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Abstract

This paper builds on the seminal Goetzmann, InderSpiegel and Welch research on
Manipulation-Proof Performance Measures (MPPM)hvatdifferent purpose. Manipulation
of usual performance measures generally goes thriaking risk which is not reflected in the
second moment measure of return distribution, wagaor volatility. This is particularly
relevant for the hedge fund industry, which ofteénsaat capturing risk premiums of the non-
ordinary sort. It is also more and more relevanmt dth asset managers submitted to peer

comparison.

The MPPM corrects for the impact of tail risk —ntdga skewness and kurtosis- taken by a
fund manager (not necessarily with the explicit aoh manipulating the performance
measures). In our paper, we try to quantify, usir@ornish Fisher technology allowing us to
control for tail risk, the impact of such risk dretMPPM.

In that framework, we find that the MPPM effectiyeinposes a penalty on tail risk. This
penalty increases nearly linearly with return kaisoand return negative skewness. The size
of the penalty is rather benign when return vatstis low or the risk parameter is low. It

increases substantially for high volatilities andiggh risk parameters.
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1 — Introduction

It is now well known that fund managers are ablenemipulate usual performance measures
which take into account the first and second momehthe return distribution they achieve.
An example of measure which is easily manipulatethe Sharpe Ratio. One way (among
others) to manipulate is to sell out-of-the moneyspon risky assets. This enhances average
returns through the collection of premiums withgubstantially increasing the variance of

returns.

However, such investments affect the higher ordements of return distributions, such as
skewness and kurtosis. Apart from its manipulapooef character, the measure proposed by
Goetzmann & alii (2007) is able to capture the whmiofile of return distributions, and hence

the impact of skewness and kurtosis.

In this paper, we combine the manipulation-prooffgrenance measure and the Cornish-
Fisher technology properly implemented (Maillar@12) to assess the impact of tail risk in
terms of a penalty on performance. Using the Cbrhisher transformation allows to explore
a much wider field of skewness and kurtosis tharemotransformations such as Gramm-
Charlier (Maillard, 2014).

2 — Manipulation-Proof Performance Measure (MPPM)

In their article, Goetzmann & alii (2007) show thhe usual measures of mutual or fund
performance — among them the Sharpe ratio, Jensdplga, Treynor ratio...- may be
manipulated by fund managers. The point had beeviqursly noted by other authors, among
them Leland (1999) and Lhabitant (2000) in the addeedge funds.

Goetzmann & alii’'s paper describes three generategiies for manipulating a performance
measure:

- manipulation of the underlying distribution

- dynamic manipulation of measures assuming timeosiaarity

- dynamic manipulation inducing estimation error.



As a way to counter all type of manipulation, thegpose a Manipulation-Proof Performance
measure (MPPM) which writés
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T is the number of observationsis a parameter related to risk aversignthe risk-free rate
for periodt (assuming such thing still exists...), antithe length of the period (in years) on
which the return is recorded.is the return of the fund during peribdimplicitly, the risk-
free rate acts as a benchmark against which tHerpence is measured. The ratio in the
formula is one plus a geometric excess retrihe exponentiation by 13- of the relative

performance is there to take risk into account.

As the authors state, the MPPM is very close t@xgrected utility, of the power or CRRA
(Constant Relative Risk Aversion) form (with RRAuad| toy), of an end-of-period wealth,
which an investor could like to optimize. By takitige logarithm and dividing by the length
of the period and one minus the risk aversion patamthey ensure that the measure is

equivalent to an equivalent-certain (continuous) od return.

The MPPM is very close to the Morningstar Risk-Adgd Return (MRAR) that this firm
uses to compare the performance of various furi@sréturn computed by Morningstar is in

traditional and not continuous form).

Goetzmann & alii suggest a risk aversion paran@t@rour 3 in their examples, Morningstar
selects a parameter of 3. Those values sit ataweehd of what is generally considered

relevant for a relative risk aversion (2-10, or gjor

2 We stick to the authors’ notations, except thaswlestitutey for p. y is the usual symbol for denoting a relative
risk aversion (RRA), and the parameter in the MPRR&hsure may be assimilated to a RRA (in the Goatama
& alii’s paper,y is used for another purpose).



3 — MPMM and the cost of risk

In this section, we rewrite the formula using tle®etric excess return.
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& Is i.i.d. but not necessarily Gaussian. The tadden by a fund manager resides both in the

level of volatility s and in the higher momerits

If no risk is takend = 0), one will obtain:
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If risk is taken, the MPPM writes:
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3 Using u-¢%/2 for the drift term ensures in the Gaussian t¢haaethe expected return for the period is equal to
This is not necessarily true if the random compowéthe return is not Gaussian.



The performance measure will be the difference betwthe expected excess return of the

strategy and the cost of risk, or penalty, impdsgethe measure.

If risk is taken, of the Gaussian sort, it is esyerify that, asymptotically (see Appendix 1),
one obtains (a well-known result exactly true witbrmal log-returns and CRRA utility

function):

0.2

CR=y—
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The “cost of risk” taken by the fund manager is RfRA parameter times half the variance of
return. Our objective in the next sections is tagthow the MPPM, and the cost of risk, is

influenced by higher order moments in the retustritiution.

A
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where Sis the skewness of the (log) return distributiod a0 its kurtosis (or rather kurtosis

in excess of 3, corresponding to the kurtosis @aassian distributior)®.

Noting thatCRdoes not depend on average refurwe may write
CR=-0(0,0,5K,...)

Finally, we will look at how kurtosis and skewnesf$ect the cost of risk as an add-on (a

geometric add-on) on the cost of risk in the Garssase.

CR= y%z[1+ qaw(K)] [1+ W (é)]

*We useS and K to represent actual skewness and kurtosis tndisish them fron® andK, which are the
notations currently used to represent the skewpassmeter and the kurtosis parameter in the Coffiisther
formula (see Maillard, 2012).

® Note that the values of skewness and kurtosisideresi concern log-returns, as is common practice.
Exponentiation to obtain common returns (which esponds to the compounding of interest rates) nasdif
skewness and kurtosis: kurtosis increases and sigswncreases algebraically).



4 — Methodology

The Cornish-Fisher expansion, if properly used (M, 2012), allows the generation of
distributions with the desired volatility, skewnemsd kurtosis. It relies on the polynomial

transformation of a normal standard distributianto a distributiorZ:
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S andK are parameters which determine skewness and lgjrtast except for very low

values do not coincide with skewness and kurtoBie parameters will be computed to

achieve the desired skewne8and kurtosis .

The Cornish-Fisher expansion has the advantagespfaging a broad domain of validitity
(the transformation should lead to an always pasiprobability distribution, or increasing
guantiles), much broader than other transformatsuth as Gramm-Charlier. It includes the
values commonly encountered for skewness and ksrtdsportfolios’ returns, as seen in
Chart 1).

Chart 1
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It has been used recently in various fields, swchmion princing (Aboura & Maillard, 2016),
Value-at-Risk computations (Fabozzi & al., 2012).

The actual value of the moments of distributiorr@ given in Appendix. AZ is non standard
(zero mean but variance slightly different from prvee will use the transformation leading to
Z.
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The computations of MPPM and cost of risk will bade asymptotically on distributions of
50,000 returns. As only one series of returns edusve may rely on the 50,000 quantiles

rather than on Monte-Carlo draws.

The evaluation of MPPM and the cost of risk will imade under the assumption of zero
average performance. In order not to multiply tlses, we will also assume th#t=1,
adjusting the time dimension of the certainty eglémat return. The impact of this time
periodicity factor will be captured through the esgsion of volatility.

For instance, if the periodicity of return measuiesnonthly, which is common for hedge
funds, a volatility input of 6% will correspond & annualized volatility of 20.8%, which is
standard for a diversified equity portfolio; a Mdlty input of 12% will correspond to an

annualized volatility of 41.5%, which is usual fderivatives and hedge funds.

5 — The cost of kurtosis

In a Cornish Fisher framework, it is necessary awehpositive excess kurtosis in order to
have skewness. That induces us to start with agssisgent of the impact of kurtosis on the

cost of risk. In this section, we assume the albsehskewness.

Our base case will be defined by a RRA parametealeg 3, as suggested by Goetzmann &
al. and practised by Morningstar, and a periodtiiiaequal to 6 %.



What we compute numerically thereafte@i§6%(K . )

Chart 2
Relative cost of kurtosis
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Kurtosis indeed has a cost, nearly proportionalthin base case, this cost is low: less than

0.1% per unity of kurtosis.

Allowing return volatility to vary leads to the folving findings.



Chart 3

Relative cost of kurtosis
gamma =3
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Quasi-linearity of the dependency of relative arskurtosis value is preserved, even at high

volatilities (monthly 12% is more than 80% annuatiy

When volatility doubles, the relative cost of kwibdoes more than quadruple. The

sensitivity to volatility is thus huge.

Less intriguingly, relative cost of kurtosis is lelgsensitive to the relative risk aversion

parameter.
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Chart 4

Relative cost of kurtosis
sigma = 6%
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To illustrate further the sensitivity of the relai cost of kurtosis to the risk aversion

parameter and volatility, we plot the dependencyafgiven excess kurtosis of 8, 4 and 15.

Chart 5
Relative cost of kurtosis
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Chart 6

Relative cost of kurtosis
sigma = 6%
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6 — The cost of skewness

Our base case will still be defined by a RRA par@mequal to 3 and a period volatility equal
to 6 %. We add a third base parameter, choosirexesss kurtosis equal to 8.
Chart 7

Relative cost of skewness
sigma = 6% gamma = 3 exkurtosis 8
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Negative skewness does indeed have a negative tropathe MPPM, and has a cost. The
dependency is nearly perfectly linear. In the bzsse, one unit of negative kurtosis inflicts a

penalty of 3% on the cost of risk.

Conversely, positive skewness is good for the perdmce measure, and decreases the cost of

risk.

As for kurtosis, the impact of skewness on the adstisk increases with the level of

volatility, this time more or less linearly.

Chart 8

Relative cost of skewness
gamma = 3 exkurtosis 8
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The relative cost of negative skewness also ineseasth the risk aversion parameter, more

than proportionately.
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Chart 9

Relative cost of skewness
sigma = 6% exkurtosis 8
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Finally, the relative cost of negative skewnesssdoat seem to depend significantly on the
level of kurtosis, as illustrated below.
Chart 10
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7 — Conclusions

Using a Cornish-Fisher framework to allow for cotled skewness and kurtosis, we find that
the MPPM effectively does impose a penalty on tigk It increases nearly linearly with
return kurtosis and return negative skewness. Tdedf the penalty is rather benign when
returns volatility is low and the risk parameterlasv. It increases substantially for high

volatilities and/or high risk parameters.

Those results hold for the Cornish Fisher framewaska way to capture skewness and
kurtosis. It would be interesting to assess wheithisr resilient to other distributions, which
guestions the potential impact of higher than fowrder moments. However, Cornish Fisher
allows to explore a field of skewness and kurtosisich is much wider than other
transformations such as Gramm-Charlier, and motséwith the skewnesses and kurtosis

displayed in practice by financial assets returns.
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Appendix 1

Assuming that the empirical mean coincides asynygatiby with the expected value,
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For a normal standard random value
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Appendix 2
The moments of the Cornish-Fisher distribution@puted in Maillard (2012).
The results are as follows.
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