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Abstract 
 

 

This paper builds on the seminal Goetzmann, Ingersoll, Spiegel and Welch research on 

Manipulation-Proof Performance Measures (MPPM), with a different purpose. Manipulation 

of usual performance measures generally goes through taking risk which is not reflected in the 

second moment measure of return distribution, variance or volatility. This is particularly 

relevant for the hedge fund industry, which often aims at capturing risk premiums of the non-

ordinary sort. It is also more and more relevant for all asset managers submitted to peer 

comparison. 

 

The MPPM corrects for the impact of tail risk –negative skewness and kurtosis- taken by a 

fund manager (not necessarily with the explicit aim of manipulating the performance 

measures). In our paper, we try to quantify, using a Cornish Fisher technology allowing us to 

control for tail risk, the impact of such risk on the MPPM. 

 

In that framework, we find that the MPPM effectively imposes a penalty on tail risk. This 

penalty increases nearly linearly with return kurtosis and return negative skewness. The size 

of the penalty is rather benign when return volatility is low or the risk parameter is low. It 

increases substantially for high volatilities and/or high risk parameters. 

 

 

JEL classification: C02, G11, G12, G21 

 

Key Words: Asset Allocation, Fund performance, Risk, Tail Risk, Cornish Fisher, Skewness, 

Kurtosis 
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1 – Introduction 

 

It is now well known that fund managers are able to manipulate usual performance measures 

which take into account the first and second moments of the return distribution they achieve. 

An example of measure which is easily manipulated is the Sharpe Ratio. One way (among 

others) to manipulate is to sell out-of-the money puts on risky assets. This enhances average 

returns through the collection of premiums without substantially increasing the variance of 

returns. 

 

However, such investments affect the higher order moments of return distributions, such as 

skewness and kurtosis. Apart from its manipulation-proof character, the measure proposed by 

Goetzmann & alii (2007) is able to capture the whole profile of return distributions, and hence 

the impact of skewness and kurtosis. 

 

In this paper, we combine the manipulation-proof performance measure and the Cornish-

Fisher technology properly implemented (Maillard, 2012) to assess the impact of tail risk in 

terms of a penalty on performance. Using the Cornish-Fisher transformation allows to explore 

a much wider field of skewness and kurtosis than other transformations such as Gramm-

Charlier (Maillard, 2014).  

 

2 – Manipulation-Proof Performance Measure (MPPM) 

 

In their article, Goetzmann & alii (2007) show that the usual measures of mutual or fund 

performance – among them the Sharpe ratio, Jensen’s alpha, Treynor ratio…- may be 

manipulated by fund managers. The point had been previously noted by other authors, among 

them Leland (1999) and Lhabitant (2000) in the case of hedge funds. 

 

Goetzmann & alii’s paper describes three general strategies for manipulating a performance 

measure: 

- manipulation of the underlying distribution 

- dynamic manipulation of measures assuming time stationnarity 

- dynamic manipulation inducing estimation error. 
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As a way to counter all type of manipulation, they propose a Manipulation-Proof Performance 

measure (MPPM) which writes2: 
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T is the number of observations, γ is a parameter related to risk aversion, r ft the risk-free rate 

for period t (assuming such thing still exists…), and ∆t the length of the period (in years) on 

which the return is recorded. r t is the return of the fund during period t. Implicitly, the risk-

free rate acts as a benchmark against which the performance is measured. The ratio in the 

formula is one plus a geometric excess return xt. The exponentiation by 1- γ of the relative 

performance is there to take risk into account. 

 

As the authors state, the MPPM is very close to an expected utility, of the power or CRRA 

(Constant Relative Risk Aversion) form (with RRA equal to γ), of an end-of-period wealth, 

which an investor could like to optimize. By taking the logarithm and dividing by the length 

of the period and one minus the risk aversion parameter, they ensure that the measure is 

equivalent to an equivalent-certain (continuous) rate of return. 

 

The MPPM is very close to the Morningstar Risk-Adjusted Return (MRAR) that this firm 

uses to compare the performance of various funds (the return computed by Morningstar is in 

traditional and not continuous form). 

 

Goetzmann & alii suggest a risk aversion parameter of 2 our 3 in their examples, Morningstar 

selects a parameter of 3. Those values sit at the low end of what is generally considered 

relevant for a relative risk aversion (2-10, or more). 

 

                                                 
2 We stick to the authors’ notations, except that we substitute γ for ρ. γ is the usual symbol for denoting a relative 
risk aversion (RRA), and the parameter in the MPPM measure may be assimilated to a RRA (in the Goetzmann 
& alii’s paper, γ is used for another purpose). 
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3 – MPMM and the cost of risk 

 

In this section, we rewrite the formula using the geometric excess return. 
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We will represent the (excess) return as: 
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εt  is i.i.d. but not necessarily Gaussian. The risk taken by a fund manager resides both in the 

level of volatility σ and in the higher moments3. 

 

If no risk is taken (σ = 0), one will obtain: 
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If risk is taken, the MPPM writes: 
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3 Using  µ-σ2/2 for the drift term ensures in the Gaussian case that the expected return for the period is equal to µ. 
This is not necessarily true if the random component of the return is not Gaussian. 
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The performance measure will be the difference between the expected excess return of the 

strategy and the cost of risk, or penalty, imposed by the measure. 

 

If risk is taken, of the Gaussian sort, it is easy to verify that, asymptotically (see Appendix 1), 

one obtains (a well-known result exactly true with normal log-returns and CRRA utility 

function): 

 

2

2σγ=CR  

 

The “cost of risk” taken by the fund manager is the RRA parameter times half the variance of 

return. Our objective in the next sections is to study how the MPPM, and the cost of risk, is 

influenced by higher order moments in the return distribution. 

 

,...)ˆ,ˆ,,(ˆˆ KSσµΘ=Θ  

 

where Ŝ is the skewness of the (log) return distribution and K̂  its kurtosis (or rather kurtosis 

in excess of 3, corresponding to the kurtosis of a Gaussian distribution) 4,5. 

 

Noting that CR does not depend on average return µ, we may write  

 

,...)ˆ,ˆ,,0(ˆ KSCR σΘ−=  

 

Finally, we will look at how kurtosis and skewness affect the cost of risk as an add-on (a 

geometric add-on) on the cost of risk in the Gaussian case. 
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4 We use Ŝ  and K̂  to represent actual skewness and kurtosis to distinguish them from S and K, which are the 
notations currently used to represent the skewness parameter and the kurtosis parameter in the Cornish Fisher 
formula (see Maillard, 2012). 
5 Note that the values of skewness and kurtosis considered concern log-returns, as is common practice. 
Exponentiation to obtain common returns (which corresponds to the compounding of interest rates) modifies 
skewness and kurtosis: kurtosis increases and skewness increases algebraically). 
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4 – Methodology 

 

The Cornish-Fisher expansion, if properly used (Maillard, 2012), allows the generation of 

distributions with the desired volatility, skewness and kurtosis. It relies on the polynomial 

transformation of a normal standard distribution z into a distribution Z: 
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S and K are parameters which determine skewness and kurtosis, but except for very low 

values do not coincide with skewness and kurtosis. The parameters will be computed to 

achieve the desired skewness Ŝand kurtosisK̂ . 

 

The Cornish-Fisher expansion has the advantage of displaying a broad domain of validitity 

(the transformation should lead to an always positive probability distribution, or increasing 

quantiles), much broader than other transformations such as Gramm-Charlier. It includes the 

values commonly encountered for skewness and kurtosis of portfolios’ returns, as seen in 

Chart 1). 

Chart 1 
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It has been used recently in various fields, such as option princing (Aboura & Maillard, 2016), 

Value-at-Risk computations (Fabozzi & al., 2012). 

 

The actual value of the moments of distribution Z are given in Appendix. As Z is non standard 

(zero mean but variance slightly different from one), we will use the transformation leading to 

Z’: 
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The computations of MPPM and cost of risk will be made asymptotically on distributions of 

50,000 returns. As only one series of returns is used, we may rely on the 50,000 quantiles 

rather than on Monte-Carlo draws. 

 

The evaluation of MPPM and the cost of risk will be made under the assumption of zero 

average performance. In order not to multiply the cases, we will also assume that ∆t = 1, 

adjusting the time dimension of the certainty equivalent return. The impact of this time 

periodicity factor will be captured through the expression of volatility. 

 

For instance, if the periodicity of return measures is monthly, which is common for hedge 

funds, a volatility input of 6% will correspond to an annualized volatility of 20.8%, which is 

standard for a diversified equity portfolio; a volatility input of 12% will correspond to an 

annualized volatility of 41.5%, which is usual for derivatives and hedge funds. 

 

5 – The cost of kurtosis 

 

In a Cornish Fisher framework, it is necessary to have positive excess kurtosis in order to 

have skewness. That induces us to start with an assessment of the impact of kurtosis on the 

cost of risk. In this section, we assume the absence of skewness. 

 

Our base case will be defined by a RRA parameter equal to 3, as suggested by Goetzmann & 

al. and practised by Morningstar, and a period volatility equal to 6 %. 
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What we compute numerically thereafter is )ˆ(%6,3 KΦ . 

Chart 2 

Relative cost of kurtosis
sigma = 6% gamma = 3
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Kurtosis indeed has a cost, nearly proportional. In the base case, this cost is low: less than 

0.1% per unity of kurtosis. 

 

Allowing return volatility to vary leads to the following findings. 
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Chart 3 

Relative cost of kurtosis
gamma = 3
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Quasi-linearity of the dependency of relative cost on kurtosis value is preserved, even at high 

volatilities (monthly 12% is more than 80% annualized). 

 

When volatility doubles, the relative cost of kurtosis does more than quadruple. The 

sensitivity to volatility is thus huge.  

 

Less intriguingly, relative cost of kurtosis is hugely sensitive to the relative risk aversion 

parameter. 
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Chart 4 

Relative cost of kurtosis
sigma = 6%
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To illustrate further the sensitivity of the relative cost of kurtosis to the risk aversion 

parameter and volatility, we plot the dependency for a given excess kurtosis of 8, 4 and 15. 

Chart 5 

Relative cost of kurtosis
gamma = 3
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Chart 6 

Relative cost of kurtosis
sigma = 6%
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6 – The cost of skewness 

 

Our base case will still be defined by a RRA parameter equal to 3 and a period volatility equal 

to 6 %. We add a third base parameter, choosing an excess kurtosis equal to 8. 

Chart 7 

Relative cost of skewness
sigma = 6% gamma = 3 exkurtosis 8
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Negative skewness does indeed have a negative impact on the MPPM, and has a cost. The 

dependency is nearly perfectly linear. In the base case, one unit of negative kurtosis inflicts a 

penalty of 3% on the cost of risk. 

 

Conversely, positive skewness is good for the performance measure, and decreases the cost of 

risk. 

 

As for kurtosis, the impact of skewness on the cost of risk increases with the level of 

volatility, this time more or less linearly. 

 

Chart 8 

Relative cost of skewness
gamma = 3 exkurtosis 8
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The relative cost of negative skewness also increases with the risk aversion parameter, more 

than proportionately. 
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Chart 9 

Relative cost of skewness
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Finally, the relative cost of negative skewness does not seem to depend significantly on the 

level of kurtosis, as illustrated below. 

Chart 10 

Relative cost of skewness
gamma = 3 sigma = 6%
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7 – Conclusions 

 

Using a Cornish-Fisher framework to allow for controlled skewness and kurtosis, we find that 

the MPPM effectively does impose a penalty on tail risk It increases nearly linearly with 

return kurtosis and return negative skewness. The size of the penalty is rather benign when 

returns volatility is low and the risk parameter is low. It increases substantially for high 

volatilities and/or high risk parameters. 

 

Those results hold for the Cornish Fisher framework as a way to capture skewness and 

kurtosis. It would be interesting to assess whether it is resilient to other distributions, which 

questions the potential impact of higher than fourth order moments. However, Cornish Fisher 

allows to explore a field of skewness and kurtosis which is much wider than other 

transformations such as Gramm-Charlier, and more in line with the skewnesses and kurtosis 

displayed in practice by financial assets returns. 
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Appendix 1 

 

Assuming that the empirical mean coincides asymptotically with the expected value, 
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For a normal standard random value ε, 
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Appendix 2 

 

The moments of the Cornish-Fisher distribution are computed in Maillard (2012). 

 

The results are as follows. 
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