is not available. This leaves us with 326 funds and 17704 

portfolio declarations from June 2008 to June 2016, the period for which Lipper has 

reliable data. We present a summary statistics of the data in Table 1.  

Total Number of Declarations 17704 

Year Number of declarations Year Number of declarations 

2008 531 2013 2742 

2009 1863 2014 2732 

2010 2140 2015 2693 

2011 1750 2016 1297 



2012 1956     

        

Month Number of declarations Month Number of declarations 

January 1421 July 1314 

February 1388 August 1349 

March 1593 September 1594 

April 1460 October 1436 

May 1443 November 1405 

June 1715 December 1586 

        

AMFI Classification Number of declarations 

Growth 14871 

Equity Linked Savings scheme 2585 

Unclassified 248 

Table 1 

We construct define below the construction of certain variables used in the following 

sections. In the later part of paper we study the impact of window dressing on fund flow. 

We define flow as, 

𝐹𝑙𝑜𝑤 =
(𝐴𝑈𝑀𝑡 −  𝐴𝑈𝑀𝑡−1 ∗ (1 + 𝑅𝑡))

𝐴𝑈𝑀𝑡−1
 

Where AUMt stands for Assets Under Management at time t. We calculate AUM by summing 

the total value of investments in different securities in the portfolio declared at the end of 

every month.  

V. Methodology 

Window dressing measures have traditionally used only portfolio holding data. They either 

compare year end portfolio data with other non-year-end declarations or public 

disclosures with private disclosures (Lakonishok et al. 1991, Ortiz, Sarto, and Vicente 

2012). However just using holdings data will not reveal the timing of the trades. Meier and 

Schaumburg (2006) argue that we can learn more about window dressing by comparing 

buy-and-hold returns of the declared portfolio with actual return of the fund. Agarwal, Gay, 

and Ling (2014) also propose a window dressing measure, called Backward Holding Return 

Gap (BHRG), using both actual return data and portfolio data. As discussed earlier, our 



window dressing measure, Daily Return Gap (DRG), is defined as difference between the 

daily buy-and-hold return of a hypothetical portfolio comprising month end holdings of a 

fund and daily gross return of the fund (See Appendix A1 for full details). Repeating our 

earlier equation,  

𝐷𝑅𝐺𝑡 = 𝐷𝑎𝑖𝑙𝑦 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐷𝐵𝐻𝑅𝑡) − 𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐺𝑅𝑡)     …. (1) 

Our window dressing measure (DRG) is can be viewed as the return series of a long-short 

portfolio which is long on the on portfolio declared at the end of the month and short on 

the respective fund. AGL argue that their window dressing measure (BHRG) is positively 

related to return window dressing8. However BHRG is also negatively related to Risk-

shifting window dressing9. If a fund manager indulges in both risk-shifting and return 

window dressing, BHRG may fail to identify window dressing. We overcome this problem 

by regressing our window dressing measure (DRG) on Fama-French-Carhart four factor 

model to identify the source of return for this long-short portfolio.  

𝐷𝑅𝐺𝑡 = 𝛼 +  𝛽𝑀𝐾𝑇 ∗ 𝑟𝑀𝐾𝑇,𝑡 + 𝛽𝑆𝑀𝐵 ∗ 𝑟𝑆𝑀𝐵,𝑡 +  𝛽𝐻𝑀𝐿 ∗ 𝑟𝐻𝑀𝐿,𝑡 + 𝛽𝑊𝑀𝐿 ∗ 𝑟𝑊𝑀𝐿,𝑡 + 𝜖𝑡    …. (2) 

Where, 𝑟𝑀𝐾𝑇,𝑡, 𝑟𝑆𝑀𝐵,𝑡, 𝑟𝐻𝑀𝐿,𝑡 𝑎𝑛𝑑 𝑟𝑊𝑀𝐿,𝑡 are standard Market, Size, Value-Growth and 

Momentum factor returns on day t and 𝛽𝑀𝐾𝑇 , 𝛽𝑆𝑀𝐵, 𝛽𝐻𝑀𝐿 and 𝛽𝑊𝑀𝐿 are their respective 

factor loadings.  

If the risk of the portfolio declared at the end of month is representative of the risk of the 

fund through the month we expect the factor loading to not be statistically different from 

zero. However, if the fund manager indulges in risk-shifting window dress i.e. reduces the 

Market, Size or Value-Growth risk of the portfolio just prior to declaration we expect the 

respective risk factor loadings to be negative and statistically significant. Similarly, if the 

portfolio declaration is return window dressed we expect the momentum risk factor 

loading to be positive and significant. We repeat the above exercise for every declaration. 

Since the declaration frequency in India is monthly, we have limited number of data points 

                                                           
8
 Agarwal, Gay, and Ling (2014) paper only deals with return window dressing. They loosely use window dressing to 

refer to return window dressing.    
9
 A simple pooled regressing of BHRG on our Risk-shifting and return window dressing dummies shows that it is 

negatively related to risk shifting window dressing (See Appendix A2).     



per declaration. Therefore for consistent results, we use the bootstrap methodology 

proposed by Kosowski et al. (2006, KTWW) in identifying the above factor loadings. This 

has two advantages over simple OLS regressions.   

First, funds exhibit non normal returns for various reasons including but not limited to 

holding concentrated portfolio of stocks which have non-normal properties, market 

benchmark returns which are non-normal, following dynamic strategies which change risk 

with market risk etc. Therefore using the regular standard errors of OLS regression may 

lead us to draw wrong conclusions. However bootstrap can be of much help in such 

situations as shown by Bickel and Freedman (1984) and Hall (1986). It helps that 

bootstrap does not assume a priori distribution. Second, KTWW show that t-statistic of β 

estimates are robust to cross sectional dependencies than β estimates themselves. In our 

study we therefore bootstrap t-statistics of β estimates and bootstrap β estimates for a 

robust check. For each of 17704 portfolio declarations we estimate the p-values of both, 

factor loading estimates and their t-statistics10. (See Appendix A3 for bootstrap 

methodology).  

The standard approach in a single hypothesis testing is to control for type I error by 

choosing a significance level γ and to reject the null if the test statistic falls within the 

significance level. When we conduct the above regression for each declaration, we are 

conducting a multiple hypothesis test. Some of the declarations might show significant 

factor loading by pure luck alone. We control for this multiple hypothesis test problem by 

using False Discovery Rate (FDR) methodology proposed by Storey (2002).   

V.1 False Discovery Rate (FDR): 

We loosely follow Barras, Scaillet, and Wermers (2010; BSW) and Storey (2002) to control 

for false discoveries. The problem in multiple testing of a large number of declarations is 

that we have to choose a significance level  𝛾 and declare all declarations with p-value less 

than 𝛾/2 as not belonging to the null. Let, 𝜋𝑋
0 , 𝜋𝑋

+ and 𝜋𝑋
− represent proportion of 

declarations belonging to the null (no window dressing), proportion of declarations 
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 See appendix A3 for detailed bootstrap methodology. 



belonging to the alternative which are window dressed and proportion of declarations 

belonging to the alternative which are not window dressed respectively. Where, 

𝑋 = {𝑀𝐾𝑇, 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑊𝑀𝐿}. A declaration not belonging to the null is classified as 

window dressed if 𝛽𝑊𝑀𝐿 > 0 or  𝛽𝑀𝐾𝑇 < 0 or  𝛽𝑆𝑀𝐵 < 0 or 𝛽𝐻𝑀𝐿 < 0 for the respective type 

of window dressing. At a given significance level 𝛾 the proportion of null declarations 

which are wrongly classified as window dressed is:  

𝐸(𝐹𝑋,𝛾
+ ) =  𝜋𝑋

0 ∗  
𝛾

2
 

If 𝐸(𝑆𝑋,𝛾
+ ) is the expected proportion of funds which are significant and are on the window 

dressing tail of the distribution, then the expected proportion of truly window dressed 

declarations at a given significance level 𝛾 is defined as: 

𝐸(𝑇𝑋,𝛾
+ ) =  𝐸(𝑆𝑋,𝛾

+ ) −  𝐸(𝐹𝑋,𝛾
+ ) =  𝐸(𝑆𝑋,𝛾

+ ) −  𝜋𝑋
0 ∗  

𝛾

2
 

As we vary the significance level 𝛾, the proportion of truly window dressed declarations 

also varies. We estimate the proportion of window dressed portfolios in the population as:  

𝜋𝑋
+ =  𝑇𝑋,𝛾∗

+  

Where 𝛾∗  is a sufficiently high significance value in the range 0.30 to 0.50. The optimal 

value of 𝛾∗ is determined using a MSE criteria explained in appendix A4. The False 

Discovery Rate (FDR) among the portfolios classified as window dressed at a given 

significance level 𝛾 is:      

𝐹𝐷𝑅𝑋,𝛾
+ =  

𝐸(𝐹𝑋,𝛾
+ )

𝐸(𝑆𝑋,𝛾
+ )

=
𝜋𝑋

0 ∗  
𝛾
2

𝐸(𝑆𝑋,𝛾
+ )

 

𝐸(𝑆𝑋,𝛾
+ ) can be calculate as the percentage of funds which are significant at a given value of 

𝛾 and are in the window dressing tail of the distribution. Therefore all we need is an 

estimate of 𝜋𝑋
0  to calculate FDR. If all the fund declarations are not window dressed then its 

p-values are uniformly distributed between 0 and 1. However if the portfolio is window 

dressed then its p-values are concentrated near zero. Let W(λ) be the number of portfolio 



declarations with p-values greater than λ and M be the total number of portfolio 

declarations. If the p-values of null distribution are uniformly distributed then we can say 

𝜋𝑋
0 =

𝑊(𝜆)

𝑀
∗  

1

(1 −  𝜆)
 

We estimate 𝜋𝑋
0   over a range of 𝜆  values from 0.30 to 0.70. We choose 𝜆 =  𝜆∗ which 

minimizes the Mean Squared Error of  𝜋𝑋
0 . Full estimation procedure can be found in 

Appendix A4. The benefit of using above method is that it is completely data driven. 

However BSW do a Monte Carlo study to show that the estimates are not too sensitive to 

the chosen levels of 𝜆∗ and 𝛾∗. The procedure for estimating 𝜋𝑋
−, 𝑇𝑋,𝛾

− , 𝑆𝑋,𝛾
−   is same as above 

with all equations substituting plus with minus symbol.   

Our primary interest is in controlling False Discoveries in identifying window dressing 

portfolio. There we estimate 𝐹𝐷𝑅𝑋,𝛾
+  for various values of γ (0.01, 0.02 …0.90). We identify 

the value of γ for which FDR is closest to 10% and declare all declarations with significance 

value less than γ as window dressed.  

VI. Empirical results 

Our primary sample has 326 funds with 17,707 portfolio declarations over a period of 8 

years. For each of the 17,704 declarations we do a bootstrap regression as given in 

equation 2. Histograms of P-values of t-statistic of the factor loadings are shown in figure 1 

below11. If all the p-values are from null distribution i.e. none of the declarations have been 

window dressed, we would have had flat histograms. However, we find that p-values are 

clustered towards zero, indicating evidence for window dressing. 

                                                           
11

 Appendix A5 has similar histograms but for p-values of coefficient of factor loadings  



 

Figure 1: Histogram of P Values of t-statistics of β’s in equation 2 

VI.1 Evidence for window dressing 

If the fund managers indulge in risk-shifting window dressing to deceive customers about 

the true risk of the fund, then they would have greatest incentive to window dress along 

the risk dimension investors give most importance to. Barber, Huang, and Odean (2016) 

show that investors pay most attention to market risk. This leads to our first hypothesis: 

Hypothesis 1: Fund managers indulge the most in window dressing market risk of the 

portfolio. 

A lot of funds in India market themselves as either Large Cap or Mid Cap or Small Cap 

funds. They also tend to mention the market capitalization of the companies they plan to 

invest in fund objectives. Therefore funds have the least flexibility in window dressing size 

risk of the portfolio. This leads to our second Hypothesis: 



Hypothesis 2: Fund managers least window dress along the size risk dimension.           

Using the above p-values and the FDR methodology outline in the previous section we 

calculate the proportion of declarations which are window dressed 𝜋𝑋
+, proportion of 

declarations which are non-window dressed 𝜋𝑋
0  and proportion of portfolio declarations 

which are not window dressed and do not belong to the null 𝜋𝑋
−. Results have been 

tabulated in Table 2. The terms in the brackets are standard errors. Refer to Appendix A4 

for the procedure to calculate standard deviation. 

  𝜋+ 𝜋0 𝜋− 

Return window 
dressing 

WML 
7.5% 88.1% 4.4% 

(0.99) (1.00) (0.49) 

Risk Shifting window 
dressing 

MKT 
21.3% 67.0% 11.7% 

(0.91) (0.92) (0.47) 

SMB 
1.1% 93.0% 5.9% 

(1.01) (0.45) (0.99) 

HML 
10.9% 77.3% 11.8% 

(0.80) (0.40) (0.89) 
Table 2: Percentage of Window dressed funds (π+), Null funds (π0) and Non-Window dressed funds (π-). The 
numbers in the brackets below percentages are their respective standard deviations in percentage. 

21.3% of the declarations are window dressed by reducing market risk of the portfolio just 

prior to declaration. The percentage of declarations which window dress by reducing size 

risk of the portfolio is statistically not different from zero. Therefore, our results are in 

conformity with Hypothesis 1 & 2. While the extant literature is focused on risk shifting 

window dressing only in bond funds we show that is equally important in equity funds. In 

fact our results suggest that equity fund managers are almost 3 times more likely to indulge 

in Market-risk shifting window dressing over return window dressing.  

VI.2 Window dressing identification 

Using the above estimates of  𝜋0 we calculate 𝐹𝐷𝑅𝑋,𝛾
+  at various values of significance levels 

γ (0.01, 0.02,  … 0.90) using the equation in section V.1 and reproduced below.  

𝐹𝐷𝑅𝑋,𝛾
+ =  

𝐸(𝐹𝑋,𝛾
+ )

𝐸(𝑆𝑋,𝛾
+ )

=
𝜋𝑋

0 ∗  
𝛾
2

𝐸(𝑆𝑋,𝛾
+ )

 



We identify the value of γ for which FDR is closest to 10% and treat all declarations with p-

values less than γ as significant. 

Targeted FDR FDR = 10% 

  
Significance 

level (γ) 
FDR 

achieved 
% of portfolios 

WD at γ  

Return window dressing WML 0.01 10.0 0.9% 

Risk Shifting window 
dressing 

MKT 0.01 13.6 4.1% 

SMB 0.01 71.0 0.7% 

HML 0.01 15.3 3.9% 

Table 3 

Although we have set FDR target levels at 10%, we don’t achieve our target levels always. 

The FDR of size-risk shifting window dressing is too high to draw any meaningful 

conclusions. The FDR achieved by Market and Value-Growth risk dimensions is also off by a 

huge margin (13.6% and 15.3% respectively). Even at this level of significance the 

percentage of declarations which are considered window dressed is very small. For 

example only 0.7% of all fund declarations can be classified as size window dressed even at 

71% FDR. We define a new binary variable, Window Dressing (WD), which equals one if a 

given portfolio has been window dressed at least in one form of window dressing discussed 

above. There are a total of 1585 (8.95%) portfolio declarations which are involved in at 

least one form of window dressing. We use this binary variable, WD, as our window 

dressing measure hence forth. 

VI.3 Motivation for window dressing  

A fund manager wouldn’t ideally like to window dress their portfolio as it involves 

mindless churning of portfolio with no value add to the investors. Also churning the 

portfolio attracts transaction cost which reduces the return of the portfolio. We argue that 

managers window dress only when their recent performance has been very bad or when 

they are experiencing fund outflow. This leads to our third hypothesis: 

Hypothesis 3: Window dressing is negatively related to fund performance and fund flow.  

 



We test our hypothesis through a logistic regression of the equation below.  

𝑊𝐷𝑡 =  𝛽0 + 𝛽1(𝑃𝑟𝑒 −  3 𝑚𝑜𝑛𝑡ℎ𝑠 𝑎𝑙𝑝ℎ𝑎)𝑡 +  𝛽2(𝑆𝑖𝑧𝑒)𝑡 + 𝛽3(𝑃𝑟𝑒 − 3 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑙𝑜𝑤)𝑡

+ 𝛽4(𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟) +  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

WD is binary variable indicating if the portfolio has been window dressed in at least one 

risk dimension. “Pre- 3 months alpha” is defined as daily alpha compounded over last 3 

months. “Size” is defined as natural log of total assets. Turnover is defined as min {buy, sell} 

as percentage of lagged assets. “Pre – 3 months flow” is the average of last three months 

flow.  

From table 4 below we can conclude that fund manager’s propensity to window dress is 

negatively related to last 3 months performance and last 3 months average flow. Our 

results are consistent across various specifications of control variables. This proves our 

third hypothesis. 

Table 4: 
------------------------------------------------------------------------------------------------------- 
                                                  Window dressing (WD)                   
                              (1)                 (2)                (3)               (4)                 (5)     
------------------------------------------------------------------------------------------------------- 
Pre - 3 Months alpha    -0.021***    -0.020***    -0.019***    -0.015***    -0.017***  
                         (0.004)       (0.004)        (0.004)        (0.005)        (0.005)   
                                                                         
Pre 3 Months flow        -0.622*        -0.623*         -0.673*       -0.914**      -0.683   
                                        (0.375)        (0.375)         (0.379)       (0.396)        (0.420)   
 
Size                                 0.041***      0.041***      0.041***     0.041***      0.042***  
                                        (0.009)        (0.009)        (0.009)        (0.009)        (0.009)   
                                                                                                                                               
Turnover                        0.160       0.172            0.142          0.046            0.114    
                                        (0.169)        (0.169)         (0.170)      (0.180)         (0.228)   
 
ELSS Dummy                 0.032             0.032            0.030           0.027            0.017    
                        (0.040)           (0.040)        (0.040)        (0.040)        (0.042)   
                                                                                                                                                  
Quarter End Dummy                             YES                                      YES             
                                                                          
Quarter Dummy                                                               YES                         
                                                                         
Month Dummy                                                                                      YES             



                                                                  
Year Dummy                                                                                           YES             
                                                                         
Time Dummy                                                                                                                  YES    
                                                                         
Constant                        -2.078***       -2.102***     -2.042***   -1.698***      -2.249***  
                     (0.159)           (0.160)         (0.162)       (0.190)         (0.360)   
--------------------------------------------------------------------------------------------------------- 
Observations                15,399            15,399         15,399         15,399          15,399   
--------------------------------------------------------------------------------------------------------- 
Note:                                            *p<0.1; **p<0.05; ***p<0.01 
Dependent variable, WD, equals one if the declared portfolio has been either return window dressed or risk 

shifting window dressed. “Pre-3months alpha” is defined as funds daily 4 factor FFC alpha compounded over 

the last 3 months. “Size” is defined as natural log of total assets. Turnover is defined as the min {buy, sell} over 

the last month as percentage of lagged assets. “Pre-3 months flow” is defined as simple average of last three 

months flow. Quarter End Dummy = 1 if month = {March, June, September, December}. Quarter Dummy is a 

set of 3 dummies each indicating one of the 4 quarters in a year. Month Dummy is a set of 11 binary variables 

with each variable equal to one for a particular month and zero otherwise. Year Dummy is a set of 7 binary 

variables with each variable equal to one for a given year and zero otherwise. Time Dummy is a set of binary 

variables each representing a unique combination of year and month. ELSS Dummy = 1 if the fund is classified 

as ELSS fund by AMFI. ELSS funds typically have 3 year lock in period.    

 

VI.4 Impact of window dressing 

The motivation for window dressing is clear. Fund managers’ window-dress their 

portfolios to avoid uncomfortable questions about their stock selection ability. Especially, 

when the recent performance of the fund is bad and when there is low fund inflow. 

However the impact of window dressing has not received much attention in the literature.  

Agarwal, Gay, and Ling (2014) argue that fund managers take risk bet when they indulge in 

window dressing. They model investors as rational agents who look at the performance of 

the fund in the “delay period” and reward those funds with good performance. For their 

model to work average investor will have to look at composition of the portfolio held by the 

fund. On the other hand, if we think of investor as a naïve agent who takes portfolio 

composition data at face value we expect higher fund inflow when the fund manager 

window dresses the portfolio. Finally, if we model investor as highly naïve agent who does 

not take portfolio composition into consideration, we can expect window dressing to have 

no influence on future fund flow. We test our hypothesis using the following equation.  



𝐿𝑒𝑎𝑑 𝐹𝑙𝑜𝑤𝑡+2,𝑡+3  

=  𝛽0 + 𝛽1(𝑊𝐷𝑡) + 𝛽2(𝑊𝐷𝑡 ∗ 𝑃𝑜𝑠𝑡 𝐴𝑙𝑝ℎ𝑎𝑡+1)  + 𝛽3(𝑃𝑜𝑠𝑡 𝐴𝑙𝑝ℎ𝑎𝑡+1)

+ 𝛽4(𝑃𝑟𝑒 − 3 𝑚𝑜𝑛𝑡ℎ𝑠 𝐴𝑙𝑝ℎ𝑎𝑡) + 𝛽5(𝑃𝑟𝑒 − 3 𝑚𝑜𝑛𝑡ℎ𝑠 𝐴𝑙𝑝ℎ𝑎𝑡)^2 +  𝛽6 ∗ 𝑆𝑖𝑧𝑒𝑡

+ 𝛽7(𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟) +  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

 

  
Investor 

  
Non-Naïve Naïve 

Takes portfolio 
composition into 

consideration 

Yes 
𝛽1 < 0 𝑎𝑛𝑑 𝛽2

> 0 𝑎𝑛𝑑 𝛽1 + 𝛽2 > 0  
𝛽1 > 0 

No 
 

𝛽1 = 0 𝑎𝑛𝑑 𝛽2 = 0 

 

If the investors are not naïve agents as described by Agarwal, Gay, and Ling (2014) then we 

expect 𝛽1 < 0, 𝛽2 > 0 𝑎𝑛𝑑 𝛽1 +  𝛽2 > 0. If the investor is not naïve we expect him to look 

for information beyond NAV return data. Therefore we do not take the second case into 

consideration. On the other hand, if the investors are naïve who take portfolio composition 

data at face value we expect 𝛽1 > 0. Finally if the investors are naïve and do not take 

portfolio composition data into consideration we expect 𝛽1 = 0 𝑎𝑛𝑑 𝛽2 = 0.   

 
---------------------------------------------------------------------------------------------------- 
                                                                                    Lead Flow                                
                                                      (1)                   (2)                      (3)                  (4)         
------------------------------------------------------------------------------------------------------ 
WD                              0.001              -0.001                0.002             -0.0003       
                                              (0.002)            (0.002)              (0.002)            (0.002)       
                                                                                                                 
I (WD * Post Alpha)                                                                    -0.002             -0.002       
                                                                                                   (0.001)            (0.001)       
                                                                                                                 
Post Alpha                                                                                   0.002***          0.003***      
                                                                                                 (0.0004)         (0.0004)      
                                                                                                                 
Pre 3 – Months Alpha             0.002***         0.003***           0.002***          0.003***      
                                                  (0.0003)          (0.0003)         (0.0003)          (0.0003)      
                                                                                                                 
I(Pre 3 – Months Alpha^2)   0.0002***        0.0002***        0.0002***        0.0002***      
                                                 (0.0001)           (0.0001)         (0.0001)          (0.0001)      



                                                                                                                 
Size                             0.002                0.002**             0.002                0.002**        
                                                  (0.001)            (0.001)            (0.001)              (0.001)       
                                                                                                                 
Turnover   0.040***           0.037**            0.039***           0.036** 
    (0.014)            (0.018)            (0.014)            (0.018) 
 
ELSS                                         0.001                 0.001               0.001                0.001        
                                            (0.004)             (0.004)            (0.004)            (0.004)       
                                                                                                                 
Month Dummy                          YES                                            YES                   
                                                                  
Year Dummy                              YES                    YES 
                                                                                                                                          
Time Dummy                                                      YES                                            YES                                                                     
                                                                                                                 
Constant                                 -0.060***          -0.108***        -0.058***          -0.106***      
                                                (0.018)              (0.022)             (0.018)             (0.020)       
----------------------------------------------------------------------------------------------------------- 
Observations                           14,996             14,996             14,996             14,996     
Adjusted R2                              0.116               0.234                0.118                0.237        
============================================================== 
Note:                                                                                  *p<0.1; **p<0.05; ***p<0.01 
Lead flow is average flow in month 2 and 3 from the end of declaration date. For example, In January if the 
fund has declared the composition of the portfolio it held at the end of December, Lead flow is the average 
flow into the fund in February and March. Post Alpha is defined as daily compounded four factor alpha of the 
fund in January. “Size” is defined as natural log of total assets. “Turnover” is defined as the min {buy, sell} over 
the last month as percentage of lagged assets. “WD” is binary variable indicating if the portfolio has been 
window dressed. “Pre- 3 months alpha” is defined as daily four factor alpha compounded over last 3 months.  
ELSS Dummy = 1 if the fund is classified as ELSS fund by AMFI. ELSS funds typically have 3 year lock in 
period. Month Dummy is a set of 11 binary variables with each variable equal to one for a particular month 
and zero otherwise. Year Dummy is a set of 7 binary variables with each variable equal to one for a given year 
and zero otherwise. Time Dummy is a set of binary variables each representing a unique combination of year 
and month. 

 
From the above table we conclude that  𝛽1 = 0 𝑎𝑛𝑑 𝛽2 = 0. In other words, Indian investors 

do not look at portfolio composition when making investment decisions. Other coefficients 

like past 3 months performance, performance in the delay period are all positive and 

significant. This is blessing in disguise that Indian investors do not reward fund manager 

who window dress. However we do not go as far as to recommend investors to avoid 

looking for portfolio composition data. It is important that the investors monitor that the 

manager is investing in line with the objectives of the fund. The cost of holding a fund in 



your portfolio not appropriate for your risk profile may be more than the cost of window 

dressing.    

 

VII. Conclusion 

In this paper we use data of an emerging market, India. Indian data has several advantages 

for testing window dressing. First funds declare their portfolio monthly and second due to 

differences in the way tax is administered mutual funds do not indulge in tax motivated 

selling. With these advantages we propose a new methodology to test for window dressing. 

While the existing literature is quiet on risk-shifting window dressing in equity funds, we 

find that fund managers are three times more likely to indulge in (market) risk-shifting 

window dressing compared to return window dressing. A fund manager may also indulge 

in one or more forms of window dressing simultaneously. Our methodology is helpful in 

measuring each type of window dressing while simultaneously controlling for the others. 

In this aspect our methodology is an improvement over  Meier and Schaumburg (2006). We 

are also the first paper to control for multiple hypotheses testing in the window dressing 

literature. 

The decision to window-dress a portfolio by a fund manager depends on a careful cost-

benefit analysis of costs of portfolio churning vis-a-vis benefits of masking the portfolio. 

Fund managers window dress when their fund performance is bad or when fund has low 

inflow. While the motivation for window dressing is clear, the impact of window dressing 

isn’t. We find that investors do not take portfolio compositions data into consideration 

while making investment decisions. However, this leads us to ask the question - why do the 

fund managers’ indulge in window dressing. We leave this as scope for future research.     
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Appendix 

 

A1. Daily Return Difference (DRD) 

Mathematically, we calculate Daily Return Difference (DRD) as  

𝐷𝑅𝐷𝑡 = 𝐷𝑎𝑖𝑙𝑦 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐷𝐵𝐻𝑅𝑡) − 𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐺𝑅𝑡) 

Where t = 1 to T, and T equals the total number of working days in a given month. Gross 

return is sum of actual realized return and daily expense ratio. Actual return is calculated 

using daily NAV and dividend data as given below. 

𝐺𝑟𝑜𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐺𝑅𝑡) = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐴𝑅𝑡) + 𝐷𝑎𝑖𝑙𝑦 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝑅𝑎𝑡𝑖𝑜𝑡 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐴𝑅𝑡) =
(𝑁𝐴𝑉𝑡 + 𝐷𝐼𝑉𝑡 −  𝑁𝐴𝑉𝑡−1)

𝑁𝐴𝑉𝑡
 

Assuming 250 working days in year,   𝐷𝑎𝑖𝑙𝑦 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 = (
𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝑅𝑎𝑡𝑖𝑜

250
) 

Daily Backward Holding Return,  𝐷𝐵𝐻𝑅𝑡 = ∑ 𝑤𝑖,𝑡−1𝑅𝑖,𝑡
𝑛

𝑖=1
  

𝑤𝑖,𝑡 =

(
𝑀𝑉𝑖,𝑇

∏ (1 + 𝑅𝑖,𝑘)𝑇
𝑘=𝑡

)

∑ (
𝑀𝑉𝑖,𝑇

∏ (1 + 𝑅𝑖,𝑘)𝑇
𝑘=𝑡

)𝑛
𝑖=1

 

Where 𝑀𝑉𝑖,𝑇  is market value of asset i held by fund f at the end of the month. 𝑅𝑖,𝑡 is return 

of asset i on day t. We use market value in calculating the weight of the asset in the 

portfolio on a given date, t, unlike number of shares as used in Kacperczyk, Sialm, and 

Zheng (2008). This is because we found the market value data to be error free relative to 

number of shares data. Also, CMIE Prowess our database for Indian stock return data 

doesn’t have readymade adjustment factor for number of shares. For each of the 17,704 

portfolio declarations we calculate DRDt for all the days in that given month. 

 



A2. BHRG Vs Window Dressing Dummies  

                                   BHRG measure of Agarwal, Gay, and Ling (2014)              

 
Risk Shifting WD  -0.006***        -0.006*** 
                    (0.002)             (0.002)  
Return WD                               0.002              0.002   
                                                   (0.005)           (0.005)  
Constant           1.019***       1.019***        1.019***  
                            (0.001)       (0.0005)         (0.001)  

Observations                17,704          17,704           17,704   
Adjusted R2           0.001          -0.0001            0.001   

Note:              *p<0.1; **p<0.05; ***p<0.01 
 
 

A3. KTWW bootstrap 

For each of the 17,704 portfolio declarations we run the regression in equation 2 of the 

main text and save 𝛽𝑀𝐾𝑇 , 𝛽𝑆𝑀𝐵 , 𝛽𝐻𝑀𝐿 and 𝛽𝑊𝑀𝐿 their respective t-statistics and residuals, 

𝜖𝑡. For each declaration we resample the errors as proposed by Politis and Romano (1994). 

For stationary time series Politis and Romano (1994) suggest using block sampling whose 

block length follows a geometric distribution. We resample the errors to get 2000 error 

series, 𝜖𝑡
𝑏 where b = 1, 2, …2000 represents bootstrap iterations. For each iteration, we 

calculate 𝐷𝑅𝐷𝑡
𝑏 under the null hypothesis β=0.  

     𝐷𝑅𝐷𝑡,𝑀𝐾𝑇
𝑏 = 𝛼 +  𝛽𝑆𝑀𝐵 ∗ 𝑟𝑆𝑀𝐵,𝑡 +  𝛽𝐻𝑀𝐿 ∗ 𝑟𝐻𝑀𝐿,𝑡 +  𝛽𝑊𝑀𝐿 ∗ 𝑟𝑊𝑀𝐿,𝑡 + 𝜖𝑡

𝑏 

𝐷𝑅𝐷𝑡,𝑆𝑀𝐵
𝑏 = 𝛼 +  𝛽𝑀𝐾𝑇 ∗ 𝑟𝑀𝐾𝑇,𝑡 + 𝛽𝐻𝑀𝐿 ∗ 𝑟𝐻𝑀𝐿,𝑡 + 𝛽𝑊𝑀𝐿 ∗ 𝑟𝑊𝑀𝐿,𝑡 +  𝜖𝑡

𝑏 

𝐷𝑅𝐷𝑡,𝐻𝑀𝐿
𝑏 = 𝛼 +  𝛽𝑀𝐾𝑇 ∗ 𝑟𝑀𝐾𝑇,𝑡 +  𝛽𝑆𝑀𝐵 ∗ 𝑟𝑆𝑀𝐵,𝑡 +  𝛽𝑊𝑀𝐿 ∗ 𝑟𝑊𝑀𝐿,𝑡 +  𝜖𝑡

𝑏 

𝐷𝑅𝐷𝑡,𝑊𝑀𝐿
𝑏 = 𝛼 +  𝛽𝑀𝐾𝑇 ∗ 𝑟𝑀𝐾𝑇,𝑡 +  𝛽𝑆𝑀𝐵 ∗ 𝑟𝑆𝑀𝐵,𝑡 +  𝛽𝐻𝑀𝐿 ∗ 𝑟𝐻𝑀𝐿,𝑡 +  𝜖𝑡

𝑏 

For each iteration we regress the new return series 𝐷𝑅𝐷𝑡,𝑋
𝑏  on Fama and French (1992) 

four factors as given in the equation below.  

𝐷𝑅𝐷𝑡,𝑋
𝑏 = 𝛼 +  𝛽𝑀𝐾𝑇

𝑏 ∗ 𝑟𝑀𝐾𝑇,𝑡 +  𝛽𝑆𝑀𝐵
𝑏 ∗  𝑟𝑆𝑀𝐵,𝑡 +  𝛽𝐻𝑀𝐿

𝑏 ∗ 𝑟𝐻𝑀𝐿,𝑡 +  𝛽𝑊𝑀𝐿
𝑏 ∗ 𝑟𝑊𝑀𝐿,𝑡  + 𝜖𝑡

𝑏 



Where X = {MKT, SMB, HML, WML}. 

In the above four regressions we save 𝛽𝑋
𝑏 along with its t-statistic. Repeating the above 

bootstrap regressions 2000 times gives the distribution of 𝛽𝑋
𝑏 and its t-statistic under the 

null, 𝛽𝑋
𝑏 = 0. We then compare the β estimates and their t-statistics from equation 2 with 

the distribution of β and t-statistics generated from above bootstrap procedure. We 

calculate the two sided p-value as below. 

𝑃𝛽,𝑋 = 2 ∗ min (
1

2000
∗  ∑ 𝐹(𝛽𝑋 >  𝛽𝑋

𝑏)

2000

𝑏=1

,
1

2000
∗  ∑ 𝐹(𝛽𝑋 <  𝛽𝑋

𝑏)

2000

𝑏=1

) 

𝑃𝑡𝑠𝑡𝑎𝑡,𝑋 = 2 ∗ min (
1

2000
∗  ∑ 𝐹(𝑡𝑠𝑡𝑎𝑡𝑋 >  𝑡𝑠𝑡𝑎𝑡𝑋

𝑏)

2000

𝑏=1

,
1

2000
∗  ∑ 𝐹(𝑡𝑠𝑡𝑎𝑡𝑋 <  𝑡𝑠𝑡𝑎𝑡𝑋

𝑏)

2000

𝑏=1

) 

Where 𝐹(𝐾) = 1 𝑖𝑓 𝐾 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑒𝑙𝑠𝑒 0.  

For each of the 17,704 portfolio declarations we calculate 𝑃𝛽,𝑋 𝑎𝑛𝑑 𝑃𝑡𝑠𝑡𝑎𝑡,𝑋 where X = {MKT, 

SMB, HML, WML}. In total we run about 142 million regressions (17704 declarations * 2000 

(number of bootstraps per declaration) * 4 (each for SMB, HML, WML and MKT)). 

A4. FDR  

A4.1 Procedure for estimating 𝜆∗ 

We use bootstrap procedure proposed by Storey (2002) to estimate the proportion of zero-

alpha funds in the population, 𝜋𝑋
0 . This resampling approach chooses λ from the data such 

that an estimate of Mean Squared Error (MSE) of 𝜋𝑋
0(λ), defined as 𝐸(𝜋𝑋

0(λ) −  𝜋𝑋
0)^2, is 

minimized. First we compute 𝜋𝑋
0(λ) using equation below across a range of λ values (λ = 

0.30, 0.35,.…, 0.70). 

𝜋𝑋
0 =

𝑊(𝜆)

𝑀
∗  

1

(1 −  𝜆)
 

Second, for each possible value of λ, we form 1000 bootstrap replications of 𝜋𝑋
0(𝜆) by 

drawing with replacement from the Mx1 vector of fund p-values. These are denoted by 



𝜋𝑋
0,𝑏(𝜆) for b = 1, 2, …2000. Third we compute the estimated MSE for each possible value of  

: 

MSE(𝜆) =
1

1000
∑ [𝜋𝑋

0,𝑏(𝜆) − min(𝜋𝑋
0(𝜆))]2

1000

𝑏=1

 

We choose 𝜆∗ such that 𝜆∗ = arg 𝑚𝑖𝑛𝜆  𝑀𝑆𝐸(𝜆). We repeat the above process for each x = 

{MKT, SMB, HML,WML} 

A4.2 Procedure for estimating 𝛾∗ 

To estimate the proportions of window dressed funds and non-window dressed funds not 

belonging to the null in the population, 𝜋𝑋
− and 𝜋𝑋

+, we use a bootstrap procedure that 

minimizes the estimated MSE of 𝜋𝑋
−(𝛾) and 𝜋𝑋

+(𝛾). First we compute 𝜋𝑋
+(𝛾) using equations 

below for a range of values of 𝛾 (𝛾 = 0.30,  0.35, …..0.60): 

𝜋𝑋
+ =  𝑇𝑋,𝛾∗

+ ;   𝐸(𝑇𝑋,𝛾
+ ) =  𝐸(𝑆𝑋,𝛾

+ ) −  𝜋𝑋
0 ∗  

𝛾

2
 

Second we form 1000 bootstrap replication of 𝜋𝑋
+(𝛾) for each possible value of 𝛾. These are 

denoted by 𝜋𝑋
+,𝑏(𝛾), for b = 1, 2, …, 1000. Third we compute the estimated MSE for each 

possible value of 𝛾.  

MSE+(𝛾) =
1

1000
∑ [𝜋𝑋

+,𝑏(𝛾) − max(𝜋𝑋
+(𝛾))]2

1000

𝑏=1

 

We choose 𝛾+ such that 𝛾+ = arg 𝑚𝑖𝑛𝛾  𝑀𝑆𝐸+(𝛾). We use the same process to calculate 

𝛾_ = arg 𝑚𝑖𝑛𝛾  𝑀𝑆𝐸−(𝛾). If 𝑚𝑖𝑛𝛾𝑀𝑆𝐸−(𝛾) <  𝑚𝑖𝑛𝛾𝑀𝑆𝐸+(𝛾) we set 𝜋𝑋
−(𝛾∗) =  𝜋𝑋

−(𝛾−). To 

preserve the equality 1= 𝜋𝑋
0 + 𝜋𝑋

+ +  𝜋𝑋
−, we set 𝜋𝑋

+(𝛾∗) = 1 −  𝜋𝑋
0 − 𝜋𝑋

−(𝛾∗). Otherwise we 

set we set 𝜋𝑋
+(𝛾∗) =  𝜋𝑋

+(𝛾+) and  𝜋𝑋
−(𝛾∗) = 1 −  𝜋𝑋

0 − 𝜋𝑋
+(𝛾∗). We repeat the above process 

for each x = {MKT, SMB, HML, WML}. 

A4.2 Procedure for estimating standard deviation of 𝜋𝑋
0 , 𝜋𝑋

+ 𝑎𝑛𝑑 𝜋𝑋
− 

We follow Genovese and Wasserman (2004) to calculate the standard errors of 



𝜋𝑋
0 , 𝜋𝑋

+ 𝑎𝑛𝑑 𝜋𝑋
−. As the number of declarations, M, goes to infinity Genovese and Wasserman 

(2004) show that 𝜎𝜋𝑋
0 =  (

𝑊(𝜆∗)(𝑀−𝑊(𝜆∗))

𝑀3(1−𝜆)2 )
1/2

. Similarly 𝜎𝑆𝑋,𝛾
+ =  (

𝑆𝑋,𝛾
+ (1− 𝑆𝑋,𝛾

+ )

𝑀
)

1/2

 𝑎𝑛𝑑 𝜎𝑇𝑋,𝛾
+ =

  (𝜎
𝑆𝑋,𝛾

+
2  + (𝛾/2)2 𝜎

𝜋𝑋
0

2 + 2 
(𝛾/2)

1 − 𝜆∗
 𝑆𝑋,𝛾

+  
𝑊(𝜆∗)

𝑀2
)

1/2

. The standard deviation of estimators in the 

Non-Window dressed tail, 𝑆𝑋,𝛾
−  𝑎𝑛𝑑 𝑇𝑋,𝛾

− , are obtained by replacing + with – in the above 

equations. If 𝛾∗ =  𝛾+, the standard errors of 𝜋𝑋
+ 𝑎𝑛𝑑 𝜋𝑋

− are given by, 𝜎𝜋𝑋
+ =  𝜎𝑇𝑋,𝛾∗

+  and 

𝜎𝜋𝑋
− =   (𝜎

𝜋𝑋
+

2 +  𝜎
𝜋𝑋

0 (𝜆∗)
2 − 2 (

1

1− 𝜆∗) 𝑆𝑋,𝛾∗
+  

𝑊(𝜆∗)

𝑀2 − 2 (
𝛾∗

2
) 𝜎

𝜋𝑋
0

2 )
1/2

. If 𝛾∗ =  𝛾− we have to 

reverse + and – in the above two formulas. 

A5. Results 

 

Figure: Histogram of P-values of co-efficients of various risk factors in equation 2. 


