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Abstract

We give a method based on convex programming to calculate the optimal super-replicating
and sub-replicating prices and corresponding hedging strategies of a financial derivative in
terms of other financial derivatives. Our method finds a model that matches the super-
replicating (or sub-replicating) price within an arbitrary precision and is consistent with the
other financial derivatives prices. Applications include robust replication in terms of call
prices with various strikes and maturities of forward start options, volatility and variance
swaps and derivatives, cliquets calls, barrier options, lookback and Asian options. Numer-
ical examples show that, in some cases, the super-replicating and/or sub-replicating prices
are within 10% of the Black-and-Scholes price but considerably differ from it in other cases.
Our method can take into account bid-ask spreads, interest rates and dividends and various
limitations to the diffusion model. An alternative method to optimally super-replicate and
sub-replicate forward start options using semi-definite and linear programming is presented.

Keywords: Model risk, robust replication, robust hedging, convex programming, financial
derivatives.

1 Introduction

The valuation of financial derivatives is a question of fundamental importance. Non-liquid
derivatives are often priced using models that are calibrated to fit the market prices of liq-
uid financial products, such as vanilla options. Models that agree on the prices of liquid
financial derivatives may produce different prices for more complex products such as barrier
options (Britten-Jones and A. Neuberger 2000). Other financial derivatives such as variance
swaps can be exactly replicated (Dupire 1993, Neuberger 1994) by a continuum set of call options
if the underlying follows a continuous process. A July 2009 directive (Committee on Banking
Supervision 2009) from the Basel Committee stipulates that ”banks must explicitly assess the
need for valuation adjustments to reflect two forms of model risk: the model risk associated
with using a possibly incorrect valuation methodology; and the risk associated with using un-
observable (and possibly incorrect) calibration parameters in the valuation model”. This gives
rise to the following questions:

1. What are the best model-free bounds on the price of a financial derivative based on a
given set of financial derivatives prices?

2. Can we solve the above question if the size of the jumps the assets can take are restricted?

3. Can we solve the above questions by taking into account bid and ask prices?

These questions have been studied in the literature in special cases, either analytically or via
optimization algorithms. For instance, a closed-form tight bound on the price of a call in terms
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of the forward price and of another moment of the underlying stock (Lo 1987, Grundy 1991) has
been shown. Model-independent bounds on lookback and barrier options have been obtained
by (Hobson 1998) and (Brown, Hobson and Rogers 2001) in terms of call prices with the same
maturity and shown to be tight when interest rates are null. Semi-definite programming has been
used to calculate an upper-bound (Boyle and Lin 1997) on a call on the maximum of several
assets in terms of their means and correlations. Semi-definite tight bounds (Bertsimas and
Popescu 2002, Gotoh and Konno 2002) on the price of an option on a single asset given several
moments of the underlying asset have been established. A model-independent lower bound for
prices of arithmetic Asian options (Albrecher, Mayer and Schoutens 2008) has been derived
in terms of European call options. A tight but non-constructive upper bound (Hobson and
Neuberger 2010) on the price of a forward start option on the forward price of the asset has been
obtained. A tight lower bound for the price of a variance swap has been derived (Kahale 2009)
in terms of call prices with the same maturity. Upper bounds and extensions of this result are
given in (Hobson and Klimmek 2012).
This paper gives a unified methodology based on convex programming to calculate the best

super-replicating and sub-replicating prices and corresponding hedging strategies of a financial
derivative ψ in terms of prices of a finite set of liquid derivatives in a multi-period setting.
Further, it finds a model that matches the prices of the liquid financial derivatives and gives a
price of ψ arbitrarily close to the super-replicating (or sub-replicating) price, thereby proving
the optimality of the latter. Applications include the calculation the best super-replicating and
sub-replicating prices of a wide variety of derivatives such as forward start options, generalized
variance swaps including cliquet calls and corridor variance swaps, volatility swaps and deriva-
tives, lookback options, Asian options, single and double barrier options, in terms of call options
with different strikes and maturities. We note that convex programming has already been used
to super-replicate options (Bertsimas and Popescu 2002) in a single-period setting.
Definitions and preliminary results are given in section 2. Section 3 presents our convex

program and shows that, under suitable conditions, it can be solved in polynomial time. Several
examples including numerical applications are discussed in section 4. Section 5 shows our
method can take into account bid-ask spreads, interest rates and dividends as well as various
limitations to the diffusion model of the underlying securities, and discusses the single-maturity
case. Section 6 gives an alternative method to calculate optimal super-replicating (resp. sub-
replicating) prices for forward-start options using semi-definite (resp. linear) programming.
Section 7 contains concluding remarks.

2 Preliminaries

2.1 The modelling framework

Our modelling framework is inspired from the classical theory of multi-period markets (Pliska
2005, Chapter 3). We assume for simplicity and without loss of generality that interest rates are
null, and consider d basic securities whose prices S10 , . . . , S

d
0 at time-step 0 are known constants.

The price Ski of security k at time-step i, 0 ≤ i ≤ m, is a real-valued random variable on a
non-empty sample space Ω. Let Xi be the price vector (S

1
i , . . . , S

d
i ). An investor can buy ξ

k
i

positions in security k, 1 ≤ k ≤ d, at time-step i − 1 and sell them at time-step i. Denote
by ξi the d-dimensional vector (ξ

k
i ), 1 ≤ k ≤ d. The vector ξi is an arbitrary function of the

past values of the d securities, i.e. it is a function of Skj , 1 ≤ k ≤ d, and 1 ≤ j ≤ i − 1. The
cumulative payoff of the investor, which we call a gains function, is

∑m
i=1 ξ

T
i (Xi − Xi−1). A

finite-support probability is a non-negative function on Ω that takes positive values on a finite
number of elements and that sums up to 1.

Definition 2.1. A risk-neutral probability is a finite-support probability P such that EP (g) = 0
for any gains function g.
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An arbitrage opportunity is a non-negative gains function which is strictly positive for some
ω ∈ Ω. Throughout the paper, we assume the market is arbitrage-free, which implies (Kahale
2010) the existence of a risk-neutral probability. A financial derivative is a real-valued random
variable on Ω. Dominating trading strategies is a notion related to arbitrage.

Definition 2.2. Let φ = (φk), 1 ≤ k ≤ l, be a vector of financial derivatives and π = (πk),
1 ≤ k ≤ l, a price vector. A dominating trading strategy for (φ, π) consists of a vector β ∈ Rl

and of a gains function g such that

inf
ω∈Ω

βT (φ(ω)− π) + g(ω) > 0.

2.2 Convex programming

Let C be a convex subset of Rn. We say C is well centered if it contains a known ball B(a0, r),
where a0 ∈ Qn, r > 0, and B(a0, r) is the ball centered at a0 with radius r. By definition, C is
well bounded if it is contained in a known ball. We say an algorithm calculates a certain number
x (e.g. the root of an equation) in polynomial time if, for any ε > 0, the algorithm outputs a
rational number within distance ε from x and runs in time polynomial in the input size and in
ln(1/ε).

Definition 2.3. A subset C of Rn is admissible if there is a subset D of Rn × R such that

C = {x ∈ Rn : aTx ≥ b for (a, b) ∈ D}, (2.1)

with ||a|| ≥ 1 for any (a, b) ∈ D, and there is a polynomial-time algorithm that, given a vector
y ∈ Qn and a rational number ε > 0, either

1. asserts that y belongs to C or

2. calculates a vector (a, b) ∈ D such that aT y ≤ b + ε (i.e. one of the constraints 2.1 is
almost violated).

In other words, a convex set C given by Eq. 2.1 is admissible if, for any vector y, we can
either assert in polynomial time that y belongs to C or give a proof that y almost does not
belong to C.

Example 2.1. A rational polytope is a subset C of Rn defined by Eq. 2.1, where D is a finite
subset of Qn ×Q. Any rational polytope is admissible.

The following version of the ellipsoid method shows that, under general conditions, linear
optimization can be solved in polynomial time over an admissible set.

Theorem 2.1 (The ellipsoid method (Grötschel, Lovász and Schrijver 1981)). Consider a well
centered, well bounded admissible subset C of Rn. Then there is a polynomial-time algorithm
that, given a vector a0 ∈ Qn and a rational number ε > 0, finds a vector y ∈ C such that
aT0 y ≤ a

T
0 x+ε for every x ∈ C (i.e. y almost minimizes a

T
0 x over the points in C). Furthermore,

the algorithm calculates a real number b0 such that (a0, b0) is an explicit linear combination of
elements in D with positive weights and aT0 y ≤ b0 + ε.

Proof. See the appendix.

Thus the minimization algorithm gives a proof that y almost minimizes aT0 x over C. Indeed,
for any x ∈ C, aT0 x ≥ b0 by Eq. 2.1, which implies that a

T
0 y ≤ a

T
0 x+ ε.

The following is an immediate consequence of definition 2.3.

Proposition 2.1. If C and C ′ are admissible then C ∩ C ′ is admissible.
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3 Calculation of the super-replicating price

We first cast the calculation of the super-replicating price in multi-period markets as a convex
program. We then show how to solve this program using backward induction.

3.1 Super-replication as a convex program

Our method uses the following result.

Theorem 3.1 ((Kahale 2010)). Define the super-hedging price of financial derivative ψ

c(ψ) = inf
g
sup
ω∈Ω

ψ(ω) + g(ω),

where g ranges over all gains functions. Then

c(ψ) = sup
P∈P

EP (ψ),

where P is the set of risk-neutral probabilities.

Let φ = (φ1, . . . , φl) be a vector of financial derivatives that trade at prices π1, . . . , πl at
time-step 0. Consider a portfolio long in βj derivatives φj , 1 ≤ j ≤ l, and in γ bonds that
pay 1 at time-step m. The cumulative payoff at time-step m of the portfolio combined with a
dynamic position in the basic securities is g(ω) + βTφ(ω) + γ, where β = (β1, . . . , βl) and g is
a gains function. The portfolio strictly super-replicates a financial derivative ψ if and only if
there is a gains function g such that, for ω ∈ Ω,

ψ(ω) < g(ω) + βTφ(ω) + γ.

By theorem 3.1, this is equivalent to c(ψ − βTφ) < γ. The super-replicating cost is βTπ + γ,
where π = (π1, . . . , πl). Define the super-replicating price

πsup = inf
(β,γ)∈V

βTπ + γ,

where
V = {(β, γ) ∈ Rl × R : c(ψ − βTφ) ≤ γ}.

Equivalently,
πsup = inf

β∈Rl
c(ψ − βT (φ− π)).

Note that, by theorem 3.1,

V = {(β, γ) ∈ Rl × R : EP (ψ) ≤ β
TEP (φ) + γ for P ∈ P}.

Hence V is equal to the right-hand side of Eq. 2.1, with

D = {((EP (φ), 1), EP (ψ)) : P ∈ P}.

Thus V is admissible if there is a polynomial-time algorithm that, on inputs (β, γ) and ε > 0,
either asserts that (β, γ) ∈ V or calculates EP (φ) and EP (ψ), where P ∈ P is such that

βTEP (φ) + γ ≤ EP (ψ) + ε.

More intuitively, given a portfolio of the derivatives φj and of bonds, we can assert in polynomial
time that the portfolio, combined with appropriate dynamic hedging, super-replicates ψ or give
a proof that it almost does not.
Let ei be the vector of length l whose i-th coordinate equals 1 and remaining coordinates

are null.
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Theorem 3.2. Assume the following:

1. The convex set V is admissible and contains a known ball B(v, r).

2. There is δ > 0 and a rational q such that, for

π′ ∈ {π ± δei, 1 ≤ i ≤ l}, (3.1)

there is a risk-neutral probability P with EP (φ) = π
′ and q ≤ EP (ψ).

Let a0 = (π, 1). Then
πsup = inf

(β,γ)∈V ′
βTπ + γ, (3.2)

where
V ′ = {(β, γ) ∈ V : βTπ + γ ≤ aT0 v + 1}

is admissible, well bounded and well centered.

Proof. See the appendix.

Corollary 3.1. Under the assumptions of theorem 3.2, for any ε > 0, we can calculate in
polynomial time a super-replicating portfolio (β∗, γ∗) ∈ V ′ and EP (ψ), where P is a risk-neutral
probability such that EP (φ) = π and

πsup ≤ β
∗Tπ + γ∗ ≤ EP (ψ) + ε.

Thus the algorithm calculates πsup with precision ε and outputs an ε-optimal super-replicating
portfolio together with the proof that it is ε-optimal.

Proof. By theorem 2.1, we can calculate in polynomial time (β∗, γ∗) ∈ V ′ and an explicit linear
combination

l∑

i=1

λi((EPi(φ), 1), EPi(ψ))

of elements of D equal to (a0, b0), with β
∗Tπ+γ∗ ≤ b0+ ε. Thus the probability P =

∑l
i=1 λiPi

is risk-neutral and EP (φ) = π. Since b0 = EP (ψ), we conclude that

β∗Tπ + γ∗ ≤ EP (ψ) + ε. (3.3)

Since EP (ψ) is upper-bounded by πsup, the super-replicating cost in the left-hand side of Eq. 3.3,
which is obviously lower-bounded by πsup, is within ε from πsup.

Remark 3.1. If, on inputs β and ε > 0, we can calculate in polynomial time EP (φ) and EP (ψ),
where P is a probability such that c(ψ − βTφ) ≤ EP (ψ − βTφ) + ε, then V is admissible.

Remark 3.2. If c(−ψ) is upper-bounded by a known rational and (φ, π′) does not give rise to
a dominating trading strategy whenever Eq. 3.1 holds, then condition 2 of theorem 3.2 holds.
This is because, by (Kahale 2010, theorem 4.6), there is a risk-neutral probability P such that
EP (φ) = (π + π

′)/2. Furthermore, −c(−ψ) ≤ EP (ψ) by theorem 3.1.

Remark 3.3. An optimal sub-replicating price and strategy for ψ can be obtained by negating
an optimal super-replicating price and strategy for −ψ.
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3.2 Recursive calculation of the super-hedging cost

We show how to calculate the super-hedging cost of a financial derivative by backward induction
using concave envelopes, in the same spirit as in (Carassus, Gobet and Temam 2007).
Let g be a real-valued function defined on a subset W of Rd and bounded above by a linear

function. Denote by Ŵ be the convex set spanned by W and by g the concave envelope of
g, i.e. the smallest concave function on Ŵ bounded below by g on W . Using the separating
hyperplane theorem, it can be shown that for x ∈ Ŵ ,

g(x) = supEQ(g) (3.4)

= inf
η∈Rd

sup
y∈W

g(y) + ηT (y − x), (3.5)

where Q ranges over finite-support probabilities on W with expectation equal to x. Eq. 3.5
says that g(x) is the infimum value of G(x), where G ranges over the linear functions that
upper-bound g on W . Consider a financial derivative ψ of the form ψ = ψ∗(X1, . . . , Xm), where
ψ∗ is a real-valued function defined on Im(X1, . . . , Xm). Assume c(ψ) is finite. When m = 1, it
follows from Eq. 3.5 that

c(ψ) = ψ∗(X0). (3.6)

We now show how to calculate the super-hedging cost in a multi-period market for any integer
m. Denote by ψi, 0 ≤ i ≤ m− 1, the super-hedging cost at time-step i of ψ. We will show that
ψi is equal to the super-hedging cost of ψi+1 in the underlying single-period market at time-step
i. Thus ψi is almost equal to the expected value of ψi+1 under a risk neutral probability in the
single-period market at time-step i. As in (Pliska 2005, Section 3.4), we can paste together these
probabilities by multiplying them along any given path to obtain a risk-neutral probability in the
m-period market. We show below that the expected value of ψ under the resulting probability
is almost equal to c(ψ).
More formally, for 0 ≤ i ≤ m, let Di = Im(X1, . . . , Xi) be the set of paths X can follow

from steps 1 through i. By convention, D0 = {∅}. For θ ∈ Di, let

D(θ) = {x ∈ Rd : (θ, x) ∈ Di+1}

be the set of possible values of Xi+1 given that X has followed the path θ in the first i steps. It
might be easier for the reader to think of D(θ) as a constant set, e.g. R+, which will be the case
in many applications. If ζ is a real-valued function over Di+1, denote by ζ(θ, .) the function
that maps x to ζ(θ, x) for x ∈ D(θ). Fix ε > 0.

Proposition 3.1. Define the functions ψ∗i by backward induction as follows: ψ
∗
m = ψ∗ and

ψ∗i (θ) = ψ∗i+1(θ, .)(xi) for 0 ≤ i ≤ m − 1 and θ = (x1, . . . , xi) ∈ Di, where x0 = X0 by
convention. Then c(ψ) = ψ0 and

ψ∗i (θ) = sup
Q∈P(θ)

EQ(ψ
∗
i+1(θ, .)), (3.7)

where P(θ) is the set of finite-support probabilities defined on D(θ) with expected value equal to
xi. There is a random variable ξi+1 which is a function of X0, . . . , Xi such that

ψi+1 ≤ ε+ ξ
T
i+1(Xi+1 −Xi) + ψi, (3.8)

where ψi is the financial derivative ψ
∗
i (X1, . . . , Xi).

Proof. See the appendix.

Remark 3.4. A portfolio long in ψ0 bonds that pay 1 at time-step m combined with a dynamic
strategy that buys ξi+1 basic securities at time-step i and sells them at time-step i+1 super-hedges
ψ up to the additive constant mε.
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Let φ be a financial derivative of the form φ = φ̄(X1, . . . , Xm).

Proposition 3.2. For θ ∈ Di, choose Pθ ∈ P(θ) that attains the right-hand side of Eq 3.7
within precision ε. Define the functions φ̄i on Di by backward induction as follows: φ̄m = φ̄ and

φ̄i(θ) = EPθ(φ̄i+1(θ, .)) (3.9)

for 0 ≤ i ≤ m− 1 and θ ∈ Di. There is a risk-neutral probability P that does not depend on φ
such that c(ψ) ≤ EP (ψ) +mε and EP (φ) = φ̄0(∅).

Proof. See the appendix.

Remark 3.5. It can be shown by backward induction that if ψ = η+ν, where the random variable
η (resp. ν) is a deterministic function of X0, . . . , Xm (resp. X0, . . . , Xi), then ψi = ηi + ν.

Remark 3.6. Fix i ∈ {1, . . . ,m−1}. Assume that ψ∗ and D(x1, . . . , xj) depend on (x1, . . . , xi)
only through a (one or multi-dimensional) function h(x1, . . . , xi) for j ≥ i. It can be shown by
backward induction that ψ∗i is a function of xi and of h(x1, . . . , xi).

3.3 Practical implementation issues

When m = 1, it follows from Eq. 3.6 that (X0, c(ψ)) belongs to the upper hull of the set
F = {(x, ψ∗(x)) : x ∈ Im(X1)}, i.e. the portion of the convex hull which is visible from above.
If d = 1 and F is finite and given in increasing order along the first coordinate, then c(ψ) can be
calculated in time proportional to the size of F . This is because the upper hull of a sorted set of
planar points (Andrew 1979) can be calculated in linear time, as described in proposition 3.3.
Let x′ and x′′ be distinct elements of Im(X1) such that (X0, c(ψ)) belongs to the segment joining
(x′, ψ∗(x′)) to (x′′, ψ∗(x′′)). Let ξ1 be the slope of this segment and let q = (x

′′−X0)/(x′′−x′).
The probability Q that assigns q to x′ and 1 − q to x′′ has mean X0 and EQ(ψ

∗) = c(ψ).
Furthermore, Eq. 3.8 holds with ε = 0 and i = 0.

Proposition 3.3 ((Andrew 1979)). Let (p1, . . . , pn) be a sequence of n points in the plane
sorted from left to right. Let UCH(j) be the upper convex hull of the first j points. Then
UCH(2) = (p1, p2). Assume UCH(j − 1) = (p′1, . . . , p

′
h). Let k be the largest index such

that p′k is above the segment [p
′
k−1, pj ], if such an index exists, otherwise let k = 1. Then

UCH(j) = (p′1, . . . , p
′
k, pj).

For m > 1, proposition 3.1 implies that (xi, ψ
∗
i (θ)) belongs to the upper hull of the set

F = {(x, ψ∗i+1(θ, x)) : x ∈ D(θ)}. As in the case m = 1, if d = 1 and F is finite and given
in increasing order along the first coordinate, then ψ∗i (θ), a probability Q that maximises the
right-hand side of Eq 3.7 and a vector ξi+1 such that Eq. 3.8 holds with ε = 0 can be calculated
in time proportional to the size of F .
In our numerical implementation, we have solved the convex program 3.2 using the analytic

center cutting plane algorithm. Calculation of the analytic center also gives a direct proof
of the optimality of the solution to the convex program, without the need to perform linear
programming. In practice, the knowledge of q and of δ in theorem 3.1 is not necessary. It is
sufficient to guess boundaries to the set V ′. If the solution to the convex program 3.2 using
these boundaries finds a risk-neutral probability P such that EP (φ) almost equals π and EP (ψ)
almost matches the super-replicating price, our initial guess is correct. Otherwise, we enlarge
our boundaries and repeat the same process again.
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4 Examples

Consider a stock S valued at Si at time-step at time-step i, 0 ≤ i ≤ m, where S0 is known.
Assume that Si ranges in a subset D of R+ for 1 ≤ i ≤ m. For 1 ≤ i ≤ m, we are given an
increasing sequence Ki,j of positive strikes, 1 ≤ j ≤ li, together with prices ci,j of calls with
maturity ti and strike Ki,j that strictly satisfy the usual no-arbitrage conditions (see (Davis
and Hobson 2007)). We assume that D is sufficiently dense and has a sufficiently large range
so that the call prices, even under a small perturbation and the restriction that Si ∈ D, induce
no dominating trading strategies. For x ≥ 0 and 1 ≤ i ≤ m, define the vector fi(x) =
(max(x − Ki,j , 0)), 1 ≤ j ≤ li, and let bi ∈ Rli . Consider the vector of calls φ = (fi(Si))
and set β = (bi), 1 ≤ i ≤ m. Let ψ be a financial derivative that pays ψ∗(S1, . . . , Sm),
where ψ∗ is a deterministic function. Assume that c(ψ) and c(−ψ) are upper bounded by a
known rational number. We use corollary 3.1 and remark 3.4 in the following examples to
calculate an optimal super-replicating price and strategy for ψ via the call components of φ. An
optimal sub-replicating price and strategy can be derived as well using remark 3.3. Consider
the financial derivative Ψ = ψ − βTφ. Since c is sub-additive, c(Ψ) ≤ c(ψ) + ||β||1S0, the set V
contains a known ball. Furthermore, by remark 3.2, condition 2 of theorem 3.2 holds. In the
following examples, we show that V is admissible using remark 3.1. Our numerical examples
were obtained using an analytic center cutting plane algorithm with at most 150 iterations
that yielded a super-replicating (resp. sub-replicating) price and a risk-neutral probability that
simultaneously matched the super-replicating (resp. sub-replicating) price and the call prices
within an error of order 10−5 or less in terms of the notional. The notional is S0 for call and
forward start options and 1 for variance swaps and volatilities.

4.1 Forward start options

Consider a forward start option ψ. For ease of exposition, assume the option is an at the money
call that pays max(0, S2 − S1) at maturity. Extension to the general case is straightforward.
We show that V is admissible when D is finite. The derivative Ψ pays Ψ∗(S1, S2), where

Ψ∗(x1, x2) = max(0, x2 − x1)− b
T
1 f1(x1)− b

T
2 f2(x2).

By proposition 3.1, for x1 ∈ D,

Ψ∗1(x1) = sup
Q
EQ(Ψ

∗(x1, .)), (4.1)

where Q ranges over all probabilities on D whose expected value equals x1, and

c(Ψ) = sup
Q′

EQ′(Ψ
∗
1), (4.2)

where Q′ ranges over all probabilities on D whose expected value equals S0. Subsection 3.3
shows how to calculate Ψ∗1(x1) for all x1 ∈ D and probabilities that maximise the right-hand
side of Eqs 4.1 and 4.2 in total running time proportional to |D|2. Using Proposition 3.2, we can
then calculate EP (φ) and EP (ψ), where P is a risk-neutral probability such that c(Ψ) = EP (Ψ).
By remark 3.1, we conclude that V is admissible.
We illustrate the calculation of c(Ψ) with a simple example. Let S0 = 100 and D =

{70, 80, . . . , 130}. Assume φ consists of the calls maturing at time-step i with strike Ki,j =
80 + 10j for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Let b1 = (−0.3,−0.2,−0.4) and b2 = (0.5, 0.4, 0.3).
Table 1 lists the values of Ψ in the case where S1 = 90. Fig. 1 plots the function Ψ

∗(90, .) and
its concave envelope, which shows that Ψ∗1(90) = 2/3×5+1/3×0 = 10/3. The probability that
assigns a weight 2/3 to 100 and 1/3 to 70 maximises the right-hand side of Eq 4.1 when x1 = 90.
We can perform a similar calculation for each x1 ∈ D and then calculate c(Ψ) via Eq. 4.2. Fig. 2
draws a tree by connecting each x1 ∈ D (resp. S0) to the support of a probability that maximises
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S2 70 80 90 100 110 120 130

Ψ∗(90, .) 0 0 0 5 6 4 2

Table 1: The function Ψ∗(90, .).

Figure 1: The solid line plots the payoff of Ψ when S1 = 90 and the dotted line plots the
corresponding upper hull.

the right-hand side of Eq 4.1 (resp. Eq. 4.2). Table 2 gives the probability pu assigned to the
largest element in the support of such a probability and shows that EP (η) = $7.5, where η is
the ATM vanilla call maturing at the second time-step and P is a risk-neutral probability such
that c(Ψ) = EP (Ψ). The expected value under P of any component of φ can be calculated in
a similar manner.
We now consider the case where D is equal to the set

{S0j/n} ∪ {S0(M/S0)
j/n}

with S0 = $100, n = 10
4,M = 105 and j ∈ {0, . . . , n}. Let t1 = 1/6 (two months) and t2 = 5/12

(five months), where ti is the maturity of time-step i. Assume the market price ci,j of the call
maturing at time-step i with strike Ki,j = 60 + 10j is equal to the Black-and-Scholes price
with the corresponding strike, maturity ti and volatility σ = 0.2 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 7.
Table 3 gives the optimal super-replicating price and the calls coefficients in the corresponding
super-replicating portfolio. The sub-replicating price was derived using remark 3.3.

Remark 4.1. Using Eqs. 4.1, 4.2 and the techniques of Section 6, it is possible to calculate
c(Ψ) via a closed-form formula when D = R+.

node A B C D E F G H

pu 1/2 1 2/3 1/2 1/2 2/3 1/2 1

Ψi 1.1666 -12 -3.3333 -1 1 3.3333 5 0

η̄i 7.5 30 20 15 5 0 0 0

Table 2: The probabilities pu of an ”up” movement and the values of Ψi (resp. η̄i) calculated via
proposition 3.1 (resp. proposition 3.2) by backward induction inside the tree of Fig. 2, where i
is the time-step of the corresponding node.
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Figure 2: Connecting each x1 ∈ D (resp. S0) to the support of a probability that maximises
the right-hand side of Eq 4.1 (resp. Eq. 4.2).

Strike 70 80 90 100 110 120 130

b1 0.3657 -0.2753 -0.4690 -0.4298 -0.4677 0.3080 0.0015

b2 0.4729 0.4602 0.4388 0.4602 0.4383 0.4590 0.2469

Table 3: Optimal super-replication of the forward-start option via calls. The optimal super-
replicating price is $5.2750. The optimal sub-replicating price is $1.9363. The Black-and-
Scholes price is $3.9878. When D = R+, the best super-replicating price calculated without
discretization using the techniques of Section 6 is $5.2755.

4.2 Variance swaps

Consider a variance swap that pays at maturity T the amount

ψ =
m∑

i=1

H(Si−1, Si), (4.3)

where H is a deterministic bivariate function. For instance, H(x, y) = T−1 ln2(y/x) for standard
variance swaps, H(x, y) = T−1 ln2(y/x)1y∈I for a corridor variance swaps, where I is a specified
interval of R+, and H(x, y) = max(0, y/x − K) for a cliquet call, where K is a constant. In
practice, m is quite large and li = 0 for most values of i. LetHi(x, y) = H(x, y)−bTi fi(y), so that
Ψ =

∑m
i=1Hi(Si−1, Si). For a given i, consider the financial derivative η =

∑m
j=i+1Hj(Sj−1, Sj).

Since η does not depend on S0, . . . , Si−1, Remark 3.6 shows that the super-hedging cost of η at
time-step i depends only on Si. In other words, ηi = ci(Si), where ci is a deterministic function
on D. Since Ψ = η +

∑i
j=1Hj(Sj−1, Sj), remark 3.5 shows that

Ψi = ci(Si) +
i∑

j=1

Hj(Sj−1, Sj)

and so, by Eq. 3.7,
ci(x) = sup

Q
EQ(ci+1 +Hi+1(x, .)) (4.4)

for x ∈ D, where Q ranges over all probabilities on D whose expected value equals x.
As in the forward-start example, when D is finite, the functions ci and probabilities Q

maximizing the right-hand side of Eq. 4.4 can be calculated by backward induction in time
proportional to m|D|2. Proposition 3.2 then shows how to calculate EP (φ) and EP (ψ), where
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σ 10% 15% 20% 25% 30% 35% 40%
√
πsup 12.43% 16.92% 21.76% 26.81% 32.01% 37.38% 42.94%
√
πinf 8.68% 13.90% 18.91% 23.77% 28.52% 33.19% 37.79%

Table 4: Super-replicating and sub-replicating prices of variances swaps maturing in one month.

Strike 70 75 80 85 90 95 100 105 110 115 120 125 130
bsup 0.095 0.108 0.030 0.023 0.018 0.014 0.012 0.012 0.011 0.011 0.010 0.010 0.119
binf -0.030 -0.037 0.015 0.014 0.013 0.012 0.012 0.010 0.008 0.006 0.004 0.003 -0.020

Table 5: Optimal super-replicating (bsup) and sub-replicating (binf) portfolios for a variance
swap when σ = 0.2.

P is a risk-neutral probability such that c(Ψ) = EP (Ψ). For standard variance swaps, we
assume that D does not contains 0 so that c(ψ) is finite.
In our numerical example, we assume that S0 = $100 and that D consists of L(M/L)j/n,

where j ∈ {0, . . . , n}, with L = $50, M = $200 and n = 1000. The variance swap has a
maturity of one month with m = 20 daily observations. Assume the market price cm,j of the
call maturing at time-step i with strike Km,j = 65 + 5j is equal to the Black-and-Scholes price
with the corresponding strike, maturity one month and volatility σ for 1 ≤ j ≤ 13 and that
no other call prices are known. Table 4 lists the optimal super-replicating and sub-replicating
prices in terms of the volatility, and table 5 gives the calls coefficients in the corresponding
portfolios when σ = 0.2.

4.3 Barrier options

Consider an up-and-in barrier option ψ that pays off g(ST ) at maturity T if Si ≥ L for some
i ∈ {1, . . . ,m}, and pays 0 otherwise, where L > S0 is a constant and g is the payoff of a vanilla
option struck at K. Assume that D = R+. Given i, define the financial derivative

η = ψ −
m∑

j=i+1

bTj fj(Sj).

Remark 3.6 shows that the super-hedging cost of η at time-step i depends only on Si and on
whether the barrier has been hit before step i. In other words,

ηi = ci(ti, Si), (4.5)

where ci is a deterministic function and

ti =

{
1 if Sj < L for j < i

0 otherwise.

Letting i = m in Eq. 4.5 shows that cm(0, x) = g(x) and cm(1, x) = 1L≤xg(x). Since Ψ =
η −

∑i
j=1 b

T
j fj(Sj), remark 3.5 shows that

Ψi = ci(ti, Si)−
i∑

j=1

bTj fj(Sj).

Thus, by Eq. 3.7 and the observation that ti+1 = ti1Si<L,

ci(t, x) = sup
Q
EQ(ci+1(t1x<L, .)− b

T
i+1fi+1), (4.6)

where Q ranges over all probabilities on R+ whose expected value equals x.
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σ 10% 15% 20% 25% 30% 35% 40%

πsup 12.26% 16.62% 21.27% 26.06% 30.94% 35.88% 40.92%

πinf 4.03% 6.06% 8.06% 10.01% 11.84% 13.80% 15.59%

Table 6: Super-replicating and sub-replicating prices of a volatility swap maturing in one month
and capped at σ

√
2.5. In our implementation, the realized volatility

√
T−1ν can take 50 equally

spaced values.

Strike 70 75 80 85 90 95 100 105 110 115 120 125 130
bsup 0.236 0.265 0.039 0.036 0.033 0.031 0.028 0.026 0.024 0.023 0.021 0.019 0.086
binf -0.141 -0.156 0.000 0.000 -0.026 -0.009 0.042 -0.008 -0.025 0.000 0.000 0.000 -0.002

Table 7: Optimal super-replicating (bsup) and sub-replicating (binf) portfolios for a capped
volatility swap when σ = 0.2.

Eq. 4.6 implies that ci(t, .) is an affine function on each interval not intersecting the set
{K,L} ∪ {Ki′,j : i′ > i} and can be calculated recursively by backward induction. Eq. 4.5
and proposition 3.1 show that c(Ψ) = c0(1, S0). Furthermore, for any ε > 0, a probability
that maximizes the right-hand side of Eq. 4.6 within precision ε can be found in polynomial
time. Proposition 3.2 then shows how to calculate EP (φ) and EP (ψ), where P is a risk-neutral
probability such that c(Ψ) ≤ EP (Ψ) + ε.

4.4 Volatility swaps

Consider a volatility swap that pays at maturity T the amount

ψ =

√√
√
√T−1

m∑

i=1

ln2(
Si

Si−1
). (4.7)

In market practice, the payment is sometimes capped at a fixed amount. Assume D =
{L(M/L)j/n : 0 ≤ j ≤ n}, where L < S0 < M and integer n are fixed. Given i, define
the financial derivative

η = ψ −
m∑

j=i+1

bTj fj(Sj).

Remark 3.6 shows that the super-hedging cost of η at time-step i depends only on Si and on the
sum νi = Σ

i
j=1 ln

2(Sj/Sj−1). In other words, ηi = ci(νi, Si), where ci is a deterministic function.

Eq. 4.7 shows that cm(ν, x) =
√
T−1ν. Since Ψ = η −

∑i
j=1 b

T
j fj(Sj), remark 3.5 shows that

Ψi = ci(νi, Si)−
i∑

j=1

bTj fj(Sj).

Thus, by Eq. 3.7 and the observation that νi+1 = νi + ln
2(Si+1/Si),

ci(ν, x) = sup
Q
EQ(g − b

T
i+1fi+1), (4.8)

where Q ranges over all probabilities on D whose expected value equals x, and g(z) = ci+1(ν +
ln2(z/x), z) for z ∈ D. As in the previous examples, the functions ci and probabilities Q
maximizing the right-hand side of Eq. 4.8 can be calculated by backward induction when ν is
a multiple of n−2 ln2(M/L) and x ∈ D. Table 6 lists the optimal super-replicating and sub-
replicating prices for a capped volatility swap using the same setting as in Table 4 except that
n = 400, and table 7 gives the calls coefficients in the corresponding portfolios when σ = 0.2.
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4.5 Other financial derivatives

Other financial derivatives such as lookback options, options on realized variance and realized
volatility, double barrier options and Asian options can be handled in a similar fashion. Consider
for instance an Asian call ψ that pays

max(
S1 + ∙ ∙ ∙Sm

m
−K, 0).

Assume D = {jM/n : 0 ≤ j ≤ n}, where M > S0 and integer n are fixed. Using the same
techniques as before, we can show that

Ψi = ci(νi, Si)−
i∑

j=1

bTj fj(Sj),

where νi = Σ
i−1
j=1Sj . We calculate the functions ci by backward induction by noting that

cm(ν, x) = max((ν + x)/m−K, 0) and

ci(ν, x) = sup
Q
EQ(ci+1(ν + x, .)− b

T
i+1fi+1), (4.9)

where Q ranges over all probabilities on D whose expected value equals x.
We can also derive optimal replicating prices and strategies for the financial derivatives

considered in this section in terms of prices of moments (or of the logarithmic function) of the
stock price at different maturities rather than in terms of call prices.

5 Extensions

5.1 Taking interest rates and dividends into account

Interest rates can be taken into account in the usual way by replacing each security by its
discounted value. We can also incorporate dividends in our model by replacing each security
by the value of the security plus reinvested dividends, using a technique similar to the one in
(Pliska 2005, SubSec 3.2.3).

5.2 Taking bid-ask spreads into account

Assume now the financial derivatives φk, 1 ≤ k ≤ l, have distinct bid and ask prices, and let πb

(resp. πa) be the length l vector of bid (resp. ask) prices. Results in the preceding sections can
be easily extended to this case. For instance, theorem 3.2 can be replaced as follows.

Theorem 5.1. Assume the following:

1. The set V is admissible and contains a known ball B(v, r).

2. There is δ > 0, a rational q and a risk-neutral probability P such that EP (φ) ∈ [πb +
δ1, πa − δ1] and q ≤ EP (ψ).

Let a0 = (π
a,−πb, 1). Then

πsup = inf
(βa,βb,γ)∈V ′

aT0 (β
a, βb, γ), (5.1)

where

V ′ = {(βa, βb, γ) ∈ R+
l
× R+

l
× R : aT0 (β

a, βb, γ) ≤ ||a0|| ||v||+ 1, (β
a − βb, γ) ∈ V }

is admissible, well bounded and well centered.

The vector βa (resp. βb) represents the amount of assets bought (resp. sold). This gives a
simple interpretation to Eq. 5.1.

13



5.3 Limiting the jump sizes or the realized volatility

Limitations to the up and/or down jumps or to the realized volatility can simply be achieved by
limiting the possible paths that (X1, . . . , Xm) can take to those that respect these limitations.

5.4 The single-maturity case

Our results can be simplified when m = 1. Let

U = {(ξ, β, γ) ∈ Rd × Rl × R : ψ(ω) ≤ ξ ∙X1(ω) + β ∙ φ(ω) + γ for any ω ∈ Ω}.

Using the same techniques as in the proof of theorem 3.2, the following can be shown.

Theorem 5.2. Assume the following:

1. The set U is admissible and contains a known ball B(u, r).

2. There is δ > 0 and a rational number q such that, for

v ∈ {±δei, 1 ≤ i ≤ d+ l},

there is a probability P with EP (X1, φ) = (X0, π) + v and q ≤ EP (ψ).

Let a0 = (X0, π, 1). Then
πsup = inf

(ξ,β,γ)∈U ′
ξTX0 + β

Tπ + γ,

where
U ′ = {(ξ, β, γ) ∈ U : ξTX0 + β

Tπ + γ ≤ aT0 u+ 1}.

The set U ′ is admissible, well bounded and well centered.

Theorem 5.2 can for instance be used to calculate in polynomial time an optimal super-
replicating price and corresponding strategy for the logarithmic function without the need for
discretization. An alternative approach based on discretization and dynamic programming to
optimally super-replicate the logarithmic function is given in (Davis, Obloj and Raval 2010).

6 Replication of forward start options via semi-definite and lin-
ear programming

The condition that a polynomial of given degree is non-negative on a given interval has been
shown to be equivalent (Bertsimas and Popescu 2002, Alizadeh, Eckstein, Noyan and Rudolf
2008) to a semidefinite constraint on the polynomial coefficients. The following proposition
gives a simple proof of this result when the degree of the polynomial is 2.

Proposition 6.1. The function g(x) = ux2 + vx + w is nonnegative on the interval [0,∞) if
and only if there exists δ ∈ R such that

δ ≤ v and

[
2u δ

δ 2w

]

≥ 0. (6.1)

The function g is nonnegative on the interval [α, β] if and only if there exists δ ∈ R such that
δ ≤ 4g((α+ β)/2)− g(α)− g(β) and

[
2g(α) δ

δ 2g(β)

]

≥ 0. (6.2)
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Proof. We prove the first part. Suppose that g is nonnegative on the interval [0,∞). Then
u ≥ 0 and w ≥ 0. If u > 0 then, since g(

√
w/u) ≥ 0, Eq. 6.1 holds when δ = −2

√
uw. If u = 0

then Eq. 6.1 holds when δ = 0. Conversely, if there is δ ∈ R such that Eq. 6.1 holds, then the
relation

ux2 + δx+ w =
1

2

[
x 1

]
[
2u δ

δ 2w

] [
x

1

]

shows that g is nonnegative on the interval [0,∞).
The second part of the proposition follows from the first by observing that g is nonnegative

on the interval [α, β] if and only if g(α+ (β − α)z/(1 + z)) ≥ 0 for z ≥ 0. This is equivalent to
u′z2 + v′z + w ≥ 0 for z ≥ 0, where u′ = g(β), v′ = 2αβu+ (α+ β)v + 2w and w′ = g(α).

Theorem 6.1. Optimal super-replicating (resp. sub-replicating) prices and strategies for the
forward start option can be calculated using semi-definite (resp. linear) programming.

Proof. We set Ki,0 = 0 for 1 ≤ i ≤ 2. For simplicity of notation, assume the forward start
option ψ is an at the money call. Extending the proof to the general case is straightforward.
We first show how to calculate an optimal super-replicating portfolio. Consider a portfolio
long of γ bonds that pay 1 at time-step 2 and of bi,j calls of strike Ki,j and maturity Ti, with
1 ≤ i ≤ 2 and 1 ≤ j ≤ li. Denote by bi (resp. ci) the vector (bi,j) (resp. (ci,j)), 1 ≤ j ≤ li.
The portfolio costs γ + bT1 c1 + b

T
2 c2. It can be combined with a dynamic position in the stock

to super-replicate ψ if and only if there is a constant b0 and a function ξ2 of S1 such that, for
x1 ≥ 0 and x2 ≥ 0,

Ψ∗(x1, x2) ≤ γ + b0(x1 − x0) + ξ2(x1)(x2 − x1), (6.3)

where Ψ∗ is given by Eq. 4.1 and f1 and f2 are defined as in section 4. Let b = (b0, b1, b2) and

Hγ,b(x1, x2) = Ψ
∗(x1, x2)− γ − b0(x1 − x0).

Eq. 6.3 is equivalent to the condition that, for x1 ≥ 0, the concave envelope of the function
Hγ,b(x1, .) at x1 is at most 0. Given x1 ≥ 0, the function Hγ,b(x1, .) is continuous and affine
on any sub-interval of R+−{x1} containing no strike K2,j . The concave envelope of Hγ,b(x1, .)
can hence be determined solely from its values at x1 and K2,j and from its asymptotic slope
bT2 1− 1. Thus Eq. 6.3 is equivalent to

Hγ,b(x1, x1) ≤ 0

for x1 ≥ 0,
Hγ,b(x1,K2,j) + (b

T
2 1− 1)(K2,j − x1) ≤ 0

for 0 ≤ j ≤ l2 and K2,j < x1, and
gγ,b,j,j′(x1) ≥ 0

for 0 ≤ j < j′ ≤ l2 and K2,j ≤ x1 < K2,j′ , where

gγ,b,j,j′(x1) = (x1 −K2,j′)Hγ,b(x1,K2,j) + (K2,j − x1)Hγ,b(x1,K2,j′).

Equivalently,
bT1 ≥ 0, (6.4)

Hγ,b(Ki,j ,Ki,j) ≤ 0 (6.5)

for 1 ≤ i ≤ 2, 0 ≤ j ≤ li,

Hγ,b(K1,j ,K2,j′) + (b
T
2 1− 1)(K2,j′ −K1,j) ≤ 0 (6.6)

for 1 ≤ j ≤ l1, 0 ≤ j′ ≤ l2 with K2,j′ < K1,j , and

gγ,b,j,j′(x1) ≥ 0 (6.7)
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for 0 ≤ j < j′ ≤ l2, [ah, a′h] ∈ Ij,j′ and x1 ∈ [ah, a
′
h], where Ij,j′ is the set of non-empty intervals

of the form [K2,j ,K2,j′ ]∩ [K1,j′′ ,K1,j′′+1]. Observe that gγ,b,j,j′ is a quadratic function of x1 on
each element of Ij,j′ . By proposition 6.1, Eq. 6.7 is equivalent to the existence of δj,j′,h ∈ R
such that

δj,j′,h ≤ 4gγ,b,j,j′((ah + a
′
h)/2)− gγ,b,j,j′(ah)− gγ,b,j,j′(a

′
h) (6.8)

and [
2gγ,b,j,j′(ah) δj,j′,h

δj,j′,h 2gγ,b,j,j′(a
′
h)

]

≥ 0. (6.9)

In conclusion, πsup = minb,γ,δ γ + bT1 c1 + bT2 c2, subject to 6.4, 6.5, 6.6, 6.8 and 6.9. Since
gγ,b,j,j′(x1) is a linear functions of (γ, b) for fixed x1, this is a semidefinite program.
We can similarly calculate an optimal sub-replicating strategy by replacing ψ with −ψ and

using remark 3.3. The corresponding function gγ,b,j,j′ is concave in this case, and so Eq. 6.7 is
now equivalent to the condition that gγ,b,j,j′ is non-negative on the set [K2,j ,K2,j′ ]∩{K1,j′′ : 0 ≤
j′′ ≤ l1}. The corresponding optimization problem can thus be solved using linear programming.

7 Conclusion

We have shown that optimal super-replicating and sub-replicating prices and strategies can be
calculated in polynomial time for a wide variety of exotic financial derivatives in terms of liquid
financial derivatives in a multi-period setting. Our approach is based on convex programming
and recursive calculations of concave envelopes. We have implemented our method using an
analytic center cutting plane algorithm and an optimized convex hull algorithm. Numerical
calculations with high accuracy of optimal super-replicating and sub-replicating prices in terms
of call options were given for forward start options and variance and volatility swaps. These
prices are close to the Black-Scholes prices in some cases and differ considerably from them in
other cases. Our method can take into account interest rates and dividends, bid-ask spreads
and limitations to the jumps or to the realized volatility of the underlying assets. It can be
applied to multi-period financial derivatives on multiple assets but, in general, the corresponding
running time is exponential in the number of assets. This is because, in general, the number of
points needed to discretize the possible values of the assets vector is exponential in the number
of assets. An alternative way to calculate optimal super-replicating and sub-replicating prices
for forward-start options using semi-definite and linear programming was given.

A Proof of theorem 2.1

Denote by d(y, C) the Euclidean distance from y to C.

Definition A.1. The weak separation problem: given a vector y ∈ Qn and a rational number
ε > 0, either

1. assert that d(y, C) ≤ ε or

2. find a vector a ∈ Qn such that ||a|| ≥ 1 and, for every x ∈ C, aTx ≤ aT y + ε.

We first show that C admits a polynomial-time algorithm that solves the weak separation
problem. Consider a ball B(0, R) containing C. Let y ∈ Qn and a rational number ε > 0.
By hypothesis, there is a subset D of Rn × R and a polynomial time algorithm that satisfy
the conditions sated in definition 2.3. If the algorithm asserts that y ∈ C then d(y, C) ≤ ε.
Otherwise, the algorithm calculates (a, b) ∈ D such that aT y ≤ b+ε, and so it outputs a rational
vector (a∗, b∗) within distance ε from (a, b). For x ∈ C, since aTx ≥ b, then aT y ≤ aTx+ε and so,
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by the Cauchy-Schwarz inequality, a∗T y ≤ a∗Tx+ ε+ εR+ ε||y||. Hence C admits a polynomial-
time weak separation algorithm. By (Grötschel, Lovász and Schrijver 1981, Theorem 2.4), this
implies that the weak optimization problem can be solved for C in polynomial time. In other
words, there is a polynomial-time algorithm that, given a vector a0 ∈ Qn and a rational number
ε > 0, finds a vector y ∈ Qn such that d(y, C) ≤ ε and aT0 y ≤ aT0 x + ε for every x ∈ C. Since
condition 1 in definition 2.3 is slightly stronger than condition 1 in definition A.1, the proof of
(Grötschel, Lovász and Schrijver 1981, Theorem 2.4) actually shows that y ∈ C.
On the other hand, the ellipsoid method described in (Grötschel, Lovász and Schrijver 1981,

Theorem 2.4) calculates a sequence of vectors (ak, bk) that belong to D, 1 ≤ k ≤ l, such that
aT0 y ≤ a

T
0 x+ ε for any x ∈ K, where

K = {x ∈ Rn : aTk x ≥ bk for 1 ≤ k ≤ l}.

Thus aT0 y ≤ b0 + ε, where b0 = infx∈K a
T
0 x. By solving the dual linear program, we find

non-negative weights λk, 1 ≤ k ≤ l, with

(a0, b0) =
l∑

k=1

λk(ak, bk). (A.1)

This concludes the proof.

B Proof of theorem 3.2

We first show the following.

Proposition B.1. Assume that C contains a ball B(u, r) and is given by Eq. 2.1, where D is
a subset of Rn × R. Let a1 ∈ Rn−1 and a0 = (a1, 1). Assume further that, for some δ > 0 and
some real number q, the vectors (a0 ± δei, q) belong to D for 1 ≤ i ≤ n− 1. Then the set

C ′ = {x ∈ C : aT0 x ≤ a
T
0 u+ 1}

is well centered and well bounded.

Proof. Let r′ be a positive rational number less than min(r, ||a0||−1). Since C ′ contains B(u, r′),
it is well centered. On the other hand, for x ∈ C ′ and 1 ≤ i ≤ n− 1,

q ≤ (a0 ± δei)
Tx

≤ aT0 u+ 1± δxi,

and so |xi| ≤ α, where
α = (aT0 u+ 1− q)/δ.

Thus,
xn ≤ a

T
0 u+ 1 + α||a1||1.

Furthermore, since (a0, q) belongs to D,

q − α||a1||1 ≤ xn.

Thus C ′ is well bounded.
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We now prove theorem 3.2. Proposition 2.1 shows that V ′ is admissible. We can apply
Proposition B.1 with a1 = π by noticing that V is still equal to the right-hand side of Eq. 2.1
if we replace D by

D′ = {((EP (φ), 1), q
′) : P ∈ P, q′ ≤ EP (ψ)}.

This implies that V ′ is well bounded and well centered.

C Proof of proposition 3.1

Since the market is arbitrage-free, it can be shown using classical techniques in multiperiod
markets with a finite state-space (Pliska 2005, Section 3.4) that any underlying single-period
market is arbitrage-free, and thus admits a risk-neutral probability. This implies that P(θ) is
non-empty and that xi ∈ ˆD(θ). Let g =

∑m
j=1 ξ

T
j (Xj −Xj−1) be a gains function such that ψ

is upper-bounded by c(ψ) + ε+ g. We show by backward induction that

ψi ≤ c(ψ) + ε+
i∑

j=1

ξTj (Xj −Xj−1). (C.1)

Eq. C.1 clearly holds when i = m. If it holds for i + 1 then, for θ = (x1, . . . , xi) ∈ Di and
x ∈ D(θ),

ψ∗i+1(θ, x) ≤ c(ψ) + ε+ ξ
T
i+1(x− xi) +

i∑

j=1

ξTj (xj − xj−1). (C.2)

Since the right-hand side of C.2 is a linear function of x, we conclude that it is an upper bound
on ψ∗i+1(θ, .)(x) for x ∈

ˆD(θ). Hence ψi is well defined and Eq. C.1 holds for i. Thus ψ0 ≤ c(ψ).
Conversely, it follows from the definition of ψ∗i and Eq. 3.5 that there is a random variable

ξi+1 which is a function of X0, . . . , Xi such that Eq. 3.8 holds. Hence there is a gains function
g such that ψ ≤ mε + g + ψ0. We conclude that ψ0 = c(ψ). Eq 3.7 follows immediately from
Eq. 3.4.

D Proof of proposition 3.2

For (x1, . . . , xm) ∈ Dm, choose a state ω ∈ Ω such that Xj(ω) = xj for 1 ≤ j ≤ i and set

P ({ω}) = Πmi=1P(x1,...,xi−1)({xi}). (D.1)

The reader can verify that P is a probability. The relation EP (φ) = φ̄0(∅) then holds if φ∗

is the indicator function of a path θ ∈ Dm and so, by linearity of expectations, it holds for
any function φ∗. Consider now the case where φ =

∑m
j=1 ξj .(Xj − Xj−1) is a gains function.

Using backward induction and Eq. 3.9, it can be shown that φ̄i(θ) =
∑i
j=1 ξj .(xj − xj−1) for

θ = (x1, . . . , xi) ∈ Di, and so EP (φ) = 0. Thus P is risk-neutral. Furthermore, it can be shown
by backward induction that ψ∗i ≤ ψ̄i+(m− i)ε, where ψ̄i is the sequence obtained by replacing
φ with ψ in Eq. 3.9, and so ψ0 ≤ EP (ψ) +mε.
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