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Abstract

I consider the problem of portfolio optimization for a manager
whose compensation is given by the sum of a constant and a variable
term. The constant term is a fixed percentage of the managed funds
that is payed to the manager independently of his performance. The
variable term is a premium that is proportional to the profit earned by
the manager over a benchmark at a certain evaluation date. I find the
optimal strategy and the optimal wealth in the Black-Scholes setting
when the benchmark is a linear combination of the risky asset and the
money market account. I also provide an approximated formula for
the optimal strategy, based on a univariate Fourier inversion, that can
be applied to more general dynamics.

keywords: Investment Analysis; Portfolio Management; Optimal Control;
Fourier Transform

1 Introduction

I treat the problem of finding the optimal strategy for a fund manager subject
to a performance based compensation. I consider a compensation contract
given by the sum of a constant and a variable term. The constant term is a
fixed amount that is paid to the manager independently of his performance.
The variable term is equal to a call option where the underlying is the man-
aged fund and the strike is the value of the benchmark at maturity. This is
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a stylized version of the usual compensation of fund managers who receive
a fixed amount, usually based on a percentage of the asset under manage-
ment and a variable prize, based on the over-performance with respect to a
benchmark. For example, in the hedge fund industry, it has been a common
practice, especially before the most recent financial crisis, to set up a constant
of 2% of the asset under management and a 20% of the over-performance.
I assume a Black-Scholes setting, with a risky asset following a Geometric
Brownian Motion and a money market account paying a constant interest
rate. The benchmark to which the compensation of the manager is linked is
a linear combination of the risky asset and the money market account. The
manager, endowed with a Constant Relative Risk Aversion (CRRA) utility
function, selects the trading strategy that optimizes the expected utility of
the final compensation, subject to a budget constraint.

This problem is an extension of the classical Merton model [12] that is
interesting from several point of views. It is an interesting optimization
problem as it presents some non trivial issues, like an option with a random
strike price, written on a managed portfolio, and a non-concave objective
function. It is also very relevant in practice because it addresses the question
of how compensation affects the behavior of the managers. My work is
based on the path-breaking paper by Carpenter [7] who showed that such
problems can be solved by combining the martingale approach by Cox and
Huang [8] and the concavification argument proposed by Aumann and Perles
in [1]. Carpenter in [7] illustrated the application of her method to the
cases of a benchmark that is either a constant or the minimum variance
portfolio. My contribution is the computation in closed form of the optimal
strategy when the benchmark is any combination of the two assets in the
Black Scholes model. Moreover I provide an approximated formula for the
optimal policy that is based on the inversion of a one-dimensional Fourier
Transform. Such a formula has the advantage that can be applied also for
more general dynamics. It is only required the knowledge of the characteristic
function of the joint process of the state variables.

The approach proposed in [7] has been repeatedly used in the literature of
managerial compensations. Cuoco and Kaniel in [9] compute the equilibrium
in an economy populated by managers and investors. They solve a problem
with the same objective function, but they assume that the process for the
underlying is not given, but is endogenous to the model. Basak, Pavlova and
Shapiro in [2] consider the incentives induced by an increasing and convex
relationship of fund flows to relative performance. They consider the same
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market model, with a risky asset following a Geometric Brownian Motion, but
with a different objective function. In fact they modeled the payoff function
of a mutual fund manager, whose final wealth depends on the convex relation
between performance and money inflow. Nicolosi, Herzel and Angelini in [13]
extend the result in [2] to models with mean reversion, either in the market
price of risk, or in the volatility of the asset prices. Herzel and Nicolosi, in [11],
show how the optimal strategy of an investor, who may choose to allocate
between a risk-free asset, a risky asset and a managed fund, is affected by
different kinds of incentives for the manager. Basak, Shapiro, and Teplá in
[3] consider a problem where a CRRA manager optimizes a linear payoff with
the additional constraint of not underperforming the benchmark with a given
level of probability. Barucci and Marazzina, in [4] investigate the case of a
manager who is remunerated trough a High Water Mark incentive scheme,
while in [5] study the problem of non-convex remuneration under a regime
switching framework.

The rest of the paper is organized as follows: Section 2 presents the
optimization problem and the dynamics of the model. Section 3 provides
analytical formulas for the optimal strategy in the one dimensional Black-
Scholes setting. Section 4 implements the optimal policy under different
choices of the parameters and studies the impact of the incentives on it.
Section 5 provides in closed form an approximation for the optimal policy. A
comparison between the optimal strategy and the approximated one is also
presented. Section 6 concludes. The Appendix contains technical details
that may be skipped at a first reading.

2 Model setting

Let us define a complete probability space (Ω,F , P ), with filtration {Ft}
t ≥ 0 generated by a standard Brownian motion Z. The market is composed
by a money market account B, providing constant interest rate r, and a risky
asset S, traded continuously in time. The risk asset’s price process follows

dSt = St (µdt+ σdZt)

where µ and σ are constants.
A fund manager dynamically allocates the fund’s wealth, initially valued
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at W0, through a self-financing strategy. The value of the portfolio W follows

dWt

Wt

= (r + θt(µ− r))dt+ θtσdZt (1)

where θt is the fraction of the portfolio invested in the risky asset at time t.
The manager is compensated depending on his performance with respect

to a benchmark Y over an investment period T according to the payoff func-
tion:

Π(WT , YT ) = α(WT − YT )
+ +K (2)

where K > 0 represents a fixed compensation, and α > 0 is the percentage
of positive profit that the manager receives.

The benchmark Y is a constant portfolio consisting of a non-negative
fraction β invested in the asset S and 1− β invested in the risk-free money
market. The dynamics of the benchmark is

dYt

Yt

= (r + β(µ− r))dt+ βσdZt.

The manager, endowed with a constant relative risk aversion utility func-
tion

u(x) =
x1−γ

1− γ
, γ > 0, (3)

solves the problem

max
θT

E[u(α(WT − YT )
+ +K)],

subject to the dynamic budget constraint (1).
Since we are considering a dynamically complete and arbitrage free mar-

ket model we can follow the martingale approach proposed by Cox and Huang
in [8] and solve the static problem

max
WT

E[u(α(WT − YT )
+ +K)],

E

[
ξT
ξ0

WT

]
= W0 (4)

where ξ is the state price density whose dynamics is

dξt
ξt

= −rdt− µ− r

σ
dZt (5)

ξ0 = 1
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3 The optimal strategy

The optimal wealth at time T can be found by following [7] and it is:

W ∗
T =

{[
I

(
λ∗ξT
α

)
−K

]
1

α
+ YT

}
I[

I
(

λ∗ξT
α

)
−K

]
1
α
+YT>Ŵ (YT )

(6)

where I(x) = (u′)−1 (x) is the inverse function of the marginal utility, λ∗ > 0
is the Lagrange multiplier ensuing that the budget constraint (4) is satisfied,
IA is the indicator function over the support A, and Ŵ (y) > y > 0 solves:

u
(
α
(
Ŵ (y)− y

)
+K

)
= u(K) + αu′

(
α
(
Ŵ (y)− y

)
+K

)
Ŵ (y). (7)

The following proposition provides the optimal wealth and the optimal
strategy at any time t ≤ T , when β < µ−r

σ2 .

Proposition 3.1 For any β < µ−r
σ2 , the optimal wealth W ∗

t and the optimal
strategy θ∗t are

W ∗(t, ξt; ξ̂) = C1ξ
− 1

γ

t N (d1) + C2N (d2) + C3ξ
− βσ2

µ−r

t N (d3) (8)

and

θ∗(t, ξt; ξ̂) = θM +
µ− r

σ2

1

W ∗
t

(
−1

γ
C2N (d2) +

(
βσ2

µ− r
− 1

γ

)
C3ξ

− βσ2

µ−r

t N (d3)

+
σC1ξ

− 1
γ

t e−
1
2
d21

(µ− r)
√

2π(T − t)
+

σC2e
− 1

2
d22

(µ− r)
√

2π(T − t)
+

σC3ξ
− βσ2

µ−r

t e−
1
2
d23

(µ− r)
√

2π(T − t)


(9)

where

θM =
µ− r

γσ2
(10)
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is the Merton strategy of the problem without incentives and

C1 =
1

α

(
λ∗

α

)− 1
γ

e(
1
γ
−1)

(
r+ 1

2γ (
µ−r
σ )

2
)
(T−t)

C2 = −K

α
e−r(T−t)

C3 = Y0A(T )e

(
βσ2

µ−r
−1

)
(r+ 1

2
(µ−r)β)(T−t)

d1 =
ln
(

ξ̂
ξt

)
+
(
r − 1

2

(
µ−r
σ

)2 (
1− 2

γ

))
(T − t)(

µ−r
σ

)√
T − t

d2 =
ln
(

ξ̂
ξt

)
+
(
r − 1

2

(
µ−r
σ

)2)
(T − t)(

µ−r
σ

)√
T − t

d3 =
ln
(

ξ̂
ξt

)
+
(
r − 1

2

(
µ−r
σ

)2 (
1− 2βσ2

µ−r

))
(T − t)(

µ−r
σ

)√
T − t

with

A(t) = e

(
r+ 1

2
β(µ−r)− 1

2
β2σ2− rβσ2

µ−r

)
t

(11)

and ξ̂ solves the equation
ξ̂ = f(ξ̂) (12)

where

f(ξ) =
α

λ∗u
′
(
α

(
Ŵ (Y0ξ

− βσ2

µ−rA(T ))− Y0ξ
− βσ2

µ−rA(T )

)
+K

)
.

Proof. The support of the indicator function in (6) can be written as

ξT < h(YT ), (13)

where
h(YT ) =

α

λ∗u
′
(
α
(
Ŵ (YT )− YT

)
+K

)
. (14)

Now I can express the benchmark in terms of the state price density. Indeed,
for any t:

Yt = Y0A(t)ξ
− βσ2

µ−r

t , (15)
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where A(t) is defined in (11). In terms of ξT , the inequality (13) may be writ-
ten as ξT < ξ̂ where ξ̂ satisfies equation (12). The existence and uniqueness
of ξ̂ is ensured by assuming that β < µ−r

σ2 (see the Appendix A for details).
Hence the optimal wealth (6) at time T reads:

W ∗
T =

{[
I

(
λ∗ξT
α

)
−K

]
1

α
+ Y0A(T )ξ

− βσ2

µ−r

T

}
IξT<ξ̂. (16)

The optimal wealth at time t < T is then found using the fact that in a
complete and free of arbitrage market, any tradable asset multiplied by the
state price density is a martingale. Hence:

W ∗
t =

1

ξt
Et[ξTW

∗
T ], (17)

where Et[·] is the expectation conditioned at information at time t. Such an
expectation is computed by using (16) for the optimal final wealth, together
with the explicit expression of the state price density, coming from solving
equation (5)

ξT = ξte

(
−r− 1

2(
µ−r
σ )

2
)
(T−t)−µ−r

σ
ZT−t ,

and by using that

Et

[
ξaT IξT<ξ̂

]
= ξat e

−a
(
r+ 1

2(
µ−r
σ )

2
(1−a)

)
(T−t)

× N

 ln
(

ξ̂
ξt

)
+
(
r + 1

2

(
µ−r
σ

)2
(1− 2a)

)
(T − t)(

µ−r
σ

)√
T − t

 ,

for any real number a.
As for the optimal strategy θ∗t , it is found by equating the diffusive coef-

ficient in (1) with the diffusive coefficient obtained by applying Ito’s lemma
to W ∗(t, ξt; ξ̂), that is

θ∗ = −µ− r

σ2

ξt
W ∗

t

dW ∗

dξ
.

The expression (9) is recovered by computing the first derivative of (8) with
respect to state variable ξ and rearranging the terms. �

When β > µ−r
σ2 , the solution to (12) may not be unique. I performed

many experiments and I found either one or two solutions. I have never
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Figure 1: Optimal strategy as a function of the optimal wealth at time t = 1
year. The continuous line represents the case when the benchmark is the
risk-free asset, while the dashed line shows the results when the benchmark
is the risky asset. The contract parameters are K = 3%, α = 15%. The
time to maturity is T − t = 1 year. The initial value of the wealth and of
the benchmark is W0 = Y0 = 1. The risk aversion parameter is γ = 2. The
parameters defining the dynamics are: µ = 0.08, r = 0, and σ = 0.2.

found more than two solutions. In the case of two solutions ξ̂1 < ξ̂2, the
support of the indicator function in (6) is equivalent to IξT<ξ̂2

− IξT<ξ̂1
and

hence the optimal wealth and optimal strategy read respectively

W ∗(t, ξt; ξ̂1, ξ̂2) = W ∗(t, ξt; ξ̂2)−W ∗(t, ξt; ξ̂1)

θ∗(t, ξt; ξ̂1, ξ̂2) =
W ∗(t, ξt; ξ̂2)

W ∗(t, ξt; ξ̂1, ξ̂2)
θ∗(t, ξt; ξ̂2)−

W ∗(t, ξt; ξ̂1)

W ∗(t, ξt; ξ̂1, ξ̂2)
θ∗(t, ξt; ξ̂1)

where W ∗(t, ξt; ξ̂i) and θ∗(t, ξt; ξ̂i) for i = 1, 2 are given respectively in Equa-
tion (8) and (9) when ξ̂ is equal to ξ̂i.

4 Analysis of the optimal strategy

In this section I will compute the optimal strategy for different sets of the
contract parameters.
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Figure 1 shows the optimal strategy as a function of the optimal wealth
at time t = 1 year. The contract and the dynamics are set as in [7] for
comparability reason. The contract parameters are K = 3%, α = 15%. The
time to maturity is T − t = 1 year. The initial value of the wealth and of
the benchmark is W0 = Y0 = 1. The risk aversion parameter is γ = 2. The
dynamics parameters are: µ = 0.08, r = 0, and σ = 0.2. The continuous line
represents the case when the benchmark is the risk-free asset, that is the same
case studied in [7]; the dashed line shows the results when the benchmark is
the risky asset. In both cases the optimal strategy converges to the Merton
level (10), for high values of the wealth. The Merton level is the constant
proportion of the risky asset held in the portfolio by a manager who is paid a
linear share of the profit. When the wealth is far above the benchmark level,
that is when it is very likely that the option defining the variable premium of
the contract finishes in the money, the manager’s payoff is effectively linear
in the profit and hence the standard Merton level is recovered. On the other
hand, for low values of the portfolio value, it is optimal for the manager
to deviate from the Merton level to boost the portfolio volatility in order
to increase the probability to beat the benchmark and finish in the money.
When the benchmark is the risk-free asset, there are some states where the
optimal exposure is below the Merton level. This behavior, that has been
explained in [7] with a reduction of the wealth volatility to compensate the
leverage effect of the option component, is instead not observed when the
benchmark is the risky asset. The reason is that in this case the leverage effect
of the option component is weaker than in the other case as the volatility of
the benchmark may reduce the volatility of the option.

Figure 2 shows the influence of α, the percentage of positive profit (Wt−
Yt)

+ received by the manager. The two panels report the optimal strategy as
a function of the profit at time t = 1 year respectively for the case when the
benchmark is the risky asset (left panel) and the case when it is the risk-free
asset (right panel). The results are relative to α = 5% (dashed line), α = 15%
(continuous line), and α = 30% (dotted line). The other parameters are set
as in Figure 1. For a higher number α of options held by the manager, it
is optimal for the manager to reduce his exposure. This behavior, that at
a first sight may be counterintuitive, has already been observed in [7] when
the benchmark is the risk free asset. Here we observe the same effect when
the benchmark is the risky asset. The reason of such a behavior is that
the manager tries to maximize the utility of his personal portfolio (2) which
consists of α shares of an option on the fund’s value and cash (the constant
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Figure 2: Optimal strategy as a function of the difference between the optimal
wealth and the benchmark at time t = 1 year. The figure shows the results for
different levels of the percentage defining the variable prize of the contract,
α = 5% (dashed line), α = 15% (continuous line), and α = 30% (dotted line),
when the benchmark is either the risky asset, in the left panel, or the risk-free
asset, in the right panel. The fixed premium of the contract is K = 3%. The
other parameters are set as in Figure 1, that is: T − t = 1 year, W0 = Y0 = 1,
γ = 2, µ = 0.08, r = 0 and σ = 0.2.
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Figure 3: Optimal strategy as a function of the difference between the optimal
wealth and the benchmark at time t = 1 year. The figure shows the results
for different levels of the time to maturity, T − t = 0.5 years (dashed line),
T − t = 1 year (continuous line), and T − t = 2 years (dotted line), when
the benchmark is either the risky asset, in the left panel, or the risk-free
asset, in the right panel. The other parameters are set as is Figure 1, that
is: α = 15%, K = 3%, W0 = Y0 = 1, γ = 2, µ = 0.08, r = 0 and σ = 0.2.

part). A manager with a CRRA utility seeks to keep the volatility of his
portfolio constant to the Merton level. Such a volatility by Ito’s lemma is
proportional to α and to the volatility of the assets under management θtσ.
Hence an increasing of the percentage α of the option causes a decreasing of
the funds value volatility.

Figure 3 shows the influence of the time to maturity T − t. The two
panels report the optimal strategy as a function of the profit Wt−Yt at time
t = 1 year for different levels of the time to maturity, T − t = 0.5 years
(dashed line), T − t = 1 year (continuous line), and T − t = 2 years (dotted
line), when the benchmark is either the risky asset (left panel), or the risk-
free asset (right panel). The other parameters are set as in Figure 1. In
both the panels we observe that as the evaluation date is approaching, if the
portfolio value is around the benchmark value, it is optimal for the manager
to increase his exposure in the attempt to increase the likelihood of finishing
in the money and get the variable part of compensation.
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5 An approximated formula

In this section I derive approximated formulas for the optimal strategy and
the optimal wealth. I show that in the setting described in Section 3 such
a suboptimal solution provides a good approximation of the optimal one.
The advantage of using this approach is that it can be implemented for more
general dynamics, for which the characteristic function is known, to the case
of N risky assets, and it is not restricted to the case β < µ−r

σ2 .
Equation (13) defines the region where the manager’s option ends in the

money. To compute the optimal strategyW ∗
t we have to integrate over such a

region as in (17). The idea is to approximate function (14), delimitating the
integration region, with a power-law function and then to use the Fourier
Transform to express the indicator function as an integral representation.
Then the optimal wealth at any time t is recovered by a univariate Fourier
inversion. Similar techniques have already been used to price spread option.
See for instance [6] or [10].

As an example of the approximation, Figure 4 left panel, shows the region
where the option is in the money for the β = 1 case provided in Figure 1 and
the corresponding approximated region. In this case the parameters of the
power-law function aY b

T approximating (14) are a = 1.200 and b = −0.4795
with a R2 of the fit that is R2 = 0.9415. The reason why the approximation
should work is that aY b

T approaches h(YT ) from above for some values of
YT and from below for some other values of YT . Hence there could be a
compensation of the error. Moreover, the computation of the optimal wealth
and optimal strategy involves the computation of an expected value. Hence
the behavior of the distribution’s tails may mitigate the magnitude of the
error.

Proposition 5.1 Let us consider the following approximated integration re-
gion

Ã = {(ξT , YT ) ∈ R2
+ : ξT < aY b

T}, (18)

for some real numbers a and b. Moreover, let us define the characteristic
function of the joint process (ln ξt, lnYt)

Ht(z1, z2) = Et[e
z1 ln ξT ez2 lnYT ]. (19)

Then the suboptimal wealth

W̃t =
1

2πξt

3∑
j=1

Aj

∫ +∞

−∞
φ̂(iu−R+cj)Ht(−iu+R, b(iu−R+cj)+dj)du (20)
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where

φ̂(z) =
az

z
,

A1 =
1

α

(
λ∗

α

)−1/γ

, A2 = −K

α
, A3 = 1,

c1 = 1− 1/γ, c2 = c3 = 1, d1 = d2 = 0, d3 = 1,

R < 1− 1/γ,

provides an approximation of the optimal wealth (8).

Proof. From Equations (6) and (13), and by using (17), we have:

W ∗
t =

1

ξt

3∑
j=1

AjEt[ξ
cj
T Y

dj
T IξT<h(YT )]. (21)

An approximation of (21) is obtained by considering the approximated inte-
gration region (18), that is

W̃t =
1

ξt

3∑
j=1

AjEt[ξ
cj
T Y

dj
T IξT<aY b

T
].

Then I apply an inverse Fourier Transform to rewrite W̃t as

W̃t =
1

2πξt

3∑
j=1

AjEt

[∫ +∞

−∞
φ̂(iu−R + cj)Y

b(iu−R+cj)+dj
T ξ−iu+R

T du

]
.

Equation (20) is then obtained by using Fubini’s theorem and exchanging
the order of integration. Condition R < 1−1/γ is an integrability condition.
�

Equation (20), provides an approximated formula for the optimal wealth.
It can be implemented very efficiently by means of the Fast Fourier Transform
(see the Appendix B for details). Let us highlight here that Equation (20)
may be applied for any dynamics whose characteristic function is known
analytically. Moreover, even in the case with N risky assets, (20) is based
on a univariate Fourier Transform inversion. Also, such a formula holds for
any choice of the parameters.
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In the one-dimensional Black-Scholes setting, the characteristic function
(19) reads

Ht(z1, z2) = ξz1t Y z2
t eC(z1,z2)(T−t) (22)

where

C(z1, z2) = −rz1 +
1

2

(
µ− r

σ

)2

z1(z1 − 1)

+ (r + β(µ− r))z2 +
1

2
β2σ2z2(z2 − 1)− β(µ− r)z1z2.

The corresponding strategy is then achieved by equating the diffusive
coefficient in (1) with the diffusive coefficient obtained by applying Ito’s
lemma to W̃ (t, ξt, Yt)

1

θ̃t = −µ− r

σ2

ξt

W̃t

∂W̃

∂ξ
+ β

Yt

W̃t

∂W̃

∂Y

and then by taking the derivatives under the integral sign in (20):

∂W̃

∂ξ
=

1

2πξ2t

3∑
j=1

Aj

∫ +∞

−∞
φ̂(iu−R + cj)(−iu+R− 1)

Ht(−iu+R, b(iu−R + cj) + dj)du

∂W̃

∂Y
=

1

2πξtYt

3∑
j=1

Aj

∫ +∞

−∞
φ̂(iu−R + cj)(b(iu−R + cj) + dj)

Ht(−iu+R, b(iu−R + cj) + dj)du.

As an example, Figure 4, right panel, reports the optimal strategy as
a function of the optimal wealth (continuous line) and the approximated
strategy as a function of the approximated wealth (dotted line) at time t = 1
year when the benchmark is the risky asset and the other parameters are set

1Actually, in the one dimensional Black-Scholes setting, Equation (15) relates Y to ξ.

Using such a relation θ̃t = −µ−r
σ2

ξt
W̃t

dW̃
dξ . For the N dimensional case, the information

given by the state price density is no more equivalent to that of the benchmark and hence
both the state variables are needed to compute the policy. For more general dynamics, we
have to consider the partial derivatives of all the state variables defining the information
at time t.
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wealth (dotted line) at time t = 1 year. The benchmark is the risky asset.
The other parameters are set as in Figure 1.
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Figure 5: The figure shows the relative error θ̃t/θ
∗
t − 1 as a function of the

optimal wealth when the time to maturity is T−t = 1 year (continuous line),
T−t = 0.5 years (dashed line), and T−t = 2 years (dotted line) respectively.
The benchmark is the risky asset. The other parameters are set as in Figure
1.

as in Figure 1. The approximated strategy θ̃t is almost indistinguishable from
the optimal strategy θ∗t as it is also shown in Figure 5, where the relative error
θ̃t/θ

∗
t − 1 is provided (continuous line). Figure 5 shows also the relative error

when the time to maturity is T − t = 0.5 years (dashed line), and T − t = 2
years (dotted line) respectively. The time to maturity is the variable that
has the strongest influence on the error. As it is shown in Figure 5, the
error increases as the time to maturity decreases. The reason is that the
approximation of the region where the option ends in the money is done at
the evaluation date T . The more the evaluation date is distant in the future,
the less the detail of the boundary of such a region influences the optimal
solution at time t.

6 Conclusion

I computed the optimal strategy of a portfolio manager with power utility
whose compensation is given by a fixed percentage of the managed funds
and a variable part that depends on his performance. The variable term is
proportional to an option on the portfolio value where the strike is the value
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of the benchmark at the evaluation date. This work is based on the results
in [7] where the author showed how to solve the problem and presented the
optimal policy in the Black-Scholes setting when the benchmark is either
a constant or the minimum variance portfolio. I extended such results by
providing in closed form the optimal strategy when the benchmark is any
combination of the two assets.

I presented some case studies that illustrate the impact of the convex
incentives on the optimal policy for different benchmark combinations. First
of all, when the option is out of the money, the manager may increase a lot
his risk exposure. And such an effect is stronger as the evaluation date is
approaching. Second, a higher share of options induces the manager to take
less risk. Third, when the benchmark is the risk-free asset, the manager can
take a lower risk than the risk he would take without the incentive.

I proposed an approximated formula to compute the optimal policy, that
is based on a power-law approximation of the boundary of the region where
the option is in the money. The computation is then obtained by performing
a one dimensional Fourier inversion. The approximated policy that I found
matches very well the exact optimal policy in the setting presented in the
paper. Furthermore, it has the advantage that it can be applied in a straight
way also to cases with a more general model setting. The only requirement
is the knowledge of the characteristic function of the joint process of the
state variables. At the present stage of the work, I do not know how the
approximation performs for different models. I leave this issue for further
investigations.

A Existence and uniqueness of ξ̂

We show here that for any β < µ−r
σ2 there exists a unique ξ̂ satisfying Equation

(12). This is obtained by rewriting Equation (13) in terms of y = YT , that
is y > f(y), and by solving

ŷ = f(ŷ) (23)
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where we defined

f(y) = c (u′ (αg(y) +K))
−a

a =
βσ2

µ− r

c = Y0A(T )
( α

λ∗

)−a

g(y) = Ŵ (y)− y

and where we used relation (15) and definition (11).
As shown in [7], g(y) is a positive function of y. Moreover g(y) is an

increasing function of y as it results by the sign of its derivative computed
by expressing Ŵ (y) in terms of g(y) in (7) and then by taking the derivative
of (7) with respect to y:

g′(y) =
−u′(αg(y) +K)

αu′′(αg(y) +K)(g(y) + y)
. (24)

In what follows we need to know the asymptotic behavior of g(y). From
(7) it is possible to understand that limy→∞g(y) = ∞. Then, using (3), we
have that for large values of y and for γ > 1, after canceling the terms going
to zero in the limit, Equation (7) gives

α1−γg(y)−γy ∼ K1−γ

γ − 1
,

from which we see that g(y) ∼ y1/γ. On the other hand, when γ < 1, and
for large values of y, Equation (7) reads

(αg(y))1−γ

(
γ

1− γ
− y

g(y)

)
∼ K1−γ

1− γ

which implies that g(y) ∼ y.
Now we show that f is a strictly increasing function of y. By taking the

derivative of f with respect to y, and using the definition of g′ in (24), we
obtain

f ′(y) =
af(y)

g(y) + y
,

18



whose sign is positive as f(y) > 0. As concerning the concavity of f , using
Equation (24), we have:

f ′′(y) =
af(y)

(g(y) + y)2
(a− 1− g′(y)).

Function f is concave when g′(y) > a−1. A sufficient condition ensuring the
concavity of f for any value y is a < 1 as g′(y) > 0 for any y. Hence, for a < 1,
that is for β < µ−r

σ2 , f is a positive, increasing and concave function. We also
show that for a < 1, f is asymptotically flat, that is limy→∞ f ′(y) → 0.
This is ready understood by using that for large values of y: when γ > 1,
g(y) ∼ y1/γ, therefore, f ′(y) ∼ ya−1; for γ < 1, g(y) ∼ y hence g(y) ∼ yaγ−1.
Then a solution to (23) exists, and this is unique.

B The Fast Fourier Transform

The approximated wealth and strategy are defined through integrals of the
form:

I(x) =
exR

2π

∫ ∞

−∞
χ(u+ iR)e−iuxdu =

exR

π

∫ ∞

0

χ(u+ iR)e−iuxdu

where x = ln ξt. This is because the conditional characteristic function (19)
is written as in (22). The last equality in the above expression comes from
the fact that the integral has to be real and from the symmetry properties
of the real and imaginary part of χ.

We may use the Simpson’s rule with N nodes uj = η(j − 1) for j =
1, . . . , N , and truncate the integral at Nη, to approximate the integral as a
sum:

I(x) ≈ ηexR

π

N∑
j=1

χ(uj + iR)e−iujxwj

where wj =
1
3
(3 + (−1)j − δj−1) are the Simpson weights and the Kronecker

delta δj is different from zero only for j = 0.
The FFT representation of the integral is obtained by a discretization of

x as follows: xk = −b+ vk where vk = λ(k − 1), for k = 1, . . . , N , b = Nλ
2
, λ
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is the size spacing, and ηλ = 2π
N

I(xk) ≈ ηexkR

π

N∑
j=1

e−i 2π
N

(j−1)(k−1)eibujχ(uj + iR)wj

=
ηexkR

π
FFT

(
eibujχ(uj + iR)wj

)
.

In the cases presented in Section 5, the parameters used to implement
the FFT algorithm are N = 212, η = 0.125, R = −1/γ.
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