
 

1 

 

Pricing Deposit Insurance Premiums with Moral Hazard and Hedging 

with Credit Default Swaps 

Ting Liang Liao*, Yang-Che Wu, Ming Jing Yang 

*corresponding author 

Department of Finance, College of Finance, Feng Chia University, No. 100, 

Wenhwa Rd., Seatwen, Taichung 40724, Taiwan 

E-mail: tlliao@fcu.edu.tw   wuyangche@fcu.edu.tw mjyang@fcu.edu.tw 

Jo-Yu Wang 

Department of International Trade, College of Business, Feng Chia University, No. 

100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan 

E-mail: jywang@fcu.edu.tw 

 

 

 

 

 

 

 

 



 

2 

 

Pricing Deposit Insurance Premiums with Moral Hazard and Hedging 

with Credit Default Swaps 

 

Abstract 

Moral hazard may emerge as a result of deposit insurance schemes that guarantee all 

deposits because managers of banks and depositors bear no consequences for banks’ 

risk-taking in the pursuit of higher yields. In this paper, we propose a method for 

modeling moral hazard with deposit rate spreads and quantify the impact of moral 

hazard on deposit insurance premiums. Thus, we provide a closed-form solution for 

deposit premiums that incorporates moral hazard, early closure, capital forbearance, 

and a stochastic risk-free interest rate under a risk-based option pricing framework. 

Furthermore, we use credit default swaps to investigate a market-based method to 

estimate bank risk, and we present a hedging concept can be used by deposit 

insurance corporations to diversify the risk of deposit insurance via credit derivatives. 
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1. Introduction 

The management objectives of financial institutions are to protect the rights and 

benefits of depositors, to maintain financial order, and to promote financial stability 

and development. Given today’s globalized financial environment, the ex-ante 

supervision of financial institutions and ex-post remedies are equally important. 

Governments must establish sound and complete financial management systems 

and offer deposit insurance such as that provided in the United States by the 

Federal Deposit Insurance Corporation (FDIC). Deposit insurance provides basic 

safeguards against bank runs and contagion proliferation that can lead to global 

financial crises. In addition, the commitments and the resulting safety net provided 

by deposit insurance corporations can strengthen market confidence for investors 

and prevent avoid panic, particularly in a global recession. 

Since Merton (1977), deposit insurance has typically been modeled as a European 

put option, i.e., a put contract that is issued by the deposit insurer and written on bank 

assets that features a strike price equal to the deposit amount and maturity at the audit 

date. Therefore, the insurance claim is regarded as the option payoff, which is the 

shortfall between the bank’s asset value and the deposit account, and the premium is 

calculated under the Black-Scholes framework (Ronn and Verma, 1986; Thomson, 

1987; Episcopos, 2004). However, this Merton-type setting ignores the possibility of 

early closure or capital forbearance. Thus, the omission of these possibilities is at 

odds with reality. 

Banks conforming to the risk-based capital standards of the Basel II regulations can 

increase their insurance subsidy by concentrating their lending and off-balance sheet 

activities (Pennacchi, 2006). When banks fail to meet the applicable capital standard, 

deposit insurers may provide these undercapitalized financial institutions capital 

forbearance and require them to take prompt corrective actions to recapitalize during a 
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limited period or close early (Hellmann et al., 2000; Kane, 2001; Nagarajan and 

Sealey, 1995). Duan and Yu (1994) propose a multi-period deposit insurance pricing 

model that simultaneously incorporates these capital standards and the possibility of 

forbearance. Moreover, Duan and Yu employ GARCH option pricing techniques in 

determining the value of deposit insurance. In a simple model, Lee et al. (2005) derive 

a closed-form solution for deposit insurance under capital forbearance as an option to 

delay the resolution of undercapitalized financial institutions.  

In addition to capital forbearance, recent studies incorporate early closure policies 

and stochastic interest rates into the deposit insurance pricing formula using a 

Merton-type setting. Hwang et al. (2009) apply the “down-and-out” put option 

formula to determine the regulatory threshold – defined as the lower barrier of the 

option for the deposit insurance – while explicitly considering bankruptcy costs and 

closure policies. Based on the calibration of pricing parameters, Chuang et al. (2009) 

measure the deposit insurance premium under stochastic interest rates for Taiwan’s 

banks by applying the two-step maximum likelihood estimation method. These 

methods attempt to consider the various risks that the deposit scheme faces when 

providing fair risk-based deposit insurance premium. 

Although deposit insurance reduces the risk of bank runs, it simultaneously 

decreases the incentive for depositors to monitor a bank’s asset choices (Laeven 2002; 

Demirgüc-Kunt and Detriagache 2002). Wheelock and Kumbhakar (1995) attempt to 

discern whether insured banks are riskier because of moral hazard, adverse selection 

or both and found that the Kansas deposit insurance system appears to suffer from 

problems related to both adverse selection and moral hazard. The moral hazard 

problem is likely to plague deposit insurance schemes because it creates incentives for 

banks to take on greater risk and engage in risky activities with impunity (Laeven, 

2002). So and Wei (2004) observe that the impact of the moral hazard on the fair 
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insurance premium is more significant than a bank’s equity value and charter value. 

The insurer should have the ability to deter banks’ risky behavior and close 

problematic banks when necessary. A fair pricing framework of deposit insurance is 

therefore crucial to mitigating moral hazard problems (VanHoose, 2007). 

In this paper, we consider two sources of moral hazards and attempt to measure the 

corresponding risk-based deposit insurance premium incurred by the particular moral 

hazard. The first source of moral hazard arises from the deposit rate spread (the 

difference between the deposit rate and the risk-free interest rate). Deposit insurance 

schemes guarantee compensation for depositor loss and thereby encourage depositors 

to choose banks that offer higher deposit rates, which means that banks can absorb 

more deposit liability and increase the bank's own size by increasing the deposit rate 

spread. However, this scheme also gives banks incentives to increase risk-taking due 

to their limited liability, which results in banks taking on more risky loans and higher 

interest-rate risk exposure to achieve higher net interest margins (Angbazo, 1997). In 

other words, the higher the deposit rate spread, the more incentive banks have to take 

greater risks than they otherwise would have taken by paying the deposit rate spread 

while maintaining its profit level. 

We propose two ideas to reflect the risk of moral hazard regarding deposit 

premiums and to temper the moral hazard arising from the deposit rate spread. One 

idea characterizes the deposit rate spread as a risk function that involves a bank’s asset 

risk. When a bank provides a higher deposit rate spread, the deposit insurance 

corporation should charge higher insurance premiums due to the higher probability of 

risk-taking operations of the bank that will increase the bank’s risk. The other idea is 

to allow depositors to assume part of the risk when they pursue higher deposit rate 

spreads to achieve excess profits. Depositors save their money in the bank that 

provides a higher deposit rate when the deposit is completely insured, which, of 
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course, increases the moral hazard incentives of the bank. To mitigate the moral 

hazard problem, we design a moral hazard multiplier with a deductible proportion to 

model the penalty for depositors when the insured bank closes or is taken over. 

The second source of moral hazard occurs in the grace period of capital forbearance. 

If the insured bank’s asset value cannot meet the capital standard but does not fall 

below the forbearance threshold at the time of the audit, the insured bank can extend 

its operations for a certain grace period (Nagarajan and Sealey, 1995; Kane, 2001; Lee 

et al., 2005). During the grace period, the insured bank is asked to adopt more 

aggressive financial operations to increase its earnings and thus to satisfy the 

adequacy requirement. In this case, the moral hazard operation may occur. The 

insured bank can adjust the underlying holdings of its securities positions by 

increasing the number of higher-yielding securities it holds or by changing its asset 

allocation and increasing the weight of investment positions, which typically have 

higher yields than loan positions and can offer quick profits. Both operations will lead 

to higher bank asset volatility, and the deposit premiums should take the additional 

risk during the grace period into account. 

In this study, we examine deposit insurance premiums with moral hazard risks 

arising from two sources, and we incorporate early closure, capital forbearance, and 

stochastic interest rates into our investigation. Moreover, using the credit default swap 

(CDS) market, we develop a market-based method to calibrate the volatility parameter 

of future bank assets by using the bank’s CDS position, and we suggest a hedging 

strategy for deposit insurance corporations to diversify the risk of deposit insurance 

via the CDS market. 

The remainder of this paper is organized as follows: Section 2 proposes a deposit 

insurance scheme that considers closure policies and moral hazard risks. Section 3 

derives a closed-form solution for risk-based deposit insurance premiums and 
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constructs a market-based calibration concept of bank risk to value deposit insurance 

premiums through the CDS mechanism. Section 4 presents several numerical 

experiments that analyze the source of premiums relative to Merton’s deposit 

insurance put and shows how banks maintain ratios, debt-to-asset ratios, asset 

allocation, and moral hazard relative to premiums. Moreover, we analyze the deposit 

premiums of specific large banks with extreme closure policies and the hedging effect 

of using credit derivatives. Section 5 concludes. 

2. Deposit insurance schemes and bank balance sheets 

2.1 Bank asset model 

Before modeling the deposit insurance schemes, we must verify the assumptions of 

the risk-free interest rate (hereafter referred to as the risk-free rate), the bank’s deposit 

liabilities and the consistency of the bank’s assets. The stochastic risk-free rate ( )r t  

is adopted from the Vasicek (1977) model and leads to the following explicit formula: 

 ( ) ( ( )) ( )P

r rdr t r t dt dW t      (1) 

where   represents the mean-reverting force measurement,   stands for the 

long-term mean of the risk-free rate, 
r  is the volatility of the risk-free rate and

( )P
rW t  is a Wiener process. Therefore, we define the riskless money market account 

0
( ) exp{ ( ) }

t

M t r s ds   as the numeraire for the pricing deposit premium.  

Banks provide the deposit rate for drawing funds based on their own financial 

condition. Therefore, the dynamics of deposit liabilities ( )D t  should grow with the 

deposit rate ( )r t  , where   is the difference between the deposit rate and the 

risk-free rate, and we call this measure the deposit rate spread. Specifically,  

  ( ) ( ) ( )dD t r t D t dt   (2) 
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where the dynamic of deposit liabilities has no uncertainty risk except for the risk-free 

rate risks. However, this does not mean that investing money in the deposit is without 

risk. The return on a riskless asset is a risk-free rate that prevents any arbitrage 

opportunity.  

As documented in the literature, deposit insurance schemes generate a moral hazard 

problem (Grossman, 1992, Wheelock and Kumbhakar, 1995, Gropp and Versala, 2004, 

Cull et al. 2005, and Beck et al., 2006). When there is a moral hazard, a bank may 

engage in excessive risk taking to realize additional profit to cover the extra deposit 

interest. Thus, the bank’s risk should include the risk of moral hazard caused by the 

deposit rate spread. In addition, the deposit may suffer a default risk; as we discuss 

later, that risk cannot be completely covered through the deposit insurance scheme 

designed in our model. Given the specification of riskless money market accounts 

( )M t  and a bank’s outstanding deposit liabilities, ( )D t , we can express deposit 

liabilities as 

    
0

( ) (0)exp ( ) (0) ( )exp
t

D t D r s ds t D M t t     (3) 

Table I presents the statistical reports of the financial statements of FDIC-insured 

institutions from the FDIC website 1  and presents the asset allocation of all 

commercial banks insured by the FDIC from 1994 to 2013. Table 1 demonstrates that 

the total percentage of bank assets in reserve, securities, and loans2 is greater than 

90%, i.e., the risk of the bank’s assets is found mostly in these three components. 

[Insert Table I here] 

                                                 
1http://www2.fdic.gov/SDI/SOB/ 
2In the table, reserves are defined as “cash and due from depository institutions” of a banking report, 

and the term securities represents “securities”, “federal funds sold & reverse repurchase agreements,” 

and the “trading asset account” of the balance sheets from the banking report at the FDIC. 

http://www2.fdic.gov/SDI/SOB/
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Because bank assets fluctuate closely and stably around a given financial strategy, 

we assume in this paper that the allocation of bank assets consists of the following: (1) 

the amount held in reserves and cash, ( )R t ; (2) the loan position, with price process 

( )L t ; and (3) the investment position, with price process ( )S t . The investment 

position includes securities and trading account assets, hereafter referred to as 

securities. The reserve position is allocated among a fixed proportion,  , of bank 

assets, where ω is the fraction of bank assets invested in securities, and the remaining 

fraction 1     consists of outstanding loans. The dynamics of bank assets, ( )A t , 

evolve according to the following: 

( )
( )

( )

dR t
r t dt

R t
              (4) 

 
( )

( ) ( ( )) ( ) ( )
( )

P

c L

dL t
r t r t dt dr t dW t

L t
                (5) 

( )
( )

( )

P

S S

dS t
dt dW t

S t
              (6) 

( ) ( ) ( )

( ) ( ) ( )

( )
(1 )

( )

dR t dS t dL t

R t S t L t

dA t

A t
               (7) 

where   denotes the instantaneous interest rate elasticity of the loans;   is the 

interest rate spread, which is the interest rate paid by banks on loans to sector 

customers minus the interest rate paid by savings deposits; ( )P

LW t  represents the 

Wiener process under the physical probability measure and independent of ( )P
rW t ; 

and c  denotes the constant credit risk, orthogonal to the interest rate risk. 

According to Duan et al. (1995) and Chuang et al. (2009), the total loan risk can be 

expressed as 2 2 2

L r c     . The security dynamics follow Black-Scholes 

dynamics, with an instantaneous rate of return, 0  ; the volatility parameter for 
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the securities market is S . The term ( )P

SW t  is the Wiener process under the 

physical probability measure representing the securities market risk, which is 

independent of ( )P

LW t  and ( )P

rW t . The dynamics of reserves and cash positions are 

increased with the risk-free interest rate and are held at a constant reserves-to-assets 

ratio,  .  

The bank’s asset dynamics result from equations (4)-(6) because the bank’s assets 

are weighted by reserves and cash, investments and loan positions. The assets can be 

derived as follows: 

  
( )

(1 ) ( ) (1 )( ) ( )
( )

P

A

dA t
r t dt dW t

A t
               (8) 

where 2 2 2 2(1 ) ( )S L g            refers to the total risk of bank assets, and 

( )P

AW t  is a Wiener process. The function ( )g   denotes that under this assumption, 

the bank will experience increasing risk because of the additional deposit rate spread 

based on the moral hazard argument. We define ( )g   as the excess risk function of 

the deposit rate spread.3  

2.2 A deposit insurance contract with closure policies 

Valuation models such as those of Merton and Ronn and Verma assume that the 

regulatory authorities can only monitor a bank’s assets at the maturity of the insurance 

contract, i.e., at the time of audit. According to Brockman and Turtle (2003) and 

Episcopos (2008), bank creditors and depositors will not wait for the maturity date of 

debt or deposits. A bank can go bankrupt before the audit date if the bank’s asset value 

                                                 
3 The explicit form of the excess risk function of the deposit rate spread can be assumed in any form of 

the deposit rate spread used by insurers. In our model, we assume the excess risk function to be the 

simple linear function of the deposit rate spreads, and the relative analysis is shown in section 4.2. 



 

11 

 

is lower than a specific threshold, which triggers debt holders and depositors to 

withdraw their money. For deposit insurers, the bankruptcy premium occurs during 

the audit window period and should be considered when evaluating the risk of early 

closure.  

To explicitly model regulations for early closure, we assume that the maintenance 

ratio, (0,1)  , represents the minimum asset-to-debt ratio required to keep the bank 

functioning. In other words, if the bank’s asset value is lower than its maintenance 

working capital level ( )D t  during the contract period, the bank is regarded as 

bankrupt. Let   be the first-time bank assets drop to breach the maintenance 

working capital level. We define the threshold as follows: 

  inf ( ) ( )0 A t D tt     (9) 

If   is not later than the auditing time, 1T , the bank goes bankrupt or is taken over. 

The deposit insurance payoff occurs at  . If the bank goes into liquidation at time 

1T  , the deposit insurer compensates the depositor for the difference between the 

bank’s asset value and its deposit debt. At this point, the bank’s asset value equals 

maintenance working capital; therefore, the deposit insurance payoff at time   can 

be expressed as follows:  

 ( ) (1 ) ( )P D     (10) 

which is a threshold option on the underlying asset whose price breaches the 

maintenance working capital level, resulting in default. The insurer pays deposit 

insurer compensation (1 ) ( )D   to depositors when the bank defaults. Merton’s 

(1977) original deposit insurance pricing model and other deposit insurance pricing 

models (Ronn and Verma, 1986; Lee et al., 2005) do not allow for premature default 

because default can only occur when a claim matures. In our setting, we first 
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investigate passage time structural models corresponding to various specifications of 

the basic components of a credit risk model. 

So and Wei (2004) specify that capital forbearance and the capital ratio play an 

important role in determining the deposit insurance premium. In our model, if the 

bank can operate until audit time 1T , the regulatory authority examines the bank’s 

asset value at that time. The assumptions of capital forbearance are similar to those of 

Duan and Yu (1994): The regulator offers the insured bank capital forbearance for a 

grace period,  , if its asset value cannot meet the capital standard, 1( )D T , but does 

not fall below the capital forbearance threshold 1( )D T , where   is greater than 

maintenance ratio  ; otherwise, capital forbearance loses its meaning. The 

financially distressed bank can extend its operations until the time of the next audit, 

2T , which is 1T    if the insuring agent promises to restore the asset value to a level 

higher than the bank’s outstanding deposit liabilities, 2( )D T . Once the bank’s value 

drops below the capital forbearance threshold, 1( )D T , at time 1T , or 2( )D T  at time 

2T , the regulator will take over the depository institution. 

In the context of deposit insurance, regardless of whether the insured bank closes or 

is taken over, the liquidation of insured deposits must restore the asset value. The 

payoffs of the deposit insurance contract at time 1T  without default before the audit 

can be expressed as follows: 

 

1 1

1 1 2 1 1 1

1 1

0 ( ) ( )

( ) ( , ) ( ) ( ) ( )

( ) ( )

if A T D T

P T F T T if D T A T D T

D T A T if otherwise



 




  
 

 (11) 

where 1 2( , )F T T  denotes the value of the capital forbearance and the grace period 

with maturity 2T  at audit time 1T . Equation (11) can be regarded as the payoff for a 

type of compound option that is a generalized writer-extendible put option. A pricing 

model of retractable and extendible bonds was presented by Brennan and Schwartz 
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(1977) and Ananthanaray and Schwartz (1980). Longstaff (1990) extended those 

authors’ work to develop holder- and writer-extendible options and applied those 

options to evaluate real estate options, warrants, extendible bonds and American 

options. In this paper, we model the deposit insurance scheme as a general 

writer-extendible option when the bank works until audit time 1T . If the bank’s assets 

are higher than the capital standard, the payoff of deposit insurance equals zero. 

However, if the asset value cannot satisfy the capital standard, the payoff of deposit 

insurance is a type of writer-extendible put option in which the underlying asset is the 

bank asset value, and the strike price is the capital forbearance threshold 1( )D T . If 

the asset value is lower than 1( )D T  at time 1T , the deposit insurer pays the 

difference between the deposit liabilities and the bank’s assets to cover the deposit 

losses; otherwise, the results lead to another put option with maturity 2T . Longstaff 

(1990) showed that a deposit insurance payoff can degenerate into a writer-extendible 

put option with a time-variant strike price if parameter   tends to infinity and 

1  . 

Based on capital forbearance for deposit insurance, the general extendible put 

option is in force because the bank’s assets are lower than 1( )D T  but do not fall 

below the capital forbearance threshold, 1( )D T . The financially distressed bank can 

extend its operations until the time of the next audit, 2T , if the insuring agent 

promises to restore the asset value of the bank’s outstanding deposit liabilities, 2( )D T . 

The option is extended with time to maturity,  , and the strike price, which is the 

bank’s outstanding deposit liabilities at 2T . Therefore, the payoff at time 2T  can be 

written as follows: 

 
2 2

2 2

2 2

         0           ( ) ( )
( , )

( ) ( )        

if A T D T
F T T

D T A T if otherwise


 


 (12) 
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When asset value cannot increase above deposit liabilities at audit time 2T , the 

claim amount is the difference between the bank’s deposit liabilities and its asset 

value. According to the Basel Accord, bank operations are required to maintain a 

minimum of 8% of their capital, based on a percentage of risk-weighted assets. For 

simplicity, we assume the risk-weighted asset value at the current time is ( )A t  and 

total deposit debt is ( )D t . Because ( ) ( )A t D t  over ( )A t  must be greater than 8% 

to meet the capital adequacy ratio, the capital standard ( ) ( )A t D t  is required to be 

greater than 1.087. Therefore, in this paper, the capital standard parameter   is set 

at 1.087 (see also Lee et al., 2005). 

2.3 A design for reducing the moral hazard of the deposit insurance scheme 

The deposit insurance scheme incentivizes banks’ moral hazard and excessive 

risk-taking, which encourages both depositors and banks to assume excessive risk. 

Without deposit insurance, banks would compete for deposits because depositors 

prefer safe banks over risky banks to protect their money. With deposit insurance, 

banks can take excessive risks because depositors are not worried about their deposits’ 

safety. Based on deposit insurance, we assume that a bank increases its deposit rate 

spread to attract depositors and then increases its own size by absorbing more deposit 

liability. However, the bank must engage in excessive risk-taking operations to pay 

the deposit rate spread while maintaining its profit level. To reduce the moral hazard 

incentives, the deposit insurance corporation should charge higher insurance 

premiums when a bank provides a higher deposit rate spread. Moreover, we define the 

ratio 1bank   as the proportion of risk-based premiums that include a penalty for a 

bank’s moral hazard. The ratio bank  is essentially a function of the deposit rate 

spread and is determined by deposit insurer flexibility.  

In addition to the banks’ moral hazard problem, depositors generate their own 

moral hazard because they will save their money in the banks that provide a higher 
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deposit interest rate if the deposit is completely insured, which indirectly incentivizes 

the moral hazard of banks raising the deposit rate spread and undertaking riskier 

operations. We assume that the depositor should bear a portion of the losses when an 

insured bank closes or is taken over, i.e., the depositor should only receive a ratio 

1depositor   of his/her deposit when an insured bank fails. In this design, the depositor 

shares the bank’s default risk with the deposit insurance corporation, thereby reducing 

the premiums charged by the insurer. To reflect a fair risk-based premium, the higher 

the deductible proportion of the depositor is, the lower the multiplier ratio, depositor . 

Therefore, we take the ratio depositor  as the penalty multiplier of the depositors’ moral 

hazard.  

Based on the above argument, the moral hazard-adjusted deposit insurance 

premium P(0) can be expressed as follows: 

    1 1

1

1

( ) ( )
(0)

( ) ( )

Q Q

T T

P P T
P E I E I

M M T

 
 

  

  

  
    

   
 (13) 

where [ ]QE   denotes the expected value under the measure risk-neutral measure Q , 

and I
  is the indicator function. bank depositor     is the combined multiplier 

designed to reduce the moral hazard for both the bank and its depositors. We define 

the   as the penalty multiplier of the deposit insurance premium. 

3. Risk-based deposit insurance premiums 

3.1 Closed-form formula for deposit insurance premiums 

To price the initial deposit premium, we adopt the standard practice of adjusting the 

probability measure that incorporates the risk premium into the risk-neutral 

probability measure. The dynamics of bank assets under the risk-neutral measure are 

written as follows: 
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 ( ) ( ) ( ) ( ) ( )Q

AdA t r t A t dt A t dW t   (14) 

where 2 2 2 2(1 ) ( )S L g            is referred to as the total risk of bank 

assets and ( )Q

AW t  represents the Wiener processes under the risk-neutral probability 

measure. 

In this paper, the asset-to-debt ratio is used to determine the insurance payment. 

The relative values of assets and debts eliminate the effect on returns caused by 

risk-free rates, and the risk-free rates’ influence only appears in the volatility of bank 

assets. Applying Ito’s lemma, we can write the relative dynamics of a bank’s assets as 

follows: 

  
( ) ( )

( )
( ) ( )

Q

A

A t A t
d dt dW t

D t D t
     (15) 

Following equation (13), the risk-based premium that the insured bank pays to the 

deposit insurer can be further divided into the following three components: 

 1 1 1
1 1

1 1

1 1

( ) ( )
, ,

1 1( ) ( )

( ) ( ) ( )
(0)

( ) ( ) ( )

Q Q Q

T A T A T
T T

D T D T

P P T P T
P E I E I E I

M M T M T

  


    

   


       

       
      

    
      
        

 

(16) 

The closed-form solution for the risk-based deposit insurance premium consists of 

an audit window component (the first term in equation (16), denoted as  aP ), a capital 

forbearance component (the second term in equation (16),  cP ) and a grace period 

component ( P , the third term in equation (16)). These are expressed as follows: 
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where 
2

2
v


   , 2v v   , 2 22u v    , 2 2 2 2(1 )S L         , 

2 2 2

L r c     ,
1

1

1

( )
( , )

B x zT
c x z

T


 ,

1
2

1

( ) ( )2
( , , )

B x B y zT
c x y z

T

 
 ,

2

2

1

(1)
( )

B T

T
e







 , 

(0)
( ) ln

(0)

xD
B x

A
 ,

2

2

2

(1) 2 ( )
( ) ,

B B T

T
e

 




 
 1

2

,
T

T
 

2
1

( , , ) ( ) ( )
c e Z

N c e Z dZ



 






  .

( )   and ( )   are the probability density and cumulative distribution functions of the 

standard normal distribution, respectively. More detail is provided in the appendix. 

 aP  is denoted as the early closure component, which has the purpose of evaluating 

the present value of the payment for banks that reach the default threshold before 

audit time 1T  such that the regulator must implement the bankruptcy process. 

Similarly,  cP  is presented as the capital forbearance component because its value is 

similar to the value of a down-and-out put option whose strike price is the capital 

forbearance threshold 1( )D T  at maturity time 1T . Although the bank may not go 

bankrupt, if it reaches the regulatory closure point, 1( )D T , the regulator will take 
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over the bank. The depositor can still obtain a rebate based on the difference between 

the regulatory closure point and the deposit insurance amount. The rebate should be 

reflected in the premium as  cP . P  is regarded as a grace period component 

because its value depends on regulatory delay. An undercapitalized institution can 

improve its financial position by continuing to work during the grace period. 

3.2 The moral hazard in the grace period 

Under the forbearance policy on capital regulation, the bank is asked to adopt a 

more aggressive financial operation to increase its earnings to satisfy the adequacy 

requirement, particularly during the grace period. In this case, two possible moral 

hazard operations are present. One operation adjusts the underlying holdings of the 

bank’s security positions to increase the number of higher-yielding securities and to 

incorporate higher volatility. The other operation adjusts the bank’s asset allocation, 

increasing the weight of security positions because those positions typically have 

higher yields than loan positions and can offer quick profits. 

This study analyzes risk taking in a simple, stylized manner, i.e., by adjusting the 

asset portfolio, because we argue that asset allocation is a crucial determinant of 

moral hazard. The bank manager tends to process a risk-taking operation by 

increasing the weight of an investment position; in other words, the bank may adjust 

its asset allocation with a larger value ω, particularly in the grace period. Thus, our 

model adopts another portfolio share   of securities during the grace period, where 

  . The difference between ω and   reflects the risk of moral hazard. 

According to a derivation similar to that shown for premium in the appendix, 

(0) ( ) ( ) ( )a cP P P P     , where ( )aP   and ( )cP   are the same as in 

equations (17) and (18). The term ( )P 
 is similar to equation (19), except that the 
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volatility of bank assets gives greater weight to securities: 

2 2 2 2(1 ) ( )S L g           . 

3.3 Calibration and hedging 

Because bank risk derives from the volatility of bank assets, which greatly 

influences the insurance premium deposit, a proper estimation of the volatility of bank 

risk is critical in pricing the insurance premium deposit. We believe that calibrating 

the volatility of bank assets through market trading information such as the CDS 

market is an appropriate method for pricing the insurance premium deposit. CDSs are 

described by referring to the cash flows of the premium leg and the default leg. The 

premium leg is obtained from the present value of all payments made by the 

protection buyer: 

 
1

(0, ) ( )
n

premium i i

i

CDS K B t Q t


   (20) 

where K is the fixed insurance payment dependent on the period, (0, )iB t  represents 

the present value of a zero coupon bond with maturity it  and ( )iQ t  denotes the 

probability of survival. 

In the bank CDS market, the volatility of bank assets can be calibrated from the 

CDS payment with the compounding loss rate by assuming the following model 

structure: 

 
0

(1 ) (0, )(1 ( ))
T

defaultCDS R B t Q t dt    (21) 

where T  denotes the maturity period of the CDS and R  reflects the recovery rate 

in case of a credit event. Based on equation (21), the present value of the default leg 

can be derived via the first passage time theory under the debt-to-asset ratio dynamics 
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described in equation (15). To simplify, we assume the discount rate for CDS payment 

when a default event occurs to be a constant number, which is the initial risk-free rate, 

0r .  

2 2
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 (22) 

where 2 2

02u v r  . 

Moreover, we can obtain the recovery rate in Moody’s Default & Recovery 

Database. The default probability curve can be calculated by the bootstrap procedure 

either by using the zero interest rate curve and the spread of CDS market quotes or 

simply by approximating the average default intensity,  , which is measured by the 

spread of the corporate bond yield divided by 1 R . Therefore, given the fixed 

portfolio of bank assets and the bank’s initial assets and debts, we can use a series of 

CDSs to calibrate the volatility of security, credit risks and loan interest rate elasticity 

by setting the premium leg equal to the default probability curve and the default leg to 

equation (22). 

Deposit insurance corporations provide deposit insurance that guarantees the safety 

of depositor accounts and charges depository institutions with insurance premiums 

that maintain the deposit insurance fund. Because the deposit insurance corporation 

ultimately bears the risk of a bank default, it carries a substantial amount of risk if 

many banks default, as occurred during the financial crisis. Therefore, deposit 

insurance corporations can transfer banks’ default risk to the credit markets via credit 

derivatives. A numerical experiment is designed to verify the hedge effect of deposit 

insurance by buying CDSs and to determine the optimal hedging ratio (Section 4.3). 

4. Numerical experiments 
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4.1 Closure policies, interest rate risk and bank asset allocation 

In this section, we numerically investigate the proposed model to understand how 

the value of deposit insurance under closure policies that consider early closure and 

forbearance varies with respect to critical parameters such as the capital forbearance 

threshold, the length of the grace period and the cross effects of the two. Moreover, 

we analyze how asset allocation, moral hazard and stochastic interest rate factors 

affect deposit insurance premiums. Based on the same parameters used by Lee et al. 

(2005) and Chuang et al. (2009) unless otherwise specified, the following parameters 

are used throughout: (0) 100A  , (0) 90D  , =0.1 , 0.25  , 0.3S  , 0.1c  ,

0.01r  , 0.1  , 0.05  , 0.5   , 1 1T  , 0.5 , 1.087  , 0.97   and 

0.8  . 

To clearly identify the effects of closure policies, risk-free rate elasticity and a 

bank’s asset allocation on insurance premiums, we provisionally ignore the deposit 

rate spread by setting 0  , such that the excess moral hazard risk of a bank’s assets 

is zero, that is, ( ) 0g   . 

[Insert Table II here] 

Table II depicts the relation between the deposit insurance premium and closure 

policies, crossed with the debt-to-asset ratio. The closure policies comprise the early 

closure and capital forbearance provisions. A regulator cannot examine a bank’s 

business operations until the audit period ends, unless the bank cannot function. 

Therefore, the probability and cost of bankruptcy depend on maintaining the ratio η. 

As the sensitivity analysis demonstrates in Table II, the deposit insurance premium 

decreases with the maintenance ratio but increases with the debt-to-asset ratio. The 

lower maintenance ratio decreases the opportunity of early closure but increases 

future risk. Therefore, lower maintenance lowers the premium of the early closure 
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component but increases the premium of the capital forbearance and grace 

components. Integrating these three components, we observe that premiums and 

maintenance ratios are adversely related. However, the premium is dominated by the 

debt-to-asset ratio because that ratio most directly reflects the risks of operations and 

bankruptcy. A higher debt-to-asset ratio represents a higher risk of bankruptcy and 

thereby requires a higher premium per deposit. 

The forbearance provision is interpreted through β and Δ, which are the capital 

forbearance threshold and the grace period length, respectively. According to the 

analysis in Table II, the premium formula shows that when the value of β is lower, 

the risk of bankruptcy at audit time is lower, but the risk at the end of the grace period 

is higher. Combining these two components, we find that the premium decreases with 

higher capital forbearance thresholds. Conversely, due to the grace period component, 

the higher the Δ, the higher the premium is. This case can be considered a European 

put with a longer time to maturity and higher costs. Furthermore, if moral hazard in 

the grace period is considered, the premium rises because it increases the weight of 

bank assets allocated in investment positions and raises banks’ operational risk during 

the grace period. 

[Insert Table III here] 

Table III provides an analysis of the risk-free rate controlled by risk-free rate 

elasticity,  , and risk-free rate volatility, r . In the case of fixed interest rate 

elasticity and fixed weights on securities, the deposit premium increases with risk-free 

rate volatility because it raises the risk of loan positions. However, the risk of 

variation in the risk-free rate appears less influential as elasticity approaches zero, 

whether it is positive or negative while approaching zero. We can infer that in the case 

of higher interest rate elasticity, the premium is more sensitive to interest rate 
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volatility. As the debt-to-asset ratio increases, the influences of both risk-free rate 

elasticity and volatility on the premium are relatively high because the variation of 

bank assets becomes more sensitive when the probability of bankruptcy increases. 

[Insert Table IV here] 

Deposit premiums for the credit market (loan position) and the securities market 

(investment position) that cross alternative portfolio shares for bank asset allocation 

ω are reported in Table IV. Overall, an increase in credit risk or security market risk 

volatility is reflected in higher deposit premiums. It is apparent that if the weight of 

securities decreases and most assets are allocated in loan positions, credit risk has a 

significant impact on premiums. As expected, security market risk appears to have a 

growing influence as the weight of securities increases. This finding reveals that asset 

allocation is an important determinant of the deposit premium in the case of fixed 

market risk. 

4.2 Scenario analysis of the deposit insurance premium for moral hazard risks 

In this section, we focus on the deposit rate spread and its consequent excess risk, 

which increases the bank asset’s volatility because of moral hazard. We assume the 

excess risk function of the deposit rate spread to be simply a constant proportion of 

the deposit rate spread; thus, ( )g x  . The constant x represents the excess risk per 

unit of the deposit rate spread, which we call the moral hazard multiplier. Further, 

assuming that 2x  ,4 we determine the relation of deposit insurance to the deposit 

rate spread and the deposit insurance premium multiplier,  . 

[Insert Figure I here]  

                                                 

4 We will analyze the effect of the moral hazard multiplier on the deposit insurance premium in Table 

V. 
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The upper left of Figure I is the overall deposit insurance premium; the upper right, 

lower left and lower right of Figure I are the early closure component, the capital 

forbearance component and the grace period component, respectively. Under a fixed 

deposit rate spread  , all the premium components are proportional to   because 

  is the penalty multiplier of the risk-based premium. Conversely, given a fixed 

premium multiplier, the overall deposit insurance premium and early closure 

component are increased with   because the deposit rate spread includes the excess 

risks in a bank’s assets into our model, thereby raising the premium.  

However, with an increase in the deposit rate spread, the premiums of the capital 

forbearance and grace period components are first increased and then decreased. As 

the deposit rate spread begins to increase from 0, the premiums of the capital 

forbearance and grace period components increase because of the excess risk resulting 

from the deposit rate spread, thereby increasing the risks related to bank assets. When 

the volatility of the bank’s assets rises to a specific level, the probability of early 

closure becomes large and dominates the probability of bankruptcy at the time of the 

audit and entrance capital forbearance. Thus, the premiums of these two components 

decrease due to the reduction of risk exposure, whereas the premiums of the early 

closure component increase. Because the premium increase increment of early closure 

is larger than the decreased increment of the capital forbearance and grace period 

components, the overall deposit insurance premium is positively related to the deposit 

rate spread.  

[Insert Table V here] 

A scenario analysis of deposit insurance that crosses the deposit rate spread, the 

moral hazard multiplier and the penalty multiplier is shown in Table V. As previously 

noted, the penalty multiplier   is the result of multiplying the penalty ratio for the 

bank’s moral hazard bank  by the depositor’s moral hazard, depositor . We assume the 
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depositor’s moral hazard multiplier is 1 10 ; in other words, if the depositor wishes 

to save her money in the bank with the deposit rate spread  , then she must bear 

0.1% of the deposit loss in the event that the bank enters bankruptcy, per the deposit 

rate spread. This result implies that the higher the deposit rate spread, the higher the 

deductible proportion is that a depositor must bear. 

The third column in Table V is the scenario for 1 10depositor    and 1bank  , 

which ignores the penalty of the bank’s moral hazard, such that 1 10   . We see 

that when the moral hazard multiplier is 0 (which implies that the deposit rate spread 

will not cause any excess risk for the bank’s assets), the premium decreases with an 

increase in the deposit rate spread. This decrease occurs because the depositor takes 

on a part of the deposit exposure, which reduces the exposure of the deposit insurance 

corporation. However, in the case of moral hazard, the multiplier equals 1 or 3, and 

the deposit rate spread brings excess risk to the bank’s assets; in other words, the 

volatility of the bank’s assets increases as the deposit rate spread increases. At this 

point, because of the increase in the bank’s assets, the increased premium increment is 

greater than the decreased increment due to the depositor bearing a part of the risk. 

Therefore, the premium increases with the deposit rate spread. Moreover, in the case 

of a depositor bearing the fixed deductible risk, premiums increase with the moral 

hazard multiplier because the higher moral hazard multiplier indicates a higher risk to 

the bank’s assets. 

The premiums are shown in the second column of Table V: 1 10depositor    and 

bank  is set as the reciprocal of depositor , such that 1  . This scenario is used to 

explain that the premium should decrease when the depositor bears a part of the 

deductible risk. However, if the insurer ignores the moral hazard multiplier (that is, if 

it treats   as 1), the premium charged by the insurer actually includes the penalty of 

the bank’s moral hazard because of the deposit rate spread. For instance, if the spread 
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is 10 basis points (bps) and the moral hazard multiplier is 1, the risk-based premium 

should be 139.55 bps per dollar of deposit if 1 10depositor     . When the insurer 

charges the premiums in the case of 1  , those premiums increase to 140.96 bps, 

and the difference, 1.41 bps, is the penalty for the bank’s moral hazard. 

[Insert Table VI here] 

From previous analysis, we know that premiums are positively correlated with the 

spread and penalty multiplier of moral hazard,  . We can further realize the 

composition of premiums with respect to the implied risk between penalty multipliers 

and the deposit rate spread by studying Table VI. Given the penalty multiplier of a 

bank’s moral hazard and a deposit rate spread, the premium is decreased as the 

deductible proportion is increased because the insurer’s exposure decreases. 

Conversely, given a deductible proportion, premiums do not increase or decrease 

consistently along with the deposit rate spreads. In our model, the penalty multiplier 

of a depositor’s moral hazard is assumed to be 1depositor d   , where 0d   is the 

deductible ratio. When the deposit rate spread increases, the penalty multiplier of the 

depositor’s moral hazard decreases because of the lower depositor . However, increases 

in the deposit rate spread also raise the bank’s asset risk because of the bank’s 

risk-taking operations.  

When 1 10depositor   , the premium is positively correlated with the deposit rate 

spread because the premium increment from the bank’s risk is greater than the 

premium reductions due to the depositor’s penalty multiplier. Because 

1 100depositor   , the depositor bears much greater deductive risks. In this case, when 

the deposit rate spread increases, the premium increments from the bank’s risk 

increase become smaller compared to the premium decrease due to the reduction of 

depositor .  
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We must emphasize that premiums are determined not only by the penalty 

multiplier of moral hazard   but also by its composition. For example, when 

1bank  , 1 10depositor   , 50   bps and 0.95  , the premium is 189.47 bps. 

When 1bank  , 1 50depositor    and 10   bps,   also equals 0.95, and the 

premium is then 133.91 bps. This result is also based on the risk that results from the 

deposit rate spread and is dispersed by depositor deductibles. 

4.3 Hedging analysis 

This section designs a numerical experiment to test the hedging effect for deposit 

insurance corporations using CDS in the case of no capital forbearance. The 

parameters are set in accordance with Section 4.1, except that the minimum capital 

requirement is 1  , the capital forbearance threshold is 1  , the grace period is 

0 , and the deposit rate spread is 0  . Moreover, the recovery rate and average 

default intensity throughout the numerical analysis are 0.8R  and 0.5  , 

respectively. The default probability within the contract period 1T   is, therefore, 

( ) tQ t e  . For a Monte Carlo simulation, we generate 100,000 sample paths to 

simulate the payments as the secured bank becomes insolvent. The hedge ratio, h , 

stands for the ratio of the CDSs it holds for the initial value of the bank’s asset value. 

The optimal hedge ratio of the deposit insurance cooperation can be written as 

follows: 

min ( (0) )

. .  (0)

h

a c

Var P h CDS

s t P P P

 

 
       (21) 

[Insert Figure II here] 

In Figure II, the solid line represents the standard deviation of the cash flow that the 

deposit insurance corporation must pay when the secured bank fails; it falls within the 

range of 1 to 6. The left and right y-axis values represent the standard deviation and 
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mean, respectively, of the discounted profit for 100,000 simulations. The x-axis value 

is the hedge ratio, which represents the ratio of the total notional amount of CDSs 

accounted for during the bank’s initial asset valuation. The payment that the deposit 

insurance corporation must make if the secured bank fails is equivalent to the fair 

value of the deposit insurance premium because the premium charged should equal 

the expected loss under risk-neutral measures. The dashed line is the mean of the 

payment’s expected loss for the deposit insurance corporation, which falls within the 

range of -4 to 3. If the payment is negative, the deposit insurance corporation has a 

cash inflow if the secured bank fails because it holds many of the failed bank’s CDSs. 

However, the more CDSs the deposit insurance corporation holds, the higher its costs 

are. The fair value of CDS cost equals the difference between the payment in the 

corresponding hedge ratio and the payment without the hedge. Because we consider 

the cost of holding the CDSs, the expected payment of the deposit insurance 

corporation will adjust to the horizontal dotted line. Figure II shows that, in the case 

of equal deposit insurance payments, as the mean of deposit insurance payment 

approaches zero, the variance in payments decreases. This intuitive result reveals that 

the deposit insurance corporation can transfer the risk of bank failure by buying the 

corresponding secured bank’s CDSs with the entire deposit insurance premium 

received. 

5. Conclusion 

Analyzing the premium considering the necessary conditions required by deposit 

insurance – including minimum capital requirements, capital forbearance thresholds, 

grace periods, early closure regularity, and the prevention of moral hazard – is a 

common issue in the literature. This paper constructs an explicit deposit insurance 

scheme and derives a closed-form pricing formula for fair premiums, which is a 

general form that breaks down into four special models in the literature. 
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Using an alternative debt-to-asset ratio, we conduct an analysis of the impact of 

policy instruments and interest rate elasticity and volatility on premiums that consists 

of three components: early closure, capital forbearance and grace period. We also 

verify the source of bank risk that consists of the weights of asset allocation and the 

risks of various markets, and we demonstrate the influence of these factors on 

premiums. 

The numerical results show that the insurance premium increases quickly with the 

debt-to-asset ratio when the additional moral hazard in the grace period and the ratio 

of asset allocations in the investing position are considered because these factors will 

significantly raise bank risk. Moreover, the premium increases as the capital 

forbearance threshold decreases when the increment of the grace period component is 

larger than the decrement of the capital forbearance component. 

Moral hazard is an important issue when considering deposit insurance. In this 

study, we quantify the moral hazard arising from the deposit rate spread and design a 

penalty mechanism both for banks (deriving from bank risk related to higher deposit 

premiums) and depositors (bearing a part of the deposit risk). Given a fixed deposit 

rate spread, the analysis shows that the premiums are positively correlated with a 

penalty multiplier that consists of the penalty ratio for a bank’s moral hazard and the 

depositors’ deductible proportion thereof. Moreover, the premiums increase with 

moral hazard multipliers and the penalty multiplier of a bank’s moral hazard but 

decrease with the deductible ratio thereof. Because the increment of premiums due to 

moral hazard has a different impact for each premium component, we argue that the 

moral hazard should be evaluated under comprehensive deposit regulations to be able 

to demonstrate the exact risk to the premiums. 

Scott Richardson documents these concepts in his Financial Times article, “A 

Market-Based Plan to Regulate Banks,” and argues that the FDIC should use CDS 
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prices to charge more premiums from riskier banks and determine the proper premium 

for its insurance via the active credit derivatives market. In light of this concept, this 

study indirectly evaluates the deposit insurance premium through CDSs. We capture a 

bank’s risk through the active credit market in advance and then calculate the 

premium under Merton’s pricing framework that considers the deposit insurance 

scheme. This market-based method estimates a bank’s risk as the parameters that 

reflect the appropriate premium pricing formula. 

The deposit insurance corporation issues deposit insurance without hedging and 

acts as the ultimate risk taker. We suggest that the deposit insurance corporation can 

transfer the default risk of banks to credit markets via credit derivatives, and we 

design a numerical experiment to verify the hedging effect of purchasing CDSs on 

deposit insurance. If the insurance corporation uses greater deposit insurance 

premiums to buy a secured bank’s CDSs, the numerical results show that the risk it 

undertakes is smaller and that the use of credit derivatives can indeed transfer the risk 

of deposit insurance. 
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Appendix: The Closed-Form Solution for Deposit Insurance Premium  

 

The risk-based premium of deposit insurance paid by the deposit insurer to the 

insured bank is the expected discounted insurance payoff under a risk-neutral 

probability measure and can be decomposed into three parts, as shown in equation 

(14). The first part is the default premium of the insured bank before the time of the 

audit. Second, the default premium of the insured bank will be made when the bank’s 

value drops below the capital forbearance threshold at the time of the audit. Finally, 

the deposit insurance must pay the default premium when the regulator takes over the 

depository institution during or at the end of the grace period: 
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. 

To price the risk-based premium of deposit insurance, we show the asset value and the 

asset-debt ratio of the discounted bank, according to the model assumptions: 

2( ) 1
  (0)exp ( ))  (A.1)

( ) 2

d
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A t W t
M t
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, 

where ( ) (0) ( )tD t D e M t  denotes the deposit liability that increases with the 

money market account, 2 2v     , 2 2 2 2(1 ) ( )S L g            represents 

the total risk of the bank’s assets as weighted by loan position and investing position, 

2 2 2

L r c      represents the risk of the loan position that incorporates interest rate 

risk, S  is the secondary market risk, and 
d

  indicates equal in distribution. The 

three components of the deposit insurance premium are derived in the following 

lemmas. 

  



 

32 

 

Lemma 1: The premium of the audit window component is given by the 

following: 
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where 2 2v      and 2 22 .u v     

Proof: 

According to the definition of early closure that  inf ( ) ( )A t D tt     comes 

before 1T  and the theorem of the first passage time, we obtain the probability of 

default before the time of the audit as follows: 

 

1

1

2

1
0

0

(0)21 1ln
(0)

1 1

(0) ( ) (0)
Pr | Pr min

(0) ( ) (0)

(0) (0)
Pr min ( ) ln( )

(0) (0)

(0) (0)
ln( ) ln( )

(0) (0)

Q Q

s T

Q Q

s T

Dv

A

A A s A
T

D D s D

D A
vs W s

A D

D D
vT vT

A A
e

T T





   


 

 

 

 

 

 
 
 

  
      

   

 
    

 

  
  

    
 

  
  







 

Let 
1

1

1

1 (0)
( ) Pr [ ] Pr |

(0)

Q Q

T

A
f t dt T

T D




  


 
      

  
be the density function of 

  that occurs instantaneously. A further straightforward calculation yields
2

2

( )

2

2 3
( )

2

y vt

t
y

f t e
t








 , where 
(0)

ln( )
(0)

D
y

A


 .  

 

 

1

1

2

1 2

2 2

( )

2

2 30

(0) (0)21 1ln ln
(0) (0)

1 1

( )

( )

(1 ) (0)

(1 ) (0)
2

(0) (0)
ln ln

(0) (0)
(1 ) (0)

Q

T

Q

T

y vt
T

t t

D Dv u u

A A

P
E I

M

D E e I

y
D e e dt

t

D D
uT uT

A A
D e e

T T





 

 


 

 






 

 


 

 
 









   
   
   

 
 
 

  
 

 

  
   

      
 
 
  



 
 
 
  

   

  



 

33 

 

Lemma 2: The deposit insurance premium of a capital forbearance component is 

calculated as follows: 
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Proof: 

To compute the joint probability of the no-default event before the time of the audit 

and the default event at the time of the audit, we can also evaluate the joint probability 

of the asset-debt ratio 1 1( ) ( )A T D T  lower than 1b  at maturity and the minimum of 

the ratio  
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 higher than 2b  before maturity under the risk-neutral 

measure as follows: 
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where ( )   denotes the cumulative function of standard normal distribution.  

 

The default premium of the insured bank when the bank’s value drops below the 

capital forbearance threshold at the time of the audit can be derived as follows: 
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According to the Girsanov theorem, Q  is another measure related to the Q  measure, 

and the Brownian motion under Q  will be , ,

Q Q

A t A tdW dW dt  . Appling the results of 

equation (A.2), we have the following: 
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Hence, we complete the proof of lemma 2. 

 

Lemma 3: The deposit insurance premium of the grace period component is 

represented as the following: 
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( , )f x y  is the joint probability density function of equation (A.2) under another 

measure Q , where the relative asset dynamic under the Q  measure is 
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The first term of equation (A.3) can be computed as follows: 
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where  1 1Z x T T    and  1 12 ( )Z x B T T      are changing variables to 

simplify the integrations. Similarly, the second term in equation (A.3) can be derived as 

the following: 
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Hence, we complete the calculation of lemma 3.  
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Figure I. Deposit Insurance Premium Crossing Deposit Rate Spreads and Penalty Multiplier 

The upper left is the overall deposit insurance premium and the upper right, lower left, and lower right of Figure I are the early closure 

component, the capital forbearance component and the grace period component, respectively.  
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Figure II: The Standard Deviation and Average of the Payment Made by the Deposit 

Insurance Corporation under Various Hedge Ratios. 

In Figure II, the solid line represents the standard deviation of the cash flow that the deposit 

insurance corporation must pay if the secured bank fails, which falls within the range of 1 to 6. 

The dashed line is the mean of the payment’s expected loss to the deposit insurance corporation, 

which falls within the range of -4 to 3. The left and right y-axis values represent the standard 

deviation and mean of the discounted profit for 100,000 simulations, respectively, and the x-axis 

value is the hedge ratio, which represents the ratio of the total notional amount of CDSs accounted 

for during the bank’s initial asset valuation. Because we consider the cost of holding the CDSs, 

the expected payment of the deposit insurance corporation will adjust to the horizontal dotted line. 
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Table I: Asset Allocation of FDIC-insured Commercial Banks from 1994 to 2013 

Table I presents the asset allocation of all commercial banks the FDIC insured from 1994 to 

2013 and indicates that the total percentage of bank assets in reserves, securities, and loans is 

greater than 90%. The data source is the statistical reports of the financial statements of 

FDIC-insured institutions from the FDIC website, and the dollar figures are in billions. The 

numbers in parentheses represent the proportion of the correspondent items to total assets. 

“Reserves” represents the “cash and due from depository institutions” from the banking report, 

and “Securities” includes the “securities”, “Federal funds sold & reverse repurchase 

agreements”, and “trading asset account” of the balance sheet from the FDIC banking report. 

 
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

Total assets  4,012  4,315  4,582  5,019  5,443  5,735  6,246  6,552  7,077  7,602  

Reserves 304  307  336  355  357  366  370  390  384  387  

 
(7.57) (7.10) (7.33) (7.08) (6.55) (6.39) (5.92) (5.96) (5.42) (5.10) 

Securities 1,166  1,209  1,205  1,430  1,544  1,530  1,663  1,793  2,044  2,237  

 
(29.06) (28.02) (26.31) (28.50) (28.36) (26.68) (26.63) (27.37) (28.88) (29.42) 

Loans 2,308  2,553  2,761  2,920  3,179  3,430  3,751  3,812  4,079  4,352  

 
(57.52) (59.15) (60.27) (58.18) (58.42) (59.81) (60.06) (58.18) (57.64) (57.25) 

 

 
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Total assets  8,416  9,041  10,092  11,176  12,309  11,823  12,065  12,649  13,391  13,670  

Reserves 388  400  433  482  1,042  977  923  1,196  1,334  1,632  

 
(4.61) (4.43) (4.29) (4.31) (8.46) (8.26) (7.65) (9.45) (9.96) (11.94) 

Securities 2,441  2,515  2,815  3,104  3,374  3,308  3,530  3,713  3,978  3,753  

 
(29.00) (27.81) (27.90) (27.78) (27.41) (27.98) (29.25) (29.36) (29.71) (27.46) 

Loans 4,833  5,313  5,913  6,537  6,682  6281  6,377  6,540  6,896  7,120  

 
(57.43) (58.77) (58.59) (58.49) (54.28) (53.13) (52.85) (51.71) (51.50) (52.08) 
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Table II: A Scenario Analysis of the Deposit Insurance Premium with Closure Policies 

The early closure provision is determined by the maintain ratio, η, and the forbearance provision is interpreted by β and Δ, which are the capital forbearance 

thresholds. DI refers to the insurance premium per deposit in basis points. The basic setting of the deposit insurance contract’s time to maturity is assumed to 

be one year, the minimum capital requirement α is set at 1.087, the capital forbearance threshold β = 0.97, the maintain ratio η = 0.8, and the grace period 

∆=0.5. The bank’s asset allocation in its investment position is the proportion of ω = 0.25 and its reserve asset ratio γ = 0.1. The volatility of the security 

market, credit market and interest rate are σs = 0.3, σc = 0.1, and σr = 0.01, respectively. The interest rate elasticity is φ = -0.5. The weight on securities is ῶ = 

0.35 during the grace period when there is a moral hazard. Ignore the impact of the deposit rate spread; in other words, ε = 0. 

   Maintain ratio (η)  Forbearance threshold (β)  Grace period (∆) 

  0.85 0.9 0.95  0.9 0.95 1  0.25 0.5 1 

Debt-to-asset ratio=0.88             

DI premium  88.52 88.23 80.52  92.75 91.15 78.45  70.72 88.52 117.26 

Early closure component  5.99 21.17 38.93  0.97 0.97 0.97  0.97 0.97 0.97 

Capital forbearance component  36.94 21.79 2.48  12.97 33.45 48.49  41.95 41.95 41.95 

Grace period component  45.60 45.28 39.11  78.80 56.73 28.99  27.80 45.60 74.34 

DI with moral hazard  127.73 127.40 117.66  136.09 132.64 111.31  111.53 127.73 157.21 

Debt-to-asset ratio=0.90             

DI premium  125.49 124.88 111.54  131.61 129.21 112.13  103.96 125.50 159.98 

Early closure component  11.96 37.56 61.95  2.21 2.21 2.21  2.21 2.21 2.21 

Capital forbearance component  56.69 31.12 3.14  22.94 54.39 75.26  66.44 66.44 66.44 

Grace period component  56.84 56.20 46.45  106.46 72.60 34.65  35.31 56.85 91.33 

DI with moral hazard  172.79 172.07 155.13  185.41 179.95 150.58  153.23 172.80 208.01 

Debt-to-asset ratio=0.92             

DI premium  172.03 170.80 148.92  180.42 177.00 155.26  147.24 172.05 211.47 

Early closure component  22.49 62.96 93.54  4.71 4.71 4.71  4.71 4.71 4.71 

Capital forbearance component  82.15 41.67 3.68  38.20 83.81 111.18  99.93 99.93 99.93 

Grace period component  67.39 66.18 51.70  137.50 88.48 39.37  42.60 67.41 106.83 

DI with moral hazard  226.16 224.67 196.87  244.12 235.98 197.84  203.68 226.18 266.29 
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Table III: Deposit Insurance Premium with Stochastic Risk-free Rate 

This table provides an analysis of the risk-free interest rate controlled by interest rate 

elasticity,  , and interest rate volatility, r . DI refers to the insurance premium per deposit 

in basis points. The contract time to maturity is assumed to be one year, the initial 

debt-to-asset ratio is 0.9, the weights on investment position are ω = 0.25, and the reserve 

asset ratio is γ = 0.1. The maintain ratio is η = 0.8, the minimum capital requirement, α, is 

set at 1.087, β= 0.97, and the length of the grace period is ∆ = 0.5. The volatility of the 

security market, the credit market and the interest rate are σs= 0.3 and σc = 0.1, respectively. 

The deposit rate spread is ε = 0.  

Interest rate elasticity (φ)  -0.5 -0.5 -0.5  -0.6 -0.3 0 0.3 

Interest rate volatility (σr)  0.01 0.05 0.1  0.01 0.01 0.01 0.01 

Debt-to-asset ratio = 0.88          

DI premium  88.52 91.84 102.18  88.58 88.43 88.38 88.43 

Early closure component  0.97 1.15 1.85  0.98 0.97 0.97 0.97 

Capital forbearance component  41.95 44.05 50.62  41.99 41.89 41.86 41.89 

Grace period component  45.60 46.64 49.71  45.62 45.57 45.56 45.57 

Debt-to-asset ratio = 0.90          

DI premium  125.50 129.44 141.63  125.57 125.39 125.33 125.39 

Early closure component  2.21 2.56 3.90  2.22 2.20 2.20 2.20 

Capital forbearance component  66.44 69.08 77.14  66.49 66.37 66.33 66.37 

Grace period component  56.85 57.80 60.59  56.86 56.82 56.81 56.82 

Debt-to-asset ratio = 0.92          

DI premium  172.05 176.57 190.43  172.14 171.93 171.86 171.93 

Early closure component  4.71 5.37 7.76  4.72 4.69 4.68 4.69 

Capital forbearance component  99.93 102.98 112.11  99.98 99.84 99.80 99.84 

Grace period component  67.41 68.22 70.56  67.43 67.39 67.38 67.39 
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Table IV: Deposit Insurance Premium with Asset Allocation 

The deposit premiums for the credit market and security market risk cross alternative 

portfolio shares, ω, for the bank assets in investment position. DI refers to insurance 

premium per deposit in basis points. The contract time to maturity is assumed to be one year, 

and the other parameters are set as follows: A(0) = 100, D(0) = 90, and the initial 

debt-to-asset ratio is 0.9. The minimum capital requirement, α, is set at 1.087, β= 0.97, the 

length of the grace period is ∆ = 0.5, and the maintain ratio is η = 0.8. The reserve asset ratio 

is γ = 0.1. The volatility of the interest rate is σr= 0.01, and the interest rate elasticity is φ= 

-0.5. The deposit rate spread is ε = 0. 

 

Credit risk (σc)  0.1 0.1 0.1  0.05 0.1 0.2 

Security market risk (σs)  0.05 0.1 0.2  0.3 0.3 0.3 

Weights on securities ω = 0.1         

DI premium  70.65 71.87 76.77  11.24 84.91 205.92 

Early closure component  0.10 0.11 0.16  0.00 0.29 18.70 

Capital forbearance component  30.19 30.95 34.03  1.63 39.28 114.86 

Grace period component  40.36 40.81 42.57  9.61 45.35 72.37 

Weights on securities ω = 0.3         

DI premium  29.04 39.42 83.17  112.11 153.78 218.24 

Early closure component  0.00 0.00 0.26  1.27 5.65 23.23 

Capital forbearance component  7.79 12.57 38.15  57.42 84.97 120.82 

Grace period component  21.25 26.85 44.77  53.42 63.16 74.19 

Weights on securities ω = 0.5         

DI premium  8.13 33.13 152.21  304.17 318.51 341.77 

Early closure component  0.00 0.00 5.40  70.46 80.78 98.82 

Capital forbearance component  0.94 9.58 83.97  149.45 152.15 155.41 

Grace period component  7.19 23.54 62.84  84.26 85.58 87.53 
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Table V: Deposit Insurance Premium with Penalty Multiplier and Moral Hazard Multiplier 

DI refers to the insurance premium per deposit in basis points. The contract time to maturity is assumed to be one year, the minimum capital requirement, α, is 

set at 1.087, the capital forbearance threshold is β = 0.97, the maintain ratio is η = 0.8, and the length of the grace period is ∆ = 0.5. The weights on 

investment position are ω = 0.25, and the reserve asset ratio is γ = 0.1. The volatility of the security market, credit market and interest rate are σs = 0.3, σc = 

0.1, and σr = 0.01, respectively. The interest rate elasticity is φ = -0.5.   

  1 10     1   

Deposit rate spread ε  0 1 bps 10 bps 50 bps  0 1 bps 10 bps 50 bps 

Moral hazard multiplier = 0           

DI premium  125.5 125.39 124.42 119.63  125.5 125.52 125.68 125.92 

Early closure component  2.21 2.2 2.12 1.77  2.21 2.2 2.14 1.87 

Capital forbearance component  66.44 66.34 65.4 61.2  66.44 66.4 66.06 64.43 

Grace period component  56.85 56.85 56.9 56.65  56.85 56.91 57.48 59.63 

Moral hazard multiplier = 1           

DI premium  125.5 126.95 139.72 190.3  125.5 127.07 141.13 200.31 

Early closure component  2.21 2.34 3.66 14.06  2.21 2.34 3.7 14.8 

Capital forbearance component  66.44 67.38 75.57 105.11  66.44 67.45 76.33 110.64 

Grace period component  56.85 57.23 60.49 71.13  56.85 57.29 61.1 74.87 

Moral hazard multiplier = 3           

DI premium  125.5 130.05 169.37 311.18  125.5 130.18 171.08 327.56 

Early closure component  2.21 2.62 8.56 77.63  2.21 2.62 8.65 81.72 

Capital forbearance component  66.44 69.45 94.28 147.82  66.44 69.52 95.23 155.6 

Grace period component  56.85 57.98 66.53 85.73  56.85 58.03 67.2 90.24 
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Table VI: Deposit Insurance Premium Across the Deposit Rate Spread and Penalty Multiplier 

DI refers to the insurance premium per deposit in basis points. The contract time to maturity is assumed to be one year, the minimum capital requirement, α, is 

set at 1.087, the capital forbearance threshold is β = 0.97, the maintain ratio is η = 0.8, and the length of the grace period is ∆ = 0.5. The weights on the 

investment position are ω = 0.25, and the reserve asset ratio is γ = 0.1. The volatility of the security market, credit market and interest rate are σs = 0.3, σc = 

0.1, and σr = 0.01, respectively. The interest rate elasticity is φ = -0.5. The moral hazard multiplier is x=1 

  1bank    1.2bank   

Deposit rate spread ε  1 bps 10 bps 50 bps  1 bps 10 bps 50 bps 

1 10depositor            

DI penalty multiplier    0.999 0.99 0.95  1.1988 1.188 1.14 

DI premium  126.95 139.72 190.30  152.34 167.66 228.35 

Early closure component  2.34 3.66 14.06  2.80 4.40 16.87 

Capital forbearance component  67.38 75.57 105.11  80.85 90.68 126.13 

Grace period component  57.23 60.49 71.13  68.68 72.59 85.35 

1 50depositor            

DI penalty multiplier    0.995 0.95 0.90  1.194 1.14 0.90 

DI premium  126.44 134.07 150.23  151.73 160.89 180.28 

Early closure component  2.33 3.51 11.10  2.79 4.22 13.32 

Capital forbearance component  67.11 72.51 82.98  80.53 87.02 99.58 

Grace period component  57.00 58.05 56.15  68.40 69.66 67.38 

1 100depositor            

DI penalty multiplier    0.95 0.75 0.50  1.188 1.08 0.60 

DI premium  125.80 127.02 100.16  150.96 152.42 120.19 

Early closure component  2.31 3.33 7.40  2.78 4.00 8.88 

Capital forbearance component  66.77 68.70 55.32  80.13 82.44 66.38 

Grace period component  56.72 54.99 37.43  68.06 65.99 44.92 


