Analyst coverage and the quality of corporate

investment decisions

THOMAS Y. TO, MARCO NAVONE and ELIZA WU\*

ABSTRACT

In this paper we examine the effect of financial analysts on the quality of corporate in-

vestment decisions. We show that greater analyst coverage leads to higher total factor

productivity, a finding that is robust after using both an instrumental variable approach

and an experimental design that exploits exogenous reductions in coverage due to broker

mergers and closures. We further show that the positive effect of analysts on productivity

occurs only in financially constrained firms, opaque firms and firms with weaker investor

protection suggesting that analysts improve investment decisions by playing an important

role in information distribution and external monitoring.

JEL classification: G31, G32, G39.

Keywords: equity analysts, productivity, financial constraints, corporate investment.

\*To and Wu are with the University of Sydney Business School, University of Sydney. Navone is with the Finance Discipline Group, UTS Business School, University of Technology Sydney. We thank Thorsten Beck, Alon Bray, Iftekhar Hasan, Ambrus Kecskés, Douglas Foster, and Michal Dzielinski for helpful comments and discussions. We are also grateful to François Derrien and Jarrad Harford for sharing with us their data on brokerage disappearances.

Corresponding author: Eliza Wu, Tel. +61-2-86274626. Email address: eliza.wu@sydney.edu.au

### 1. Introduction

Financial analysts produce and disseminate across financial markets firm-specific information based on their timely access to information, private knowledge and analytical skills. As such they should reduce information asymmetries between corporate insiders (management) and outsiders (investors) and improve corporate capital allocation.

While some authors argue that firms with higher analyst coverage have better access to external financing and can pursue more aggressive investment policies (Doukas, Kim, and Pantzalis, 2008; Derrien and Kecskés, 2013) others have pointed to a darker side of financial analysts: by focusing investors' attention on quarterly profits they may force managers to forego valuable long-term investments, such as R&D, in order to meet the short-term expectations (Graham, Harvey, and Rajgopal, 2005; He and Tian, 2013; Irani and Oesch, 2016).

Although both camps provide compelling arguments and show robust empirical evidence, the effect of analyst coverage on the quality of corporate investment decisions remains an open empirical question: while an increase in market access can be valuable it does not automatically translate into good investment decisions, and while R&D expenditures may be critical for firms' long-term growth their quality is very difficult to measure, and can only be fully assessed over a long time horizon where many confounding effects are likely to intervene.

In this paper we take a closer look at the effect of financial analysts on the quality of corporate investments by analyzing their impact on the efficiency of firms' investment decisions as proxied by total factor productivity (TFP). With this approach, rather than looking at the size of firm investments, financing or R&D expenditures we focus our attention directly on the quality of investment decisions as gauged by firms' efficiency gains.

Our main hypothesis is that firms followed by a larger number of analysts should exhibit higher total factor productivity due to their improved access to external capital markets, and we expect financially constrained firms to benefit the most from the analyst coverage as they need the external capital to fund additional productive projects (Campello, Graham, and Harvey, 2010; Duchin, Ozbas, and Sensoy, 2010). The causal effect of analyst coverage stems from the reduction in information asymmetry between corporate insiders and outsiders, and comes from two possible channels: on the one hand financial analysts provide an independent assessment of firms' growth opportunities (Doukas et al., 2008; Derrien and Kecskés, 2013), whilst on the other hand they can act as watchdogs and ensure that managers will act in the best interest of their investors (Yu, 2008; Chen, Harford, and Lin, 2015). In both instances we can speak of a certification effect provided by the financial analysts that effectively reduces the cost of external financing for firms with valuable investment opportunities and good corporate governance. It is important to note that our main hypothesis, which we term the "market access hypothesis", differs from Derrien and Kecskés (2013) in that we do not postulate a positive relationship between analyst coverage and the size of corporate investments but rather for the quality of corporate investments, as proxied by productivity gains. This is an important distinction as more is not necessarily better in the case of corporate investments. Our measure, TFP, is a particularly appropriate measure to capture this distinction since it is calculated as the difference between expected output, given the inputs used in production, and the actual output produced by the firm. Therefore gains in TFP cannot be simply the result of an increase in the size of corporate investments.

We also formulate an alternative hypothesis, our take on the dark side of analyst coverage, where corporate executives are pressured into pursuing suboptimal investment strategies in order to meet / exceed short term earnings expectations. Here we expect a negative correlation between analyst coverage and total factor productivity. Again, it is important to notice that this competing "managerial pressure hypothesis" differs from He and Tian (2013) in that we do not focus on a specific driver of long term growth (investment in innovation) but rather on the overall investment policy of the firm.

We test these two competing hypotheses by empirically examining the relation between analyst coverage and firm-level total factor productivity (TFP) with an extensive sample of U.S. listed firms covered by Compustat from 1991 to 2013. <sup>1</sup> Controlling for firm characteristics, our baseline regression results indicate a positive relation between analyst coverage and firm productivity and this lends greater support to the market access hypothesis.

However, a major challenge for our study is the potential endogeneity of analyst coverage. Unobservable firm heterogeneity correlated with both analyst coverage and firm productivity could bias the results (i.e., the omitted variable concern), and firms with higher productivity potential could attract more analyst coverage (i.e., the reverse causality concern). Hence, to establish causality, we use two identification strategies and perform an array of robustness tests.

Following Yu (2008), we first adopt a measure of expected coverage based on the timevarying size of brokerage firms as an instrumental variable in a two-stage least squares model to address the potential endogeneity problem of coverage decisions. The positive effect of analyst coverage on firm productivity remains robust to the use of this instrument.

Our second approach relies on two quasi-natural experiments based on brokerage mergers (Hong and Kacperczyk, 2010) and brokerage closures (Kelly and Ljungqvist, 2012), to address the potential endogeneity problem.<sup>2</sup> For our purpose, these events directly affect firms' analyst coverage but are exogenous with respect to firms' productivity. Using a difference-in-differences approach, we show that an exogenous decrease in analyst coverage leads to a larger relative decrease in firm productivity for the treatment group (i.e. firms that experience a reduction in analyst coverage due to the broker disappearances) compared to the control group (i.e., similar firms not affected by the treatment) in the corresponding period. Overall, our two identification tests unambiguously indicate that analyst coverage significantly enhances firm productivity. We further show that productivity losses following an exogenous reduction in analyst coverage are limited to financially constrained firms, lending

<sup>&</sup>lt;sup>1</sup>TFP measures have also been used in studies by Schoar (2002), Maksimovic, Phillips, and Prabhala (2011), Chemmanur, Krishnan, and Nandy (2011, 2014), and Krishnan, Nandy, and Puri (2015).

<sup>&</sup>lt;sup>2</sup>These quasi-natural experiments have been used extensively in the literature studying analyst coverage and analyst reporting bias (Hong and Kacperczyk, 2010), firm valuation (Kelly and Ljungqvist, 2012), corporate governance (Irani and Oesch, 2013; Chen et al., 2015), cost of capital (Derrien and Kecskés, 2013), firm innovation (He and Tian, 2013), and stock liquidity (Balakrishnan et al., 2014).

further support to our main hypothesis.

In the final part of our paper, we attempt to identify how financial analysts improve firms' access to external financing to enable them to fund additional productive investments. First, we test for analysts' role in reducing information asymmetry. We find that the positive effect of analyst coverage on productivity occurs in firms with a higher level of information asymmetry between management and outsiders, i.e., smaller firms, younger firms, and firms with a higher level of intangible assets. This result is not surprising since these firms are harder to analyze and therefore investors are less likely to invest in them without analysts' assessment of their growth opportunities. Second, we find that the positive effect of analyst coverage on productivity also occurs in firms with weaker investor protection, that is, firms where executives are shielded by stronger anti-takeover provisions or where powerful CEOs have gained a strong control on the board of directors. This finding illustrates that the watchdog role of analysts is particularly important in helping to certify managerial quality and commitment to shareholder value creation for potential investors in firms where investor protection is relatively weak, as internal governance mechanisms and threats from the market for corporate control are not sufficient to ensure managerial commitment to shareholder value creation in these firms.

The slowdown of productivity growth in the U.S. has been well documented (Cardarelli and Lusinyan, 2015) and very publicly discussed (Gordon, 2016). Recent theoretical contributions (Miao and Wang, 2012; Moll, 2014) have argued that the slowdown could be due to financial constraints as firms without easy access to capital markets may be forced to forego productivity-enhancing projects due to a lack of funds to finance them. While this problem is clearly exacerbated in periods of financial turmoil (for example when asset bubbles collapse and credit constraints tighten), financial constraints stemming from information asymmetries have wider-ranging implications for productivity growth. In this paper we extend this literature by showing that the production and dissemination of firm-specific information by financial analysts has a real impact on firms' ability to finance productivity-enhancing

investments that can help to lift aggregate productivity growth.

To the best of our knowledge, this is the first study to examine the causal effect of analyst coverage and financing on firm-level productivity. While other studies have discussed the impact of analysts' activity on managerial investment behavior we are the first to quantify the wider implications for boosting productivity and economic growth. Our study speaks to the prior literature showing that access to particular types of financing (such as venture capital and angel financing) improves the productivity of young and small firms (Chemmanur et al., 2011; Kerr, Lerner, and Schoar, 2014). In this vein, it has also been shown that productivity of domestic firms benefit from foreign direct investment (Aitken and Harrison, 1999; Javorcik, 2004) and access to financing improves agricultural productivity (Butler and Cornaggia, 2011). However, there have been relatively fewer studies investigating how improved access to mainstream financing within the U.S. affects firms' productivity. Our study is closest in spirit to Krishnan et al. (2015), as they find that an increased access to bank financing improves productivity for small manufacturing firms. While in their paper a lack of access to capital markets due to extreme information asymmetries is remedied by increased access to bank financing, in our paper we focus on the role of information production and dissemination by financial analysts in stimulating financing of productive investments.

The rest of the paper is organized as follows. Section 2 develops the main hypotheses. Section 3 describes the data and sample selection and explains the construction of various variables used in this study. Section 4 presents the baseline results. Section 5 addresses the identification issues. Section 6 analyzes the mechanisms through which financial analysts work to improve investment decisions, and section 7 concludes.

## 2. Hypothesis development

2.1. Financial analysts, financial constraints and access to external capital markets

As an important information intermediary in stock markets, financial analysts have the opportunity to interact directly with management on a consistent basis in order to formulate views about firm prospects. Focusing on the information-production role of analysts, Kelly and Ljungqvist (2012) provide empirical evidence to show that an exogenous reduction in analyst coverage leads to an increase in information asymmetry. This result is consistent with the findings of other studies (e.g., Roulstone (2003); Irvine (2003); Balakrishnan et al. (2014)) which show a positive relationship between analyst coverage and stock liquidity, suggesting that analysts provide valuable information to outside investors and thus enhances stock market participation. These studies altogether indirectly suggest that financial analysts should help to reduce firms' cost of capital, as theoretical studies have long shown that an increase in information asymmetry increases the cost of capital (Stiglitz and Weiss, 1981; Myers and Majluf, 1984; Diamond, 1985; Easley and O'hara, 2004). Consistent with this prediction, Francis et al. (2015) provide direct evidence to indicate that analysts help to reduce the cost of external financing by establishing a negative causal relation between analyst coverage and the cost of bank loans, one of the major sources of new external financing for firms.

In this study, we extend upon the aforementioned recent works to establish the causal effect of analyst coverage on the efficiency of corporate investment decisions. Our main hypothesis, the *market access hypothesis*, predicts that analyst coverage should improve the productivity of financially constrained firms by providing them with a better access to external finance. We expect the productivity gains to only occur in financially constrained firms because these firms need the external finance to fund additional productive investments. Using the Global Financial Crisis (GFC) as an exogenous shock to the supply of external

finance, Duchin et al. (2010) find that financially constrained firms were forced to let attractive investment opportunities pass by due to the lack of external finance. Similarly, in the survey conducted by Campello et al. (2010) 86% of the CFOs in financially constrained firms said investment in attractive projects were restricted during the GFC. On the other hand, an increased access to external finance is not likely to benefit firms with sufficient internal capital because all the productive investments in those firms are likely to have been funded already, and any additional external capital may induce managers to waste it on organization inefficiencies (Jensen, 1986; Stulz, 1990). To summarize, our main hypothesis is:

H1 (Market Access hypothesis): Higher analyst coverage increases the productivity of financially constrained firms.

### 2.2. Financial analysts and managerial pressure

One of the main negative impacts of financial analysts discussed in the literature is the excessive pressure that they impose on corporate managers to beat short term earnings expectations. Analysts' forecasts are generally overly optimistic, which make them very difficult to meet (Dechow, Hutton, and Sloan, 2000; Ertimur, Muslu, and Zhang, 2011). Empirically, it has been shown that beating forecasts increases short-term returns (Bartov, Givoly, and Hayn, 2002; Bhojraj et al., 2009), while missing forecasts by even a small margin can lead to a reduction in bonuses for the CEO (Matsunaga and Park, 2001) and a decrease in stock prices for firms (Skinner and Sloan, 2002). The survey of 401 U.S. Chief Financial Officers (CFOs) conducted by Graham et al. (2005) confirms the importance of meeting analysts' forecasts as they find that a majority of the executives would forego a project with positive net present value (NPV) if the project would cause them to fall short of the current quarter consensus forecast, with 80% of the executives suggesting that they would decrease discretionary spending, including R&D and advertising expense in order to meet the earnings benchmarks. Empirically, Irani and Oesch (2016) show that higher analyst coverage leads to real earnings management performed predominantly via the offering of price discounts to

temporarily increase sales, overproduction to report lower cost of goods sold, and reduction of discretionary expenditures to improve reported margins. Along the same line of inquiry He and Tian (2013) find that firms covered by a larger number of analysts invest less in innovation. Overall, the findings of these studies collectively suggest that analyst coverage provides a strong incentive for corporate managers to behave myopically. Since long term productive investments in product and process innovation and human capital development do not yield short term results, our alternative hypothesis, the managerial pressure hypothesis, predicts that analyst coverage would impede firm productivity as the need to beat earnings expectations forces managers to delay (or outright forego) long term productive projects. This view is summarized by Jensen (2005), who writes that "when real operating decisions that would maximize value are compromised to meet market expectations, real long-term value is being destroyed" (p.8). Hence, we also access the following competing hypothesis:

H2: (Managerial pressure hypothesis): Higher analyst coverage impedes firm productivity by pressuring corporate managers to give up on productive investments in order to meet analysts' forecasts.

## 3. Sample selection and firm productivity

This section describes our sample and explains the measurement of firm productivity.

## 3.1. Sample Selection

We obtain firm-specific financial variables from Compustat and analyst information from the Institutional Brokers Estimate System (I/B/E/S) database. Following Imrohoroglu and Tüzel (2014), we omit foreign firms, financial firms, and regulated firms from our sample as they suggest that these firms face different productivity constraints. We also exclude firms that have missing values for total assets, sales, number of employees, gross property, plant, and equipment, depreciation, accumulated depreciation, or capital expenditures, as these are the variables required for our TFP estimation. The final sample used to investigate the relation between analyst coverage and one-year-ahead firm productivity consists of 35,280 firm-year observations between 1991 and 2013. The reason for starting the sample in 1991 is because the I/B/E/S recommendation file used to identify brokerage mergers and closures starts in 1994, and we need to observe a three-year trend before the brokerage mergers or closure events to ensure that the parallel trend assumption is satisfied for our DiD test to be valid.

#### 3.2. Measuring Firm Productivity

We follow the literature closely in constructing TFP measures to capture firm productivity. The key inputs for estimating TFP are value added, capital, and employment. We use data from Compustat, investment and output deflators from the Bureau of Economic Analysis, and wage data from the Social Security Administration. Following Imrohoroglu and Tüzel (2014), we compute value added using Compustat data on sales, operating income, and number of employees, deflated by the output deflator; capital stock ( $k_{it}$ ) is measured using Property, Plant and Equipment, deflated following Hall (1990), and labor ( $l_{it}$ ) is measured using the total number of employees.

We employ the production function given in:

$$y_{it} = \beta_0 + \beta_k k_{it} + \beta_l l_{it} + \omega_{it} + \epsilon_{it} \tag{1}$$

where  $y_{it}$  is the log of value added estimated for firm i in period t,  $\omega_{it}$  is the level of productivity known to the firm and correlated with the inputs and  $\epsilon_{it}$  is the error term. From this model, TFP is estimated as the difference between the actual and predicted output, i.e.  $TFP_{it} = y_{it} - \hat{y}_{it}$ .

However, using this baseline equation to estimate TFP presents endogeneity and selection

problems. Firstly, firm productivity is correlated with its input decisions. More productive firms tend to put in more capital and labor due to higher current and anticipated future investment opportunities. Secondly, large firms can continue to operate at a lower level of productivity as they expect higher investment returns, whereas small firms may have to exit the market if they operate at a low level of productivity.

Hence, we employ the semi-parametric procedure suggested by Olley and Pakes (1996) to estimate the parameters in this production function. This approach explicitly addresses the simultaneity and selection biases involved in the estimation of production functions by using a "proxy method" where one uses firms' investment decisions to construct proxies for their unobserved productivity parameters (see Appendix A for details).

Once we estimate the production function parameters  $(\hat{\beta}_0, \hat{\beta}_l, \text{ and } \hat{\beta}_k)$  using the approach suggested by Olley and Pakes (1996), we obtain the logarithm of firm-level total factor productivity estimates by:

$$\omega_{it} = y_{it} - \hat{\beta}_0 - \hat{\beta}_k k_{it} - \hat{\beta} l_{it} \tag{2}$$

We use industry-specific time dummies in the estimation to control for both within industry biases and changes in TFP over time.

The production function parameters are estimated every year using all data available up until that year to prevent a potential look-ahead bias in the TFP estimates. In order to gauge the accuracy of our TFP measures, we compare our production function estimates with the estimates reported in previous studies in the literature, and confirm that our production function estimates are consistent with those previously reported by Olley and Pakes (1996) and Imrohoroglu and Tüzel (2014).

### 3.3. Measuring analyst coverage and other control variables

We obtain analyst information from the I/B/E/S database. Analyst coverage is calculated as the total number of unique analysts issuing earnings forecasts for a firm during the 12-month period before its fiscal year end. We then take the natural logarithm of this raw measure to construct our main measure of analyst coverage (*LnCoverage*). Guided by recent findings on the determinants of firm-level TFP (Imrohoroglu and Tüzel, 2014; Krishnan et al., 2015; Li, 2015), we control for a vector of firm characteristics that could potentially affect a firm's future TFP. The controls include firm size (the natural logarithm of total assets), book-to-market ratio, firm profitability (return on assets), capital expenditures, asset growth, cash flow, and leverage. We provide detailed variable definitions in Table 1.

#### [Place Table 1 about here]

### [Place Table 2 about here]

To minimize the influence of outliers, we winsorize our independent variables at the first and 99th percentile. Table 2 provides the summary statistics. Panel A shows that on average, a firm in our sample has a TFP of -0.344 (which is similar to that reported in Imrohoroglu and Tüzel (2014)) and is followed by 11 analysts. Regarding other variables, an average firm has book value assets of 2.94 billion dollars, leverage of 21.6%, a book-to-market ratio of 0.548%, and ROA of 14.6%, which are similar to those reported in prior analyst studies (Hong and Kacperczyk, 2010; He and Tian, 2013).

Panel B of Table 2 reports firm characteristics sorted by the level of analyst coverage. First, we notice that firms with a higher level of productivity are covered by more analysts, which is consistent, prima facie, with our market access hypothesis. Second, firms with a greater number of analysts following are larger, more profitable, have lower book-to-market ratio and higher cash flows and capital expenditures. While higher cash flows and capital expenditures are consistent with analysts improving access to external finance, this evidence

is also compatible with the notion of endogeneity of coverage decisions: analysts prefer to cover large and profitable firms where higher trading fees can be generated for the brokerage house (Bhushan, 1989; McNichols and O'Brien, 1997).

## 4. Baseline empirical results

To assess how analyst coverage affects firm productivity, we estimate the following model:

$$TFP_{i,t+n} = \alpha + \beta LnCoverage_{it} + \gamma Controls_{it} + Year_t + Industry_k + \epsilon_{it}$$
 (3)

where t denotes year, i denotes firm, k denotes industries and n equals one, two, or three years ahead. The dependent variable,  $TFP_{i,t+n}$ , is the productivity for firm i. Since it generally takes time for a firm's productivity to change, we examine the effect of analyst coverage on a firm's productivity up to three years ahead. The analyst coverage measure,  $LnCoverage_{it}$ , is measured for firm i over its fiscal year t.  $Controls_{it}$  is a vector of firm-specific characteristics that could affect productivity.  $Year_t$  and  $Industry_k$  capture time and industry fixed effects respectively. We cluster standard errors at the firm level.

#### [Place Table 3 about here]

We start with a parsimonious model that regresses TFP one year ahead only on our key variable of interest, LnCoverage, and then add year and industry fixed effects. Results in columns (1) and (2) of Table 3 show that analyst coverage has a positive and significant impact on firm-level productivity. In column (3), we add a set of controls that are important determinants of TFP. The coefficient estimate of analyst coverage remains positive and statistically significant at the 1% level. In terms of the magnitudes, the result suggests that an increase in one standard deviation of LnCoverage would increase TFP by 9.4%. Thus, the effect we document is not only statistically but also economically significant. In columns

(4) and (5), we consider TFP two and three years ahead, respectively. Estimates of the main coefficient of interest continue to be positive and significant, suggesting that even after controlling for the time-dimension of productivity changes analyst coverage is still associated with higher levels of firm productivity. Overall, our baseline results seem to lend support to the market access hypothesis.

### 5. Identification

A major concern with this baseline estimation is the potential endogeneity of analyst coverage. One could easily argue that analysts may prefer to cover "successful" firms or that some unobserved measure of investment opportunities may affect both coverage decisions and current productivity.

In this section we adopt two different identification strategies to establish causality. We first implement a 2SLS estimation with an instrumental variable for coverage based on exogenous changes in the size of brokerage firms. Our second identification strategy, instead, uses a difference-in-differences (DID) estimation based on two quasi-natural experiments where a number of "treated" firms experience an exogenous drop in analyst coverage due to mergers and closures of brokerage houses.

## 5.1. Instrumental variable approach

Our first identification strategy to address the endogeneity problem of analyst coverage is to exploit changes in the size of brokerage houses in order to build a valid instrument for analyst coverage. This measure of "expected coverage" was first introduced by Yu (2008) and he argues that the size of brokerage houses (in terms of the number of analysts employed) changes over time, usually depending on revenues or profits. These changes affect coverage decisions but are, at the same time, unrelated to the characteristics of the firms covered by the brokerage house. Hence, this instrument captures the variation in analyst coverage that

is exogenous to a firm's productivity.

Following Yu (2008), we use the following equations to calculate expected coverage:

$$ExpectedCoverage_{itj} = \frac{Brokersize_{jt}}{Brokersize_{j0}} * Coverage_{i0}$$
 (4a)

$$ExpectedCoverage_{it} = \sum_{j=1}^{n} ExpectedCoverage_{itj}$$
 (4b)

where  $ExpectedCoverage_{itj}$  is the expected coverage of firm i from broker j in year t.  $Brokersize_{j0}$  and  $Brokersize_{jt}$  are the number of analysts employed by broker j in the benchmark year and year t respectively.  $Coverage_{i0}$  is the number of analysts following firm i in the benchmark year 0. Finally  $ExpectedCoverage_{it}$  is the expected coverage for firm i in year t.

In the spirit of Yu (2008), we use year 2002, the middle year of our sample period, as the benchmark year. A possible concern for the validity of this instrument is that a broker's choice of which firms to stop covering could introduce a potential selection bias problem. However, as Yu (2008) points out, the selection issue affects only the realized coverage but not the expected coverage, because the expected coverage measures the tendency to maintain the coverage before the broker decides which firms to actually keep.

### [Place Table 4 about here]

Column (1) of Table 4 shows the result of the first-stage regression using *LnCoverage* as the dependent variable. The result confirms that, "Expected coverage" is positively correlated with realized coverage (the instrumented variable). From column (2), we examine the effect of (instrumented) analyst coverage on firm productivity at different time-horizons. All the models confirm our basic finding showing an unambiguously positive, and highly significant, relationship between analyst coverage and firm productivity.

### 5.2. Quasi-natural experiments

Our second identification strategy uses two quasi-natural experiments based on exogenous shocks to analyst coverage. The first experiment, pioneered by Hong and Kacperczyk (2010), relies on the assumption that two merging brokerage houses which were both covering the same stock will likely drop one of their analysts after the merger. The authors of the original study argue that the coverage termination is not a decision made by the analysts and is also not related to the characteristics of the firms covered. The second experiment, similar in spirit and first adopted in Kelly and Ljungqvist (2012), relies on the fact that brokerage firms sometimes respond to unfavorable changes in revenues and profitability by closing their research operations. Similar to the previous experiment, the authors argue that the resultant coverage termination is not a decision made by individual analysts and is also not related to the characteristics of the firms covered. Therefore, brokerage mergers and closures capture exogenous variations in analyst coverage that can be exploited to quantify the impact of analyst coverage on firm productivity <sup>3</sup>.

We focus on brokerage mergers and closures that occur between 1994 to 2010 (given that our sample period is from 1991 to 2013 and we need to observe a three-year trend before and after the broker disappearances). Our list of broker disappearances includes all of the closures and 13 out of the 15 mergers considered in the aforementioned seminal papers. We lose two merger events because they fall outside our sample period.<sup>4</sup>

In order to implement our identification strategy, we must calculate the change in our outcome variable (productivity) around the time of the broker disappearance. Since productivity is estimated on yearly data and the closure/merger event can happen anytime during a given calendar year we follow other studies using a similar empirical setup (He and Tian,

<sup>&</sup>lt;sup>3</sup>One may argue that the analysts who lose their job after brokerage disappearances are of lower quality and do not produce relevant information. First of all, it is important to notice that this bias would lead to a lack of measurable impact on firm productivity, hence would go against our hypothesis. Secondly, Derrien and Kecskés (2013), using a similar set of brokerage events, show that the analysts dropped do not produce, on average, lower quality research.

<sup>&</sup>lt;sup>4</sup>For a detailed description of the selection process, see Derrien and Kecskés (2013) and Chen et al. (2015). We thank Francois Derrien and Jarrad Harford for sharing the list of brokerage disappearances with us.

2013; Chen et al., 2015; Irani and Oesch, 2016), and define the change in the outcome variable as the difference between the values in t + 1 and t - 1 where time t indicates the year of the broker merger or closure.

We follow Hong and Kacperczyk (2010) and Kelly and Ljungqvist (2012) in constructing a sample of treatment firms that are covered by broker houses that either merged or closed and then lost an analyst. For brokerage mergers, we identify firms covered by both the target broker and the acquirer broker during the year before the merger and for which one of their analysts disappears during the year after the broker merger date (by not issuing earnings forecasts). For brokerage closures, we identify firms for which the analyst disappears from I/B/E/S during the year after the broker closure date. These procedures ensure that the loss of analyst coverage for these firms is definitely due to the brokerage disappearances and not for other unrelated reasons. For a firm to be classified into our treatment or control group, we also need it to have non-missing matching variables in the matching year (year t-1), and non-missing TFP data from year t-1 to year t+3. We end up with a sample of 1,919 treated firms.

We construct the control group of firms that are matched to the treatment group on important observable characteristics one year prior to the brokerage events to ensure that the difference in productivity changes between the treatment and control firms is not caused by their cross-sectional heterogeneity.

In order to produce a more robust test of our two competing hypotheses we produce four different control samples. For our main matching strategy we follow that employed by Derrien and Kecskés (2013). For every firm in our treatment sample we consider candidate control firms in the same Fama-French 49 industry, same size (total assets) quartile, Tobin's Q quartile, and cash flow quartile in the matching year (year t-1). We then retain candidate control firms that have, in the matching year, the smallest difference in the number of analysts compared to the treated firm. Finally, we rank the remaining firms based on the average ranking distance from our treated firm in terms of total assets, Tobin's Q, and cash flow and

select as control firm the one with the lowest distance. We are forced to drop 1024 treated firms for which we cannot identify a suitable control firm. We end up with 895 unique pairs of treatment-control matches deriving from 53 broker disappearances, of which 17 are the result of broker closures and 36 are the result of broker mergers.

In order to validate our identification strategy we measure the drop in analyst coverage experienced by our treatment (and control) firms around the broker closures and mergers. We find that firms directly affected by these events experience an average drop in coverage, compared to the matched control firms, of 1.1 analysts (with a t-statistic of 4.08). This figure is consistent with similar studies and show that broker closures and mergers actually entail a significant shock to analyst coverage for the firms affected.

Albeit widely used in the literature, the matching methodology described above is very demanding in terms of data required, leading to a set of possible control firms that is empty for roughly 50% of the firms in the treatment sample. To circumvent this problem we consider three alternative matching strategies where every treated firm is matched with:

- The closest firm in terms of pre-event total factor productivity.
- The closest firm in terms of pre-event total factor productivity within the same industry.
- The closest firm, within the same industry, in terms of propensity score estimated with a probit model on pre-event total assets, Tobin's Q, cash flow, analyst coverage, and productivity.

After obtaining our matched samples of control firms, we use a DID estimation to ensure that the difference in productivity between the treatment and control firms is not caused by a common time trend in productivity. The success of this approach rests on the assumption that the only relevant difference between the two samples is the treatment. While it is impossible to prove that without the treatment the two samples would have behaved similarly, we can look at the productivity trend before and after the treatment. The so-called parallel trend assumption does not require the level of productivity for treatment and control firms

to be identical before the treatment because these distinctions will be differenced out in the estimation. Rather, the parallel trend assumption requires similar trends in the level of productivity between treatment and control firms before the treatment. We test this assumption in two ways.

First of all we plot Figure 1 the difference in TFP between treatment and control firms (built with our main matching methodology), over a seven-year window around the exogenous shock to analyst coverage. The graph shows that outside the event window (t-1 to t+1) the two samples show similar behavior in terms of their productivity trend. As a second test of the parallel trend assumption in Panel A of Table 5 we calculate descriptive statistics for the two samples of firms and show, among other things, that the median growth rate of productivity in the year prior to the treatment is the same for treatment and control firms. Moreover, there are no significant differences in the matching variables between the treatment and control firms. Overall, the univariate comparisons in Panel A indicate that the matching process has effectively removed most of the cross-sectional heterogeneity between the treatment and control firms.

#### [Place Figure 1 about here]

#### [Place Table 5 about here]

Panel B of Table 5 reports the results for our DID analysis. We compute the mean change in TFP from year t-1 to year t+3 for our treatment and control firms and construct our diffin-diff estimator as the difference between the two. This quantity is negative and statistically significant at the 5% level, suggesting that an exogenous loss of the coverage of one analyst causes the affected firm to be 4.2% less productive than a similar firm unaffected by the event.

Next, we examine whether this result is affected by the specific requirements of the matching strategy. Panel C reports the DID estimators built with the alternative control samples. Results are comparable in size and sign and are universally significant at the 1% level.

Overall our two identification strategies both indicate a strong positive causal effect of analyst coverage on firm-level total factor productivity.

#### 5.3. Robustness

We conduct two additional robustness checks for both of our identification strategies and report the results in Table 6. First, we examine how our results could be affected by our estimation of firm-level productivity. As mentioned before, the approach suggested by Olley and Pakes (1996) controls for the simultaneity and selection problems involved in the estimation of production functions by using a proxy method in which firms' investment decisions are used to construct proxies for their unobserved productivity parameters. On the other hand, Levinsohn and Petrin (2003) suggest to use firms' materials used in production to construct proxies for the unobserved productivity parameters (See Ackerberg, Benkard, Berry, and Pakes, 2007 for a comparison of these two proxies). Hence, we re-estimate productivity following Levinsohn and Petrin (2003) (see Appendix A for details) and run both the instrumental variable and DID estimations using this measure. Panel A of Table 6 reports the results. The positive relationship between analyst coverage and firm productivity remains highly significant and quantitatively unchanged.

### [Place Table 6 about here]

Second, we examine whether our findings are driven by specific systemic events. First of all, a significant fraction (23%) of the brokerage disappearances took place after the burst of the so-called dot-com bubble in 2001. Hence, one might be concerned that our results could be driven by this systemic event. Another uncommon time period that could be driving our results are the years of the global financial crisis when the impact of financial analysts on firm productivity could be affected by the general economic conditions. To address these

concerns, we exclude the years 2001, 2008, and 2009 in both our estimations. Panel B of Table 6 reports the results. We continue to find a significant positive relationship between analyst coverage and firm productivity.

### 5.4. Financially constrained firms

Our evidence so far suggests that analyst coverage improves the quality of investment decisions. Our main hypothesis also predicts that these gains should only occur in financially constrained firms as the improved market access are vital for firms that are heavily reliant on external financing. Here we test the second part of this hypothesis.

In an influential paper, Fazzari et al. (1988) build on Keynes (1936) theory and suggest that when firms face financial constraints, investment spending will vary with the availability of internal capital, rather than with the availability of positive NPV projects. Put simply, financially constrained firms do not have the ability to invest in all positive NPV projects that are available at a given time. Consistent with this notion, Campello et al. (2010) and Duchin et al. (2010) both used the GFC as an exogenous shock to the supply of external finance and revealed that financially constrained firms were forced to let attractive investment opportunities pass by during the GFC. If financial analysts facilitate access to external financing we would expect their effect on firm productivity to be particularly strong for the financially constrained firms. Specifically, we would expect the productivity of financially constrained firms to decrease after a reduction in analyst coverage as managers would now have to let some of the good investment opportunities pass by due to the lack of external financing. On the other hand, the drop in analyst coverage should not affect financially unconstrained firms as they have sufficient internal capital to finance their productive projects, and any additional external capital may induce managers to waste it on value-reducing projects (Jensen, 1986; Stulz, 1990).

To test this hypothesis, we condition our analysis upon four well known proxies for financial constraints. We measure all of our proxies during the year before the decrease in analyst coverage to avoid endogeneity issues. Conditional on each proxy, we divide the treatment and control firms into two groups. One group is classified as constrained and the other group is classified as unconstrained, and we conduct the DID estimation separately for the two groups. Detailed definition of the four proxy variables can be found in Table 1 while Table 7 reports the results on financial constraints.

The first measure we use to proxy for financial constraints is dividend payer status. Almeida, Campello, and Weisbach (2004) argue that it is not optimal for a financially constrained firm to pay any dividends because they do not have enough capital to fund all of its positive NPV projects. Following their approach, we classify firms as constrained if no dividend is paid, and unconstrained if dividend is paid. Rows 1 and 2 present the results. Consistent with our expectations, the reduction in analyst coverage only reduces productivity in those firms that do not pay dividends, and the result is significant at the 5% level.

#### [Place Table 7 about here]

The second measure we use to proxy for financial constraints is product market competition. Firms that face intense product market competition generally operate with thin profit margins. Therefore, an increase in the cost of external financing for those firms would likely force them to forego investing in some of the productive projects, as they simply do not have enough internal capital to fund them (Fresard, 2010). Following the literature, we measure product market competition using industry concentration measured on sales with the Herfindahl-Hirschman Index. We classify firms in industries (Fama-French 49) that are in the bottom (top) half of the distribution as firms facing intense (light) product market competition. Rows 3 and 4 present the results. The reduction in analyst coverage only reduces productivity for those firms that face intense product market competition, and the result is significant at the 5% level.

The third measure we use to proxy for financial constraints is the Kaplan and Zingales (1997) five-variable index, which positively weights Tobin's Q and leverage, and negatively

weights cash flows, dividends, and cash holdings. We classify firms as constrained (unconstrained) if the Kaplan-Zingales index score is above (below) the median. Rows 5 and 6 present the results. The reduction in analyst coverage only reduces productivity for the firms who have higher Kaplan - Zingales index scores, and the result is significant at the 10% level.

The last measure we use to proxy for financial constraints is based on the use of syndicated loans. An established lending relationship in the syndicated loans market can be considered as a proxy for the presence of a reliable source of external financing. In this market the lead underwriter develops private information on the the creditworthiness of the borrower and certifies the quality of the loan to the other members of the syndicate. Sufi (2007) and Lin, Ma, Malatesta, and Xuan (2012) show how the structure of the syndicate changes as a function of the opacity of the borrowing firm. Since access to this market is largely based on the private information developed by the lead underwriter, borrowers' ability to finance positive NPV projects should be less affected by the availability of public information (i.e. analysts coverage). We obtain syndicated loans data from Loan Pricing Corporation's Dealscan database, which contains detailed information on syndicated loan contract terms. We assess financial constraints based on the total amount of loans in dollars obtained by each individual firm annually and scale it by firm size (total assets). We then classify firms as constrained (unconstrained) if this quantity is below (above) the median. Rows 7 and 8 present the results. Consistent with our expectations, the reduction in analyst coverage only reduces productivity for those firms that have smaller loan sizes, and the result is significant at the 5% level. Overall, our findings suggest that the role analysts play in improving market access for financially constrained firms is one of the underlying economic mechanisms through which financial analysts positively affect firm-level productivity, which is consistent with prior studies that have shown access to angel financing (Kerr et al., 2014), venture capital (Chemmanur et al., 2011), and bank financing (Krishnan et al., 2015) improves the productivity of financially constrained firms.

## 6. Analyst Certification Effects

So far we have found consistent empirical support for our market access hypothesis showing that financial analysts have a positive effect on the productivity of financially constrained firms. Next, we want to identify how exactly do financial analysts improve firms' access to external financing to enable them to invest in additional productive projects. We have previously introduced two possible channels for this effect: on the one hand analysts can help investors to assess the quality of firms' growth opportunities, on the other hand they can certify managerial quality and commitment to shareholder value creation. It is important to notice that these two channels are not mutually exclusive: in order to invest in a company investors would like to be assured of both the quality of its business model and the ability and commitment of its executives. What may change is which firms will benefit more from the activity of financial analysts. An objective assessment of growth opportunities will benefit mainly opaque firms where information asymmetries between managers and investors are more relevant. An objective assessment of managerial quality and commitment will, instead, be particularly beneficial to firms with weak investor protection where the potential cost of managerial misbehavior is greater. Since the two channels can potentially co-exist we will test them separately by looking at the effect of an exogenous drop in analyst coverage for firms with varying degrees of opacity and levels of investor protection.

### 6.1. Reducing information asymmetry

As information providers, financial analysts are in a position to help with reducing the information asymmetries between company insiders and outsiders by producing and sharing their views about the firms' growth opportunities. This activity is particularly important for firms for which limited public information is available (such as small and young firms) and firms that are more difficult to analyze (such as firms with a high level of intangible assets). Investors simply may not have the resources (or skill) to develop a deep understanding

of these firms and may be reluctant to invest without an independent assessment of their business prospects (Diamond, 1989; Barth, Kasznik, and McNichols, 2001). On the other hand, this role of analysts is less important for large and mature firms and firms with a lower level of intangible assets because they are easier to understand and investors can more easily obtain information about these firms. In this case, we would expect an exogenous drop in analyst coverage to significantly affect small and young firms and firms with a high level of intangible assets as the reduction in analyst coverage would severely reduce the ability of company outsiders to acquire the necessary knowledge of these firms in order to make informed investment decisions.

To test this hypothesis, we split the firms into young and old, big and small, and tangible and intangible. Firms are assigned to the two sub-samples based on firm characteristics measured in the year prior to the decrease in analyst coverage to avoid endogeneity issues. Firm age is based on the number of years since the first appearance of the firm in Compustat. Firm size is based on market capitalization. The relevance of intangible assets is based on firms' R&D and advertising expenses. Barth et al. (2001) argue that these expenses generate brand and technology-related intangible assets and offer a better proxy than traditional measures based on the accounting value of firm assets (variable definitions are provided in Table 1). Conditional on each measure, we divide the treatment and control firms into two groups and conduct the DID estimation for the two sub-groups separately. Panel A of Table 8 reports the results. Consistent with our hypothesis, the reduction in analyst coverage only reduces productivity in firms that are small and young and firms that have a higher level of intangible assets, and all the results are significant at the 5% level.

#### [Place Table 8 about here]

### 6.2. Reducing agency costs

In addition to reducing information asymmetries, prior studies have also shown that analysts help to reduce agency problems between the shareholders and managers. For example, Yu (2008) shows that financial analysts serve as watchdogs to corporate managers and help to reduce earnings management, whereas Chen et al. (2015) show that CEOs receive higher excess compensation and are more likely to make value-destroying acquisitions after a reduction in analyst coverage. The watchdog role of financial analysts is particularly important for firms where investor protection is relatively weak, for example in firms where executives are shielded by stronger anti-takeover provisions or where powerful CEOs have gained a strong control on the board of directors. On the other hand, we would expect a smaller effect for firms with less entrenched executives because internal governance mechanisms and threats from the market for corporate control are sufficient to ensure managerial commitment to shareholder value creation in those firms.

To test this hypothesis, we condition our DID estimation upon proxies for managerial power. Following the literature, we measure managerial power using the G-index from Gompers, Ishii, and Metrick (2003), CEO tenure, and CEO/Chair duality (Variable definitions are provided in Table 1). We measure all of our proxies during the year before the exogenous decrease in analyst coverage. Conditional on each proxy, we divide the treatment and control firms into two groups and conduct the DID estimation for the two sub-groups separately. Panel B of Table 8 reports the results.

The first proxy we use to measure managerial power is the G-index constructed by Gompers et al. (2003). The G-index is based on 24 anti-takeover provisions and higher index levels correspond to greater managerial power. Bertrand and Mullainathan (2003) and Masulis, Wang, and Xie (2007) show that managers working in firms with a higher G-index are less committed to shareholder value creation due to the high level of job security. Thus, we expect that losing analysts' external monitoring is likely to hurt firms with a higher level of G-index a lot since there is an insufficient level of internal monitoring. Consistent with our

expectations, the reduction in analyst coverage only reduces productivity for firms with a higher G-index, and the result is significant at the 5% level.

The second proxy we use to measure managerial power is CEO tenure, obtained from the ExecuComp database. Hermalin and Weisbach (1998) predict that longer-serving CEOs are likely to have exerted a stronger influence on board composition and consequently would be subjected to weaker monitoring. Ryan and Wiggins (2004) further suggest that entrenched CEOs often use their power to influence directors' compensation in order to reduce directors' incentives to monitor them. Therefore, we expect that losing analysts' external monitoring is likely to hurt firms with entrenched CEOs. Consistent with our expectations, the reduction in analyst coverage only reduces productivity for firms with longer serving CEOs, and the result is significant at the 5% level.

The third proxy we use to measure managerial power is CEO/Chair duality, and we obtain this information also from the ExecuComp database. We expect the loss of external monitoring by analysts to be vital in firms which the CEO is also the chairman because the dual office structure concentrates power in the CEO's position, which allows him to control the release of information to other board members and thus impedes effective internal monitoring (Jensen, 2003). Consistent with our expectations, the reduction in analyst coverage only reduces productivity for firms which the CEO is also the chairman, and the result is significant at the 5% level.

## 7. Conclusion

In this paper, we examine the ability of financial analysts to affect the quality of corporate investment decisions by focusing on their impact on firm productivity. Using an extensive sample of U.S. publicly listed firms we show that greater analyst coverage leads to higher total factor productivity. We address the issue of the potential endogeneity of analyst coverage decisions by using a well-documented instrumental variable approach and exogenous shocks

to analyst coverage due to the merger and closure of brokerage firms. We also show that the positive effect of analysts on productivity only occurs in financially constrained firms, indicating that analyst coverage improves firm productivity by improving firms' access to external finance, allowing financially constrained firms to obtain the necessary external capital to invest in additional productive investments that would otherwise be forgone.

Analysts can facilitate market access by certifying the quality of the firm's growth opportunities and the firm's managerial commitment to shareholder value creation. We find empirical validation for both channels by showing that the causal effect of analyst coverage on productivity occurs in more opaque firms and firms with weaker investor protection.

We find no evidence to support the alternative hypothesis that analysts force managers to focus on meeting short term earnings expectations at the expense of value-enhancing long-term investments (which we termed the managerial pressure hypothesis). Our findings shed new light on the role of financial analysts within modern financial markets. Specifically we show that despite the frequent criticism that they foster short-termism amongst corporate managers, analysts have a positive effect on the quality of corporate investment decisions, and via this effect on firm productivity and also on aggregate economic growth in the long run.

### References

- Ackerberg, D., Benkard, C. L., Berry, S., Pakes, A., 2007. Econometric tools for analyzing market outcomes. Handbook of econometrics 6, 4171–4276.
- Aitken, B. J., Harrison, A. E., 1999. Do domestic firms benefit from direct foreign investment? Evidence from Venezuela. American Economic Review 89, 605–618.
- Almeida, H., Campello, M., Weisbach, M. S., 2004. The cash flow sensitivity of cash. Journal of Finance 59, 1777–1804.
- Balakrishnan, K., Billings, M. B., Kelly, B., Ljungqvist, A., 2014. Shaping liquidity: On the causal effects of voluntary disclosure. Journal of Finance 69, 2237–2278.
- Barth, M. E., Kasznik, R., McNichols, M. F., 2001. Analyst coverage and intangible assets. Journal of Accounting Research 39, 1–34.
- Bartov, E., Givoly, D., Hayn, C., 2002. The rewards to meeting or beating earnings expectations. Journal of Accounting and Economics 33, 173–204.
- Bertrand, M., Mullainathan, S., 2003. Enjoying the quiet life? Corporate governance and managerial preferences. The Journal of Political Economy 111, 1043–1075.
- Bhojraj, S., Hribar, P., Picconi, M., McInnis, J., 2009. Making sense of cents: An examination of firms that marginally miss or beat analyst forecasts. Journal of Finance 64, 2361–2388.
- Bhushan, R., 1989. Firm characteristics and analyst following. Journal of Accounting and Economics 11, 255–274.
- Butler, A. W., Cornaggia, J., 2011. Does access to external finance improve productivity? Evidence from a natural experiment. Journal of Financial Economics 99, 184–203.

- Campello, M., Graham, J., Harvey, C. R., 2010. The real effects of financial constraints: Evidence from a financial crisis. Journal of Financial Economics 97, 470–487.
- Cardarelli, R., Lusinyan, L., 2015. US Total Factor Productivity Slowdown: Evidence from the U.S. states. IMF Working Paper WP/15/116.
- Chemmanur, T. J., Krishnan, K., Nandy, D. K., 2011. How does venture capital financing improve efficiency in private firms? A look beneath the surface. Review of Financial Studies 24, 4037–4090.
- Chemmanur, T. J., Krishnan, K., Nandy, D. K., 2014. The effects of corporate spin-offs on productivity. Journal of Corporate Finance 27, 72–98.
- Chen, T., Harford, J., Lin, C., 2015. Do analysts matter for governance? Evidence from natural experiments. Journal of Financial Economics 115, 383–410.
- Dechow, P. M., Hutton, A. P., Sloan, R. G., 2000. The relation between analysts' fore-casts of long-term earnings growth and stock price performance following equity offerings.

  Contemporary Accounting Research 17, 1–32.
- Derrien, F., Kecskés, A., 2013. The real effects of financial shocks: Evidence from exogenous changes in analyst coverage. Journal of Finance 68, 1407–1440.
- Diamond, D. W., 1985. Optimal release of information by firms. Journal of Finance 40, 1071–1094.
- Diamond, D. W., 1989. Reputation acquisition in debt markets. Journal of Political Economy pp. 828–862.
- Doukas, J. A., Kim, C. F., Pantzalis, C., 2008. Do analysts influence corporate financing and investment? Financial Management 37, 303–339.
- Duchin, R., Ozbas, O., Sensoy, B. A., 2010. Costly external finance, corporate investment, and the subprime mortgage credit crisis. Journal of Financial Economics 115, 383–410.

- Easley, D., O'hara, M., 2004. Information and the cost of capital. Journal of Finance 59, 1553–1583.
- Ertimur, Y., Muslu, V., Zhang, F., 2011. Why are recommendations optimistic? Evidence from analysts' coverage initiations. Review of Accounting Studies 16, 679–718.
- Fazzari, S. M., Hubbard, R. G., Petersen, B. C., Blinder, A. S., Poterba, J. M., 1988.
  Financing constraints and corporate investment. Brookings Papers on Economic Activity 1988, 141–206.
- Francis, B., Hasan, I., Wu, Q., Liu, L., 2015. Does analyst coverage affect the cost of bank loans? Working Paper, Fordham University.
- Fresard, L., 2010. Financial strength and product market behavior: The real effects of corporate cash holdings. Journal of Finance 65, 1097–1122.
- Gompers, P., Ishii, J., Metrick, A., 2003. Corporate governance and equity prices. Quarterly Journal of Economics 118, 107–155.
- Gordon, R. J., 2016. The Rise and Fall of American Growth: The US Standard of Living since the Civil War. Princeton University Press.
- Graham, J. R., Harvey, C. R., Rajgopal, S., 2005. The economic implications of corporate financial reporting. Journal of Accounting and Economics 40, 3–73.
- Hall, B. H., 1990. The manufacturing sector master file: 1959-1987. NBER Working Paper No. 3366.
- He, J. J., Tian, X., 2013. The dark side of analyst coverage: The case of innovation. Journal of Financial Economics 109, 856–878.
- Hermalin, B. E., Weisbach, M. S., 1998. Endogenously chosen boards of directors and their monitoring of the CEO. American Economic Review 88, 96–118.

- Hong, H., Kacperczyk, M., 2010. Competition and bias. Quarterly Journal of Economics 125, 1683–1725.
- Imrohoroglu, A., Tüzel, S., 2014. Firm-level productivity, risk, and return. Management Science 60, 2073–2090.
- Irani, R. M., Oesch, D., 2013. Monitoring and corporate disclosure: Evidence from a natural experiment. Journal of Financial Economics 109, 398–418.
- Irani, R. M., Oesch, D., 2016. Analyst coverage and real earnings management: Quasi-experimental evidence. Journal of Financial and Quantitative Analysis 51, 589–627.
- Irvine, P. J., 2003. The incremental impact of analyst initiation of coverage. Journal of Corporate Finance 9, 431–451.
- Javorcik, B., 2004. Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages. American Economic Review 94, 605–627.
- Jensen, M. C., 1986. Agency costs of free cash flow, corporate finance, and takeovers. American Economic Review 76, 323–329.
- Jensen, M. C., 2003. The modern industrial revolution, exit, and the failure of internal control systems. Journal of Finance 48, 831–880.
- Jensen, M. C., 2005. Agency costs of overvalued equity. Financial Management 34, 5–19.
- Kaplan, S. N., Zingales, L., 1997. Do investment-cash flow sensitivities provide useful measures of financing constraints? The Quarterly Journal of Economics 112, 169–215.
- Kelly, B., Ljungqvist, A., 2012. Testing asymmetric-information asset pricing models. Review of Financial Studies 25, 1366–1413.

- Kerr, W. R., Lerner, J., Schoar, A., 2014. The consequences of entrepreneurial finance: Evidence from angel financings. Review of Financial Studies 27, 20–55.
- Keynes, J. M., 1936. The general theory of interest, employment and money. London: Macmillan.
- Krishnan, K., Nandy, D. K., Puri, M., 2015. Does financing spur small business productivity? Evidence from a natural experiment. Review of Financial Studies 28, 1768–1809.
- Levinsohn, J., Petrin, A., 2003. Estimating production functions using inputs to control for unobservables. The Review of Economic Studies 70, 317–341.
- Li, H., 2015. Leverage and Productivity. Stanford Institute for Economic Policy Research Discussion Paper No. 15.
- Lin, C., Ma, Y., Malatesta, P., Xuan, Y., 2012. Corporate ownership structure and bank loan syndicate structure. Journal of Financial Economics 104, 1–22.
- Maksimovic, V., Phillips, G., Prabhala, N. R., 2011. Post-merger restructuring and the boundaries of the firm. Journal of Financial Economics 102, 317–343.
- Masulis, R. W., Wang, C., Xie, F., 2007. Corporate governance and acqurier returns. Journal of Finance 62, 1851–1889.
- Matsunaga, S. R., Park, C. W., 2001. The effect of missing a quarterly earnings benchmark on the CEO's annual bonus. The Accounting Review 76, 313–332.
- McNichols, M., O'Brien, P. C., 1997. Self-selection and analyst coverage. Journal of Accounting Research 35, 167–199.
- Miao, J., Wang, P., 2012. Bubbles and total factor productivity. American Economic Review 102, 82–87.

- Moll, B., 2014. Productivity losses from financial frictions: Can self-financing undo capital misallocation? American Economic Review 104, 3186–3221.
- Myers, S. C., Majluf, N. S., 1984. Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics 13, 187–221.
- Olley, G. S., Pakes, A., 1996. The dynamics of productivity in the telecommunications equipment industry. Econometrica 64, 1263–97.
- Roulstone, D. T., 2003. Analyst following and market liquidity. Contemporary Accounting Research 20, 552–578.
- Ryan, H. E., Wiggins, R. A., 2004. Who is in whose pocket? Director compensation, board independence, and barriers to effective monitoring. Journal of Financial Economics 73, 497–524.
- Schoar, A., 2002. Effects of corporate diversification on productivity. Journal of Finance 57, 2379–2403.
- Skinner, D. J., Sloan, R. G., 2002. Earnings surprises, growth expectations, and stock returns or don't let an earnings torpedo sink your portfolio. Review of Accounting Studies 7, 289–312.
- Stiglitz, J. E., Weiss, A., 1981. Credit rationing in markets with imperfect information.

  American Economic Review 71, 393–410.
- Stulz, R. M., 1990. Managerial discretion and optimal financing policies. Journal of Financial Economics 26, 3–27.
- Sufi, A., 2007. Information asymmetry and financing arrangements: Evidence from syndicated loans. Journal of Finance 62, 629–668.
- Yu, F., 2008. Analyst coverage and earnings management. Journal of Financial Economics 88, 245–271.

Table 1: Variable definitions

This table contains the definition of all the variables used throughout the paper

| Variable                     | Definition                                                                                                                                                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TFP                          | Natural logarithm of firm level productivity calculated using the semi-<br>parametric method introduced by Olley and Pakes (1996)                                                                             |
| LnCoverage                   | Natural logarithm of <i>Coverage</i> defined as the total number of unique analysts issuing earnings forecasts for firm i during the 12 month period before its fiscal year ending date obtained from I/B/E/S |
| LnAssets                     | Natural logarithm of total assets (AT)                                                                                                                                                                        |
| Leverage                     | Book value of debt (DLTT+DLC) divided by total assets (AT)                                                                                                                                                    |
| $Book	ext{-}to	ext{-}market$ | Book value of common equity (CEQ) divided by market value of common equity (CSHOxPRCC)                                                                                                                        |
| Capex                        | Capital expenditure (CAPX) scaled by net sales (SALE)                                                                                                                                                         |
| AssetsGrowth                 | Change of total assets (AT) scaled by lagged total assets                                                                                                                                                     |
| CashFLow                     | Earnings before extraordinary items (IBC) plus depreciation and amortization (DPC) all divided by total assets (AT)                                                                                           |
| CashHoldings                 | Cash and Short-Term Investments (CHE) divided by total assets (AT                                                                                                                                             |
| ROA                          | Operating income before depreciation (OIBDP) divided by total assets (AT)                                                                                                                                     |
| Dividends                    | Dividends to common shares (DVC) plus dividends to preferred shares (DVP), all divided by total assets (AT)                                                                                                   |
| $Tobin's \ Q$                | Total assets (AT) minus book value of common equity (CEQ) plus market value of common equity (CSHO x PRCC), all divided by total assets (AT).                                                                 |
| Panel B: Definition o        | f financial constraint proxy variables                                                                                                                                                                        |
| Kaplan-Zingales Index        | -1.002 x CashFlow plus 0.283 x Tobin's Q plus 3.139 x Leverage minus 39.368 x Dividends minus 1.315 x CashHoldings                                                                                            |
| Dividend Payer Status        | Dummy variable that equals 1 if Dividends $> 0$ , and 0 otherwise.                                                                                                                                            |
| Syndicated Loans             | Amount of syndicated bank loans (from DealScan) divided by total assets (AT)                                                                                                                                  |
| Industry Concentration       | The sum of squared market shares in terms of net sales (SALE) of all the firms in each industry within our full sample.                                                                                       |

## [Panels C and D follow on the next page] $\,$

# [Panels A and B and table description on the previous page]

| Panel C: Definition of information asymmetry proxy variables |                                                                      |  |
|--------------------------------------------------------------|----------------------------------------------------------------------|--|
| Firm Size                                                    | Natural logarithm of the market value of common equity (CSHOxPRCC)   |  |
| $Firm\ Age$                                                  | The number of years since the firm's first appearance in Compustat   |  |
| $Intangible \ Assets$                                        | Research and development expenses (XRD) plus advertising             |  |
|                                                              | expenses (XAD), all divided by total operating expense               |  |
| Panel D: Definition of investor protection proxy variables   |                                                                      |  |
| GIM Index                                                    | From Gompers et al. (2003), based on 24 antitakeover provisions.     |  |
|                                                              | Higher levels correspond to lower investor protection.               |  |
| CEO Tenure                                                   | Number of years the executive has been CEO within the firm (obtained |  |
|                                                              | from Execucomp).                                                     |  |
| CEO/Chair duality                                            | Dummy variable that equals one if the CEO is also the Chair, and     |  |
|                                                              | zero otherwise (obtained from Execucomp).                            |  |

Table 2: Summary statistics

This table reports the summary statistics for variables constructed based on the sample of U.S. public firms from 1991 to 2013. Definitions of the variables can be found in Table 1.

| Panel A: Firm characteristics |        |        |        |        |        |       |  |
|-------------------------------|--------|--------|--------|--------|--------|-------|--|
| Variable                      | Mean   | St Dev | Q1     | Median | Q3     | N     |  |
| Coverage                      | 10.922 | 9.196  | 4.000  | 8.000  | 15.000 | 35280 |  |
| LnCoverage                    | 2.013  | 0.933  | 1.386  | 2.079  | 2.708  | 35280 |  |
| TFP                           | -0.344 | 0.436  | -0.564 | -0.369 | -0.141 | 35280 |  |
| LnAssets                      | 6.524  | 1.677  | 5.302  | 6.396  | 7.617  | 35280 |  |
| Leverage                      | 0.216  | 0.189  | 0.041  | 0.194  | 0.332  | 35280 |  |
| $Book	ext{-}to	ext{-}market$  | 0.548  | 0.429  | 0.282  | 0.459  | 0.710  | 35280 |  |
| Capex                         | 0.080  | 0.125  | 0.023  | 0.043  | 0.079  | 35280 |  |
| Assets Growth                 | 0.152  | 0.494  | -0.005 | 0.073  | 0.197  | 35280 |  |
| CashFlow                      | 0.094  | 0.086  | 0.057  | 0.096  | 0.139  | 35280 |  |
| ROA                           | 0.146  | 0.098  | 0.092  | 0.138  | 0.191  | 35280 |  |

| D 1D D'         | 1                | 1           |         |          |
|-----------------|------------------|-------------|---------|----------|
| Panel R. Firm   | characteristics  | hw size of  | analyst | COVERAGE |
| ranci D. riiiii | CHALACTEL ISTICS | D V SIZC OI | anarsı  | COVCIAEC |

|                |        | Numl          | oer of an     | alysts cov    | ering the     | firm          |
|----------------|--------|---------------|---------------|---------------|---------------|---------------|
| Variable       |        | 1 - 5         | 6 - 10        | 11 - 15       | 16 - 20       | > 20          |
| TFP            | Mean   | -0.467        | -0.351        | -0.289        | -0.265        | -0.146        |
|                | Median | -0.460        | -0.369        | -0.328        | -0.306        | -0.215        |
| LnAssets       | Mean   | 5.309         | 6.248         | 7.047         | 7.732         | 8.549         |
|                | Median | 5.254         | 6.217         | 7.021         | 7.705         | 8.513         |
| Leverage       | Mean   | 0.210         | 0.214         | 0.225         | 0.237         | 0.213         |
| Deverage       | Median | 0.210 $0.173$ | 0.214 $0.190$ | 0.210         | 0.230         | 0.210         |
| Book-to-market | Mean   | 0.679         | 0.534         | 0.475         | 0.442         | 0.407         |
| Dook-to-market | Median | 0.580         | 0.354 $0.459$ | 0.475 $0.411$ | 0.442 $0.373$ | 0.407 $0.336$ |
|                | 3.6    | 0.004         | 0.050         | 0.000         | 0.000         | 0.440         |
| Capex          | Mean   | 0.061         | 0.076         | 0.083         | 0.093         | 0.118         |
|                | Median | 0.034         | 0.042         | 0.045         | 0.051         | 0.060         |
| Assets Growth  | Mean   | 0.118         | 0.180         | 0.175         | 0.152         | 0.161         |
|                | Median | 0.057         | 0.088         | 0.086         | 0.075         | 0.076         |
| CashFlow       | Mean   | 0.081         | 0.093         | 0.096         | 0.102         | 0.115         |
|                | Median | 0.086         | 0.095         | 0.097         | 0.103         | 0.116         |
| ROA            | Mean   | 0.127         | 0.144         | 0.151         | 0.158         | 0.184         |
|                | Median | 0.124         | 0.137         | 0.141         | 0.147         | 0.166         |

Table 3: Baseline regression of firm productivity on analyst coverage

This table reports regressions of firm productivity (one, two or three years ahead) on analyst coverage and other control variables. Definitions of variables are in Table 1. Robust standard errors clustered by firm are displayed in parentheses. Statistical significance at the 10, 5 and 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

|                              | (1)         | (2)         | (2)         | (4)         | (F)         |
|------------------------------|-------------|-------------|-------------|-------------|-------------|
| D 1 / 11                     | (1)         | (2)         | (3)         | (4)         | (5)         |
| Dependent variable           | $TFP_{t+1}$ | $TFP_{t+1}$ | $TFP_{t+1}$ | $TFP_{t+2}$ | $TFP_{t+3}$ |
| LnCoverage                   | 0.110***    | 0.116***    | 0.037***    | 0.039***    | 0.037***    |
|                              | (0.006)     | (0.005)     | (0.006)     | (0.007)     | (0.007)     |
| LnAssets                     | , ,         | , ,         | 0.025***    | 0.024***    | 0.025***    |
|                              |             |             | (0.004)     | (0.005)     | (0.005)     |
| $Book	ext{-}to	ext{-}market$ |             |             | -0.116***   | -0.104***   | -0.096***   |
|                              |             |             | (0.011)     | (0.011)     | (0.011)     |
| ROA                          |             |             | 1.526***    | 1.238***    | 1.086***    |
|                              |             |             | (0.116)     | (0.098)     | (0.093)     |
| Capex                        |             |             | 0.207***    | 0.225***    | 0.280***    |
|                              |             |             | (0.071)     | (0.073)     | (0.077)     |
| Assets Growth                |             |             | 0.087***    | 0.045***    | 0.020**     |
|                              |             |             | (0.028)     | (0.016)     | (0.009)     |
| CashFlow                     |             |             | 0.451***    | 0.275***    | 0.208**     |
|                              |             |             | (0.093)     | (0.083)     | (0.083)     |
| Leverage                     |             |             | -0.010      | 0.004       | 0.026       |
|                              |             |             | (0.028)     | (0.031)     | (0.033)     |
| Constant                     | -0.578***   | -0.618***   | -0.760***   | -0.718***   | -0.650***   |
|                              | (0.010)     | (0.117)     | (0.089)     | (0.108)     | (0.103)     |
| Year FE                      | No          | Yes         | Yes         | Yes         | Yes         |
| Industry FE                  | No          | Yes         | Yes         | Yes         | Yes         |
| Number of Obs.               | 40740       | 40740       | 35280       | 30615       | 26801       |
| Adjusted $\mathbb{R}^2$      | 0.051       | 0.075       | 0.280       | 0.194       | 0.160       |

Table 4: Instrumental Variable Estimation

This table reports the 2SLS estimation of the effect of analyst coverage on firm productivity. Model (1) reports the result of the first stage where analyst coverage is regressed on a measure of Expected Coverage derived from exogenous changes in broker size following Yu (2008). The remaining models report results for the second stage where productivity (one, two and three years ahead, respectively) is regressed over instrumented coverage and the other control variables. Definitions of variables are shown in Table 1. Robust standard errors clustered by firm are displayed in parentheses. Statistical significance at the 10, 5, 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

|                                | (1)        | (2)                          | (3)         | (4)         |
|--------------------------------|------------|------------------------------|-------------|-------------|
| Dependent variable             | LnCoverage | $\overrightarrow{TFP}_{t+1}$ | $TFP_{t+2}$ | $TFP_{t+3}$ |
| $\overline{Expected Coverage}$ | 0.051***   |                              |             |             |
|                                | (0.002)    |                              |             |             |
| LnCoverage (instrumented)      |            | 0.110***                     | 0.183***    | 0.209***    |
|                                |            | (0.032)                      | (0.034)     | (0.036)     |
| LnAssets                       | 0.290***   | -0.005                       | -0.036***   | -0.046***   |
|                                | (0.007)    | (0.012)                      | (0.013)     | (0.014)     |
| Book-to-market                 | -0.281***  | -0.092***                    | -0.050***   | -0.027      |
|                                | (0.017)    | (0.018)                      | (0.018)     | (0.019)     |
| ROA                            | 0.308***   | 1.373***                     | 1.133***    | 0.974***    |
|                                | (0.086)    | (0.121)                      | (0.103)     | (0.098)     |
| Capex                          | 0.406***   | 0.239**                      | 0.220**     | 0.236**     |
|                                | (0.081)    | (0.094)                      | (0.093)     | (0.095)     |
| AssetsGrowth                   | 0.019      | 0.076***                     | 0.038***    | 0.014*      |
|                                | (0.016)    | (0.028)                      | (0.015)     | (0.008)     |
| CashFlow                       | -0.014     | 0.575***                     | 0.307***    | 0.288***    |
|                                | (0.085)    | (0.101)                      | (0.092)     | (0.091)     |
| Leverage                       | -0.544***  | 0.070*                       | 0.146***    | 0.200***    |
|                                | (0.044)    | (0.038)                      | (0.040)     | (0.043)     |
| Constant                       | -0.047     | -0.712***                    | -0.592***   | -0.489***   |
|                                | (0.081)    | (0.106)                      | (0.125)     | (0.119)     |
| Year FE                        | Yes        | Yes                          | Yes         | Yes         |
| Industry FE                    | Yes        | Yes                          | Yes         | Yes         |
| Number of Obs.                 | 28721      | 25839                        | 23506       | 21484       |
| Adjusted $R^2$                 | 0.626      | 0.28                         | 0.174       | 0.127       |

Table 5: Difference-in-Differences Estimation

This table reports the DID estimation results of the causal effect of an exogenous drop in analyst coverage (due to brokerage closures and mergers) on firm productivity. The sample includes 895 firms (1919 in Panel C) that have lost an analyst between 1994 and 2010 because of broker closures and broker mergers. Each treated firm is matched with a control firm from the same industry and with similar size (total assets), Tobin's Q, cash flows, and analyst coverage (see Section 5.2 for the detailed matching procedure). Panel A reports the univariate comparisons between treatment and control firms' median characteristics. Panel B shows the average change in productivity experienced by firms in the treatment and control samples between year t + 1 and year t - 1 (where t is the year of the exogenous shock to coverage) as well as the diff-in-diff estimator with the relative T-Stats. Panel C repeats the diff-in-diff analysis with three alternative matching strategies detailed in section 5.2. Statistical significance at the 10, 5, 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

| Panel A: Post-match median characteristics |                    |                  |              |         |  |  |
|--------------------------------------------|--------------------|------------------|--------------|---------|--|--|
|                                            | Treatment          | Control          | Difference   | P-Value |  |  |
| CashFlow                                   | 0.110              | 0.110            | 0.000        | 0.925   |  |  |
| Assets                                     | 2079.982           | 2056.879         | 23.103       | 1.000   |  |  |
| Tobin's Q                                  | 1.992              | 1.860            | 0.132        | 0.344   |  |  |
| Coverage                                   | 18.000             | 18.000           | 0.000        | 0.449   |  |  |
| TFP growth                                 | -0.001             | 0.005            | -0.006       | 0.437   |  |  |
| Panel B: Diff-in-Diff estim                | ation              |                  |              |         |  |  |
|                                            | $\Delta$ Treatment | $\Delta$ Control | Diff-in-Diff | T-Stat  |  |  |
| Quartile Matching                          | -0.105             | -0.064           | -0.042**     | -2.271  |  |  |
| •                                          | (0.012)            | (0.013)          | (0.018)      |         |  |  |
| Panel C: Alternative mate                  | hing strategie     | S                |              |         |  |  |
| (1) TFP-matched                            | -0.091             | -0.040           | -0.051***    | -3.624  |  |  |
|                                            | (0.009)            | (0.011)          | (0.014)      |         |  |  |
| (2) TFP/FF49-matched                       | -0.090             | -0.047           | -0.043***    | -2.984  |  |  |
| •                                          | (0.009)            | (0.011)          | (0.014)      |         |  |  |
| (3) Propensity-score matched               | -0.091             | -0.048           | -0.043***    | -3.547  |  |  |
|                                            | (0.009)            | (0.008)          | (0.012)      |         |  |  |

Table 6: Robustness tests

This table reports robustness test results for both our IV and diff-in-diff analyses. Panel A presents test results using an alternative TFP estimation methodology derived from Levinsohn and Petrin (2003). Panel B presents test results dropping the years relative to the dot-com bubble and the global financial crisis (2001, 2008 and 2009). Standard errors are displayed in parentheses. Statistical significance at the 10, 5, 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

| Panel A: Alternative productivity measure |                     |                     |                     |  |  |  |
|-------------------------------------------|---------------------|---------------------|---------------------|--|--|--|
| IV estimation (Second stage)              | )                   |                     |                     |  |  |  |
|                                           | $(1) \\ TFP_{t+1}$  | $(2) \\ TFP_{t+2}$  | $(3)$ $TFP_{t+3}$   |  |  |  |
| LnCoverage (instrumented)                 | 0.144***<br>(0.034) | 0.213***<br>(0.036) | 0.231***<br>(0.037) |  |  |  |
| Controls                                  | Yes                 | Yes                 | Yes                 |  |  |  |
| Year fixed effects                        | Yes                 | Yes                 | Yes                 |  |  |  |
| Industry fixed effects                    | Yes                 | Yes                 | Yes                 |  |  |  |
| Number of Obs.                            | 25839               | 23506               | 21484               |  |  |  |
| Adjusted $R^2$                            | 0.253               | 0.155               | 0.111               |  |  |  |
| Diff-in-Diff estimation                   |                     |                     |                     |  |  |  |
|                                           | Diff-in-Diff        | T-Stat              |                     |  |  |  |
| Quartile matching                         | -0.042**<br>(0.019) | -2.253              |                     |  |  |  |
| TFP-matched                               | -0.031**            | -2.190              |                     |  |  |  |
|                                           | (0.014)             |                     |                     |  |  |  |
| TFP/FF49-matched                          | -0.024*             | -1.657              |                     |  |  |  |
| •                                         | (0.015)             |                     |                     |  |  |  |
| Propensity-score matched                  | -0.038***           | -3.130              |                     |  |  |  |
|                                           | (0.012)             |                     |                     |  |  |  |

[Panels B follows on the next page]

#### [Panel A and table description on the previous page]

Panel B: Alternative time period IV estimation (Second Stage) (2)(3)(1) $TFP_{t+1}$  $TFP_{t+2}$  $TFP_{t+3}$ 0.133\*\*\* 0.206\*\*\* 0.236\*\*\* LnCoverage (instrumented) (0.033)(0.035)(0.037)Controls Yes Yes Yes Year fixed effects Yes Yes Yes Industry fixed effects Yes Yes Yes Number of Obs. 18119 22119 19991 Adjusted  $R^2$ 0.2770.1610.106Diff-in-Diff estimation Diff-in-Diff T-Stat -0.051\*\* Quartile matching -2.275(0.022)-0.052\*\*\* TFP-matched -3.076(0.017)

-0.048\*\*\*

(0.017) -0.050\*\*\*

(0.014)

-2.798

-3.417

TFP/FF49-matched

Propensity-score matched

Table 7: The effect of coverage on productivity for financially constrained firms

This table shows the effect of an exogenous reduction in coverage on the productivity of firms divided in subsamples according to four different proxies for financial constraints. The sample includes 895 firms that lost an analyst between 1994 and 2010 because of broker closure and broker mergers. Each treated firm is matched with a control firm from the same industry with similar size (total assets), Tobin's Q, cash flow, and analyst coverage (see section 5.2 for the detailed matching procedure). For a definition of the financial constraints proxy variables see Table 1. Standard errors are displayed in parentheses. Statistical significance at the 10, 5, 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

|        | $\Delta$ Treatment    | $\Delta$ Control | Diff-in-Diff | T-Stat |  |  |  |  |
|--------|-----------------------|------------------|--------------|--------|--|--|--|--|
|        |                       |                  |              |        |  |  |  |  |
| Divid  | Dividend Payer Status |                  |              |        |  |  |  |  |
| No     | -0.150                | -0.083           | -0.067**     | -2.044 |  |  |  |  |
|        | (0.022)               | (0.025)          | (0.033)      |        |  |  |  |  |
| Yes    | -0.064                | -0.041           | -0.022       | -1.303 |  |  |  |  |
|        | (0.013)               | (0.011)          | (0.017)      |        |  |  |  |  |
| T 1    |                       |                  |              |        |  |  |  |  |
| Indus  | try Concentration     | on               |              |        |  |  |  |  |
| Low    | -0.121                | -0.074           | -0.047**     | -2.073 |  |  |  |  |
|        | (0.015)               | (0.017)          | (0.023)      |        |  |  |  |  |
| High   | -0.090                | -0.053           | -0.036       | -1.258 |  |  |  |  |
|        | (0.020)               | (0.021)          | (0.029)      |        |  |  |  |  |
| Kapla  | n - Zingales Inc      | dex              |              |        |  |  |  |  |
| High   | -0.101                | -0.053           | -0.048*      | -1.916 |  |  |  |  |
| 111811 | (0.016)               | (0.019)          | (0.025)      | 1.010  |  |  |  |  |
| Low    | -0.108                | -0.075           | -0.033       | -1.240 |  |  |  |  |
| 20,,   | (0.019)               | (0.019)          | (0.027)      | 1.2 10 |  |  |  |  |
|        |                       |                  |              |        |  |  |  |  |
| Syndi  | Syndicated Loans      |                  |              |        |  |  |  |  |
| Low    | -0.077                | -0.013           | -0.065**     | -2.100 |  |  |  |  |
|        | (0.022)               | (0.022)          | (0.031)      |        |  |  |  |  |
| High   | -0.065                | -0.055           | -0.009       | -0.282 |  |  |  |  |
|        | (0.023)               | (0.024)          | (0.033)      |        |  |  |  |  |
|        |                       |                  |              |        |  |  |  |  |

**Table 8: Analyst Certification Effects** 

This table shows the effect of an exogenous reduction in coverage on the productivity of firms divided in subsamples according to different proxies for information asymmetries (Panel A) and investors' protection (Panel B). The sample includes 895 firms that lost an analyst between 1994 and 2010 because of broker closure and broker mergers. Each treated firm is matched with a control firm from the same industry with similar size (total assets), Tobin's Q, cash flow, and analyst coverage (see section 5.2 for the detailed matching procedure). For a definition of the different proxy variables see Table 1. Standard errors are displayed in parentheses. Statistical significance at the 10, 5, 1% level is indicated by \*, \*\*, and \*\*\*, respectively.

| Panel A: Information Asymmetry |                    |                  |              |        |  |  |
|--------------------------------|--------------------|------------------|--------------|--------|--|--|
|                                | $\Delta$ Treatment | $\Delta$ Control | Diff-in-Diff | T-Stat |  |  |
| Firm Size                      |                    |                  |              |        |  |  |
| Small                          | -0.120             | -0.064           | -0.055**     | -1.980 |  |  |
|                                | (0.020)            | (0.019)          | (0.028)      |        |  |  |
| Big                            | -0.093             | -0.063           | -0.030       | -1.268 |  |  |
|                                | (0.016)            | (0.018)          | (0.024)      |        |  |  |
| Firm A                         | ge                 |                  |              |        |  |  |
| Young                          | -0.150             | -0.087           | -0.063**     | -1.960 |  |  |
|                                | (0.020)            | (0.025)          | (0.032)      |        |  |  |
| Old                            | -0.057             | -0.042           | -0.015       | -0.844 |  |  |
|                                | (0.013)            | (0.012)          | (0.018)      |        |  |  |
| Intangible Assets              |                    |                  |              |        |  |  |
| High                           | -0.141             | -0.015           | -0.126**     | -2.002 |  |  |
|                                | (0.036)            | (0.053)          | (0.063)      |        |  |  |
| Low                            | -0.073             | -0.088           | 0.015        | 0.512  |  |  |
|                                | (0.019)            | (0.023)          | (0.030)      |        |  |  |

[Panels B follows on the next page]

# $[ Panel\ A\ and\ table\ description\ on\ the\ previous\ page]$

| Panel B: Investors' protection |                    |                  |                    |        |  |  |  |
|--------------------------------|--------------------|------------------|--------------------|--------|--|--|--|
|                                | $\Delta$ Treatment | $\Delta$ Control | Diff-in-Diff       | T-Stat |  |  |  |
| GIM I                          | Index              |                  |                    |        |  |  |  |
| High                           | -0.090             | -0.013           | -0.077**           | -2.225 |  |  |  |
|                                | (0.022)            | (0.027)          | (0.035)            |        |  |  |  |
| Low                            | -0.117             | -0.108           | -0.009             | -0.231 |  |  |  |
|                                | (0.026)            | (0.029)          | (0.040)            |        |  |  |  |
| CEO t                          |                    | 0.005            | 0.07044            | 2.450  |  |  |  |
| Long                           | -0.137 $(0.020)$   | -0.067 $(0.021)$ | -0.070** $(0.029)$ | -2.450 |  |  |  |
| Short                          | -0.072             | -0.079           | 0.007              | 0.326  |  |  |  |
|                                | (0.015)            | (0.017)          | (0.023)            |        |  |  |  |
| CEO/                           | CEO/Chair duality  |                  |                    |        |  |  |  |
| Yes                            | -0.105             | -0.055           | -0.049**           | -2.241 |  |  |  |
|                                | (0.016)            | (0.015)          | (0.022)            |        |  |  |  |
| No                             | -0.104             | -0.101           | 0.004              | -0.117 |  |  |  |
|                                | (0.021)            | (0.025)          | (0.032)            |        |  |  |  |

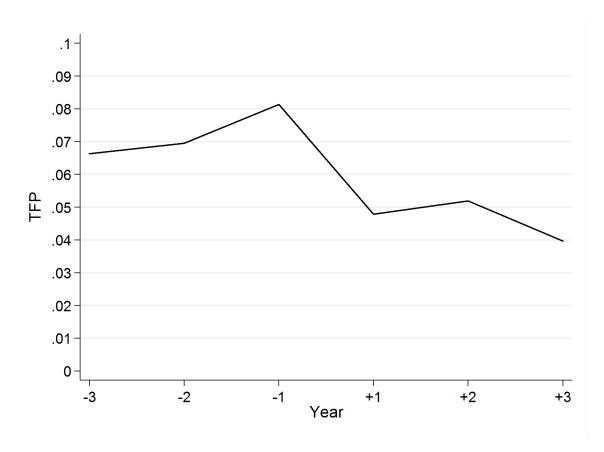


Figure 1: Parallel Trend in TFP

This figure presents the mean difference in TFP between firms in the treatment and control samples during the seven years around the exogenous decrease in analyst coverage. The sample includes 895 firms that lost an analyst between 1994 and 2010 due to a broker closure or broker merger. Each treated firm is matched with a control firm from the same industry with similar size (total assets), Tobin's Q, cash flow, and analyst coverage (see section 5.2 for the detailed matching procedure).

## Appendix A. Estimation of Production Functions

To estimate the production functions we start from the Compustat universe and drop financial firms (SIC classification between 6000 and 6999) and regulated firms (SIC classification between 4900 and 4999). We keep all remaining observations with non-missing data on sales, total assets, number of employees, gross property, plant and equipment, depreciation, accumulated depreciation, and capital expenditures. The price index for Gross Domestic Product is used as the deflator for value added and the price index for private fixed investment is used as the deflator for investment and capital, both obtained from the Bureau of Economic Analysis. Data on employees' average wages is sourced from the national average wage index from Social Security Administration.

Following Imrohoroglu and Tüzel (2014), value added is computed as sales minus materials, deflated by the GDP price deflator. Sales is measured as net sales (SALE). Materials is measured as Total expenses minus Labor expenses. Total expenses is approximated as sales minus operating income before depreciation and amortization (OIBDP). Labor expenses is calculated by multiplying the number of employees (EMP) by average wages from the Social Security Administration. Labor stock is measured by the number of employees.

Capital stock is given by gross property, plant and equipment (PPEGT), deflated by the price deflator for investment following Hall (1990). Investment is made at various times, therefore we need to calculate the average age of capital at every year for each company and apply the appropriate deflator. Average age of capital stock is calculated by dividing accumulated depreciation (DPACT)) by current depreciation (DP). Age is further smoothed by taking a 3-year moving average. The resulting capital stock is lagged by one period to measure the available capital stock at the beginning of the period.

We estimate the production function based on labor and physical capital as inputs. The production function is:

$$y_{it} = \beta_0 + \beta_k k_{it} + \beta_l l_{it} + \omega_{it} + \epsilon_{it} \tag{A1}$$

where  $y_{it}$  is the log value of output for firm i in period t,  $k_{it}$  and  $l_{it}$  are the log values of capital and labor respectively  $\omega_{it}$  is the level of productivity and  $\epsilon_{it}$  is the error term. As argued by Olley and Pakes (1996), productivity, is observed by the firm before the firm makes some of its factor input decisions, and this gives rise to the simultaneity problem. To control for this problem, both Olley and Pakes (1996) and Levinsohn and Petrin (2003) suggest using investment and intermediate inputs respectively to proxy for productivity. Both methods assume monotonic relationship between the proxy variable and the true productivity shocks. Due to this assumption, both methods require the proxy variable to be positive as productivity shocks can rarely be negative in reality. In addition, both methods define labor to be a variable input as firms can adjust this factor in response to current productivity levels and define capital to be a fixed input as it is assumed the capital that the firm uses in period t was decided in period t-1.

### Olley and Pakes (1996) approach

Let I denote firm investment. Conditional on the firm having positive investment ( $I_{it} > 0$ ), we can write  $\omega_{it} = h(I_{it}, k_{it})$ . In other words, conditional on a firm's capital stock, firm investment allows us to uniquely determine productivity. Moreover, conditional on all information available at time t,  $\omega_{it}$  is a sufficient statistic for predicting  $\omega_{i,t+1}$ .

Let's define:

$$\phi_{it}(I_{it}, k_{it}) = \beta_0 + \beta_k k_{it} + h(I_{it}, k_{it}) \tag{A2}$$

in the first stage we estimate

$$y_{it} = \beta_l l_{it} + \phi_{it}(I_{it}, k_{it}) + \epsilon_{it} \tag{A3}$$

where we approximate  $\phi_{it}(I_{it}, k_{it})$  with a second order polynomial series in capital and investment. This first stage estimation results in an estimate for  $\hat{\beta}_l$  that controls for the simultaneity problem. In the second stage, consider the expectation of  $y_{i,t+1} - \hat{\beta}_l l_{i,t+1}$  on information at time t and survival of the firm:

$$E_t(y_{i,t+1} - \hat{\beta}_l l_{i,t+1}) = \beta_0 + \beta_k k_{i,t+1} + E_t(\omega_{i,t+1} | \omega_{it}, Survival)$$
(A4a)

$$= \beta_0 + \beta_k k_{i,t+1} + g(\omega_{it}, \hat{P}_{Survival,t})$$
 (A4b)

where  $\hat{P}_{Survival,t}$  denotes the probability of firm survival from time t to time t+1. The fitted value of survival probability is estimated via a probit model with polynomial expression containing capital and investment. We fit the following equation by nonlinear least squares:

$$y_{i,t+1} - \hat{\beta}_l l_{i,t+1} = \beta_k k_{i,t+1} \rho \omega_{it} + \lambda \hat{P}_{Survival,t} + \epsilon_{i,t+1}$$
(A5)

where  $\omega_{it}$  is given by  $\omega_{it} = \phi_{it}(I_{it}, k_{it}) - \beta_0 - \beta_k k_{it}$ . At the end of this stage,  $\hat{\beta}_l$  and  $\hat{\beta}_k$  are estimated.

Finally, firm level log TFP is measured by:

$$TFP_{it} = y_{it} - \hat{\beta}_0 - \hat{\beta}_l l_{it} - \hat{\beta}_k k_{it} \tag{A6}$$

We estimate equation (A3) with industry specific time dummies and then subtract them from the left hand side of equation (A4). Hence, our firm level TFP measure is free of the effect of industry or aggregate TFP in any given year.

#### Levinsohn and Petrin (2003) approach

The two stage estimation devised by Olley and Pakes (1996) relies on firm investment to solve the simultaneity problem. Levinsohn and Petrin (2003) suggest that the use of this variable can be problematic. First of all the estimation requires a positive value for investments so, for example, firms that make only intermittent investments will have their zero-investment observations truncated from the estimation. Moreover they also point out that non-convex adjustment costs may lead to kinks in the investment function that affect the responsiveness of investment to economic shocks.

To overcome these problems the authors propose an alternative estimation strategy based on an intermediate input, materials used in production, that should not suffer from the same issues. Now conditional on  $m_{it} > 0$ , we can write  $\omega_{it} = h(m_{it}, k_{it})$ . Conditional on a firm's capital stock, materials used in production allow us to uniquely determine productivity.

The derivation of firm-level productivity follows the same two-stage structure introduced by Olley and Pakes (1996) with the substitution of materials used in production  $m_{it}$  for firm investments  $I_{it}$ .