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The Closed-form Pricing Formula for a Risky Asset When Its Risky 

Factors Follow Gamma Distributions 

 

 

Abstract: 

This paper constructed a pricing model for the asset with multi-risks by specifying the 

risky factors (i.e., interest rate and termination hazard rates) to follow gamma 

distributions. The model not only avoids the possibility of the termination hazard rate 

taking an irrational (i.e., negative) value, but it also makes it easier to derive a 

closed-form valuation formula for a risky asset. Our model can also effortless apply 

because the parameters of the gamma distribution can easily be estimated from market 

data. An example using Taiwanese bond data illustrates how the model can be utilized 

for practical applications. To facilitate understanding of how accurately the different 

models price risky assets, we compare their pricing errors for different hazard rate 

specifications assuming normal and gamma distributions. The results show the 

valuation with the gamma distribution is better than with normal distribution, and also 

reveal our closed-form formula is realistic and accurate in its applications. Therefore, 

it should help market participants more accurately price risky securities and manage 

complicated portfolios effectively. 

Keywords: Hazard Rate, Gamma Distribution, Pricing, Closed-form Formula 
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1. Introduction: 

Because of the recent crises involving subprime mortgages in the U.S. and the 

government bond markets in Europe, researchers and market practitioners have been 

paying a great deal of attention to studies of the specific termination risks (e.g., 

default and prepayment) associated with risky assets (e.g., bonds and mortgages). 

Managing these is an important but difficult assignment for financial institutions. 

Since a closed-form pricing formula can adequately appraise asset values from 

correlated multiple risk sources, it can greatly reduce the hard works of managing 

risks. By utilizing a suitable closed-form pricing formula, portfolio managers and 

financial institutions can not only accurately price risky assets but also perform 

efficient hedging analyses.
1
 Therefore, it is important and even necessary for market 

practitioners and financial institutions to derive a closed-form pricing formula for 

risky assets. The main goal of this paper is to provide a general and accurate valuation 

model to accomplish this task. 

To assess these probabilities of risky events (e.g., default, prepayment, liquidity 

risk) occurring prior to contract maturity, researchers usually utilize two models: the 

structural-form model (see, Merton 1974, Kau, Keenan, Muller III and Epperson, 

1993; Yang, Buist and Megbolugbe, 1998; Ambrose and Buttimer, 2000; 

Azevedo-Pereira, Newton and Paxson, 2003) and the reduced-form model (see, 

Jarrow and Turnbull, 1995; Jarrow, 2001). Because it is easier to derive a closed-form 

formula by using the reduced-form model than the structural-form model, researchers 

have increasingly chosen the reduced-form model for pricing risky securities and 

                                                 
1
 Some of the other advantages of a closed-form formula are as follows: (1) it helps us better 

appreciate how sensitive asset values are to changes in relevant factors; (2) it improves calculation 

efficiency; (3) it provides basic building blocks that financial institutions can use to price complicated 

financial products (Liao, Tsai and Chiang, 2008). 
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determining the probability of termination (Liao, Tsai, and Chiang, 2008; Tsai, Liao, 

and Chiang, 2009; Tsai and Chiang, 2012). For our study, we also chose the 

reduced-form model for this purpose. 

The reduced-form model usually specifies the unpredictability of risky events as 

exogenous random variables that follow a Poisson distribution (Bielecki and 

Rutkowski, 2001). The analyses of default risk depend mainly on how the termination 

hazard rate is appropriately specified. Nowadays, the termination hazard rate for a 

risky asset is usually specified as following one of the following three distributions: 

the normal distribution, the log-normal distribution, and the non-central chi-square 

distribution. Each specification has its specific advantages and problems when pricing 

a risky asset.  

The termination hazard rate follows a normal distribution if it is specified as a 

Vasciek-Form (Vasicek, 1977). As shown by Jarrow (2001) and by Liao, Tsai and 

Chiang (2008), it is easiest to derive a closed-form formula for a risky asset with 

multi-risks under this construction. To depict reasonably the risks that an asset incurs, 

the hazard rates associated with the various risks have to be modeled as the function 

of state variables (i.e., interest rate and stock return). It is also necessary to consider 

the correlations among the hazard rates in the pricing model. For example, the 

decisions of prepayment and default for mortgage obligations are viewed as the 

correlated competing risks and thus are jointly estimated when investigating 

mortgages and mortgage-based securities (Han and Hausman, 1990; Sueyoshi, 1992; 

McCall, 1996; Deng, Quigley and Van Order, 2000; Kuznetsovski and Hwang, 2010). 

Nowadays, among the above mentioned three distributions, this is only possible to 

more easily deal with this situation if hazard rates are assumed to follow a normal 

distribution. However, some scholars have argued that such a specification yields 
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hazard rates with unrealistic values (e.g., negative values), which in turn leads to 

inaccurate pricing of the securities. To avoid such problems, additional constraints are 

needed that restrict the range of values the hazard rate can assume (see Liao et al., 

2008).  

In what is usually called the Cox hazard rate model for analyzing termination 

probabilities for risky securities, the termination hazard rates are specified as 

following a log-normal distribution (see Schwartz and Torous, 1989; 1993). The 

advantage of this specification is that it ensures the hazard rate will always take a 

positive value, thereby avoiding incorrect prices for the risky securities. However, the 

adoption of Cox’s model in a pricing framework results in a “double exponential” 

form,
2
 which induces an infinite expectations for the accumulated factors (see, 

Miltersen, Sandmann and Sondermann, 1997). Therefore, a closed-form formula for a 

risky asset cannot be obtained by specifying a lognormal distribution.  

Many scholars, such as Duffie (2005), have used the non-central chi-square 

distribution (also defined as the CIR-Form, see Cox, Ingersol and Ross, 1985) to 

describe the distribution of hazard rates. Compared with the two distributions quoted 

above, the advantages of the chi-square specification are: (1) the hazard rate always 

takes a positive value and (2) a closed-form formula for the risky asset can be 

obtained. However, incorporating this specification in the valuation model seems to 

make the derivation procedure more complicated; especially, it is quite difficult to 

derive the closed-form formula when the multi-risks and their correlations are 

included in the valuation model. Also, the parameters for the non-central chi-square 

distribution are difficult to estimate from historical market data. These disadvantages 

greatly restrict the application of this specification for market participants. 

                                                 
2
 The term “double exponential” is an exponential function of exponential function. 
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In short, market participants will be dissatisfied with the assumption of a normal 

distribution because the specification of the hazard rates may cause incorrect pricing, 

with the assumption of a log-normal distribution because it is difficult to obtain the 

closed-form solution, and with the assumption of a non-central chi-square distribution 

because the model is too complicated to be used for empirical application studies. 

Thus, a more appropriate model for valuating a risky asset must achieve the following 

goals: (1) It must avoid the generation of unreasonable values for the hazard rate, (2) 

it must be easy to obtain a closed-form formula from it, and (3) it must be convenient 

for practical applications. For simultaneously satisfying all these purposes, the main 

purpose of this paper is to support a model that can achieve all these goals for market 

participants. We derived a general closed-form formula for a risky asset based on the 

assumption of that hazard rates follow a gamma distribution, as shown by Hall 

(2000).  

Our model has the following advantages: (1) Because the hazard rate of a risk 

event is always a positive value assuming a gamma distribution, the pricing is always 

reasonable; thus, our specification is better than specifying a normal distribution. (2) 

The pricing model is stable and more rational in practical applications, because the 

gamma distribution is approximately stationary for a population that fluctuates around 

a stable equilibrium (Dennis and Patil, 1984). (3) The gamma distribution is quite 

general; in theory, it can approximate to the normal and chi-square distributions 

(Johnson, Kotz and Balakrishnan, 1994), meaning that our valuation model is more 

general than the traditional models. (4) A moment-generating function is useful when 

deriving a closed-form pricing formula for securities (Chiang and Tsai, 2010). The 

gamma distribution always has a moment-generating function that can be used to 

derive a closed-form pricing formula for risky securities, making our model better 
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than Cox’s hazard rate model and the CIR model. (5) It is very easy to estimate the 

parameters of the gamma distribution, which therefore makes it very easy for market 

participants to apply the model in practice. (6) Our model is quite flexible, because it 

can be extended to apply to cases with correlated multi-risk sources, such as 

correlated and simultaneously considered prepayment and default risks for pricing a 

mortgage.  

Because of the above advantages, we recommend that when evaluating a risky 

asset, market participants and financial scholars assume a gamma distribution for 

hazard rates rather than the specifications used in traditional research. To the best of 

our knowledge, our model is the first that derives a closed-form formula for assets 

with multiple correlated risks while specifying that hazard rates follow such 

distribution. 

To demonstrate how this valuation framework can be used for practical 

applications, we used data obtained from Taiwanese bond market to illustrate how we 

estimate the parameters of our model. We also show how our pricing formula can be 

used to valuate these risky securities. To clearly illustrate which hazard-rate 

distribution prices the risky asset most accurately, we compare the pricing errors for a 

normal distribution and a gamma distribution.  

The remainder of this paper is organized as follows. Section 2 illustrates our 

valuation framework, including the identification of the risky asset components and 

our treatment of the asset’s multiple risks. This section also explains the specifications 

for the hazard-rate functions. Finally, it presents a closed-form solution for the risky 

asset. The third section describes the empirical methods for estimating the necessary 

parameters from historical data and presents the sensitivity analyses. The final section 

summarizes our findings. 
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2. The Model 

We construct a model for the pricing of a risky asset that includes multi-risks. In the 

definition of the termination risk, a risky asset holder would incur a loss if the asset is 

terminated early. For example, that liquidity risk is the risk that a given security or 

asset cannot be traded quickly enough in the market to prevent a loss (or obtain the 

required profit). In such a situation, if investors need to quickly sell their holdings, 

they should sell at a discount with respect to the current market price. Another 

example is the default risk, that the amount that the risky asset holder may lose in an 

investment if the asset is defaulted prior to the maturity. The termination risks may 

include the default risk, liquidity risk
3
 and prepayment risk, and so on. 

We assume the risky asset promise to pay )(uc  dollar at time u  and M  

dollar at maturity date T , where Tut  . We assume the payment for the risky 

asset can be terminated by K  kinds of risks. At each time point, two situations 

appear for the risky asset: terminated by one kind of risk, or to maintain. When the 

risky asset is early terminated, the risky asset holder may get a loss from risk. 

For analyzing the expected loss, it must to identify the loss rate from risks and 

termination probabilities for risks. Let us denote the random variables i  as the 

terminated time of risk i  during the period from t  to T , for Ki ,,2,1  . We use 

  to represent the time when the loan payment is first terminated, where 

),,,min( 21 K  . If i  , the loan is terminated by the risk i , then the cash 

flow is )( iM , where )( i  is the fractional recovery rate.
4
 Otherwise, if the loan 

doesn’t be terminated until maturity date, the cash flow is equal to the )(uc  at each 

time u  and M  at maturity date. The value of such risky asset is therefore denoted 

                                                 
3
 If one wants to analyze an expected liquidity risk, one must identify its expected loss rate and the 

probability of an early sell. A similar idea has been suggested by Duffie and Singleton (1999). 
4
 We let M  dollar to be the denominator of recovery rate is. 
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as (Jarrow and Turnbull, 1992; Bielecki and Rutkowski, 2001; Tsai, Liao and Chiang, 

2009; Tsai and Chiang, 2012): 
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where  

),(1 TtP  is the value of risky asset at time t , 

][E  is an expected operator, 

)(sr  is the instantaneous default-free short-term interest rate at time s , and 

{}I  is the indicator function.  

The first term on the right side of Equation (1) is the expected current value of the 

risky asset if risk event i  occurs. The second term is the expected current survival 

value of the risky asset which is not terminated during contract period. The third term 

is the expected current survival value of the risky asset which is not terminated until 

maturity time T . We can also express the valuation formula as follows (Bielecki and 

Rutkowski, 2001): 
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),( utG  is the survival probability until time u , and  

),( utf i  is termination probability density function for risk i  at time u . 

Under the reduced-form model, we assume a stochastic hazard rate )( uh i  for 
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risk i  at time u . Then, the survival function and the probability density function for 

risk i  can be obtained. Given the stochastic hazard rates )( uh i , the survival 

function can generally be defined as follows: 

)))((exp(),(
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The termination probability density function for risk i  can be described as 

follows: 

),()(),( utGuhutf ii  .                   (4) 

Under the reduced-form model, the value of the risky asset at time t  can be 

rewritten as follows (cf. Bielecki and Rutkowski, 2001; Liao et al., 2008; Tsai and 

Chiang, 2012):  
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According to Equation (5), to derive a closed-form formula for the risky asset first 

must derive the closed-form solutions for the following two terms: 
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These two expected values should be solved under the assumption that recovery 

rates, the termination hazard rates and interest rate follow stochastic processes. 

However, in traditional research, the recovery rate, which is estimated from market 
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data, has usually been treated as constant or a deterministic variable (Jarrow and 

Turnbull, 1995). Nevertheless, there is evidence that whether the recovery rate is 

assumed to be stochastic or constant has no significant impact on the pricing of risky 

products such as mortgages (Jokivuolle and Peura, 2003). In focusing our 

investigation on the hazard rate, we assume that the recovery rate is a constant (i.e., 

ii u  )( ). Based on this assumption, we need to derive the following solutions:  
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If we know the distribution of )( uh i , we can get solutions for Equations (8) and 

(9). Then, we can derive a closed-form formula for the price of the risky asset with 

multi-risks. In traditional studies, the default hazard rates )( uh i  are generally 

specified as following one of three distributions: normal, lognormal, or non-central 

chi-square.  

To provide for easy calculation of the closed-form formula, accuracy of pricing, 

and ease of practical applications, we model hazard rates to follow a gamma 

distribution as follows:
5
 

))(log())]([log())(log(   uWuhEuh iii  ,        (10) 

where 

)(uWi  is a random variable for risk i  at time u , which follows a gamma 

distribution. 

In traditional studies, the hazard rate is always assumed to be influenced by 

                                                 
5
 The specification for a stochastic process following gamma distribution can be found in Dennis and 

Patil (1984). 
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interrelated state variables such as the risk-free interest rate, and the stock price index. 

In empirical procedures, when using Cox’s hazard model, the estimation of )]([  uhE i  

can be described as follows:  

))(exp()()]([  ,0 uXAuhuhE iii
 ;          (11) 

where 

)( ,0 uh i , which is deterministic, denotes the baseline hazard rate for risk i  at 

time u ; 

)(uX  stands for a set of the state variables in the regression;  

iA  is a vector of the coefficients of the hazard rate function for risk i , with 

each coefficient denoting the relative magnitude of the effect of each state variable on 

the hazard rate. 

The termination risks may be influenced by common factors such as interest 

rates and the stock price index. To accurately price the risky asset with multi-risks, we 

also have to consider the influenced effects from common factors and correlations 

among the hazard rates. We let  

)()(')( 0 uVuVuW iii  , for Ki ,,1 ,        (12) 

where  

][)( 00
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affects all )(uWi ;  

][ 21
 i

N

ii

i    is a vector of influential effects; 
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i

n  represents the influential effect of n -th common factor, Nn ,,1 , on the 

i -th hazard rate; and 

)(uVi  is the specific factor for risk i .  

We let 0

nV  and )(uVi  follow a gamma distribution with parameters ( 0

n , 0

n ) 

and ( i , i ), respectively. In addition, all elements in )(0 uV , )(uVi  and )(uVk , for 

ki  , are mutually independent random variables. For a gamma distribution with 

parameters ( ,  ), the expected value and variance are   and 2 , respectively. 

We let )( 0VVar  be the variance-covariance matrix of 0V . According to Equation 

(12), the variance of )(uWi  is 
20 )(' iiii VVar  . Moreover, ki VVar  )(' 0

 is 

the covariance between )(uWi  and )(uWk . Therefore, one can calculate the 

correlation between )(uWi  and )(uWk  by their covariance and variances. In terms 

of these properties, we can discuss the influence of the correlation among the hazard 

rates on the price of the risky asset. If we assume that the risk i  is independent with 

other risks, then let 0i . 

In general, the interest rate is usually treated as a common factor that affects the 

termination hazard rates. Since the interest rate is always a positive value, we can also 

model it to follow a gamma distribution.
6
 Moreover, we let the interest rate be the 

first common factor in our model. We express the interest rate as follows: 

))(log())]([log())(log( 0

1 uVurEur  ,         (13) 

For simplicity, we let the expected value of interest )]([ urE  and the expected value 

of termination hazard rate )]([  uhE i  be denoted as )(0

1 u  and )(ui  in the later 

                                                 
6
 The interest rate has been assumed to follow a gamma distribution in traditional researches (Heston 

2007). 
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expression, respectively.  

If )(uV  (i.e., )(0 uV  and )(uVi ) follows a gamma distribution with 

parameters   and  , the probability density function of )(uV  can be described as 
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In light of the above results, we can easily derive the closed-form formulas for 
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Finally, the closed-form formula for the risky asset with K  kinds of risks can be 

solved as follows: 
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If we can estimate the expected values of termination hazard rates and the 

parameters of the gamma distributions, the price of the risky asset can be obtained for 

practical applications. In the following section, we show how one can use historical 

data to estimate the necessary parameters from our model. 

3. Empirical Method and Results 

In this example, we let the risky asset be a zero coupon bond (ZCB) with one dollar 

face value. We use Taiwanese market data to show how one can use historical data to 

estimate the necessary parameters for application. For simplicity, we assume that the 

only risk associated with the ZCB is default. Yield data are used to calculate the 

default hazard rate of the defaultable ZCB. The daily data for the four ranks of the 

Taiwanese corporate bond yields are based on a 10-year Taiwanese corporate bond 

taken from the TEJ Databank.
7
 We choice the risk-free interest rate and the daily 

returns of the stock price index to be the state variables. For empirical purpose, we 

allow these state variables to be deterministic. The risk-free interest rate was obtained 

from the yield of a 10-year Taiwanese government bond. The daily returns of the 

stock price index were obtained from the Taiwan Stock Exchange. The sample period, 

Nov. 1, 2005 to Oct. 7, 2011, yielded 1478 observations for each variable. The 

variables are the four ranks (i.e. AAA, AA, A and BBB) of the Taiwanese corporate 

bond yields, the risk-free interest rates, and the returns of the stock price index.  

Table 1 presents descriptive statistics for the sample. Specifically, it gives the 

mean, standard deviation, maximum value, median, minimum value, skewness, and 

kurtosis for each variable. The results indicate that the standard deviation of the yield 

for a higher credit rank is always larger than that for a lower credit rank of the 

Taiwanese corporate bond. One can thus infer that the higher the credit rank of a 

                                                 
7
 TEJ is a famous databank with financial data from Taiwan. 
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Taiwanese corporate bond, the more volatile its yield. 

The default hazard rate for each rank of the corporate bond is calculated by the 

following equation (Jarrow and Turnbull, 1995; Duffie and Singleton, 1999): 

)1/())()(()(  uruyuh ,           (18) 

where 

)(uy  is the yield of the corporate bond at time u , and 

  is the recovery rate given default. 

For simplicity, we assume that the recovery rate is a constant and we let 

7.0 .
8
 We also let the baseline default hazard rate (denoted as )(0 sh ) is a 

constant during contract period; that is 00 )( hsh  . If the default hazard rate is 

specified as following a normal distribution, they can be described as follows: 

)(uh )()( 210 uraurah S )(u ,         (19) 

where )(urS  is the return of the stock price index and )(u  is the residual term. 

In the case of gamma distribution, one can use Cox’s hazard model to estimate 

the expected hazard rate; we have 

))(log( uh )()()log( 210 uraurah S )(u ,       (20) 

The coefficients in the linear function expressed in Equations (19) and (20) are 

estimated by panel regression. It can be seen from Table 2 that these estimated 

parameters are as follows: 1a -0.6847 and 2a -0.0080 under the normal 

distribution, and 1a -64.3450 and 2a -1.1797 under the gamma distribution. All 

are significant at the 1% level. In terms of results, we find that the default hazard rate 

                                                 
8
 We have used a different value of   to perform the empirical estimation. The main conclusion is 

similar with present version.  
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for the Taiwanese corporate bond is negatively correlated with both the risk-free 

interest rate and the returns of the stock price index.  

After the estimates are calculated using panel regression, the residuals are 

employed to estimate the parameters for the normal and gamma distributions. The 

mean and standard deviation for distributions were calculated from the residuals in 

Equations (19) and (20). The parameters from the gamma distribution can easily be 

estimated by applying the following formulas: 
2

2

ˆ
s

x
  and 

2
ˆ

s

x
 , where x  is 

the mean of the residual and s  is the standard deviation of the residual.  

The resulting estimates for each distribution are shown in Table 3. The values of 

  in the normal distribution for the four credit ranks of the bonds (AAA, AA, A, and 

BBB) are 1.5947 1710 , 2.2801 1710 , -1.1647 1710 , and 1.0413 1710  

respectively. The values of   in the normal distribution for the four credit ranks of 

the bonds are 2.8662 310 , 2.6294 310 , 2.7747 310 , and 3.7040 310  

respectively. With the gamma distribution, we have 4908.7ˆ   and 9163.6ˆ   

for the AAA bond, ̂ 12.292 and ̂ 11.77 for the AA bond, ̂ 18.202 and 

̂ 17.677 for the A bond, and ̂ 40.37 and ̂ 39.845 for the BBB bond. 

After obtaining the necessary parameters above, we can calculate the credit 

ranks of the bond values, given that default hazard rates follow each of the two 

distributions. Because we use the ZCB with only one default risk, we have 0)( uc , 

1M  and 1K  in the evaluation. We let the maturity date of the defaultable ZCB 

be 10 years and t  be 1 year. For each rank, its expected hazard rate until the 

maturity date is a constant, e.g., )()( tu  , for tu  . In addition, we let each 

expected future default hazard rate be based on the current values of the state vector. 
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We have the following: 

)(t









ondistributi gamma under the   )),()(exp(

ondistributi normal under the        ),()(

210

210

tratrah

tratrah

S

S
. 

Under a discrete time framework, the closed-form formula for the valuation 

model with default hazard rate following a normal distribution can be described as 

follows: 

),(1 TtP j

j

jttP  )1(),(
9

1

0  


10

0 ),( TtP ,       (21) 

where 

),(0 jttP  is the value of a default-free ZCB or discount factor, and 

))
2

1
)((exp( 2  t denotes the survival probability for each period. 

With the hazard rate following the gamma distribution, we have (see also 

Appendix A): 

),( TtGE  )()
)(

1( tTt 
 


, and )(ug

)(

)(

t

t








.      (22) 

In addition, according to Equation (16), the closed-form formula of a defaultable ZCB 

can then be solved as follows: 

),(1 TtP 


 


9

1

)(

0

1 )
)(

)(,())((
j

tt

j
j

t
ttPt






       (23) 

),(0 TtP
)()

)(
( tTt  




. 

After obtaining the expected price of the bonds for each of these specifications, 

we can measure the pricing error and compare their accuracy. The pricing error can be 

calculated using the following equation: 
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





N

i
R

i

T

i

R

i

P

PP

N
MSE

1

2)(1
,           (24) 

where  

MSE  is the mean square error for each distribution,  

N  is the sample size, and 

RP  and TP  are the real and expected ZCB prices, respectively.  

Table 4 shows that the mean square errors are 0.0148, 0.0145, 0.0177, and 

0.0253 respectively for the four credit ranks (i.e. AAA, AA, A, and BBB) of the bonds 

when specifying the hazard rates as normally distributed. When the hazard rates 

follow a gamma distribution, the mean square errors are 0.0123, 0.0135, 0.0170, and 

0.0215. The overall average pricing error for the four credit ranks of the bonds for the 

valuation with the gamma distribution (0.0161) is smaller than that with the normal 

distribution (0.0181). Therefore, our model is more accurate than the model with the 

normal distribution. Furthermore, our model is not only creates a closed-form formula, 

but it also does not generate irrational values for the hazard rate, which is the main 

pricing problem when hazard rates are assumed to follow a normal distribution. 

Because of these reasons, it can help market participants manage complicated 

portfolios more effectively and perform more accurate hedging analyses. 

4. Conclusion 

It has recently become clear that it is important for market participants to consider 

correlated multi-risks (e.g., default, liquidity, prepayment) when valuating a risky 

asset. A closed-form formula for pricing such securities not only can help these 

persons better understand how sensitive these prices are to changes in relevant 
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variables, but it also provides a useful tool for portfolio managers who need to 

optimize complicated portfolios and perform accurate hedging analyses. Therefore, 

the ability to solve a closed-form formula for risky securities is a major objective of 

pricing theory. Our objective was to use the reduced-form model to derive such a 

formula for assets with correlated multi-risks. 

In previous studies using the reduced-form model for this purpose, the hazard 

rates associated with risky events were usually specified as following one of three 

distributions: normal (e.g., Vasciek model), log-normal, (e.g., Cox’s hazard model), or 

non-central chi-square (e.g., CIR model). However, there are disadvantages to 

specifying hazard rates as following these three distributions. If they follow the 

normal distribution, they may take a negative value. If they follow the log-normal 

distribution, the closed-form formula for valuating risky securities cannot be obtained. 

If they follow the non-central chi-square distribution, the pricing formula for model 

with multi-risks becomes hard to be derived and the parameters of the distribution 

difficult to estimate with real data. These problems greatly restrict the application of 

the model for market participants. 

 To satisfy market participants’ needs and overcome the above problems, the 

main objective of our study was to create an appropriate model and derive a 

closed-form formula for valuating risky securities with multi-risks. We based our 

formula on the assumption that hazard rates and common factors (e.g., interest rate) 

follow the gamma distribution. Our model has several advantages. To begin with, it 

can improve pricing accuracy because it doesn’t generate unreasonable hazard 

values, and it is stable and rational in practical applications. Second, it is more 

flexible than traditional models because the gamma distribution under some specific 

parameters can approximate to the normal and chi-square distributions. Most 
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important of all, our model can easily be used to obtain a closed-form formula for 

pricing risky securities with correlated multi-risks, and the model’s parameters can 

very easily be estimated from historical market data. In short, we believe that our 

model is more useful for market participants and financial scholars than traditional 

models that assume hazard rates follow distributions other than gamma.  

Our model has many theoretical and practical advantages. We proposed an 

empirical analysis for the implementation of our valuation model. We sampled 

Taiwanese bond data to show how one can use our model to price risky securities and 

estimate the essential parameters. The empirical results from this exercise reveal that 

risk-free interest rates and the returns of the stock price index have a statistically 

significant negative effect on default hazard rates. Furthermore, our study compared 

pricing errors when hazard rates follow the normal and gamma distributions. The 

results show that the pricing error is smaller for the valuation with the gamma 

distribution than the valuation with the normal distribution. Our model is better than 

its competitors because it is more accurate and yields a closed-form formula, thereby 

helping market participants more efficiently optimize complicated portfolios and 

undertake hedging analyses. As for future research, one can use our model to 

investigate financial products with other risks (e.g., mortgage contracts). Also, one 

can extend our model to incorporate stochastic loss rates in models that appraise risky 

securities.
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Appendix A: 

This appendix shows how to derive Equations (15), (16) and (22). We firstly assume 

the possible termination event belong to a finite set. Let 
t

tT
d




 , with 

Ttttt d  10 . Let ),,,,,( 1

00

1 KNj vvvvp   denote the joint probability 

density function of )(0

1 jtV , )( , 0

jN tV , )(1 jtV , )( and , jK tV , with dj ,,1,0  . 

Because )(0

jn tV  and )( ji tV  are mutually independent random variables, the joint 

probability density function of )(0

1 jtV , )( , 0

jN tV , )(1 jtV , )( and , jK tV  can be 

defined as follows (see Johnson and Kotz, 1972):  
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where 
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According to the previous formula, we derive the following: 
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0 ),(  be differentiated with respect to b . The expected 

termination probability with risk i  can be expressed by the following: 
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If we let time interval t  approach 0, the discrete time series is transformed 

into a continuous time process. We have  
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They are Equations (15) and (16). In the empirical section, we let )()( tu  , 

0N , 1K  and 1t . Therefore, we have:  
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That is Equation (22). 
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Table 1: Summary statistics for corporate bond yields and state variables 

 
Corporate bond yield 

Interest Rate 
 The Return of 

Stock Price Index AAA AA A BBB 

Mean 2.2790 2.4178 2.6656 3.1347 1.8334 0.0152 

Standard 

Deviation 
0.3867 0.3512 0.2828 0.2135 0.4498 1.4425 

Maximum 3.0753 3.1747 3.3237 3.5993 2.8247 6.5246 

Median 2.2634 2.3850 2.6342 3.1548 1.7435 0.1082 

Minimum 1.6571 1.8243 2.1023 2.7385 1.1379 -6.7351 

Skew 0.2708 0.2918 0.41537 0.0444 0.4939 -0.4214 

Kurtosis 2.0480 2.2035 2.3510 1.9054 1.9088 5.5691 

Sample 

Number 
1478 1478 1478 1478 1478 1478 

Note: This table shows the mean, standard deviation, maximum value, median, minimum value, 

skewness, and kurtosis for each variable, including the four daily ranks (AAA, AA, A, and BBB) of 

Taiwanese corporate bond yields, risk-free interest rates, and returns of the stock price index. The 

yields were used to calculate the value of the defaultable ZCB. The ranks of the bond yields are based 

on the 10-year Taiwanese corporate bond taken from the TEJ Database. The risk-free interest rate was 

obtained from the yield of the 10-year Taiwanese government bond. The daily returns of the stock price 

index were obtained from the Taiwan Stock Exchange. The sample period, from Jan.11, 2005 to Oct. 10, 

2011, yielded 1478 observations for each variable.  
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Table 2: Estimates of the coefficients in the linear regressions using panel 

regression 

  the coefficient P-value 

Normal distribution 
1a  -0.6847*** 0.0000 

2a  -0.0080*** 0.0016 

Gamma distribution 
1a  -64.3450*** 0.0000 

2a  -1.1797*** 0.0000 

Note: We used panel regression to estimate the coefficients in Equations (19) and (20). 1a  and 2a  

represent the relative magnitudes of the effects of the interest rate and returns of the stock price index 

respectively on the default hazard rate. “***” denotes significance at the 1% level. 
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Table 3: Estimates of the parameters in each distribution for the four ranks of 

corporate bond yields 

  AAA AA A BBB 

Normal 

distribution 

  1.5947 1710  2.2801 1710  -1.1647 1710  1.0413 1710  

  2.8662 310  2.6294 310  2.7747 310  3.7040 310  

Gamma 

distribution 

  7.4908 12.2920 18.2020 40.3700 

  6.9163 11.7700 17.6770 39.8450 

Note:   and   are the mean and standard deviation of each distribution. For the normal 

distribution, these parameters were calculated from the residuals in Equation (19). The parameters   

and   for the gamma distribution, obtained by the method of moments, are 
2

2

ˆ
s

x
  and 

2
ˆ

s

x
  , where x  and s  are the sample mean and standard deviation for the residuals in 

Equation (20). 

 



 30 

Table 4: The average expected values and pricing errors for the corporate bond 

Distribution 

Types 
Rank 

Average 

Real Values 

Average 

Expected 

Values 

Average 

MSE  

Average MSE 

for All Ranks 

Normal 

AAA 0.7989  0.8012  0.0148  

0.0181 
AA 0.7880  0.7915  0.0145  

A 0.7690  0.7746  0.0177  

BBB 0.7346  0.7444  0.0253  

Gamma 

AAA 0.7989  0.8012  0.0123  

0.0161 
AA 0.7880  0.7916  0.0135  

A 0.7690  0.7755  0.0170  

BBB 0.7346  0.7461  0.0215  

Note: The third column gives the means of real values for the four corporate bond yield ranks. The 

fourth and fifth columns give the means of expected prices and pricing errors for the four ranks 

assuming that hazard rates follow the normal and gamma distributions respectively. The means of real 

values were calculated from the yields from the four ranks of the 10-year Taiwanese corporate bond. 

The means of expected values, assuming normal and gamma distributions for hazard rates, were 

calculated from Equations (21) and (23). The MSE were calculated from Equation (24).  

 


