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Abstract

This paper presents a simple way to estimate the skewness premium implied in index

option returns. Using a methodology proposed by Constantinides/Jackwerth/Savov (2013),

we create option-based investment strategies with the same volatility and the same market

exposure (of one) but different degrees of skewness. The resulting return series can be seen

as index returns with controlled skewness. If skewness is relevant for pricing, it will be re-

flected in differences in the mean returns of the strategies. In an empirical analysis for SPX,

ESX and DAX index options in the sample period 1995-2015, we find a remarkably close

association of skewness and average returns that is consistent with a significantly negative

skewness premium.
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1 Introduction

The objective of this paper is to estimate the skewness premium in stock market returns in a

new way. We use index option strategies to construct a cross-section of return distributions

that only differ with respect to the degree of skewness. The investment strategies involve the

riskless asset and one index option at a time. The variation of skewness is achieved by using a

cross-section of index options of different type (call and put options), different moneyness (0.9

to 1.05 in terms of strike to index level) and different time to maturity (30, 60, and 90 days).

The options are unlevered so that their market exposure (beta) is one, and the investment is

readjusted after a holding period of one day in order to hold the characteristics of the trading

strategy constant over time.

When using call options, we have to hold a long position for a target beta of one. This means

that returns will be convex. In contrast, to achieve the same beta with put options requires a

short position, which implicates concave returns (negative convexity). The degree of convexity

(positive or negative) tends to be stronger the deeper out-of-the money the options are and the

shorter their time to maturity is. Positive convexity means that high positive index returns are

reinforced while extreme negative returns are mitigated, which translates into higher skewness

of the return distribution compared to the index. Inversely, negative convexity exacerbates

extreme negative index returns and attenuates strongly positive returns, which produces lower

skewness compared to the index. The dynamics of the smile pattern of index option prices tends

to increase the convexity differences between the call- and put-based strategies because rising

implied volatilities after a sharp index decrease are detrimental to the short put position while

they are advantageous for the long call position.

Although the holding period is only one day, the size of convexity and skewness differences

produced by the beta-one strategies is statistically and economically significant. It is all the

more important as this is clearly the main systematic difference between the strategies. As

the underlying asset is the same and the linear exposure to the index is also identical, it is

the difference in the nonlinear exposure to the index which distinguishes the trading strategies.

Therefore, the return series can be seen as index returns with controlled skewness. If skewness
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is relevant for pricing, it will be reflected in differences in the mean returns of the strategies.

Thus, this methodology opens a simple way to estimate the skewness risk premium.

The methodology of creating a cross-section of beta-one option portfolios was proposed by

Constantinides et al. (2013). The authors use the option portfolios as test assets in tests of

multi-factor pricing models, arguing that the “standard linear factor methodology is applicable

because the monthly portfolio returns have low skewness and are close to normal”.1 The low

skewness with returns close to normal is emphasized as an important implication of the portfolio

construction methodology: “The major advantage of this construction is to lower the variance

and skewness of the monthly portfolio returns and render the returns close to normal (about as

close to normal as the index return), thereby making applicable the standard linear factor pricing

methodology.”2 We find, however, that the portfolio returns do indeed differ in skewness; one

might even say that control over skewness is the main characteristic of the method. Therefore,

in this paper, we propose to use the same portfolio strategies to study the skewness premium,

which can be seen as an extension of Constantinides et al. (2013) focusing on an interesting but

unexplored aspect of their work.

We present an empirical analysis for the three indices S&P 500 (SPX options), EuroStoxx 50

(ESX options) and DAX (DAX options) for the time periods Jan. 1996 to Sep. 2015 for SPX,

2000 to 2014 for ESX and 1995 to 2014 for DAX. In all three markets, we find a strongly negative

and remarkably close association of skewness and average returns. It tends to be nonlinear in

the sense that the risk premium increases with more intense negative skewness. We also show

1 Constantinides et al. (2013), p. 229.

2 Constantinides et al. (2013), p. 230. This statement is repeated several times:

“Unlike the earlier portfolio construction in Buraschi and Jackwerth (2001), we leverage-adjust the portfolios

on a daily basis to maintain the targeted beta of one and gross up the daily returns to obtain monthly returns.

This treatment has the effect of decreasing the volatility and skewness of returns and rendering them about

as close to normal as the index itself.” (p. 233);

“The second challenge is to generate portfolio returns that are stationary and only moderately skewed. We

address this issue by deleveraging the portfolios to have a target market beta of one.” (p. 234);

“We also revise the portfolios daily in a way that the moneyness, maturity, and leverage of each portfolio remain

fairly constant. The procedure significantly reduces the variability and skewness of returns and produces

returns about as close to normal as the index itself.” (p. 235);

“An important methodological contribution of the paper is the construction (and public availability) of a

panel of de-levered monthly returns of option portfolios split across type, maturity, and moneyness. This

construction lowers the skewness of the monthly portfolio returns and renders them close to normal thereby

allowing the future exploration of alternative linear factor models, as well as linear forecasting models.” (p.

251).
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that skewness is very similar to convexity measured by the loading of option returns on squared

index returns. Thus, we can interpret our results in terms of a two-stage test of asset pricing

models where squared index return is included as a risk factor in the time-series regressions and

the squared-return loadings contribute to explaining the cross-sectional return differences.

The relevance of skewness for investor decisions and asset prices has been studied in a large

body of prior literature. A preference for positive skewness is observed in lottery experiments

(see the critical discussion in Vrecko et al. (2009)). Arditti (1967) shows that a preference for

positive skewness follows if the utility function exhibits non-increasing absolute risk aversion in

the Arrow-Pratt sense. However, portfolio optimization based on the first three moments of the

return distribution is in general only consistent with Expected Utility maximization if a cubic

utility function is assumed (for an extension, see Chiu (2010)). Kraus and Litzenberger (1976)

derive a market equilibrium model in which systematic skewness is priced. Based on a related

asset pricing model, Harvey and Siddique (2000) find an empirical risk premium for systematic

skewness of 3.6% per year, which is statistically significant and economically important. In

addition to the systematic component of skewness, total skewness of individual stocks also

seems to be related to future stock returns (see Conrad et al. (2013)).

In a recent study, Chang et al. (2013) determine the market skewness implied in S&P 500 index

option prices and estimate the exposure of a cross-section of stocks with respect to daily changes

of implied skewness. The authors find that stocks with a high exposure to the skewness-related

risk factor show low returns on average: “We find that the average return on the market skewness

risk factor portfolio is 0.78% per month, or 9.36% per year, and this return cannot be explained

by market beta, the size factor, the book-to-market factor, or the momentum factor.”3

Another approach to measure the skewness risk premium is to compare realized skewness with

options’ implied skewness. In this vein, Kozhan et al. (2013) derive option implied skewness

from a model-free dynamic strategy which creates a payoff equal to realized market skewness.

They find that the strategy is highly exposed to variance risk. When this risk is hedged away,

the skewness premium becomes insignificant.

3 Chang et al. (2013), p. 47.
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Other studies analyze risk factors which potentially contribute to skewness in returns, in partic-

ular volatility risk and jump risk. Andersen et al. (2015) exploit the movements of index option

surfaces to study the relation between market risks and risk premia. A main finding is that the

dynamics of the option risk premia cannot be explained by the dynamics of the underlying asset

prices alone.

Our study is also related to the literature on a potential mispricing of put options because the

methodology proposed by Constantinides et al. (2013) produces positive skewness for call-based

strategies and negative skewness for put-based strategies. Rubinstein (1994) and Jackwerth

and Rubinstein (1996) report that OTM puts are expensive compared to at-the-money (ATM)

puts. Jones (2006) confirms that deep-OTM puts on S&P500 index futures are overpriced,

generating negative abnormal returns even after taking volatility and jump risk premia into

account. In contrast, Broadie et al. (2009) note that very high returns of deep-OTM puts alone

are not inconsistent with standard option valuation models because individual option returns

are extremely dispersed and highly skewed. Thus, they propose a different test approach based

on market-neutral option portfolios. The main finding is that stochastic volatility alone is

insufficient to explain returns of S&P 500 futures options, but models including estimation

risk and jump risk premia are consistent with the data. Chambers et al. (2014) confirm this

finding for the extended sample period of 1987-2012. Instead of market-neutral portfolios, the

methodology of Constantinides et al. (2013) creates portfolios closely resembling the market,

which facilitates the evaluation of abnormal returns in a mean-variance framework.

The paper proceeds as follows. The next section 2 explains how the beta-one option portfolios

are created so that they span a substantial skewness range. Section 3 presents our data, describes

the matching of option prices and index levels and provides descriptive statistics for our option

portfolios. Section 4 examines the relationship between skewness and average returns in order

to estimate the market skewness premium. The last section concludes.
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2 Option-based strategy to generate skewed index returns

We implement the methodology proposed by Constantinides et al. (2013) in the following way.

Let C denote the price of an option with strike price , time to maturity  and underlying

index level . The option delta is the partial derivative C. We determine the share  of
wealth invested in the option such that the elasticity of this position with respect to the index

is 1:

 =
1

C



C
 (1)

The remaining share of (1− ) of wealth is invested in the riskless asset with return .

The option delta in Eq. (1) depends on the option pricing function. When estimating delta

based on an implied volatility from the Black-Scholes model, we have to take into account that

implied volatility changes with index movements. With  as implied volatility, the option

delta is given by (see, e.g., Rosenberg (2000)):

C ( ())


=

C( ())


+

C( ())


· ()



= ∆ + Λ · ()


(2)

where ∆ and Λ are the option’s delta and vega according to the Black/Scholes formula

with volatility replaced by implied volatility. The adjustment term in the second summand of

Eq. (2) captures the effect of index movements on implied volatility. The impact on implied

volatility results from two effects. The first is that implied volatility of index options is typically

a decreasing function of moneyness (smile or skew pattern)4 so that an increase in the index

level and the corresponding decrease in moneyness brings about an increase in implied volatility.

The second effect is that the skew curve shifts in the opposite direction of index movements.

The downward shift in case of a rising index offsets part of the first effect.

Therefore, in order to obtain an estimate of (), we have to consider the structure and

dynamics of the skew curve. A common way to model the implied volatility pattern is to use

4 We use the terms “smile” and “skew” as synonyms for the strike price pattern of implied volatilities. Although

“skew” better describes the downward sloping pattern typically observed in index option markets, “smile” is

also commonly used.
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the cubic regression function:

() = 0 + 1 + 2
2 + 3 ·3 +  (3)

where  is time to maturity adjusted moneyness defined as:

 =
ln(−)√




and   = 0 1 2 3 are regression coefficients,  is a random error, and  a dummy variable

defined as:

 =

⎧⎪⎨⎪⎩ 0   ≤ 0
1    0



The dummy variable term is included to capture the observation that implied volatility decreases

less strongly or even rises at positive moneyness levels.

If the smile pattern does not shift (“sticky moneyness rule”), the second effect described above

falls away and the change in implied volatility is fully due to the movement on the smile curve.

For at-the-money options, we obtain:





¯̄̄̄
=0

=




¯̄̄̄
=0





= 1

µ
− 1


√


¶
(4)

where 1  0 so that the adjustment to ∆ in Eq. (2) is positive.

If the smile pattern shifts in such a way that implied volatility for a given strike  is constant

(“sticky strike rule”), the two effects compensate each other and we obtain  = 0 There

is empirical evidence that the smile shifts even more strongly than the sticky strike rule suggests

(Wallmeier (2015)) so that the adjustment term becomes negative. Combining this evidence

with a 1-estimate of −02, we use the estimate

()


= − 01


√


(5)
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for the adjustment in Eq. (4). Without this adjustment, the betas of our option portfolios would

be less close to the target value of 1.

3 Data and descriptive statistics

Our sample period extends from 1996 to Sep. 2015 for SPX options and 1995 to 2014 for DAX

options. ESX options were launched in January 2000 so that our sample period is shortened

to 2000 to 2014. On each trading day, we estimate the skew in option prices using the cubic

regression model (3). We run the regression separately for each time to maturity. For DAX

and ESX options, the estimation is based on all daily transactions at Eurex. As transaction

data are not available for SPX options, we use settlement data provided by Option Metrics. For

settlement data, we infer the index level at settlement from put-call parity. The transaction data

are synchronized with index future prices by milliseconds to avoid any relevant time mismatch,

and the underlying index level is adjusted to account for put-call parity. For details, we refer

to Wallmeier (2015). As the skew regression model describes the structure of option prices

extremely well, we infer option prices for our option portfolios from the estimated smile curves.

Each of our beta-one portfolios is based on only one option at a time. The options differ in terms

of time to maturity and moneyness Following Constantinides et al. (2013), our time to maturity

levels are  ∈ {30 60 90} days. Constantinides et al. (2013) consider a range of strike to index
ratios from 09 to 11 in steps of 025. We fix the upper limit at 105 because options with higher

moneyness are not always actively traded during the sample period. Thus, in terms of sim-

ple moneyness  = − we consider 7 levels  ∈ {09 0925 0950975 10 1025 105}.
Combining the time to maturity and moneyness levels with the option type  ∈ { }, we
obtain 3 · 7 · 2 = 42 different options, each of which is used to create a beta-one strategy as

described in Section 2.

More specifically, for a given combination (  ), on day  of the sample period, we identify

the option with a time to maturity closest to  Options with time to maturity smaller than

15 days are not considered to avoid particular valuation effects near expiration. Based on the

estimated smile regression for the chosen option on day , we evaluate the option at moneyness
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 and determine the weight  of the option using Eq. (1) combined with Eqs. (2) and (5). The

riskless asset holding is (1− ). After a one-day holding period, we unwind the position based

on the updated moneyness level and the new smile pattern and report the portfolio return. We

enter inter a new position each day and thereby obtain a series of daily portfolio returns over

the sample period. For the sake of simplicity, in the following we will refer to these particular

return series as option returns or, more specifically, call and put option returns.

We inspect scatterplots of option returns versus index returns on a yearly basis in order to detect

outliers. Less than 0.25% of the observations are identified as outliers and removed from the

analysis. Most of these occur at moneyness levels of 1.025 and 1.05 when trading is relatively

infrequent and the coefficient of the cubic element of the smile pattern is estimated with a high

standard error.

— Insert Figures 1-3 (pp. 16-18) here —

For SPX options, we illustrate the relationship of daily index and option returns in Figures 1

( = 30 days), 2 ( = 60 days) and 3 ( = 90 days). Calls are shown in the left panels, puts on

the right, and moneyness increases from the top ( = 09) to the bottom panels ( = 105). The

blue line shows the estimated linear regression of option return on index return, the quadratic

regression line is shown in red.

As desired, the linear regression line is almost identical to the 45-degree line which indicates that

the strategies were successful in achieving a target beta of 1. The difference in convexity of call

option returns and put option returns is clearly visible. As expected, the degree of convexity is

largest for deep out-of-the money options. It also tends to be higher for short-dated options.

— Insert Tables 1-3 (pp. 22-24) here —

Tables 1 (SPX), 2 (ESX) and 3 (DAX) show descriptive statistics for the 42 option portfolios.

Beta, the estimated slope coefficient in the linear index regression model, is always close to 1.

This is also true for Beta1, the first slope coefficient of the quadratic regression model. while

the coefficient of the quadratic term, Beta2, is always significantly positive for calls and negative
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for puts (1% significance level). The average 2-coefficients of the quadratic model across the

42 portfolios are 96.2%, 96.9% (ESX) and 96.8% (DAX). The volatility (Vol) is similar across

the 42 portfolios; the differences between the highest and lowest annualized volatility are 1.90

(SPX), 2.42 (ESX) and 1.37 (DAX) percentage points. The last three columns show the Fisher-

Pearson coefficient of skewness (Skew), the Pearson coefficient of kurtosis (Kurt) and the Sharpe

ratio (SR). Skewness is clearly related to Beta2, with mostly positive values for call options and

negative values for put options. The most obvious characteristic of the cross-section of Sharpe

ratios is that they appear to be considerably higher for put option portfolios compared to call-

based portfolios. This suggests a negative association of skewness and average returns which

will be further explored in the next section.

— Insert Figure 4 (p. 19) here —

For a better illustration of the close association of skewness and convexity, the left panels of

Figure 4 show scatterplots of Skew versus Beta2 across our 42 portfolios for SPX (upper panel),

ESX (middle) and DAX (lower panel). The index is positioned at the intersection point of the

vertical and horizontal lines. The panels on the right of Figure 4 show how skewness is related to

the option characteristics (puts vs. calls; moneyness; time to maturity). As expected, positive

and negative skewness is more pronounced for out-of-the-money options. For in-the-money

options, the effect of time to maturity (marker 1 for 30 days and 3 for 90 days) is negligible.

For out-of-the-money options, skewness becomes more pronounced when the time to maturity

is short.

4 Skewness and the cross-section of option returns

As a first illustration, in the left panels of Figure 5, we show plots of mean daily option returns

versus skewness. The panels on the right of Figure 5 show -statistics for testing the hypothesis

that the expected option return is equal to the expected index return. As the index exposure is

the same for all options, this test can be interpreted as a test of abnormal returns with respect

to a linear one-factor market model. The horizontal lines indicate the 99% confidence interval



4 Skewness and the cross-section of option returns 11

around zero. Almost all put option portfolios achieve a significantly positive and almost all

call portfolios a significantly negative abnormal return. The striking spread between call and

put returns reflects the well-known observation that options are generally more expensive than

option pricing models suggest. It is important to keep in mind that our strategy implies long

call and short put positions in order to achieve the target beta-one market exposure. Therefore,

the put-based strategies profit from a high general level of option prices, while the call-based

strategies suffer from high option prices. The graphs also indicate that there is substantial

variation of average returns within each option class (calls and puts).

— Insert Figure 5 (p. 20) here —

We propose three models to analyse the association of skewness and the cross-section of option

returns. The first is a linear model with skewness as the sole explanatory variable of return.

The second regression model is quadratic in skewness to allow for non-linearity in the skewness

premium. In the third model, we include skewness and kurtosis as explanatory variables. We

run the regressions separately for our two skewness measures Skew and Beta2 as explained in

Section 3. Formally:

Model 1:  = +  +  (6)

Model 2:  = +  + 2 +  (7)

Model 3:  = +  +  +  (8)

where  is the excess daily log return of option portfolio ,  ∈ { 2} is the
skewness measure,  is the kurtosis measure,  ,  are regression coefficients and  is an

error term. Our main interest is in the -coefficients. The intercept  will correspond to the

average market excess return because all portfolios have an index exposure of one and, as a

consequence, achieve the market risk premium.

We also examine a modified version of models (6) to (8) where all variables are defined in excess

to the index portfolio. Thus, the returns  are defined as the spread between option return and

index return,  becomes the difference of an option’s skewness and the index skewness, and 



4 Skewness and the cross-section of option returns 12

is differential kurtosis. In these regressions the intercept should be zero if skewness and kurtosis

explain the cross-section of returns. We still include the intercept to test if it is statistically

significant.

We apply the two-step GMM method of Hansen (1982) to estimate the models. As our explana-

tory variables are constant over time, the coefficient estimates of GMM are the same as the

coefficients of an OLS regression of average returns on the explanatory variables, and these are

the same as the estimates of a pooled OLS regression of cross-sectional and time-series data (see

Cochrane (2005)). In estimating the standard errors, however, correcting for residual correlation

as in the GMM method is important.

— Insert Table 4 (p. 25) here —

Table 4 shows our estimation results, Panel A for the base version of Models 1 to 3 and Panel

B for the modified version with excess index levels. The upper part of each panel is based on

 = , the lower part on  = 2 The -values based on GMM standard errors are

reported in brackets. The 2 coefficient is the cross-sectional 2 measure of Jagannathan and

Wang (1996), which is also employed by Lettau and Ludvigson (2001) and Petkova (2006).

The results suggest a significantly negative skewness premium. Its magnitude for SPX in Model

1 is -1.58E-04 in daily returns, which corresponds to −4% annual return for an increase of

skewness by 1. It is even twice as high for ESX options. Therefore, the estimated premium

is economically important. The evidence for a non-linear relationship according to Model 2 is

mixed. The quadratic coefficient is always positive but rarely statistically significant. Kurtosis

appears to have a weak positive effect on average returns which is clearly smaller than the effect

of skewness.

It seems surprising that investors are willing to pay such a high premium for positive skewness,

especially when considering daily returns. To evaluate these results, it is important to know

whether skewness in daily returns carries over to longer return intervals. For index returns,

Neuberger (2012) shows that skewness actually increases from a daily return frequency up to a

one-year horizon. With the same persistence of skewness in option returns, it is plausible that
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even long-term investors might demand a substantial premium for negative skewness. The panels

on the right-hand side of Figure 6, however, show a convergence of option returns’ skewness to

the level of index skewness (shown as red line) within a year. This convergence stems to a large

extent from the put option portfolios which exhibit a peak of negative skewness at a horizon of

approximately 20 to 50 days. The convergence appears to be particularly pronounced for ESX

options while for SPX, the spread of skewness in the cross-section of option portfolios is still

substantial at a one-year horizon. In view of the overall convergence pattern, our finding of a

high skewness premium suggests a short investment horizon of the marginal investors in these

option portfolios.

— Insert Figure 6 (p. 21) here —

5 Conclusion

Based on a methodology introduced by Constantinides et al. (2013), we create a sample of option-

based investment strategies that represent market investments (market exposure of one) with

different degrees of skewness. The possibility to control skewness using simple trading strategies

allows us to study the skewness premium in a new way. This approach has the advantage

that we can modify skewness on the market level and do not have to exploit small differences

in systematic skewness of individual stocks. Another advantage is that the range of skewness

spanned by our investment strategies is large compared to market skewness itself. For three of

the most important index markets (S&P 500, EuroStoxx 50 and DAX), we provide evidence

of a negative skewness premium that is statistically significant and economically important.

Skewness explains approximately 90% of the variation of the investment strategies’ average

returns.

The close relationship between skewness and average returns found in our empirical analysis is

not a mere reflection of the skew in option prices (implied volatilities decreasing in moneyness).

Apart from the skew, the option returns are also affected by the overall level of option prices
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and the dynamics of the skew profile. In further work, the relative importance of these three

factors could be examined more closely.

The skewness of the strategies’ return distributions reflects the sensitivity of the strategies’

returns with respect to squared market return. A positive sensitivity means that downward

index jumps are mitigated and upward index jumps are enhanced. If we interpret this pattern

as reduced jump risk, the skewness premium is, by definition, related to the premium for jump

risk. The same holds true for volatility risk because volatility changes are typically associated

with index changes. However, whatever the drivers of market return may be, ultimately the

pricing of our investment strategies seems to be determined by the sensitivity with respect to

squared market return and, therefore, the resulting skewness of the return distribution.
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Figure 1: Scatterplots of daily option returns and index returns for selected SPX option

portfolios over the sample period 1996-2015. M is moneyness, TtM time to maturity. The blue

line illustrates the estimated linear regression, the red line the quadratic regression of option

return on index return.
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Figure 2: Scatterplots of daily option returns and index returns for selected SPX option

portfolios over the sample period 1996-2015. M is moneyness, TtM time to maturity. The blue

line illustrates the estimated linear regression, the red line the quadratic regression of option

return on index return.
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Figure 3: Scatterplots of daily option returns and index returns for selected SPX option

portfolios over the sample period 1996-2015. M is moneyness, TtM time to maturity. The blue

line illustrates the estimated linear regression, the red line the quadratic regression of option

return on index return.



Figures and Tables 19

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ESX

-2

-1

0

1

0.90 0.95 1.00 1.05
Moneyness

S
ke

w
n

e
ss

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

DAX

-2

-1

0

1

0.90 0.95 1.00 1.05
Moneyness

S
ke

w
n

e
ss

SPX

-2

-1

0

1

-6 -3 0 3 6
Beta2

S
ke

w
n

e
ss

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

SPX

-2

-1

0

1

0.90 0.95 1.00 1.05
Moneyness

S
ke

w
n

e
ss

DAX

-2

-1

0

1

-3 0 3
Beta2

S
ke

w
n

e
ss

ESX

-2

-1

0

1

-5.0 -2.5 0.0 2.5 5.0
Beta2

S
ke

w
n

e
ss

Figure 4: Each graph contains 42 data points for 21 call-based portfolios (red circles) and

21 put-based portfolios (blue triangles). Each portfolio is based on options with a particular

moneyness (7 levels from 0.9 to 1.05) and time to maturity (3 levels). In the panels on the right,

marker 1 denotes a time to maturity of 30 days, marker 3 a time to maturity of 60 days. All

portfolios are constructed in such a way that their linear market exposure is 1 The additional

vertical and horizontal lines indicate index level characteristics.
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Figure 5: Each graph contains 42 data points for 21 call-based portfolios (red circles) and 21

put-based portfolios (blue triangles). Each portfolio is based on options with a particular mon-

eyness (7 levels from 0.9 to 1.05) and time to maturity (3 levels). All portfolios are constructed

in such a way that their linear market exposure is 1 On the left, the additional vertical and

horizontal lines indicate index level characteristics. On the right, the horizontal lines indicate

the thresholds for a 1% significance level of abnormal average returns.
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Figure 6: Left panels: Skewness of the 42 test portfolios (blue) and the index (red) in each

year of the sample period (based on the 252 daily returns in the respective year). Right panels:

Skewness for returns over different horizons (number of days n on the x-axis). All n-day intervals

in the sample period are included in the estimation. Light blue lines: low moneyness options;

dark blue lines: high moneyness options.
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Table 1: Descriptive statistics SPX option returns
This table presents descriptive statistics for daily returns of option-based investment strategies using the

SPX option from 1996 to Sept. 2015. The options are unlevered to achieve a target market exposure

(Beta) of one. Type c referes to calls, type p to puts. M and TtM denote moneyness and time to maturity.

Beta1 and Beta2 are the slope coefficients of a regression of option return on index return and squared

index return; R2 is the R squared of this quadratic regression. Vol, Skew, Kurt and SR denote the

volatility, the Fisher-Pearson coefficient of skewness, the Pearson coefficient of kurtosis and the Sharpe

ratio, all based on the sample of daily returns of the option-based strategies over the full sample period.

No. Option Type M TtM Beta Beta1 Beta2 R2 Vol Skew Kurt SR

1 SPX c 0.9 30 0.995 0.998 1.192 0.996 0.01237 0.17644 3.71206 0.01120

2 SPX c 0.9 60 0.991 0.993 1.133 0.994 0.01232 0.15211 3.85289 0.00969

3 SPX c 0.9 90 0.990 0.993 1.265 0.991 0.01239 0.20266 4.16466 0.01011

4 SPX p 0.9 30 0.993 0.982 ‐5.619 0.865 0.01352 ‐2.63613 19.04033 0.05429

5 SPX p 0.9 60 1.024 1.016 ‐3.818 0.920 0.01335 ‐1.67669 10.10258 0.03674

6 SPX p 0.9 90 1.024 1.017 ‐3.488 0.914 0.01343 ‐1.45778 8.12066 0.02774

7 SPX c 0.925 30 0.995 0.997 1.513 0.994 0.01238 0.27629 3.74279 0.00953

8 SPX c 0.925 60 0.990 0.993 1.371 0.992 0.01233 0.22790 3.89438 0.00838

9 SPX c 0.925 90 0.989 0.992 1.456 0.990 0.01239 0.26458 4.16186 0.00914

10 SPX p 0.925 30 1.004 0.994 ‐5.107 0.896 0.01337 ‐2.37029 16.94021 0.04799

11 SPX p 0.925 60 1.021 1.014 ‐3.476 0.939 0.01315 ‐1.48498 8.62578 0.03419

12 SPX p 0.925 90 1.021 1.015 ‐3.157 0.940 0.01320 ‐1.31877 7.48305 0.02739

13 SPX c 0.95 30 0.994 0.997 1.935 0.990 0.01241 0.40602 3.81833 0.00740

14 SPX c 0.95 60 0.990 0.993 1.664 0.988 0.01236 0.32047 3.93572 0.00680

15 SPX c 0.95 90 0.989 0.992 1.681 0.987 0.01241 0.33531 4.15651 0.00792

16 SPX p 0.95 30 1.008 0.999 ‐4.499 0.927 0.01315 ‐1.95364 12.33471 0.04060

17 SPX p 0.95 60 1.017 1.010 ‐3.131 0.955 0.01297 ‐1.31436 7.52465 0.03115

18 SPX p 0.95 90 1.018 1.012 ‐2.828 0.957 0.01302 ‐1.18971 6.91955 0.02608

19 SPX c 0.975 30 0.993 0.998 2.495 0.983 0.01247 0.57610 3.95559 0.00501

20 SPX c 0.975 60 0.990 0.994 2.025 0.983 0.01240 0.43248 3.97101 0.00503

21 SPX c 0.975 90 0.989 0.993 1.948 0.982 0.01245 0.41664 4.14088 0.00653

22 SPX p 0.975 30 1.007 1.000 ‐3.811 0.956 0.01289 ‐1.53804 8.63632 0.03303

23 SPX p 0.975 60 1.012 1.006 ‐2.777 0.968 0.01280 ‐1.16297 6.74440 0.02779

24 SPX p 0.975 90 1.014 1.009 ‐2.500 0.969 0.01287 ‐1.06602 6.43135 0.02428

25 SPX c 1 30 0.995 1.001 3.246 0.970 0.01261 0.79932 4.14789 0.00333

26 SPX c 1 60 0.992 0.997 2.469 0.974 0.01250 0.56584 3.98166 0.00333

27 SPX c 1 90 0.990 0.995 2.267 0.974 0.01253 0.50981 4.09602 0.00514

28 SPX p 1 30 1.003 0.998 ‐3.085 0.976 0.01267 ‐1.23238 7.00336 0.02576

29 SPX p 1 60 1.007 1.002 ‐2.409 0.979 0.01266 ‐1.02423 6.17248 0.02428

30 SPX p 1 90 1.010 1.005 ‐2.176 0.978 0.01274 ‐0.94955 6.02215 0.02222

31 SPX c 1.025 30 0.980 0.988 4.386 0.934 0.01273 1.16714 4.73797 0.00944

32 SPX c 1.025 60 0.984 0.990 3.096 0.957 0.01254 0.76130 4.06116 0.00555

33 SPX c 1.025 90 0.985 0.991 2.833 0.961 0.01258 0.69217 4.53006 0.00690

34 SPX p 1.025 30 1.008 1.003 ‐2.446 0.987 0.01262 ‐1.00229 6.07264 0.01816

35 SPX p 1.025 60 1.010 1.006 ‐2.085 0.986 0.01263 ‐0.90477 5.72672 0.01919

36 SPX p 1.025 90 1.010 1.006 ‐2.002 0.985 0.01270 ‐0.87827 5.55132 0.01846

37 SPX c 1.05 30 0.919 0.929 5.671 0.852 0.01265 1.73802 7.46013 0.00149

38 SPX c 1.05 60 0.957 0.965 3.825 0.925 0.01246 1.03472 4.93101 0.00374

39 SPX c 1.05 90 0.966 0.973 3.318 0.937 0.01253 0.86088 4.83060 0.00544

40 SPX p 1.05 30 1.011 1.007 ‐1.812 0.994 0.01259 ‐0.78602 5.17224 0.01664

41 SPX p 1.05 60 1.013 1.010 ‐1.741 0.992 0.01262 ‐0.78160 5.16732 0.01725

42 SPX p 1.05 90 1.014 1.011 ‐1.667 0.990 0.01270 ‐0.76216 5.18107 0.01729
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Table 2: Descriptive statistics ESX option returns
This table presents descriptive statistics for daily returns of option-based investment strategies using the

ESX option from 2000 to 2014. The options are unlevered to achieve a target market exposure (Beta) of

one. Type c referes to calls, type p to puts. M and TtM denote moneyness and time to maturity. Beta1

and Beta2 are the slope coefficients of a regression of option return on index return and squared index

return; R2 is the R squared of this quadratic regression. Vol, Skew, Kurt and SR denote the volatility,

the Fisher-Pearson coefficient of skewness, the Pearson coefficient of kurtosis and the Sharpe ratio, all

based on the sample of daily returns of the option-based strategies over the full sample period.

No. Option Type M TtM Beta Beta1 Beta2 R2 Vol Skew Kurt SR

1 ESX c 0.9 30 0.995 1.005 1.542 0.995 0.01386 ‐0.00594 1.02603 ‐0.02696

2 ESX c 0.9 60 0.990 1.001 1.663 0.992 0.01394 0.01330 1.05037 ‐0.03187

3 ESX c 0.9 90 0.993 1.000 1.585 0.988 0.01438 0.15900 1.42767 ‐0.03233

4 ESX p 0.9 30 0.986 0.952 ‐5.451 0.913 0.01461 ‐2.18476 14.05049 0.03527

5 ESX p 0.9 60 1.019 0.988 ‐4.741 0.934 0.01499 ‐1.90018 11.89559 0.01200

6 ESX p 0.9 90 1.018 0.997 ‐4.165 0.923 0.01539 ‐1.73075 11.35401 0.00158

7 ESX c 0.925 30 0.994 1.005 1.847 0.993 0.01387 0.07777 0.99979 ‐0.03004

8 ESX c 0.925 60 0.989 1.002 1.922 0.990 0.01395 0.08521 1.05658 ‐0.03415

9 ESX c 0.925 90 0.992 1.000 1.815 0.985 0.01439 0.22384 1.43936 ‐0.03387

10 ESX p 0.925 30 1.000 0.969 ‐4.931 0.938 0.01456 ‐1.96361 11.58610 0.03005

11 ESX p 0.925 60 1.019 0.991 ‐4.275 0.949 0.01482 ‐1.73439 10.11533 0.00873

12 ESX p 0.925 90 1.015 0.997 ‐3.809 0.944 0.01517 ‐1.58214 9.84040 0.00076

13 ESX c 0.95 30 0.992 1.006 2.223 0.990 0.01388 0.18181 1.00279 ‐0.03426

14 ESX c 0.95 60 0.988 1.002 2.218 0.987 0.01396 0.16861 1.09397 ‐0.03646

15 ESX c 0.95 90 0.992 1.001 2.069 0.983 0.01441 0.29802 1.48955 ‐0.03555

16 ESX p 0.95 30 1.008 0.981 ‐4.359 0.955 0.01449 ‐1.74680 9.58025 0.02292

17 ESX p 0.95 60 1.019 0.994 ‐3.813 0.962 0.01467 ‐1.57786 8.64624 0.00410

18 ESX p 0.95 90 1.013 0.996 ‐3.431 0.958 0.01500 ‐1.43273 8.45751 ‐0.00331

19 ESX c 0.975 30 0.990 1.007 2.687 0.985 0.01391 0.31013 1.05234 ‐0.03995

20 ESX c 0.975 60 0.987 1.004 2.561 0.984 0.01399 0.26504 1.16105 ‐0.03933

21 ESX c 0.975 90 0.991 1.003 2.353 0.981 0.01444 0.38331 1.59168 ‐0.03697

22 ESX p 0.975 30 1.012 0.988 ‐3.752 0.970 0.01439 ‐1.54097 7.98967 0.01515

23 ESX p 0.975 60 1.017 0.995 ‐3.358 0.974 0.01453 ‐1.43306 7.44516 ‐0.00050

24 ESX p 0.975 90 1.012 0.997 ‐3.050 0.970 0.01486 ‐1.28791 7.21291 ‐0.00740

25 ESX c 1 30 0.988 1.009 3.250 0.976 0.01398 0.46622 1.16285 ‐0.04740

26 ESX c 1 60 0.986 1.006 2.956 0.978 0.01404 0.37488 1.25937 ‐0.04282

27 ESX c 1 90 0.991 1.004 2.673 0.975 0.01450 0.48005 1.73959 ‐0.03947

28 ESX p 1 30 1.012 0.993 ‐3.131 0.981 0.01427 ‐1.34608 6.71330 0.00700

29 ESX p 1 60 1.015 0.995 ‐2.917 0.981 0.01442 ‐1.29711 6.43049 ‐0.00494

30 ESX p 1 90 1.009 0.996 ‐2.677 0.978 0.01474 ‐1.15379 6.18109 ‐0.01065

31 ESX c 1.025 30 0.977 1.001 3.984 0.957 0.01401 0.68228 1.46168 ‐0.05302

32 ESX c 1.025 60 0.979 1.001 3.472 0.966 0.01406 0.52140 1.44844 ‐0.04427

33 ESX c 1.025 90 0.985 1.000 3.120 0.961 0.01455 0.60666 1.97130 ‐0.04031

34 ESX p 1.025 30 1.015 0.999 ‐2.583 0.988 0.01423 ‐1.17836 5.75963 ‐0.00288

35 ESX p 1.025 60 1.016 0.999 ‐2.545 0.986 0.01438 ‐1.18178 5.64184 ‐0.01140

36 ESX p 1.025 90 1.011 1.000 ‐2.381 0.982 0.01473 ‐1.04668 5.40859 ‐0.01623

37 ESX c 1.05 30 0.946 0.975 4.650 0.907 0.01401 0.93342 2.17443 ‐0.06059

38 ESX c 1.05 60 0.960 0.986 3.984 0.941 0.01402 0.68355 1.88813 ‐0.04661

39 ESX c 1.05 90 0.970 0.987 3.578 0.930 0.01462 0.77396 2.43293 ‐0.03736

40 ESX p 1.05 30 1.016 1.003 ‐2.049 0.991 0.01420 ‐1.01677 4.86963 ‐0.01046

41 ESX p 1.05 60 1.018 1.004 ‐2.146 0.988 0.01437 ‐1.05636 4.81192 ‐0.01717

42 ESX p 1.05 90 1.012 1.002 ‐2.066 0.983 0.01471 ‐0.93630 4.62794 ‐0.02062
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Table 3: Descriptive statistics DAX option returns
This table presents descriptive statistics for daily returns of option-based investment strategies using the

DAX option from 1995 to 2014. The options are unlevered to achieve a target market exposure (Beta) of

one. Type c referes to calls, type p to puts. M and TtM denote moneyness and time to maturity. Beta1

and Beta2 are the slope coefficients of a regression of option return on index return and squared index

return; R2 is the R squared of this quadratic regression. Vol, Skew, Kurt and SR denote the volatility,

the Fisher-Pearson coefficient of skewness, the Pearson coefficient of kurtosis and the Sharpe ratio, all

based on the sample of daily returns of the option-based strategies over the full sample period.

No. Option Type M TtM Beta Beta1 Beta2 R2 Vol Skew Kurt SR

1 DAX c 0.9 30 1.005 1.009 1.637 0.995 0.01382 0.26767 3.67902 ‐0.00034

2 DAX c 0.9 60 1.001 1.005 1.712 0.993 0.01385 0.28555 3.59604 ‐0.00266

3 DAX c 0.9 90 0.998 1.004 1.764 0.991 0.01400 0.28356 3.64577 ‐0.00432

4 DAX p 0.9 30 0.947 0.933 ‐5.377 0.900 0.01396 ‐2.01656 9.57268 0.05105

5 DAX p 0.9 60 0.988 0.976 ‐4.647 0.934 0.01427 ‐1.57637 5.67278 0.02820

6 DAX p 0.9 90 0.999 0.985 ‐4.498 0.924 0.01469 ‐1.56110 5.81539 0.01417

7 DAX c 0.925 30 1.005 1.010 1.947 0.993 0.01386 0.35769 3.94217 ‐0.00285

8 DAX c 0.925 60 1.001 1.006 1.981 0.991 0.01388 0.36450 3.87063 ‐0.00431

9 DAX c 0.925 90 0.998 1.005 2.006 0.989 0.01402 0.35611 3.90757 ‐0.00526

10 DAX p 0.925 30 0.964 0.952 ‐4.917 0.929 0.01394 ‐1.72057 6.56009 0.04643

11 DAX p 0.925 60 0.991 0.980 ‐4.255 0.950 0.01417 ‐1.41053 4.57184 0.02660

12 DAX p 0.925 90 1.000 0.987 ‐4.115 0.950 0.01446 ‐1.43614 5.01157 0.01556

13 DAX c 0.95 30 1.006 1.012 2.330 0.990 0.01390 0.46844 4.26511 ‐0.00610

14 DAX c 0.95 60 1.002 1.008 2.294 0.988 0.01392 0.45562 4.19031 ‐0.00600

15 DAX c 0.95 90 0.999 1.007 2.290 0.987 0.01406 0.44058 4.21859 ‐0.00659

16 DAX p 0.95 30 0.978 0.966 ‐4.415 0.950 0.01393 ‐1.48567 4.81258 0.03926

17 DAX p 0.95 60 0.993 0.983 ‐3.868 0.962 0.01408 ‐1.27991 3.76038 0.02305

18 DAX p 0.95 90 1.000 0.988 ‐3.742 0.963 0.01433 ‐1.31879 4.27965 0.01325

19 DAX c 0.975 30 1.007 1.014 2.801 0.984 0.01397 0.60502 4.66515 ‐0.01018

20 DAX c 0.975 60 1.003 1.010 2.656 0.984 0.01398 0.56193 4.57288 ‐0.00791

21 DAX c 0.975 90 1.000 1.008 2.615 0.983 0.01412 0.53885 4.58785 ‐0.00802

22 DAX p 0.975 30 0.987 0.977 ‐3.883 0.966 0.01390 ‐1.28533 3.67282 0.03152

23 DAX p 0.975 60 0.995 0.986 ‐3.480 0.972 0.01400 ‐1.15368 3.13026 0.01942

24 DAX p 0.975 90 0.999 0.988 ‐3.390 0.972 0.01423 ‐1.20325 3.68708 0.01150

25 DAX c 1 30 1.007 1.015 3.378 0.975 0.01407 0.77316 5.15270 ‐0.01504

26 DAX c 1 60 1.004 1.012 3.071 0.978 0.01406 0.68485 5.03514 ‐0.00996

27 DAX c 1 90 1.001 1.010 2.982 0.977 0.01419 0.65122 5.03174 ‐0.00913

28 DAX p 1 30 0.993 0.985 ‐3.335 0.978 0.01386 ‐1.10859 2.88638 0.02430

29 DAX p 1 60 0.995 0.987 ‐3.096 0.979 0.01393 ‐1.03738 2.63276 0.01603

30 DAX p 1 90 0.999 0.989 ‐3.043 0.979 0.01415 ‐1.09475 3.18370 0.00919

31 DAX c 1.025 30 0.996 1.007 4.176 0.956 0.01412 1.03043 6.20265 ‐0.01870

32 DAX c 1.025 60 0.999 1.009 3.645 0.967 0.01411 0.86725 5.93273 ‐0.01038

33 DAX c 1.025 90 0.995 1.007 3.486 0.954 0.01432 0.85401 5.93710 ‐0.00807

34 DAX p 1.025 30 1.000 0.993 ‐2.882 0.986 0.01388 ‐0.96685 2.32166 0.01697

35 DAX p 1.025 60 0.999 0.992 ‐2.801 0.985 0.01393 ‐0.94443 2.23335 0.01191

36 DAX p 1.025 90 1.003 0.994 ‐2.786 0.975 0.01423 ‐1.03326 2.93661 0.00593

37 DAX c 1.05 30 0.963 0.976 4.967 0.918 0.01401 1.36290 7.99224 ‐0.03181

38 DAX c 1.05 60 0.983 0.994 4.245 0.938 0.01414 0.99808 7.34471 ‐0.01663

39 DAX c 1.05 90 0.984 0.997 4.022 0.901 0.01462 0.93762 7.60189 ‐0.01773

40 DAX p 1.05 30 1.005 0.999 ‐2.397 0.991 0.01388 ‐0.83027 1.90723 0.01303

41 DAX p 1.05 60 1.003 0.997 ‐2.452 0.988 0.01394 ‐0.84296 1.88158 0.00947

42 DAX p 1.05 90 1.005 0.997 ‐2.478 0.982 0.01420 ‐0.89718 2.33627 0.00715
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Table 4: Cross-sectional analysis
This table shows cross-sectional regression results, Panel A for the base version of Models 1 to 3 (Eqs.

6-8) and Panel B for the modified version with excess index levels. The upper part of each panel is based

on  = , the lower part on  = 2 The -values based on GMM standard errors are reported

in brackets. The 2 coefficient is the cross-sectional 2 measure of Jagannathan and Wang (1996).

Interc Skew R2 Interc Skew Skew^2 R2 Interc Skew Kurt R2

SPX 1.66E‐04 ‐1.58E‐04 0.898 1.27E‐04 ‐1.18E‐04 4.43E‐05 0.978 4.57E‐05 ‐1.05E‐04 2.26E‐05 0.975

(6.68) (‐6.17) (3.90) (‐3.90) (1.83) (0.61) (‐2.88) (1.72)

ESX ‐4.48E‐04 ‐3.37E‐04 0.921 ‐4.92E‐04 ‐2.49E‐04 7.63E‐05 0.939 ‐5.07E‐04 ‐2.56E‐04 2.18E‐05 0.929

(‐10.25) (‐7.91) (‐8.09) (‐2.79) (1.09) (‐5.60) (‐2.25) (0.75)

DAX 1.99E‐06 ‐2.42E‐04 0.873 ‐2.97E‐05 ‐2.19E‐04 3.67E‐05 0.881 ‐8.32E‐05 ‐2.50E‐04 1.85E‐05 0.886

(0.05) (‐6.63) (‐0.48) (‐4.22) (0.63) (‐0.75) (‐6.46) (0.81)

Interc Beta2 R2 Interc Beta2 Beta2^2 R2 Interc Beta2 Kurt R2

SPX 2.08E‐04 ‐5.42E‐05 0.846 1.40E‐04 ‐5.04E‐05 7.98E‐06 0.962 4.94E‐05 ‐3.37E‐05 2.66E‐05 0.974

(8.53) (‐6.21) (3.74) (‐5.82) (2.30) (0.66) (‐2.86) (2.21)

ESX ‐3.03E‐04 ‐1.01E‐04 0.912 ‐3.79E‐04 ‐9.43E‐05 7.67E‐06 0.931 ‐4.18E‐04 ‐7.10E‐05 2.67E‐05 0.925

(‐7.42) (‐7.70) (‐4.74) (‐6.73) (1.12) (‐3.16) (‐2.10) (0.91)

DAX 5.08E‐05 ‐7.03E‐05 0.857 5.48E‐06 ‐6.76E‐05 4.07E‐06 0.867 ‐5.72E‐05 ‐7.37E‐05 2.38E‐05 0.880

(1.41) (‐6.51) (0.07) (‐5.89) (0.69) (‐0.52) (‐6.39) (1.03)

Interc Skew R2 Interc Skew Skew^2 R2 Interc Skew Kurt R2

SPX 1.24E‐04 ‐1.58E‐04 0.905 8.27E‐05 ‐1.38E‐04 4.07E‐05 0.973 8.92E‐05 ‐1.09E‐04 2.06E‐05 0.971

(1.19) (‐14.25) (‐2.87) (‐11.46) (3.47) (‐2.48) (‐6.36) (3.42)

ESX 7.88E‐05 ‐3.36E‐04 0.934 3.17E‐05 ‐3.16E‐04 5.41E‐05 0.943 3.44E‐05 ‐2.47E‐04 2.39E‐05 0.944

(‐0.78) (‐24.87) (‐3.11) (‐20.71) (2.34) (‐3.35) (‐6.59) (2.46)

DAX 1.04E‐04 ‐2.42E‐04 0.901 7.45E‐05 ‐2.36E‐04 3.09E‐05 0.907 6.33E‐05 ‐2.50E‐04 1.73E‐05 0.914

(0.56) (‐20.64) (‐1.47) (‐20.00) (1.57) (‐2.16) (‐19.37) (2.21)

Interc Beta2 R2 Interc Beta2 Beta2^2 R2 Interc Beta2 Kurt R2

SPX 1.34E‐04 ‐5.41E‐05 0.855 6.97E‐05 ‐5.06E‐05 7.45E‐06 0.958 8.77E‐05 ‐3.49E‐05 2.47E‐05 0.970

(2.30) (‐14.29) (‐3.61) (‐13.20) (4.41) (‐2.64) (‐6.53) (4.45)

ESX 9.37E‐05 ‐1.01E‐04 0.933 3.42E‐05 ‐9.56E‐05 5.99E‐06 0.945 3.99E‐05 ‐7.12E‐05 2.65E‐05 0.946

(0.62) (‐25.21) (‐2.84) (‐22.59) (2.79) (‐2.91) (‐6.78) (2.87)

DAX 9.89E‐05 ‐7.01E‐05 0.882 6.40E‐05 ‐6.80E‐05 3.14E‐06 0.888 4.52E‐05 ‐7.34E‐05 2.26E‐05 0.902

(0.01) (‐20.81) (‐1.93) (‐19.47) (1.65) (‐3.18) (‐19.46) (2.82)

Model 1 Model 2 Model 3

Panel A: Excess option returns to risk‐free, skewness and kurtosis

Panel B: Excess option returns to index, excess skewness and kurtosis compared to index


