Do Happy People Make Optimistic Investors?

Guy Kaplanski, Haim Levy, Chris Veld, and Yulia Veld-Merkoulova*

December 19, 2011

*Guy Kaplanski is from Bar-Ilan University, Ramat Gan, IL 52900, Israel, e-mail: guykap@mail.biu.ac.il; Haim Levy is from the Hebrew University of Jerusalem, Jerusalem, IL, 90905, Israel, e-mail: mshlevy@mscc.huji.ac.il; Chris Veld is from the University of Glasgow, Glasgow, G12 8QQ, United Kingdom, e-mail: chris.veld@glasgow.ac.uk; Yulia Veld-Merkoulova is from the University of Stirling, Stirling, FK9 4LA, United Kingdom, e-mail: j.w.veld-merkoulova@stir.ac.uk. The LISS panel data were collected by CentERdata (Tilburg University, the Netherlands) through its MESS project funded by the Netherlands Organization for Scientific Research (NWO). The authors gratefully acknowledge the additional financial support from La Chaire Dauphine – ENSEA – Groupama “Les Particulier face au risque” of the “Fondation du Risque” and L’Agence Nationale de la Recherche in the context of the project ANR Risk. Chris Veld also acknowledges the financial support of the Carnegie Trust for Universities of Scotland. In addition the authors thank Marije Oudejans for her help with the panel, Marcel Das, Jo Danbolt, Antonios Siganos, Patrick Verwijmeren and participants at a seminar at the University of Glasgow for useful comments and suggestions, and Micaela Maftei for editorial assistance. The usual disclaimer applies.
Do Happy People Make Optimistic Investors?

Abstract

We survey investors on their subjective sentiment-creating factors, future return and volatility subjective expectations, investment plans and actual trading. General feeling and the day of the week systematically affect expectations and investment plans. We also find causality in the effects of the perceived weather, the season of the year, and soccer results on return and volatility expectations and on investment plans. Happier individuals expect higher returns on the stock index. Contrary to theoretical predictions, return and risk subjective expectations are negatively correlated, where both are correlated with realized returns. This momentum behavior may explain the excess serial correlation in returns.

Keywords: sentiment-creating factors; sentiments; individual investors; mood; seasonal affective disorder; momentum behavior; serial correlation
Investor sentiment is defined in the literature in various ways. The most general definition which encompasses the other existing definitions is probably the one suggested by Baker and Wurgler (2007). They define investor sentiment as “investors’ belief about future cash flows and risk not justified by the facts at hand” (p. 129). Employing this definition, this paper directly tests for the existence of sentiment effect on the individual level. Using data corresponding to a large number of individual investors, we analyze the individuals’ sentiment and explore which sentiment-creating variables explain the differences across those individuals.

We find causality: the individuals’ sentiment-creating factors strongly affect future expectations of return and risk. In addition, unlike what economic theory predicts, a relatively high expected return is accompanied by a relatively low expected risk. Thus, when the subject is feeling very good and may be in a state of euphoria, she deviates from fundamental economic principles. The happier the subject, as measured by several subjective factors, the more optimistic she becomes, expecting a relatively higher future return and a relatively lower future risk for both U.S. and Dutch stock indexes. As returns are found to be also correlated with the return on the stock market in last five days before filling in the questionnaire, we obtain a unique situation in which high past returns are accompanied by high perceived expected future returns and low perceived expected future risk. This, in turn, encourages buying stocks, which may be another source of the serial correlation in stock returns that has been documented in numerous studies and is only partially explained in the literature.

Evidence on the role of investor sentiment in the stock market usually belongs to one of two strands of studies. On the one hand, there are enormous accumulations of mainly laboratory
experimental evidence recorded on the individual level (where generally the subjects are students), which reveals that participants frequently make irrational, bounded rational, or inconsistent decisions which contradict the classic von-Neumann and Morgenstern expected utility paradigm. Generally, the subjects in these experimental studies choose from some hypothetical prospects, but sentiment is not analyzed in this setting.

On the other hand, many studies *empirically* show that the aggregate investor sentiment, calculated from macroeconomic data, is significantly correlated with stock prices. These empirical studies, which are reviewed in Section 2, hypothesize that some non-economic variables irrationally affect investor sentiment, which, in turn, affects stock prices. However, this hypothesis is usually based on circumstantial inference and causality remains ambiguous, as the direct relation between the individual’s sentiment-creating factors and the individual’s perception of the future market return (which affects investment activity and prices) has not been studied.

Unlike the macro empirical studies, in this study we directly examine causality by analyzing the link between the individual’s stock market sentiment (i.e. the individual’s subjective market judgment) and the sentiment-creating factors reported by each individual. The effect of the individual’s sentiment on her plans to invest in the stock market is also analyzed. Hence, both sentiment and the plan to take trading actions based on this sentiment are explored.

To the best of our knowledge, this is the first study that examines, on the individual level, the direct relations between sentiment-creating factors, the individual’s sentiment, and the individual’s investing behavior, where the analysis is not confined to laboratory experiments but

1 This approach was also followed by Graham, Harvey, and Huang (2009), who use survey evidence to measure investor competence.
rather conducted on a sample of individuals who actually trade in the stock market. We use the findings in the macro empirical studies as a springboard for establishing some of the hypotheses tested in this paper on the individual level and incorporate all the suspected sentiment-creating factors which have been reported in various studies into one comprehensive questionnaire.

In the present study we employ representative panel-sampling data to examine the effect of various sentiment-creating factors on individuals’ attitudes towards the stock market. The cross-section analysis relies on the Longitudinal Internet Studies for the Social Sciences (LISS) panel of CentERdata at Tilburg University. This panel consists of a sample of about 5,000 households, which is representative of the population of the Netherlands. After a preliminary screening to select those individuals who hold stocks in their investment portfolios, we submitted three rounds of questionnaires to about 900 individuals during a time span of about one year (which allows us to test for seasonality effects), as well as a follow-up questionnaire in each subsequent month. Each individual was asked questions regarding the stock market: her next month subjective return expectation, next year subjective return expectation (of both the Dutch AEX stock index and the U.S. S&P 500 stock index), and her future subjective volatility expectations corresponding to these two stock indexes.

In addition, each individual reported on several sentiment-creating factors, some of which have been found to be correlated with stock prices in previous empirical studies at aggregate level. These factors include the individual’s contemporaneous general feeling (which has not

2 For studies which rely on similar internet panel data that is representative of the population in the Netherlands see, for example, Veld and Veld-Merkoulova (2008), Guiso, Sapienza, and Zingales (2008), Bellemare, Kröger, and Van Soest (2008), Von Gaudecker, Van Soest, and Wengström (2011), and Van Rooij, Lusardi, and Alessie (2011).
been tested before) and the recent results of the individual’s favorite soccer team. They also include the individual’s perception of contemporaneous weather and whether the individual is “a spring person” in general and suffers from Winter Blues in particular. Since the questionnaire has been filled out three times during the year, we can test for the effect of the season of the year on sentiment. Similarly, as the subjects filled out the questionnaire on different days, this allows us to test for the effect of the day of the week on sentiment, which is particularly interesting as, unlike the usual macro empirical studies, we also have data corresponding to the weekend non-trading days. Finally, each individual reported whether she planned to buy or sell stocks in the coming month. In a follow-up questionnaire each individual reported whether she actually bought or sold stocks during the relevant month. Thus, each individual has simultaneously reported on her stock market return and risk subjective expectations, her subjective perception of the contemporaneous sentiment-creating factors, and her investment behavior. This allows us to analyze whether and in which direction these factors affect the individual sentiment corresponding to the stock market and whether this sentiment affects actual investment behavior.

We find a First degree Stochastic Dominance (FSD), where the return expectations of the respondents who score highly on the non-economic sentiments are systematically higher than those of respondents experiencing lower sentiments. This result is supported by the regression analyses, which reveal a strong and significant association between several sentiment-creating factors and the individuals’ expectations of future returns and risk in the stock market. Positive feelings and good weather are associated with higher expectations of stock market returns, while bad soccer results (for soccer fans) and Seasonal Affective Disorder (SAD) are associated with
lower return expectations. Moreover, when we aggregate various non-economic sentiment-creating factors (feelings, weather, SAD, and soccer results) in one index, we find that the aggregated sentiment level is significantly related to expected stock returns, expected volatility and to the stock buying plans of individuals. Namely, a high level of overall sentiment leads to higher expectations of returns, lower expectations of volatility, and more likely intentions to buy (rather than sell) stocks. The negative relation between the expected returns and expected volatility, induced by the sentiments, may also help explain the puzzle of the positive serial correlation in the stock returns. Thus, the results of this paper support the growing group of economists who advocate that investors are not “efficient machines” (see Akerlof and Shiller, 2009) who always maximize some economic function, which, in turn, may explain many observed anomalies and unexpected economic phenomena.

The remainder of this paper is organized as follows. Section I presents the data and the sample. Section II presents the sentiment-creating variables and the hypotheses tested in this study, while reviewing the relevant literature. The empirical results are reported in Section III. Section IV concludes.

I. Data and the sample

The LISS panel is a representative sample of individuals living in the Netherlands who are paid 15 euro per hour to participate in monthly internet surveys. The panel is based on a true
probability sample of households drawn from the population register. In this study, we focus on investment decisions and the attitude towards the stock market corresponding to individuals who actually invest in stocks. Therefore, in a preliminary stage which took place in October 2010, 7,428 members of the panel were asked whether they held stocks in their investment portfolios. The 929 subjects who reported that they held stocks in their portfolios were later approached six times during a time span of 10 months, three times with a full questionnaire and three times with a follow-up questionnaire (the questionnaires are presented in Appendix). Panel A in Table I reports the sample size and the number of subjects who completed the questionnaire in each round.

[Please insert Table I here]

Overall, 577 individuals submitted at least one complete questionnaire, providing us with a total number of 1,465 complete questionnaires. We also have access to all personal data of the participants, collected by the LISS panel.

3 Detailed information about the LISS panel can be found at: www.lissdata.nl and in Scherpenzeel and Das (2010).
4 These 7,428 members belong to approximately 5,000 households. This result means that some households have more than one member in the panel (e.g. husband, wife, and child over 16 years old).
5 To explore the effect of sentiment across time and season of the year, the regression analysis employs all complete observations from all rounds. As most individuals submitted a questionnaire in each round, it may be suspected that this procedure uses identical observations three times. However, the individuals reveal different and uncorrelated expectations across time. For example, the correlation coefficients corresponding to the next month return expectations on the AEX Index in November, February and June are 0.21, 0.07, and 0.06, for the three possible pairs of filling-out dates, respectively. This finding makes sense, as sentiment-creating factors may change during a period of almost a year, and obviously the seasonality also changes. The regressions also include a control variable corresponding to the individual’s tendency in general towards optimism or pessimism, which further diminishes the possible dependency of the results across the three rounds. Finally, as subjective expectations may be driven by the macroeconomic conditions in each round rather than by different opinions across individuals, the regression analysis also includes dummy variables corresponding to the questionnaire round as well as variables corresponding to the stock market performance to control for macroeconomic conditions.
Panels B and C report the demographic and financial characteristics corresponding to the 577 subjects. By construction, the sub-sample that we study does not represent the general population of the Netherlands but rather the population who actually trade in the stock market. Indeed, the sample is biased towards older, wealthier, and better educated married male individuals. For example, 65% of the subjects are males, the average age is 56 years old, 88% are home owners and 53% hold either a college or university degree.\footnote{These numbers are in line with those of a survey study of Graham, Harvey, and Huang (2009) who use data from the UBS/Gallop investor survey from November 1996 to November 2002. The investors in their sample are on average 49 years old; 60% of them are college graduates and 26% have postgraduate education.}

According to the sentiment hypothesis, sentiment-creating factors affect the sentiment of an individual, which, in turn, affects her investment decisions. To study the sentiment hypothesis on the individual level, in each round the subjects were asked three sets of questions. In the first set the subjects reported their subjective expectations regarding the stock market. In the second set of questions the subjects reported on their past and future plans to buy and sell stocks as well as their realized investment activity in the following month (reported in the follow-up questionnaires). These questions allow us to explore whether the sentiment characterizing the individuals’ beliefs affected their investment plans and their actual trading. In the third set of questions the subjects reported on several sentiment-creating factors from their point of view as well as on their general tendency towards optimism or pessimism. These questions allow us to explore whether the individuals’ beliefs about future returns and risk are associated with their mood and feelings as derived from the various sentiment-creating factors. Finally, the system
reported the day and time the subjects filled out the questionnaire, which allows us to accurately test for the day of the week effect.

Panels A and B in Table II report the descriptive statistics corresponding to the first two sets of questions and the third set of questions, respectively.

[Please insert Table II here]

As can be seen from Panel A, the subjects reported their subjective expectations corresponding to both future return and future volatility (risk). They reported on short-term next month expectations and the relatively longer term next year expectations of both the AEX index, which consists of 25 stocks that are representative of Euronext Amsterdam, and the S&P 500 index, which consists of 500 stocks that are representative of the U.S. market.

The last three columns in Panel A of Table II report the descriptive statistics corresponding to the second set of questions regarding the individual’s past, planned, and future investment activity in the stock market. The trading activities are also diversified across choices; yet, the majority of individuals did not trade at all.

Panel B in Table II reports the descriptive statistics of the third set of questions regarding the sentiment-creating factors. The subjects reported on their general feeling when filling in the questionnaire, their subjective perception of the weather in the last two days, whether they generally suffer from Winter Blues, their preferred season of the year, and their favorite soccer team’s performance. The exact day (and hour) they filled in the questionnaire is automatically obtained from the system. The frequencies of the sentiment-creating factors reveal a tendency towards feeling good, a slight tendency towards perceiving the weather as good, and a clear
spring preference, where about 40% reported that they manifest some degree of Winter Blues symptoms. Finally, the soccer results, which are relevant only to soccer fans (26% of the subjects), are more or less evenly diversified across the choices.\(^7\)

To avoid biases due to the questions’ format, the questions regarding the subjective sentiment-creating factors (i.e. apart from the question on Winter Blues) include an odd number of choices which are symmetrically distributed around a neutral choice. For example, the third choice corresponding to current feeling is “feeling normal (neither good nor bad) today”, choices one and two correspond to feeling good, and choices four and five correspond to feeling bad. To obtain the most accurate answers possible and decrease potential biases, the questions include a wide range of choices.

In the regression analysis, in some cases close categories are combined for two reasons. First, it is easier to detect, for example, whether the individual feels good or bad rather than whether she feels bad or very bad; hence the categories of bad and very bad are combined. Secondly, the number of observations in some categories is relatively small. Therefore, in constructing the sentiment-creating variables some close categories are combined. These procedures are explained in the next section, which presents the hypotheses tested in this study.

\(^7\)Note that the General-feeling variable is affected, among other things, by the other sentiment-creating factors. Also note that Winter Blues and the Spring-Autumn preference are both related to the tendency to suffer from Seasonal Affective Disorder (SAD), where the Winter Blues question directly asks about the specific psychological syndrome and the Spring-Autumn preference question indirectly asks about the individual’s season of the year preference.
II. The hypotheses

Numerous macro empirical studies reveal that investor sentiment and stock prices are correlated. Following these studies, we employ five groups of sentiment-creating variables to study the effect of sentiment on the individual level. The first group explores a general feeling sentiment effect; three groups explore the weather, Winter Blues and sport results sentiment effects, which have been found to be correlated with the stock market on the aggregate level; and the last group corresponds to the day of the week. The day of the week variables were added for the following reasons. First, several studies document that individual investors’ trading activity is significantly associated with the day of the week. Therefore, it is necessary to control for this phenomenon. One example is sufficient to demonstrate why controlling for the day of the week is crucial: most soccer games are played over the weekend; hence, if there is a trading day of the week effect, it may induce a spurious sport sentiment effect. Second, exploring the relations between sentiment and the day of the week is inherently interesting. This is particularly important as, unlike the usual macro empirical studies, we also have observations corresponding to Saturday and Sunday, days where there is no trading in the stock market. The five groups of sentiment-creating variables and the corresponding sentiment effect hypotheses are presented below.

A. The general sentiment effect hypothesis

Numerous psychological studies show that mood, typically defined as coherent affective states which last for minutes or hours, can affect the decision-making process of an individual. In
a recent review, Mitchell and Phillips (2007) conclude that even mild fluctuations in mood can have a significant influence on neural activation and cognition. Specifically, both positive and negative moods impair executive functions like planning ability, verbal fluency, and creativity, where positive mood generally causes heuristic processing and negative mood promotes systematic thinking.\(^8\) To test the relations between the individuals’ general mood and sentiment, we test the following hypothesis:

H1: The individual’s contemporaneous feeling state and the individual’s stock market return (volatility) expectations are correlated. The better the feeling state, the higher the expected return and the lower the expected volatility.

This hypothesis is tested with the “General-feeling” variable, which equals 1 if the subject feels bad when filling out the questionnaire (Choices 4 and 5, see Appendix), 3 if the subject feels good (Choices 1 and 2), and 2 otherwise (Choice 3).

B. The weather sentiment effect hypothesis

Saunders (1993) and Hirshleifer and Shumway (2003) find that sunshine is positively correlated with stock returns in the New York Stock Exchange (NYSE) and in other markets worldwide, respectively. Cao and Wei (2005) find a negative correlation between temperature and returns. Goetzmann and Zhu (2005) find that the NYSE spreads widen on cloudy days. Thus,

\(^8\) Mood also affects other aspects of behavior, like investment decisions (e.g. Kaplanski and Levy, 2010a), social judgments and memory in general (e.g. Ashby, Isen, and Turken, 1999; Dreisbach and Goschke, 2004; Oaksford et al., 1996) and willingness to take risks in particular (Etzioni, 1988; Hanoch, 2002; Mehra and Sah, 2002).
the empirical evidence suggests that weather and sentiment may be correlated. However, working with individual data rather than aggregate data, it is necessary to account for the fact that what one individual considers as good weather another individual may consider as normal or even bad weather. There are many weather factors, like temperature, humidity, sunshine, etc., that may affect a person’s mood. According to the psychological literature these factors and mood are associated in a non-monotonic complex manner. For example, while higher temperature is associated with improved mood (Cunningham, 1979; Howarth and Hoffman, 1984), very high temperature is associated with bad mood (Goldstein, 1972), and this tendency also depends on the exposure to outdoor weather and on the season of the year (Keller et al., 2005).

Taking into account these difficulties, a key feature of the weather tests in this study is that they do not rely on objective weather conditions but rather on the individuals’ own subjective perception of the contemporaneous weather. Namely, the subjects classify the weather conditions as they perceive them. This also solves the problem that different individuals are exposed to different weather depending on where they live. Finally, to overcome the non-monotonic relations between weather and mood, in constructing the sentiment-creating “Perceived-weather” variable we focus only on very good and very bad weather categories. Thus, “Perceived-weather” is equal to 1 if the subject reports very bad weather (Choice 5), 3 if the subject reports very good weather (Choice 1), and 2 otherwise (Choices 2, 3, and 4). Employing the “Perceived-weather” variable, we test the following hypothesis:

\[\text{There is also some macro evidence to the contrary: Pardo and Valor (2003), for example, study the weather effect for the Spanish stock market and find that there is no influence of weather on stock prices.} \]
H2: Current weather as perceived by the individual and the individual’s stock market return (and volatility) expectations are correlated. The better the reported perceived weather, the higher the expected return and the lower the expected volatility.

C. The Winter Blues sentiment effect hypothesis

Kamstra, Kramer, and Levi (2003) find that returns on the stock market are significantly correlated with the season of the year. They advocate that SAD is responsible for depression and bad moods in a large portion of the population, which, in turn, affect willingness to take risk, hence affecting stock returns.\(^{10}\) SAD is a cyclic illness characterized by episodes of fall and winter depression, also known as Winter Blues, alternating with periods of spring and summer normal mood or mild elation and behavioral activation.\(^{11}\)

As previously explained, to overcome the small number of observations corresponding to the severe SAD category, all the SAD categories are combined. Thus, the “Winter-Blues” variable is equal to 1 if the individual suffers from SAD to some degree (Choices 2, 3, and 4) and 0 otherwise (Choice 1). Employing this variable, we test the following two hypotheses:

\(^{10}\) Other seasonal patterns that are consistent with the SAD explanation are found in investment in safe government securities by Kamstra, Kramer, and Levi (2011), in analysts’ stock earnings forecasts by Dolvin, Pyles, and Wu (2009) and Lo and Wu (2008), in initial public offerings by Dolvin and Pyles (2007), in flows of capital in and out of safe and risky categories of mutual funds by Kamstra, Kramer, Levi, and Wermers (2011), and, more generally, in financial risk aversion among people who suffer from SAD by Kramer and Weber (2011).

\(^{11}\) According to Mersch et al. (1999), 3% of the Dutch population suffer from severe SAD and 8.5% suffer from mild SAD. These numbers are very similar to those obtained in our study (about 3% of the sample suffer from severe SAD and additional 6% suffer from SAD).
H3: a) Stock market return (volatility) expectations reported in the autumn and winter by individuals who suffer from Winter Blues are smaller (larger) than the expectations corresponding to individuals who do not suffer from Winter Blues;

b) Similar differences exist between the expectations of those who suffer from Winter Blues and filled in the questionnaire in the autumn or winter, and the expectations reported in the spring by all subjects.

D. The soccer sentiment effect hypothesis

Edmans, García, and Norli (2007) find that the results of important international soccer games are correlated with the returns on the stock markets of the relevant countries. Investigating 39 stock markets worldwide, they find a significant negative effect in the stock market of the losing country and an insignificant positive effect in the stock market of the winning country. Kaplanski and Levy (2010b) show that the FIFA World Cup creates a long-lasting negative effect that is exploitable. Similarly, Ashton, Gerrard, and Hudson (2003) find a significant association between the performance of England’s soccer team and subsequent daily changes in the FTSE 100 index. More specific to the Netherlands, Witte et al. (2000) find that mortality from coronary heart disease and stroke significantly increased in the male Dutch population the day after the Dutch soccer team was eliminated from the 1996 European football championship. They conclude that “important sporting events may provoke a sufficient level of stress to trigger symptomatic cardiovascular disease” (p. 1552).
To test the sport sentiment effect on the individual level, the subjects reported whether they are sport fans and, if so, which sport they like and how their favorite team performed in the last three days. In line with the results of Edmans, Garcia, and Norli (2007), that the effect is more profound with regard to soccer games, and as most of the sport fans in the sample are soccer fans, we focus on soccer games. Thus, the “Soccer-result” variable is equal to 1 if the soccer game result was bad (Choices 4 and 5), 3 if the result was good (Choices 1 and 2), and 2 otherwise. Employing the “Soccer-result” variable, we test the following hypothesis:

H4: The individual’s favorite soccer team’s result and the individual’s stock market return (volatility) expectations are correlated. The better the individual’s favorite soccer team’s result, the higher the expected return and the lower the expected volatility.

E. The day of the week sentiment effect hypothesis

The empirical psychological evidence reveals complex links between the day of the week and mood. While the weekend is associated with positive emotions, it is also characterized by low estimates of life satisfaction. More closely related to the current study, Lakonishok and Maberly (1990) find that the day of the week effect in returns is accompanied by a relatively

12 In unreported tests, we did not find a significant non-soccer sport sentiment effect.
13 Rossi and Rossi (1977) show that positive emotions are higher on weekends and Egloff et al. (1995) find that pleasantness peaks on weekends. Kennedy-Moore et al. (1992) find that both positive and negative affect show weekend effects. Helliwell and Wang (2011) find that people are significantly happier, have more enjoyment, and laugh more, while feeling less worry, sadness, and anger, on weekends than on weekdays. In contrast, Akay and Martinsson (2009) find a negative effect in the level of subjective well-being on Sundays.
14 Cross (1973), French (1980), Gibbons and Hess (1981), and many others have documented that for decades the average return in the U.S. market was significantly lower on Mondays and significantly higher on Fridays than on other days. The same effect has been documented in more than 20 markets (see, e.g., Jaffe and Westerfield, 1985;
high volume of individual investor selling activity on Mondays, and Abraham and Ikenberry (1994) find that this activity mainly occurs early Monday morning (see also Jaffe, Westerfield, and Ma, 1989; and Chan, Leung and Wang, 2004). Thus, it would be interesting to explore whether Monday in general and Monday mornings in particular are correlated with individual sentiment.

In testing for the individual sentiment effect it is necessary to control for the day of the week. Furthermore, our data provides a unique opportunity to test whether sentiment regarding the stock market is also correlated with the day of the week. In addition, the data includes also observations corresponding to Saturday and Sunday, which enables us to explore sentiment regarding the stock market over the weekend. The exact time and hour the questionnaire was filled out also enables us to test for a sentiment effect during the day, which is in particular interesting with regard to Mondays.

Employing “days of week” dummy variables, we test the following hypothesis:

\[H5: \text{The individual’s stock market return (volatility) expectations are correlated with the day of the week.} \]

\(F \). The overall sentiment effect hypothesis

In the previous five sections we have discussed five separate sentiment-creating variables that we hypothesize might influence the stock return and volatility expectations of the affected individuals. Although these factors are very diverse (ranging from sports results to weather), they

Chang, Pinegar, and Ravichandran, 1993). In more recent decades the effect has substantially attenuated (Schwert, 2003) and even reversed in returns on large-cap stocks (Kamara, 1977).
have one thing in common: all of them are not related to the economic phenomena and cannot be expected to affect stock market through any existing rational economic process. However, based on the previous psychological literature, we expect that some of these factors or their combination will influence the subjective expectations of stock returns, volatility, and even the investment decisions of individuals. Therefore, our last hypothesis makes no distinction between the exact sources of non-economic sentiment, but rather focuses on the overall effect of these sentiments:

\textit{H6: a) Stock market return (volatility) expectations are correlated with the non-economic sentiment of individuals. The more positive the non-economic sentiment, the higher (lower) the expected market return (volatility);}

\textit{b) Similarly, the non-economic sentiment affects the potential investment decisions of individuals. The more positive the non-economic sentiment, the more likely the individual is to consider buying (rather than selling) stocks and vice versa.}

\textbf{III. Empirical results}

While more rigorous analysis is reported in the remainder of this section, Figure 1, which focuses on only one general sentiment-creating factor, demonstrates the main flavor of the results of this study. This figure draws the cumulative distribution functions (CDFs) of the next month subjective stock market return expectations corresponding to two groups of individuals: Group 1, which consists of all individuals who reported that they are “currently feeling great or good”, and
Group 2, which consists of those individuals who reported that they are currently “feeling normal, bad or very bad”.

If investors establish their future expected returns solely based on the economic facts at hand (e.g. growth and inflation forecasts, expected changes in interest rate, etc.), the sentiment corresponding to investors’ contemporaneous feeling is irrelevant in forming their estimate of future returns (as rational economic models advocate). Hence, we would expect no difference, or, more precisely, only a random difference between the CDFs of the subjective return expectations corresponding to these two groups. However, Figure 1 reveals a striking result: the two CDFs do not intersect; namely, there is a First degree Stochastic Dominance (FSD), where the return expectations estimated by those who felt good are systematically higher than the return expectations estimated by those who did not feel good. Thus, the CDF corresponding to Group 1 is shifted to the right relative to the CDF corresponding to Group 2. The result is systematic, as the FSD is intact for the expectations corresponding to both the Dutch and the U.S. stock markets.\(^{15}\) Thus, happiness as measured by general feeling creates more optimistic investors.

We continue our analysis by testing the significance of the various non-economic factors’ effects and quantifying the relative impact of each factor on sentiment. We report the results on the relation between the sentiment-creating variables and the individuals’ attitude towards the stock market. We find a significant association between the sentiment-creating variables and the individuals’ subjective stock market expectations. This result suggests that sentiment plays an

\[^{15}\text{The FSD is also obtained for the following groups: feeling bad, weather is bad, weather is good, soccer result is good, and soccer result is bad. For brevity’s sake these figures are not presented.}\]
important role in the subjective formation of future return and risk expectations of investors. We then continue to expand the analysis to include investors’ plans to buy and sell stocks and their actual trading activity in the stock market during the following month.

A. The individual investor’s return sentiment effects

If the sentiment-creating variables affect the individual’s sentiment, they are expected to affect the individual’s return expectations. To analyze these relations, we run the following ordered probit regression:

$$E(R_{t+1}) = \gamma_0 + \sum_i \gamma_i \text{SENT}_{i,t} + \sum_i \gamma_i \text{CONTROLS}_{i,t},$$

where the response variable, $E(R_{t+1})$, is the individual’s subjective expectation corresponding to the return on the Dutch AEX index in the next period; $\text{SENT}_{i,t}$ is one of the sentiment-creating variables, as defined in the previous section; and $\text{CONTROLS}_{i,t}$ are the control variables.

The response variable in Regression (1) is the individual’s subjective next month return expectation on the stock market given in the form of categories. This variable ranges from 1 to 6, where 1 stands for very low (negative) expectation and 6 stands for very high (positive) expectation (see Appendix). To avoid potential biases, when the subject selects the non-quantitative choice “Don’t know/no opinion”, this observation is excluded from the regression.

The main sentiment-creating variables ($\text{SENT}_{i,t}$) are the individual’s “General-feeling”, “Perceived-weather”, “Winter-Blues”, and “Soccer-Result”. As the effect of the Winter-Blues variable depends on the season of the year, this variable is separately examined in November and in February.
The control variables are roughly divided into four groups. The “day of the week” control variables are dummy variables intended to control for a sentiment effect across the days of the week. The “macroeconomic” control variables include dummies for the questionnaire period (November and February, where June is omitted) to control for endogenous factors which may simultaneously affect the expectations of all subjects in the sample. In addition, we specifically control for the stock market conditions by adding two variables: a “Five-day return” variable, which is equal to the return realized on the AEX index over the five-day period preceding the exact date each subject completed the questionnaire, and the value of the AEX Volatility Index (VAEX) on that day, which, like the U.S. VIX index, measures the next 30 days’ volatility expectation from the prices of options written on the AEX index.

The “test-specific” control variables are dummy variables for subjects who suffer from Winter Blues and subjects who are soccer fans to control for any possible effect unrelated to sentiment which may be correlated by coincidence with those two groups of subjects. For example, suppose that all the subjects who suffer from Winter Blues are generally more pessimistic than other subjects, unrelated to the season of the year. In this case, negative Winter Blues variables in November and February could be due to their general year-round pessimism tendency rather than to Winter Blues in November and February. Therefore, we test the “Winter-Blues” variable in November and February while controlling for the “Winter-Blues” subjects during the whole year. According to a similar logic, suppose that the soccer fans are generally more optimistic. In this case, in tests which include both soccer fans and subjects who are not soccer fans, a positive “Soccer-result” coefficient could be due to the general optimism tendency.
of this group rather than to the results of their favorite soccer teams. Therefore, in those tests we add a “Soccer fan” dummy variable that controls for a possible general effect related to soccer fans but not related to the performance of their favorite teams.

The “individual” control variables control for the individuals’ characteristics, which may systematically affect their attitude towards the stock market. The “Gross monthly income” variable controls for biases related to socio-economic factors, and the “Education” variable controls for the financial expertise of the individual investor. These variables are found to be significant in most tests. In contrast, the following control variables are found to be insignificant in all tests (which for the sake of brevity are not reported): gender, age, marital status, number of children, rural vs. urban dwelling, and occupation. Therefore, these variables are not included in the regressions.

Finally, the last control variable controls for the individuals’ optimism-pessimism tendency in general. Controlling for this tendency is important. For example, when the explanatory variable in Regression (1) is “General-feeling”, optimistic individuals may tend to both feel good and at the same time be optimistic with regard to the stock market, resulting in a significant correlation between “General-feeling” and stock market expectations which is not directly related to the individuals’ contemporaneous sentiment but rather to their personality in general.

Table III reports the result of Regression (1), where the response variable is the individual’s subjective next month return expectation on the AEX index and the explanatory variables are the four main sentiment-creating variables.
Test 1 in Table III includes all sentiment-creating variables simultaneously. In line with all the individual sentiment hypotheses, the General-feeling, Perceived-weather and Soccer-result coefficients are significantly positive at the 5% significance level. The dummy variable coefficient corresponding to Winter Blues in the autumn and winter, i.e. when Winter Blues prevails, is also relatively large in absolute terms and is significantly negative at the 1% level. Thus, the better the individual’s state of feeling, the better the weather from the subject’s point of view, and the better the subject’s favorite soccer team result, the higher the individual’s return expectations. Similarly, individuals who suffer from Winter Blues experience significantly lower return expectations in the autumn and winter. These results are not induced by particular effects related to the season of the year, the day of the week, the contemporaneous conditions in the stock market, the specific group of individuals under consideration, their income and education, or the individuals’ tendency towards optimism, as all these factors are controlled for. These significant results will be later used to construct a comprehensive Individual Sentiment Index (ISI) which is composed of all these variables.

In testing the day of the week effect Sunday is omitted. The Monday and Tuesday coefficients are large and significantly positive at the 1% and 5% level, respectively. The coefficients for the other days are also positive but insignificant. Thus, the individuals’ return expectations are highest at the beginning of the week and they decrease over the week. The highest coefficient on Monday confirms the empirical evidence that individual investors are relatively more active on Mondays than on the other days of the week (see Lakonishok and
Maberly, 1990; and Abraham and Ikenberry, 1994). However, the positive coefficient on Monday contradicts the day of the week effect in returns, where in the past the returns on Mondays were relatively lower than those on other days. Thus, the sentiment effect on expected returns cannot explain the weekend effect in returns. However, when exploring the individuals’ investment plans (see Section 3.4), we will show that the effect on investment plans confirms the day of the week effect in returns.

To test the robustness of the results, the other tests in Table III repeat Regression (1) each time with only one sentiment-creating variable and the control variables. As can be seen, the significant results presented above are robust and the same individual sentiment effects are significant when each effect is separately tested. Thus, the association between the sentiment-creating variables and the individual sentiment is not an artifact resulting from the cross-correlations between the sentiment-creating variables.

B. Asymmetric effects of sentiments

The psychological theory and the empirical evidence on investor sentiment advocate that the effects of positive and negative sentiments are not symmetrical (e.g. Bolte, Goschke, and Kuhl, 2003; Fredrickson and Branigan, 2005). To test for possible asymmetry in the sentiment effects, in Table IV the sentiment-creating variables in Regression (1) are dummy variables which are equal to 1 for good (or bad) categories and 0 otherwise, where the dummy variable corresponding to the neutral category is omitted. Thus, instead of three-category (bad, normal, good) sentiment-creating variables, each sentiment-creating variable is further divided into two
dummy variables corresponding to bad and good categories. The “Winter-Blues” variable is also divided into two dummy variables corresponding to November and February, to explore whether there is a difference in the effect between autumn and winter. To refine the analysis, we also include “Spring-preference” in the November and February variables, which are dummy variables for subjects who prefer the spring over the autumn (Choices 4, 5, and 6) and who filled out the questionnaire in the autumn or winter. Finally, to account for the unique trading patterns on Monday mornings observed in other studies, the Monday variable is divided into two dummy variables corresponding to Monday mornings (AM) and Monday evenings (PM).

[Please insert Table IV here]

Before we turn to discuss the results, recall that separating the regression to positive and negative sentiments reduces the number of observation in each regression, hence some of the results may be less sharp in comparison to those reported in Table III. Test 1 in Table IV, which includes all the dummy sentiment-creating variables, reveals that indeed the effects of positive and negative sentiments are not symmetrical. While the “General-feeling good” coefficient is large and significantly positive at the 1% level, the “General-feeling bad” coefficient is close to zero and insignificant. Thus, feeling good is clearly associated with more optimistic return expectations. However, no similar sentiment effect is observed with regard to feeling bad. This asymmetry confirms the psychological theory mentioned in the previous section, that positive mood causes heuristic processing, which may result in systematic errors, whereas negative mood promotes systematic thinking, which eliminates such errors.
The “good” and “bad perceived-weather” coefficients are of the same magnitude, where the “good weather” coefficient is positive and significant with a \(p\)-value of 0.08 and the “bad weather” coefficient is negative but insignificant. Thus, good weather is associated with more optimistic return expectations and bad weather is associated with less optimistic return expectations, but of these effects only good weather is significant at the 10% level. This result is again qualitatively similar to the asymmetry found for the “General-feeling” variable. However, recall that in Table III both the combined weather and general feeling variables coefficients are significant.

The coefficients for the Winter Blues individuals in November and February are both large in absolute terms and significantly negative at the 5% and 1% level, respectively. Thus, suffering from symptoms of Winter Blues is associated with less optimistic return expectations both in the autumn and the winter.

To test whether the seasonal sentiment effect is related to a general preference for spring or specifically to Winter Blues, the regression also includes the “Spring-preference” in November and February dummy variables. The “Spring-preference” coefficients are both positive. However, the November variable is insignificant and the February variable is only significant at the 10% level. Thus, the seasonality sentiment effect is related to Winter Blues rather than to a more general preference for spring.

The “good” and “bad soccer result” coefficients are positive and negative, respectively; yet both are insignificant (\(p\)-values of 0.26 and 0.15 respectively). However, as we will show in Test 5, which includes only subjects who are soccer fans, the results are significant, suggesting
that the insignificant results are due to the small number of soccer fans among the subjects included in the regression.16

Finally, the day of the week dummy variables reveal a very similar sentiment effect to the one observed in Table III, where the return expectations are more optimistic at the beginning of the week than those at the end of the week, with the highest coefficient corresponding to Monday AM. The Monday AM and Monday PM coefficients are both significantly positive at the 1\% level.17 Thus, we find a day of the week sentiment effect which starts on Monday morning.

To avoid the possible effect of cross-correlation between the sentiment-creating variables, the other tests in Table IV separately test for significant sentiment effects. The “feeling good” and “good weather” coefficients are significantly positive at the 1\% and 5\% level, respectively. The “Winter-Blues” coefficients are negative, relatively large in absolute terms, and significant at the 1\% and 5\% level, respectively. The hypothesis that these two coefficients are the same is rejected at 5\%-level (p-value of 0.012). This slightly larger coefficient in absolute terms corresponding to the “November coefficient” conforms to the empirical evidence of Kamstra, Kramer, and Levi (2011) that the Seasonal Affective Disorder effect is more profound in the autumn than in the winter. Finally, in the last test in Table IV, which includes only subjects who reported on soccer game results, the “bad soccer result” coefficient is relatively large in absolute terms and significantly negative at the 5\% level. In a similar test, which for

16 As most subjects are not soccer fans, in Test 1, which includes all variables, subjects who are not soccer fans are considered to belong to the neutral category (neither good nor bad soccer result). However, as this procedure may bias the results, Test 5, which tests only the “Soccer-result” variable, includes only subjects who are soccer fans.

17 In an unreported test, we find similar results when Monday is divided into three variables corresponding to filling out the questionnaire before the market opens, when the market is open, and after the market is closed, where all three variables are found to be significantly positive.
brevity’s sake is not reported in the table, the “good soccer result” coefficient is found to be positive but significant at only the 10% level. Thus, good soccer results are insignificantly associated with more optimistic return expectations and bad soccer results are significantly associated with less optimistic return expectations, where this significant result is obtained despite the small number of observations. This asymmetry also confirms the findings of Edmans, García, and Norli (2007) that only bad soccer results significantly (negatively) affect stock prices.

Several control variables in Tables III and IV are also significant. First, the November and February coefficients are generally large, positive and highly significant. This result is likely related to the turmoil in the stock markets in June 2011 due to worries about the end of the Federal Reserve’s program of QE2, accompanied by the release of weak macroeconomic data in the U.S. and in particular in Europe. This result shows that the individuals in the sample are familiar with and knowledgeable about the stock market. This is also notable from the positive and negative coefficients corresponding to the stock market five-day return and volatility (VAEX) control variables, respectively, which are generally significant. The personal income coefficient is significantly positive and the education coefficient is significantly negative; however, both are very small in absolute terms. Finally, the optimism-pessimism tendency coefficient is close to zero and insignificant.

C. Aggregated sentiment results

So far, we find that the sentiment-creating variables and the individuals’ next month
return expectations of the domestic stock market are significantly associated. A natural question emerging from the results is how broad these effects are. Do the effects corresponding to the Dutch market, where the subjects in the sample mainly invest, differ from those corresponding to other markets? Are the effects the same for short-term and long-term expectations? Table V reports the tests that explore the effects of sentiment on the U.S. stock market and the long-term next year expected returns.

[Please insert Table V here]

To avoid unnecessary repetition by testing each sentiment-creating variable separately, and to overcome the small number of observations corresponding to some variables, in Table V we replace the various sentiment-creating variables as the explanatory variables in Regression (1) with a comprehensive Individual Sentiment Index (ISI). Based on the significant results obtained in Tables III and IV, the ISI is constructed from the first principal components of the correlation matrix of the sentiment-creating variables. To avoid data snooping, the ISI incorporates all sentiment-creating variables regardless of whether they are found to be significant or not in the previous tests. However, the “good soccer result” loading, albeit small, is negative, which is in contradiction to the sentiment hypothesis. Thus, including this variable may lead to rejecting the null hypothesis that the ISI does not affect sentiment, where this result is obtained unrelated to a possible good soccer sentiment effect. Therefore, this variable is

18 The results with each sentiment-creating variable are available from the authors on request.
19 The small number of soccer fans in the sample probably biases the loading of this variable.
excluded from the index.20 Thus, the ISI is defined as follows:

\[
ISI = 0.712 \text{Feeling good} - 0.625 \text{Feeling bad} + 0.435 \text{Weather good} - 0.168 \text{Weather bad} - 0.51 \text{Winter Blues in November} - 0.023 \text{Winter Blues in February} - 0.099 \text{Bad Soccer result}
\] (2)

The ISI coefficients in Tests 1 and 2, where the response variable is the next month expected return on the AEX and S&P 500 indexes, are significantly positive at the 1\% and 5\% level, respectively. Thus, the higher the ISI, the more optimistic the next month return expectations and vice versa. This effect exists in expectations corresponding to both the domestic (Dutch) market and the foreign (U.S.) markets. In contrast, in Tests 3 and 4, where the response variable is the next year return expectation on these indexes, the ISI coefficient is positive, as expected, but insignificant. The day of the week effect in these tests is also weak, where only the Monday PM coefficient is significant. Thus, the sentiment effect corresponding to long-term expectations is generally insignificant.21

To summarize, all four sentiment-creating variables are significantly associated with the individual’s subjective return expectations. Specifically, general good feeling and good weather lead to more optimistic expectations, bad soccer results lead to less optimistic expectations, and individuals who suffer from Winter Blues have lower stock market expectations in autumn and

20 The results when the ISI also includes this variable are very similar to those obtained without it and they are available from the authors on request.

21 As several choices corresponding to the next year return expectations reveal only a very small number of observations (see Table 2), we also run the regression when close choices are combined. However, the results in those cases are very similar to the results reported in Table 5.
winter. These results confirm the sentiment effects hypotheses. In addition, we find a novel significant “day of the week sentiment effect”, where individuals are significantly more optimistic about future stock returns at the beginning of the week than at the end of the week. Finally, these effects are significant only for short-term return expectations.

D. Risk expectations

So far, we find that the sentiment-creating variables are significantly associated with the individuals’ subjective returns expectations. However, another important factor affecting investment decisions is risk expectations. In this section, we explore the relations between individual sentiment-creating variables and the individuals’ subjective risk expectations.

The subjects in the sample reported on their subjective volatility expectations, where the expected volatility categories are defined in terms of volatility relative to the all-month mean volatility; these are ordered from low volatility (Choice 1) to high volatility (Choice 5). Table VI reports the results of Regression (1) where the response variable is the volatility expectation and the ISI is the main explanatory variable.

[Please insert Table VI here]

The ISI coefficient in Test 1, where the response variable is the next month expected volatility on the AEX index, is significantly negative at the 5% level. Thus, a higher ISI (or a more positive sentiment level) leads to individuals’ lower next month volatility expectations. The ISI coefficient in Test 2, where the response variable is the next month expected volatility on the S&P 500 index, is also negative but is significant only at the 10% level. In Tests 3 and 4, where
the response variable is the next year volatility expectation on these indexes, the ISI coefficients are negative, and in Test 4, corresponding to the S&P 500 index, it is also significant at the 5% level. The day of the week effect in these tests is also significant, where the Monday coefficients and in some tests also the Tuesday and Wednesday coefficients are significantly negative. Thus, the volatility expectations at the beginning of the week are significantly lower than those at the end of the week. The volatility expectations are significantly lower in November 2010 and February 2011 than in June 2011, which corresponds to more economic uncertainty in June. Periods of positive market returns are also followed by lower volatility expectations.

To summarize, the volatility expectations sentiment effect is similar to the return expectations sentiment effect but in the opposite direction. In the next section, we show that this result may create systematic investment errors which may contribute to the empirically observed serial correlation in stock returns.

E. Risk and return expectations: The classic model versus the sentiment effect

In this section we explore the relations between risk expectations and return expectations and show that these relations can be another source for the serial correlation in stock returns.

Figure 2a presents the empirical CDFs for each volatility expectation category, where the subjects are ordered according to their next month returns expectations.

[Please insert Figure 2 here]

Figure 2a reveals the striking effect of sentiment on the perceived risk-return association, where there is a negative risk-return relation. Namely, the CDFs corresponding to the subjects who
considered that the market was relatively less risky are located to the right of the CDFs corresponding to the subjects who considered the market more risky. In line with this result, the ANOVA analysis reveals an F-statistic of 65.0, which strongly rejects the hypothesis that all mean expected returns corresponding to the five risk expectations categories are identical ($P<0.000$). This result means that those who believe the market is less risky also believe the expected returns will be relatively high. Hence, we observe negative risk-return relations, which are in contradiction to portfolio theory but consistent with the individuals’ sentiment effects obtained so far. Let us elaborate.

Markowitz (1952) portfolio analysis and the Sharpe-Lintner Capital Asset Pricing Model (CAPM) theoretically advocate that the higher the expected return on an asset, the larger the risk that accompanies it. Thus, when sentiment does not play a role, a positive association between risk and return is theoretically and empirically expected. However, according to the results in Figure 2a, when we consider subjective expectations, which are also influenced by sentiment, the relations are in the opposite direction: when the subject is optimistic and expects relatively high future returns she also perceives the future risk (volatility) to be relatively low. Thus, sentiment induces a negative risk-return relation, at least as perceived by the subjects.

The return expectations are also correlated with the realized return on the stock market in the five days prior to filling out the questionnaire. Figure 2b presents the CDFs for each return

22 We have also run t-tests for different pairs of expected returns. Apart from one case (Choices 4 and 5), the null hypothesis is rejected at the 1% significance level.

23 Although there are various views regarding the appropriate risk factors in the literature (e.g. the size of the firm, the variance, beta, or some combination of these variables, see Banz, 1981; Levy, 1978; Merton, 1987; and Fama and French, 1992), all these risk factors directly or indirectly measure the volatility of the future value of the asset under consideration.
expectation category, where the subjects are ordered according to the realized returns on the AEX index over the five days preceding the day the subject filled out the questionnaire (recall that the subjects were free to choose when to fill out the questionnaire during the month and that they also filled out the questionnaire three times in three different months). Notably, the CDFs corresponding to the subjects who expected higher future returns are located to the right of the CDFs corresponding to the subjects who expected lower future returns. The ANOVA analysis reveals an F-statistic of 20.6, which strongly rejects the hypothesis that all mean five-day returns corresponding to the six returns expectations categories are identical ($P<0.000$).

These combined findings have important implications. First, when a subject is in euphoria, she may execute poor investment decisions: while in practice return and risk are positively associated (which may prevent investing), with sentiment the subject who believes that a high mean return is forthcoming also believes that risk is relatively low, which may induce overinvestment in the stock market and vice versa. Thus, sentiment effects involve economic costs. Of course, we do not rule out that some subjects in the sample have more expertise on financial matters and know that a positive risk-return relation must prevail.

Second, adding to this phenomenon the correlation of expected returns with the market realized returns implies investors’ momentum behavior, which may be another source for the empirically observed serial correlation in stock returns documented in numerous studies.

24 In unreported tests, we find very similar and significant correlation between volatility expectations and market expected volatility as reflected in the VAEX. These results are available from the authors on request.

25 The main explanation for serial correlation is nonsynchronous trading (Fisher, 1966) where transactions occur infrequently; hence, stocks exhibit a delayed price adjustment. However, Atchison, Butler, and Simonds (1987), Schwert (1990), Lo and MacKinlay (1990), Kadlec and Patterson (1999), and others show that nonsynchronous
According to this argument, positive realized returns in the stock market are accompanied by overinvestment by subjects who expect both high future returns and low future risk, and negative realized returns are accompanied by underinvestment by subjects who expect both low future returns and high future risk. This explanation is closely related to the time-varying expected returns explanation for autocorrelation as demonstrated by Leroy (1973), Rubinstein (1976), and Lucas (1978).

F. Individual sentiment, investment plans, and actual investments

So far, we find that sentiment-creating factors affect individual sentiment corresponding to stock market expected return and expected volatility. Does sentiment affect individual investors’ plans to buy and sell stocks? Does it affect actual investment? The hypotheses tested in this section assert that an individual’s sentiment affects her immediate plans to buy and sell stocks as well as her actual investment activity during the following month.

To test these questions, the subjects also reported on their investment plans for the coming month as well as their actual investment activity in that month in a follow-up questionnaire. While we predict that sentiment affects immediate investment plans, we do not have a preliminary prediction with regard to actual investment in the following month. The reason is that things change during a one-month period: the “Perceived-weather” and “Soccer-result” variables create only short-term sentiment effects, the duration of the “General-feeling” trading cannot explain the entire observed autocorrelation. Indeed, other explanations include market inefficiencies, time-varying expected returns, time-varying leverage, and incentive fees with high water marks (see Getmansky, Lo, and Makarov, 2004).
sentiment effect is unknown, and only the “Winter-Blues” sentiment effect is expected to last more than a few days.

Panel A in Table VII reports the results of Regression (1) where the response variable is the individual’s investment plan for the coming month, and which ranges from 1, for a plan to only buy stocks, to 5, for a plan to only sell stocks (see Appendix). The explanatory variables in the first four tests are the next month or the next year subjective expected return and expected volatility on the AEX index (Tests 1 and 2) and on the S&P 500 index (Tests 3 and 4), which are affected by sentiment-creating factors.

As Choice 6 (“Currently I do not intend to make any stock transaction”) can be made either as a conscious investment intention or for other reasons (for example, because the investor follows a buy-and-hold strategy), each regression is run twice: in the first case the Choice 6 observations are excluded from the regression and in the second case they are combined with the neutral choice (“I intend to buy as many stocks as I intend to sell stocks”). As can be seen, the expected return coefficients are negative in all tests and significant in five tests at a significance level of 10%, 5%, 1% and in two cases less than 0.01%. The expected volatility coefficients in all the tests are close to zero and insignificant. Thus, individuals’ higher expected return is generally significantly associated with plans to buy rather than sell stocks, and this association is more profound with regard to the long-term next year expected return. No similar effect is found with regard to volatility expectations.
As the individual’s expected return is affected by sentiment, this result may imply that sentiment also affects investment plans. To directly test this hypothesis, as well to further examine the Monday effect, in the last two tests in Panel A the explanatory variables are the ISI and the Monday dummy variables. The ISI coefficients are significantly negative at the 5% and 1% level, which directly shows that higher sentiment is indeed significantly associated with plans to buy rather than sell stocks. The Monday AM coefficients are positive and relatively large (0.66 and 0.43) but insignificant (p-values of 0.15 and 0.13, respectively) and the Monday PM coefficients are negative and significant at 10% and 5% level. Thus, although we have previously found that return expectations are highest on Monday mornings and volatility expectations are lowest at that time, there is some tendency of individuals to sell stocks on Monday mornings and this tendency is significantly reversed on Monday afternoons. Optimistic investors seem to postpone their buying plans possibly because they fear from asymmetric information accumulated over the weekend. This result is in line with the result of Lakonishok and Maberly (1990), Abraham and Ikenberry (1994) and others that on Monday mornings there is a relatively more selling rather than buying activity by individual investors.

Panel B in Table VI reports the results of tests similar to those in Panel A, with one distinction: the response variable is the individual’s actual investment activity in the month subsequent to the date of filling out the questionnaire, where 1 stands for “only bought stocks” and 5 for “only sold stocks”. For consistency, the regressions in this case are also run twice with and without the choice “I did not make any stock transaction” included with the neutral option.

26 In unreported tests, the coefficients for other days of the week are generally insignificant.
The results in this case are ambiguous. On the one hand, the expected return and expected volatility coefficients are negative and positive, respectively, and in several tests also significant, suggesting that higher individuals’ expected return and lower expected volatility are generally associated with actual buying rather than selling of stocks in the following month. On the other hand, the ISI coefficient in the last test is small and insignificant. Thus, although expected return and expected volatility affect actual investment in the following month, it is not directly proven that the sentiment component within the expected return and volatility affects it. As mentioned before, this result should not come as a surprise as in this study we mainly focus on short-term individual sentiment. Unfortunately, we do not have data on short-term investment corresponding to the first few days subsequent to filling out the questionnaires.

Finally, the Monday dummy variables are insignificant. This result is highly expected as the response variable in this test corresponds to actual trading activity over a full month; hence, there is no reason why the day and the time on which this variable is reported would affect it. This finding lends extra support to the reliability of the data and the accuracy with which respondents filled out the questionnaire.

IV. Concluding remarks

It is well known that many subjects participating in laboratory experiments make irrational choices, contradictory choices, and choices which contradict expected utility. Macroeconomic studies have shown that stock prices are correlated with non-economic factors such as weather conditions, the season of the year, sporting events, and others. These
macroeconomic studies that document price anomalies do not prove causality and in some cases are regarded with skepticism.

In this study we test for the first time, to the best of our knowledge, for causality on the individual level. We test whether the risk and return perceived by individual investors in the stock market are affected by sentiment-creating factors. The study is based on about 5,000 households of a representative sample of the population of the Netherlands, and the statistical analyses are based on about 1,500 questionnaires completed by individuals who held stocks and filled out the questionnaire three times during the year, which allows us to test also for seasonality effects.

We find that the happier the subject the more optimistic she is with regard to the stock market. Specifically, we find that the better the general mood of the individual, the better the perceived weather, and the better the results of the individual’s favorite soccer team in the days close to the questionnaire completion date, the higher the predicted expected return in the U.S. market as well as in the domestic Dutch stock market. Seasonality also affects return expectations, where those who suffer from Winter Blues perceived a much lower return when the questionnaire was completed in the autumn or winter relative to those who do not suffer from Winter Blues and those who filled out the questionnaire in the spring. These results are very strong and consistent. It may be expected that personal feeling, mood, and emotions would affect the expected return prediction. However, we did not expect such dramatic results. For example, the distribution of expected returns of those who feel good is completely shifted to the right in
comparison to the distribution of those who feel bad. Hence there is a First degree Stochastic Dominance of the expected return distributions induced by the feelings of the individuals.

Unlike what is expected by the classic economic model, we find that the subjective risk and return are negatively correlated. When a person is in euphoria, she predicts a relatively high expected return and relatively low risk, which induces overinvestment and hence leads to economic costs. As the return during the previous five days is positively correlated with the predicted subjective return, we find a momentum behavior: high realized returns are followed by high expected returns and low perceived risk, which motivates stock buying. Thus, we provide another explanation for the observed serial correlation in stock returns. Indeed, we find that predicted positive return is accompanied with reported plans to purchase stocks.
References

Rossi, Alice S., and Peter E. Rossi, 1977, Body time and social time: Mood patterns by menstrual cycle phase and day of the week, *Social Science Research* 6, 273–308.

Figure 1. General feeling and subjective return expectations
The figures compare the cumulative distribution functions (CDFs) of the next month subjective return expectations corresponding to individuals categorized by their contemporaneous general feeling. In Figure 1a the subjective expectations correspond to the returns on the Dutch AEX index and in Figure 1b the subjective expectations correspond to the returns on the U.S. S&P 500 index.
Figure 2. Risk-return subjective expectations’ cumulative distribution functions (CDFs)

Figure 2a compares the cumulative distribution functions (CDFs) of the next month return expectations corresponding to individuals categorized by their next month risk (in terms of volatility) expectations. Figure 2b compares the CDFs of the five-day realized return on the AEX index corresponding to individuals categorized by their next month return expectations.
Table I. The sample characteristics

The table reports the descriptive statistics of the sample population. Panel A reports the number of individuals approached and the number of individuals who completed the questionnaire in each round. Panel B reports the demographic characteristics of the studied sample, which is composed of the 577 individuals who have held stocks in their portfolio and submitted at least one completed questionnaire, which includes all personal data, in one of the three rounds. Panel C reports the financial characteristics of those 577 individuals.

A. The sample population

<table>
<thead>
<tr>
<th></th>
<th>Total approached(^1)</th>
<th>Complete questionnaire</th>
<th>Incomplete questionnaire</th>
<th>No response</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Preliminary screening round:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Held stocks in October 2010 (the sample)</td>
<td>7,428</td>
<td>5,316</td>
<td>0</td>
<td>2,112</td>
</tr>
<tr>
<td>B1. Round 1 in November 2010</td>
<td>929</td>
<td>755</td>
<td>124</td>
<td>50</td>
</tr>
<tr>
<td>B2. Round 2 in February 2011</td>
<td>918</td>
<td>714</td>
<td>108</td>
<td>96</td>
</tr>
<tr>
<td>B3. Round 3 in June 2011</td>
<td>804</td>
<td>612</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Total in all three rounds</td>
<td>2,651</td>
<td>2,081</td>
<td>296</td>
<td>274</td>
</tr>
<tr>
<td>Missing personal data</td>
<td>616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total complete reliable observations</td>
<td>1,465</td>
<td>1,465</td>
<td>577</td>
<td>577</td>
</tr>
</tbody>
</table>

\(^1\)At each round, individuals who did not have stocks were not approached again.

B. The studied sample demographic characteristics

<table>
<thead>
<tr>
<th>Gender</th>
<th>Spouse</th>
<th>Degree of urbanization</th>
<th>Education</th>
<th>Occupation</th>
<th>Age</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Yes</td>
<td>Very high</td>
<td>Primary</td>
<td>Employed</td>
<td>15-24</td>
<td>369</td>
</tr>
<tr>
<td>Female</td>
<td>No</td>
<td>High</td>
<td>High S. (vocational)</td>
<td>Retired</td>
<td>25-34</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>High S. (general)</td>
<td>Self-employed</td>
<td>35-44</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Vocational</td>
<td>Homemaker</td>
<td>45-54</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not urban</td>
<td>College</td>
<td>Unfit for work</td>
<td>55-64</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University</td>
<td>Student</td>
<td>65+</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unemployed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volunteer</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
<td>577</td>
</tr>
</tbody>
</table>

C. The studied sample’s financial characteristics

<table>
<thead>
<tr>
<th>Portfolio value (000 Euro)</th>
<th>% of stocks in the portfolio</th>
<th>Made transactions in the previous month</th>
<th>Gross monthly personal income (000 Euro)</th>
<th>Type of housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>318</td>
<td>0-20</td>
<td>50</td>
<td>Home owner</td>
</tr>
<tr>
<td>20-40</td>
<td>84</td>
<td>20-40</td>
<td>22</td>
<td>Rent</td>
</tr>
<tr>
<td>40-60</td>
<td>60</td>
<td>40-60</td>
<td>19</td>
<td>Rent-free</td>
</tr>
<tr>
<td>60-80</td>
<td>28</td>
<td>60-80</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>80-100</td>
<td>18</td>
<td>80-100</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>24</td>
<td>Do not know</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>150-200</td>
<td>15</td>
<td></td>
<td>2-2.5</td>
<td></td>
</tr>
<tr>
<td>200+</td>
<td>28</td>
<td></td>
<td>2.5-3</td>
<td></td>
</tr>
<tr>
<td>Do not know</td>
<td>14</td>
<td></td>
<td>3-3.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>577</td>
<td></td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>
The table reports the descriptive statistics of the main variables employed in this study. The total number of observations from all three rounds is 1,465 questionnaires, complete with personal data, which were filled in by 577 individuals.

A. Individuals’ subjective expectations and trading activity observations

<table>
<thead>
<tr>
<th>Variable</th>
<th>The individuals’ beliefs about future returns and risk</th>
<th>Investment activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Next month Return expectations</td>
<td></td>
</tr>
<tr>
<td>1 (-4% or less)</td>
<td>33 15 1 (-15% or less) 4 2 Low (less risky) 11 9 18 15</td>
<td>Only buy 126 93 92</td>
</tr>
<tr>
<td>2 (-4% to -2%)</td>
<td>64 51 2 (-15% to -5%) 5 6 All-month mean 222 166 341 218 Mostly buy 56 35 36</td>
<td></td>
</tr>
<tr>
<td>3 (-2% to 0%)</td>
<td>178 180 3 (-10% to -5%) 21 24 594 455 462 379 Buy and sell 57 34 48</td>
<td></td>
</tr>
<tr>
<td>4 (0% to 2%)</td>
<td>551 463 4 (-5% to 0%) 103 135 276 300 285 279 Mostly sell 15 22 18</td>
<td></td>
</tr>
<tr>
<td>5 (2% to 4%)</td>
<td>259 210 5 (0% to 5%) 654 521 High (risky) 55 61 67 86 Only sell 56 33 59</td>
<td></td>
</tr>
<tr>
<td>6 (4% or more)</td>
<td>71 63 6 (5% to 10%) 324 226 Useful 1,158 991 1,173 977 Useful 310 217 253</td>
<td></td>
</tr>
<tr>
<td>Useless</td>
<td>1,156 982 7 (10% to 15%) 57 47 No opinion 307 474 292 488 None 1,155 1,248 1,212</td>
<td></td>
</tr>
<tr>
<td>No opinion</td>
<td>309 483 8 (15% or more) 16 13 Total 1,465 1,465 1,465 1,465 Total 1,465 1,465 1,465</td>
<td></td>
</tr>
<tr>
<td>Total observations</td>
<td>1,465 1,465 Useful 1,184 974 No opinion 281 491 Total 1,465 1,465</td>
<td></td>
</tr>
<tr>
<td>Mean choice</td>
<td>4.00 5.26 5.26 5.15 3.12 3.24 3.04 3.21 2.42 2.39 2.67</td>
<td></td>
</tr>
<tr>
<td>Median choice</td>
<td>4.00 5.00 5.00 5.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00</td>
<td></td>
</tr>
<tr>
<td>Choice std.</td>
<td>1.05 0.88 1.00 0.92 0.80 0.83 0.91 0.94 1.50 1.49 1.58</td>
<td></td>
</tr>
</tbody>
</table>

B. Individuals’ sentiment-creating factors and control variables observations

<table>
<thead>
<tr>
<th>Currently feeling</th>
<th>Current weather</th>
<th>Suffering from Winter Blues</th>
<th>Spring-autumn</th>
<th>Favorite soccer team’s performance</th>
<th>Questionnaire filling day</th>
<th>Optimistic-pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Good</td>
<td>Do not suffer</td>
<td>Autumn</td>
<td>Good</td>
<td>Sunday</td>
<td>Optimist</td>
</tr>
<tr>
<td>42</td>
<td>79</td>
<td>883</td>
<td>10’</td>
<td>Good 71</td>
<td>376</td>
<td>38</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Mildly suffer</td>
<td>10’</td>
<td>Neither 43</td>
<td>Monday</td>
<td>170</td>
</tr>
<tr>
<td>610</td>
<td>674</td>
<td>31’</td>
<td>3’</td>
<td>Tuesday 721</td>
<td>253</td>
<td>580</td>
</tr>
<tr>
<td>Bad</td>
<td>Bad</td>
<td>Severely suffer</td>
<td>31’</td>
<td>Neither 12’</td>
<td>Wednesday</td>
<td>219</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>Total 1,465</td>
<td>238</td>
<td>Thursday 11’</td>
<td>Thursday</td>
<td>183</td>
</tr>
<tr>
<td>Total</td>
<td>Total 1,465</td>
<td>Total 1,465</td>
<td>329</td>
<td>Friday 115</td>
<td>Saturday</td>
<td>151</td>
</tr>
<tr>
<td>Mean choice</td>
<td>2.49</td>
<td>2.85</td>
<td>5.30</td>
<td>Total 1,465</td>
<td>Total 1,465</td>
<td>2.65</td>
</tr>
<tr>
<td>Median choice</td>
<td>2.00</td>
<td>3.00</td>
<td>5.00</td>
<td></td>
<td>Total 1,465</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>0.86</td>
<td>1.27</td>
<td></td>
<td>Total 1,465</td>
<td>0.70</td>
</tr>
</tbody>
</table>

1Close choices are combined in the further analysis due to small number of observations.
Table III. Individuals’ return expectations sentiment effects

The table reports the following ordered probit regression results:

\[E(R_{t+1}) = y_0 + \sum_i y_i S E N T_i + \sum_j y_j C O N T R O L S_j, \]

where the response variable, \(E(R_{t+1}) \), is the individual’s next month subjective return expectation corresponding to the Dutch AEX index; \(S E N T_i \) are sentiment-creating variables: General-feeling, Perceived-weather, Winter-Blues, and Soccer-result; and \(C O N T R O L S \), are control variables: the day of the week control variables, macroeconomic control variables, test-specific control variables, and individuals’ control variables. Valid observations incorporate the total number of complete questionnaires (1,465) less subjects who have selected a non-quantitative choice (“Don’t know/no opinion/not relevant”). One and two asterisks stand for 5% and 1% significance levels respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General-feeling (bad, normal, good)</td>
<td>.15 .33 .01**</td>
<td>.15 7.01 .01**</td>
<td>-.38 7.01 .01**</td>
<td>.20 4.71 .03**</td>
<td></td>
</tr>
<tr>
<td>Perceived-weather (bad, normal, good)</td>
<td>.25 4.43 .04</td>
<td>.27 5.35 .02</td>
<td>.24 4.9 .41</td>
<td>.38 7.01 .01**</td>
<td></td>
</tr>
<tr>
<td>Winter-Blues in Nov. and Feb.</td>
<td>-.39 7.53 .01*</td>
<td>.24 7.14 .01</td>
<td>-.38 7.01 .01**</td>
<td>.20 4.71 .03**</td>
<td></td>
</tr>
<tr>
<td>Soccer-result (bad, normal, good)</td>
<td>.20 5.18 .02</td>
<td>.21 2.12 .15</td>
<td>.21 2.26 .13</td>
<td>.21 2.06 .15</td>
<td>.10 .08 .78</td>
</tr>
</tbody>
</table>

Control variables

Day of the week control variables

<table>
<thead>
<tr>
<th>Day of the week dummy</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday dummy</td>
<td>.51 19.76 .00**</td>
<td>.52 20.32 .00**</td>
<td>.47 16.83 .00**</td>
<td>.49 18.80 .00**</td>
<td>.41 2.23 .14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday dummy</td>
<td>.33 7.08 .01</td>
<td>.32 7.14 .01**</td>
<td>.29 5.50 .02</td>
<td>.32 7.17 .01**</td>
<td>.24 6.9 .41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday dummy</td>
<td>.25 3.67 .06</td>
<td>.24 3.70 .05</td>
<td>.21 2.71 .10</td>
<td>.25 3.77 .05</td>
<td>.19 .34 .56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday dummy</td>
<td>.08 .34 .56</td>
<td>.06 .23 .63</td>
<td>.03 .06 .81</td>
<td>.06 .20 .66</td>
<td>.22 .37 .54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday dummy</td>
<td>.11 .67 .41</td>
<td>.11 .68 .41</td>
<td>.07 .26 .61</td>
<td>.10 .53 .47</td>
<td>.08 .06 .81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday dummy</td>
<td>.22 2.36 .13</td>
<td>.21 2.12 .15</td>
<td>.21 2.26 .13</td>
<td>.21 2.06 .15</td>
<td>.10 .08 .78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macroeconomic control variables

<table>
<thead>
<tr>
<th>Macroeconomic control variables</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>November dummy</td>
<td>1.09 73.31 .00**</td>
<td>.88 63.85 .00**</td>
<td>.90 65.50 .00**</td>
<td>1.03 67.02 .00**</td>
<td>.58 1.01 .32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February dummy</td>
<td>.98 80.48 .00</td>
<td>.83 80.07 .00**</td>
<td>.83 79.3 .00</td>
<td>.97 79.00 .00**</td>
<td>.67 1.66 .20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five-day-return (AEX index)</td>
<td>.05 3.75 .05</td>
<td>.06 4.56 .03</td>
<td>.06 4.55 .03</td>
<td>.05 3.78 .05</td>
<td>.09 1.52 .22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility Index (VAEX)</td>
<td>-.07 5.79 .02</td>
<td>-.06 4.36 .04</td>
<td>-.06 4.52 .03</td>
<td>-.06 5.19 .02</td>
<td>.02 .04 .84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test-specific control variables

<table>
<thead>
<tr>
<th>Test-specific control variables</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter-Blues dummy</td>
<td>.36 8.77 .00**</td>
<td>.32 6.96 .01**</td>
<td>.32 6.96 .01**</td>
<td>.32 6.96 .01**</td>
<td>.32 6.96 .01**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soccer-fan dummy</td>
<td>.03 .18 .68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual’s control variables

<table>
<thead>
<tr>
<th>Individual’s control variables</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
<th>Coef.</th>
<th>Wald</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal-income (low to high)</td>
<td>.03 5.08 .02</td>
<td>.02 3.65 .06</td>
<td>.02 4.23 .04</td>
<td>.02 4.43 .04</td>
<td>.09 8.68 .00**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education (low to high)</td>
<td>-.08 12.01 .00**</td>
<td>-.08 9.88 .00**</td>
<td>-.08 11.41 .00**</td>
<td>-.08 11.85 .00**</td>
<td>-.14 4.89 .03*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimistic-pessimistic (opt. to pes.)</td>
<td>.01 .03 .87</td>
<td>.02 .09 .76</td>
<td>.01 .05 .83</td>
<td>.02 .23 .63</td>
<td>.16 2.11 .15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid observations (3 rounds) | 1156 | 1156 | 1156 | 1156 | 193 |
Likelihood-Ratio \(\chi^2 \) | 246.22 .00 | 228.12 .00 | 226.49 .00 | 228.78 .00 | 30.18 .01 |
Cox and Snell \(R^2 \) | .192 | .179 | .178 | .180 | .145 |
Table IV. The asymmetry of the individuals’ sentiment effects

The table reports the following ordered probit regression results:

\[E(R_{t+1}) = \gamma_0 + \sum \gamma_i \text{SENT}_t + \sum \gamma_j \text{CONTROLS}_t, \]

where the response variable, \(E(R_{t+1}) \), is the individual’s next month subjective return expectation corresponding to the Dutch AEX index; \(\text{SENT}_t \) are dummy sentiment-creating variables corresponding to positive and negative states: currently feeling good or bad, current weather is good or bad, Winter-Blues, Spring-preference in November and February, and good or bad soccer result; and \(\text{CONTROLS}_t \) are control variables: the day of the week control variables, macroeconomic control variables, test-specific control variables, and individuals’ control variables. Valid observations incorporate the total number of complete questionnaires (1,465) less subjects who have selected a non-relevant (“Don’t know/no opinion/not relevant”). One and two asterisks stand for 5% and 1% significance levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General-feeling good</td>
<td>.19</td>
<td>.18</td>
<td>.75</td>
<td>.71</td>
<td>.71</td>
</tr>
<tr>
<td>General-feeling bad</td>
<td>.02</td>
<td>.02</td>
<td>.49</td>
<td>.47</td>
<td>.48</td>
</tr>
<tr>
<td>Perceived-weather good</td>
<td>.25</td>
<td>.29</td>
<td>.32</td>
<td>.30</td>
<td>.33</td>
</tr>
<tr>
<td>Perceived-weather bad</td>
<td>-.25</td>
<td>-.42</td>
<td>-.68</td>
<td>-.33</td>
<td>.23</td>
</tr>
<tr>
<td>Winter-Blues in Nov.</td>
<td>-.41</td>
<td>-.23</td>
<td>.58</td>
<td>.25</td>
<td>.25</td>
</tr>
<tr>
<td>Winter-Blues in Feb.</td>
<td>-.45</td>
<td>-.12</td>
<td>.68</td>
<td>.25</td>
<td>.25</td>
</tr>
<tr>
<td>Spring-preference in Nov.</td>
<td>-.03</td>
<td>.12</td>
<td>.03</td>
<td>.06</td>
<td>.06</td>
</tr>
<tr>
<td>Spring-preference in Feb.</td>
<td>.29</td>
<td>.29</td>
<td>.28</td>
<td>.22</td>
<td>.22</td>
</tr>
<tr>
<td>Soccer-result good</td>
<td>.17</td>
<td>.17</td>
<td>.12</td>
<td>.11</td>
<td>.11</td>
</tr>
<tr>
<td>Soccer-result bad</td>
<td>-.23</td>
<td>-.21</td>
<td>.20</td>
<td>.22</td>
<td>-.41</td>
</tr>
</tbody>
</table>

Control variables

Day of the week control variables

Monday AM dummy	.74	.75	.71	.71	.71
Monday PM dummy	.69	.49	.12	.47	.48
Tuesday dummy	.32	.32	.08	.30	.33
Wednesday dummy	.25	.24	.36	.22	.25
Thursday dummy	.08	.06	.25	.05	.06
Friday dummy	.12	.11	.70	.08	.10
Saturday dummy	.23	.21	.26	.22	.21

Macroeconomic control variables

November dummy	1.12	.87	.62	.89	.104	.65
February dummy	.25	.83	.34	.83	.95	.72
Five-day-return (AEX index)	.06	.06	.47	.06	.06	.09
Volatility Index (VAEX)	-.06	-.06	.14	-.06	.06	.02

Test-specific control variables

Winter-Blues dummy	.42	.32	.11	.32	.32	.32
Spring-preference dummy	-.20	.02	.50	.02	.02	.02
Soccer-fan dummy	.00	.00	.98	.00	.00	.00

Individual’s control variables

Personal-income (low to high)	.03	.02	.36	.02	.02	.09
Education (low to high)	-.08	-.07	.96	-.08	-.08	-.14
Optimistic-pessimistic (opt. to)	.01	.02	.17	-.01	.02	.17

Valid observations (3 rounds)

1156	255.94	.199	1156	.181	193
1156	230.46	.178	1156	.181	31.46
1156	226.49	.181	1156	.181	.150
Table V. Time and market analysis of the individuals’ sentiment effects

The table reports the following ordered probit regression results:

\[E(R_{t+1}) = \gamma_0 + \gamma_1 ISI + \sum \gamma_i CONTROLS_i, \]

where the response variable, \(E(R_{t+1}) \), is either the next month or the next year subjective return expectation corresponding to either the Dutch AEX index or the U.S. S&P 500 index; \(ISI \) is the Individual Sentiment Index, which is composed of the sentiment-creating variables; and \(CONTROLS \) are control variables: the day of the week control variables, macroeconomic control variables, test-specific control variables, and individuals' control variables. Valid observations incorporate the total number of complete questionnaires (1,465) less subjects who have selected a non-specific control variables.

The table reports the following ordered probit regression results:

\[
\begin{align*}
\text{Response variable:} & \\
& \text{1. Next month return expectations (Dutch AEX)} & \text{2. Next month return expectations (U.S. S&P 500)} & \text{3. Next year return expectations (Dutch AEX)} & \text{4. Next year return expectations (U.S. S&P 500)} \\
\text{Sentiment-creating variable} & \text{Coef.} & \text{Wald} & \text{Sig.} \\
\text{Individual Sentiment Index (ISI)} & 0.28 & 14.16 & .00** & 0.17 & 4.64 & .03* & 0.07 & 0.86 & .35 & 0.13 & 2.55 & .11 \\
\text{Control variables} & \text{Day of the week control variables} & \text{Coef.} & \text{Wald} & \text{Sig.} \\
\text{Monday AM dummy} & 0.77 & 10.20 & .00** & 0.60 & 5.26 & .02* & 0.15 & 0.39 & .53 & 0.39 & 2.04 & .15 \\
\text{Monday PM dummy} & 0.50 & 18.82 & .00** & 0.40 & 10.33 & .00** & 0.32 & 7.64 & .01** & 0.30 & 5.51 & .02** \\
\text{Tuesday dummy} & 0.33 & 7.38 & .01** & 0.18 & 2.01 & .16 & 0.14 & 1.21 & .27 & 0.08 & 0.33 & .56 \\
\text{Wednesday dummy} & 0.24 & 3.71 & .05 & 0.34 & 6.32 & .01* & 0.24 & 3.45 & .06 & 0.29 & 4.42 & .04* \\
\text{Thursday dummy} & 0.07 & 0.29 & .59 & 0.14 & 0.98 & .32 & 0.01 & 0.01 & .94 & 0.00 & 0.00 & .99 \\
\text{Friday dummy} & 0.11 & 0.69 & .41 & 0.31 & 4.31 & .04* & 0.05 & 0.13 & .72 & 0.11 & 0.57 & .45 \\
\text{Saturday dummy} & 0.21 & 2.20 & .14 & 0.15 & 0.89 & .35 & 0.14 & 0.91 & .34 & 0.20 & 1.56 & .21 \\
\text{Macroeconomic control variables} & \text{November dummy} & 0.95 & 71.12 & .00** & 0.38 & 10.11 & .00** & 0.83 & 51.75 & .00** & 0.50 & 16.26 & .00** \\
\text{February dummy} & 0.84 & 80.74 & .00** & 0.52 & 27.59 & .00** & 0.88 & 83.82 & .00** & 0.74 & 51.41 & .00** \\
\text{Five-day-return (AEX index)} & 0.06 & 4.70 & .03* & 0.06 & 3.75 & .05 & 0.01 & 0.03 & .87 & 0.02 & 0.23 & .63 \\
\text{Volatility Index (VAEX)} & -0.06 & 4.67 & .03 & 0.00 & 0.00 & 1.00 & -0.06 & 3.86 & .05 & 0.00 & 0.00 & .95 \\
\text{Test-specific control variables} & \text{Winter-Blues dummy} & 0.15 & 4.46 & .04* & 0.02 & 0.08 & .78 & 0.02 & 0.09 & .77 & 0.07 & 0.83 & .36 \\
\text{Soccer-fan dummy} & -0.02 & 0.04 & .83 & 0.05 & 0.39 & .54 & 0.05 & 0.56 & .46 & 0.05 & 0.48 & .49 \\
\text{Individual's control variables} & \text{Personal-income (low to high)} & 0.02 & 4.29 & .04* & 0.04 & 13.12 & .00** & 0.05 & 23.68 & .00** & 0.05 & 19.36 & .00** \\
\text{Education (low to high)} & -0.08 & 10.21 & .00** & -0.13 & 16.59 & .00** & -0.01 & 0.15 & .70 & -0.01 & 0.07 & .79 \\
\text{Optimistic-pessimistic (opt. to pes.)} & 0.02 & 1.33 & .72 & 0.04 & 0.74 & .39 & 0.00 & 0.00 & .95 & 0.03 & 0.29 & .59 \\
\text{Valid observations (3 rounds)} & 1156 & 982 & 1184 & 974 \\
\text{Likelihood-Ratio } \chi^2 & 237.20 & .00 & 96.57 & .00 & 174.55 & .00 & 99.62 & .00 \\
\text{Cox and Snell } R^2 & .186 & .094 & .137 & .097
\end{align*}
\]
Table VI. Individuals’ risk expectations sentiment effect

The table reports the following ordered probit regression results:

\[E(VOL_{t+1}) = Y_0 + Y_1 ISI + \sum Y_i CONTROLS_i, \]

where the response variable, \(E(VOL_{t+1}) \), is either the next month or the next year subjective volatility (risk) expectation corresponding to the Dutch AEX index or the U.S. S&P 500 index; \(ISI \) is the Individual Sentiment Index, which is composed of the sentiment-creating variables; and \(CONTROLS \) are control variables: the day of the week control variables, macroeconomic control variables, test-specific control variables, and individuals’ control variables. Valid observations incorporate the total number of complete questionnaires (1,465) less subjects with missing data and those who have selected a non-quantitative choice (“Don’t know/no opinion/not relevant”). One and two asterisks stand for 5% and 1% significance levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Dutch AEX)</td>
<td>(U.S. S&P 500)</td>
<td>(Dutch AEX)</td>
<td>(U.S. S&P 500)</td>
</tr>
<tr>
<td>Coef.</td>
<td>Wald</td>
<td>Sig.</td>
<td>Coef.</td>
<td>Wald</td>
</tr>
<tr>
<td>Sentiment-creating variable</td>
<td>Individual Sentiment Index (ISI)</td>
<td>-1.15</td>
<td>4.13</td>
<td>.04</td>
</tr>
<tr>
<td>Control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day of the week control variables</td>
<td>Monday AM dummy</td>
<td>-.71</td>
<td>7.87</td>
<td>.01**</td>
</tr>
<tr>
<td></td>
<td>Monday PM dummy</td>
<td>-.24</td>
<td>4.08</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>Tuesday dummy</td>
<td>-.27</td>
<td>4.71</td>
<td>.03**</td>
</tr>
<tr>
<td></td>
<td>Wednesday dummy</td>
<td>-.34</td>
<td>7.10</td>
<td>.01**</td>
</tr>
<tr>
<td></td>
<td>Thursday dummy</td>
<td>-.05</td>
<td>.17</td>
<td>.68</td>
</tr>
<tr>
<td></td>
<td>Friday dummy</td>
<td>.08</td>
<td>.33</td>
<td>.56</td>
</tr>
<tr>
<td></td>
<td>Saturday dummy</td>
<td>-.22</td>
<td>2.22</td>
<td>.14</td>
</tr>
<tr>
<td>Macroeconomic control variables</td>
<td>November dummy</td>
<td>-.97</td>
<td>70.46</td>
<td>.00**</td>
</tr>
<tr>
<td></td>
<td>February dummy</td>
<td>-.72</td>
<td>58.01</td>
<td>.00**</td>
</tr>
<tr>
<td></td>
<td>Five-day-return (AEX index)</td>
<td>-.06</td>
<td>4.70</td>
<td>.03**</td>
</tr>
<tr>
<td></td>
<td>Volatility Index (VAEX)</td>
<td>.08</td>
<td>4.67</td>
<td>.01**</td>
</tr>
<tr>
<td>Test-specific control variables</td>
<td>Winter-Blues dummy</td>
<td>-.14</td>
<td>3.87</td>
<td>.05**</td>
</tr>
<tr>
<td></td>
<td>Soccer-fan dummy</td>
<td>-.13</td>
<td>2.92</td>
<td>.09</td>
</tr>
<tr>
<td>Individual’s control variables</td>
<td>Personal-income (low to high)</td>
<td>-.01</td>
<td>.20</td>
<td>.65</td>
</tr>
<tr>
<td></td>
<td>Education (low to high)</td>
<td>.06</td>
<td>5.69</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>Optimistic-pessimistic (opt. to pes.)</td>
<td>.01</td>
<td>.05</td>
<td>.82</td>
</tr>
<tr>
<td>Valid observations (3 rounds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid observations</td>
<td>1158</td>
<td>991</td>
<td>1173</td>
</tr>
<tr>
<td>Likelihood-Ratio (\chi^2)</td>
<td></td>
<td>203.78</td>
<td>.00</td>
<td>89.52</td>
</tr>
<tr>
<td>Cox and Snell (R^2)</td>
<td></td>
<td>.161</td>
<td>.086</td>
<td>.116</td>
</tr>
</tbody>
</table>
Table VII. Future expectations, future investment plans, and actual investment activity

The table reports the following ordered probit regressions results:

1. \[E(BS_{t+1}) = \gamma_0 + \gamma_1 E(R_{t+1}) + \gamma_2 E(VOL_{t+1}) , \]
where the response variable, \(E(BS_{t+1}) \), is either the next month plan to buy or sell stocks (Panel A) or the actual realized trading in that month (Panel B); \(E(R_{t+1}) \) and \(E(VOL_{t+1}) \) are the next month and the next year subjective return and volatility expectation, respectively, corresponding to the Dutch AEX index or the U.S. S&P 500 index;

2. \[E(BS_{t+1}) = \gamma_0 + \gamma_1 ISI + \sum_i \gamma_i CONTROLS_i , \]
where the response variable, \(E(BS_{t+1}) \), is either the next month plan to buy or sell stocks (Panel A) or the actual realized trading in that month (Panel B); \(ISI \) is the Individual Sentiment Index, which is composed of the sentiment-creating variables; and \(CONTROLS_i \) are the day of the week dummy variables. Valid observations encompass the total number of complete questionnaires (1,465) less subjects who have selected a non-quantitative choice (“Don’t know/no opinion”). Each regression is run twice: in Panel A when the choice “Currently I do not intend to make any stock transaction” is excluded from the regression and when it is combined with the neutral choice (“I intend to buy as many stocks as I intend to sell stocks”) and in Panel B when the choice “I did not make any stock transaction” is excluded from the regression and when it is combined with the neutral choice (“I bought as many stocks as I sold”). One and two asterisks stand for 5% and 1% significance levels, respectively.

A. Response variable is the next month investment plan

<table>
<thead>
<tr>
<th>Regression 1</th>
<th>Regression 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentiment-creating variable</td>
<td>Sentiment-creating variable</td>
</tr>
<tr>
<td>Individual Sentiment Index (ISI)</td>
<td>.34 .42 .01</td>
</tr>
<tr>
<td>The Dutch AEX index</td>
<td></td>
</tr>
<tr>
<td>Next month return expectations</td>
<td>-.02 .09 .77</td>
</tr>
<tr>
<td>Next month volatility expectations</td>
<td>.04 .17 .68</td>
</tr>
<tr>
<td>Next year return expectations</td>
<td>-.13 2.6 .10</td>
</tr>
<tr>
<td>Next year volatility expectations</td>
<td>.01 .01 .92</td>
</tr>
<tr>
<td>The U.S. S&P 500 index</td>
<td></td>
</tr>
<tr>
<td>Next month return expectations</td>
<td>-.05 .33 .57</td>
</tr>
<tr>
<td>Next month volatility expectations</td>
<td>.17 2.67 .10</td>
</tr>
<tr>
<td>Next year return expectations</td>
<td>-.28 7.94 .01**</td>
</tr>
<tr>
<td>Next year volatility expectations</td>
<td>.08 .72 .40</td>
</tr>
<tr>
<td>Day of the week dummy variables</td>
<td></td>
</tr>
<tr>
<td>Monday AM dummy</td>
<td>.66 2.09 .15</td>
</tr>
<tr>
<td>Monday PM dummy</td>
<td>-.36 3.82 .05</td>
</tr>
<tr>
<td>Valid observations (3 rounds)</td>
<td>201 193 203</td>
</tr>
<tr>
<td>Likelihood-Ratio (\chi^2)</td>
<td>.37 .83</td>
</tr>
<tr>
<td>Cox and Snell (R^2)</td>
<td>.002 .015</td>
</tr>
</tbody>
</table>
Table VII. Cont.

B. Response variable is realized trading

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Sentiment Index (ISI)</td>
<td></td>
</tr>
<tr>
<td>The Dutch AEX index</td>
<td></td>
</tr>
<tr>
<td>Next month return expectations</td>
<td>-.02</td>
<td>.13</td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td>Next month volatility expectations</td>
<td>.18</td>
<td>4.21</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Next year return expectations</td>
<td>-.14</td>
<td>3.83</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Next year volatility expectations</td>
<td>.06</td>
<td>.69</td>
<td>.41</td>
<td></td>
</tr>
<tr>
<td>The U.S. S&P 500 index</td>
<td></td>
</tr>
<tr>
<td>Next month return expectations</td>
<td>-.08</td>
<td>1.08</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>Next month volatility expectations</td>
<td>.21</td>
<td>4.90</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Next year return expectations</td>
<td>-.17</td>
<td>4.83</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Next year volatility expectations</td>
<td>.18</td>
<td>4.95</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Day of the week dummy variables</td>
<td></td>
</tr>
<tr>
<td>Monday AM dummy</td>
<td></td>
</tr>
<tr>
<td>Monday PM dummy</td>
<td></td>
</tr>
<tr>
<td>Valid observations (3 rounds)</td>
<td>246</td>
<td>248</td>
<td>225</td>
<td>224</td>
<td>1004</td>
<td>1002</td>
<td>832</td>
<td>823</td>
<td>253</td>
<td>1081</td>
<td></td>
</tr>
<tr>
<td>Likelihood-Ratio χ^2</td>
<td>6.12</td>
<td>.05</td>
<td>6.68</td>
<td>.04</td>
<td>10.59</td>
<td>.01</td>
<td>15.31</td>
<td>.00</td>
<td>7.39</td>
<td>.03</td>
<td>18.30</td>
<td>.00</td>
<td>16.68</td>
<td>.00</td>
<td>28.17</td>
<td>.00</td>
<td>2.91</td>
<td>.41</td>
<td>2.79</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>Cox and Snell R^2</td>
<td>.025</td>
<td>.027</td>
<td>.046</td>
<td>.066</td>
<td>.007</td>
<td>.018</td>
<td>.020</td>
<td>.034</td>
<td>.011</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>
Appendix: Questionnaire

This appendix contains questions that we submitted to the members of the LISS panel. The original questionnaire was in Dutch and it is available from the authors on request.

Question A (Stock holder screening question)
What is the approximate total value of stocks in your current financial investment portfolio?
Stocks are defined as stocks of individual firms and investments in equity mutual funds (including mutual funds that do not only invest in stocks, but also in other financial securities, for example bonds). They exclude investments in “investment mortgages”. The total value is:
1 = I don’t have any investments in stocks
2 = 0-20,000 Euro
3 = 20,001-40,000 Euro
4 = 40,001-60,000 Euro
5 = 60,001-80,000 Euro
6 = 80,001-100,000 Euro
7 = 100,001-150,000 Euro
8 = 150,001-200,000 Euro
9 = 200,001+ Euro

The remainder of the questionnaire only went to respondents that answered 2-9 on this question (thus, we excluded investors who don’t have any stocks).

Question B
What percentage of your investment portfolio is held in stocks? Stocks are defined as stocks of individual firms and investments in equity mutual funds (including mutual funds that do not only invest in stocks, but also in other financial securities, for example bonds). They exclude investments in “investment mortgages”. The total investment portfolio is defined as the sum of all your financial investments, such as stocks, bonds, savings accounts, checking accounts, cash, etc. (excluding your main residence and other property holdings).
1 = 0%-20%
2 = 21%-40%
3 = 41%-60%
4 = 61%-80%
5 = more than 80%

Questions C, D (Next month return expectations questions)
What is your best forecast for the rate of return on the Dutch stock market as measured by the AEX index for the coming month (the AEX index consists of 25 Dutch stocks that are representative of Euronext Amsterdam, formerly known as the Amsterdam Stock Exchange)?

What is your best forecast for the rate of return on the U.S. S&P 500 index for the next coming month (the U.S. S&P 500 index is a basket of 500 U.S. stocks that is representative of the American stock market)?
1 = -4% or worse
2 = -4% to -2%
3 = -2% to 0%
4 = 0% to 2%
5 = 2% to 4%
Questions E, F (Next year return expectations questions)

What is your best forecast for the rate of return on the Dutch AEX index for the coming year (the AEX index consists of 25 Dutch stocks that are representative of Euronext Amsterdam, formerly known as the Amsterdam Stock Exchange)?

What is your best forecast for the rate of return on the U.S. S&P 500 index for the next coming year (the U.S. S&P 500 index is a basket of 500 U.S. stocks that is representative of the American stock market)?

1 = -15% or worse
2 = -15% to -10%
3 = -10% to -5%
4 = -5% to 0%
5 = 0% to 5%
6 = 5% to 10%
7 = 10% to 15%
8 = 15% or better
9 = Don’t know/no opinion

Questions G, H, I, J (Volatility expectations questions)

How do you consider the Netherlands stock market risk (volatility) for the coming month relative to an average month (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the Netherlands stock market risk (volatility) for the coming year relative to an average year (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the U.S. stock market risk (volatility) for the coming month relative to an average month (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the U.S. stock market risk (volatility) for the coming year relative to an average year (the degree of risk means by how much the market is expected to fluctuate)?

1 = Much less risky
2 = Somewhat less risky
3 = Similar risk to other months
4 = Somewhat riskier
5 = Much riskier
6 = Don’t know/no opinion

Questions K, L, M (Sport fan questions)

Are you a fan or a supporter of a sport club or individual sportsperson?
1 = Yes
2 = No

With which sport is this club or sportsperson associated?
If you are a supporter of multiple clubs or sportspersons, then please choose the club or sportsperson that you follow the most.

1 = Soccer
2 = Tennis
3 = Speed skating
4 = Grass hockey
5 = Cycling
6 = Swimming
7 = Darts
8 = Other (please specify)
9 = Not a sport fan (skip next question)

If your favorite sport team (person) has played in the last three days, how do you consider the game result?

1 = The result was good in an important game/tournament
2 = The result was good in a not very important game/tournament
3 = The result was neither good nor bad
4 = The result was bad in a not very important game/tournament
5 = The result was bad in an important game/tournament
6 = Not relevant (no game played or not a sport fan)

Question N (Weather question)
How would you describe the weather in the last two days?
1 = Very good
2 = Good
3 = Not particularly good and not particularly bad
4 = Bad
5 = Very bad

Question O (Spring preference question)
Do you generally feel better in the autumn or in the spring?
1 = I generally feel much better in the autumn
4 = I generally feel the same in the autumn as in the spring
7 = I generally feel much better in the spring

Question P (Winter Blues question)
Do you (ever) suffer from “Winter Blues”? Winter Blues is a disorder that occurs in the autumn and early winter and is characterized by symptoms such as difficulty concentrating, social withdrawal, loss of energy, sleep disturbance and other related symptoms.
1 = I don’t suffer from Winter Blues at all
2 = I mildly suffer from Winter Blues
3 = I suffer from Winter Blues
4 = I strongly suffer from Winter Blues

Question Q (General feeling question)
At the moment, which sentence best describes your feelings?
1 = I feel great today
2 = I feel good today
3 = I feel normal (neither good nor bad) today
4 = I feel bad today
5 = I feel very bad today

Question R (Optimism-pessimism question)
In general, how do you consider yourself relative to other people?
1 = I am a very positive person relative to other people
2 = I am a more positive person relative to other people
3 = I am neither a more positive person nor a less positive person relative to other people
4 = I am a less positive person relative to other people
5 = I am a much less positive person relative to other people

Questions S, T (Past and planned investments questions)
If you made transactions in your stocks holdings during the last month, did you mostly buy or sell stocks? The term “mostly” should be interpreted in terms of the total monetary value of the transaction (amount of stocks times price of stock)
1 = I only bought stocks
2 = I mostly bought stocks, but I also sold stocks
3 = I bought as many stocks as I sold
4 = I mostly sold stocks, but I also bought stocks
5 = I only sold stocks
6 = Not relevant (I did not make any stock transactions)

In the next few days, do you intend to mostly buy or sell stocks? The term “mostly” should be interpreted in terms of the total monetary value of the transaction (amount of stocks times price of stock):
1 = I intend to only buy stocks
2 = I intend to mostly buy stocks, but I also intend to sell stocks
3 = I intend to buy as many stocks as I intend to sell
4 = I intend to mostly sell stocks, but I also intend to buy stocks
5 = I only intend to sell stocks
6 = Not relevant (Currently I do not intend to make any stock transactions)

Question U: (Realized investment question)

This is the follow-up question, which was asked one month after the main survey.

If you made transactions in your stocks holdings during the last month, did you mostly buy or sell stocks? The term “mostly” should be interpreted in terms of the total monetary value of the transaction (amount of stocks times price of stock)
1 = I only bought stocks
2 = I mostly bought stocks, but I also sold stocks
3 = I bought as many stocks as I sold
4 = I mostly sold stocks, but I also bought stocks
5 = I only sold stocks
6 = Not relevant (I did not make any stock transactions)