The effect of information asymmetries among lenders on syndicated loan prices

Blaise Gadanecza, Alper Karab,* and Philip Molyneuxc

a Bank for International Settlements, Basel, Switzerland
b Loughborough University Business School, UK
c Bangor Business School, Bangor University, Wales, UK

Abstract

We examine the effect information asymmetries among syndicate members have on loan prices. To this end we look at the previous number of borrowing/lending relationships between individual borrowers and lenders and the duration of these interactions. Using this new measure on a sample of 5,842 syndicated loan transactions between 1993 and 2006 we find that when participant banks have information inferiority in the syndicate they require higher loan prices to compensate for this asymmetry. This is amplified when the borrowers are more opaque. On the contrary, the availability of borrower credit ratings significantly reduces information asymmetries and nullifies the impact of information set differences among arrangers and participants on loan prices. We also provide evidence that the presence of reputable arrangers leads to lower prices only for those borrowers with potentially fewer asymmetric information problems. For opaque borrowers, mandating a reputable arranger facilitates access to funds available in the syndicated loan market but does not lower loan prices.

\textit{JEL classification: }D40, F30, G21
\textit{Keywords: }syndicated loans, repetitive lending, arranger moral hazard, arranger reputation, opaque borrowers

* Corresponding author: Alper Kara, Loughborough University Business School, LE11 3TU, UK, e-mail: a.kara@lboro.ac.uk; tel.: +44 1509 228808. The authors would like to thank to Werner De Bondt, Stefano Gatti and Alberto Pozzolo for valuable comments and suggestions.
1. INTRODUCTION

Syndicated lending, where two or more banks agree jointly to make a loan to a single borrower, has evolved into one of the world’s largest markets. Prior to the recent financial and economic crisis, some $3.4 trillion in new facilities was raised during 2007, amounting to one third of all funds raised internationally, including bond and equity issuance. In a typical syndicated loan, “arranger” banks are situated at the core of the process. They help to put together the deal at a given set of terms and sell parts of the loan to “participant” banks (i.e. second-tier banks and other investors), assigning some of the loan to themselves. Because participant banks typically do not have the critical size, experience or desire to arrange loans themselves, they do not normally negotiate directly with the borrowing firm, but rather have an “arm’s-length” relationship acting through the arranger (Simons, 1993 and Sufi, 2007). In syndicated lending participant banks depend heavily on arranger banks both before and after loan signing. The delegation of responsibility and reliance on arrangers leads to information asymmetries among syndicate members (Pichler and Wilhelm, 2001; Lee and Mullineaux, 2004; Jones et al., 2005; Sufi, 2007; Bharath et al., 2010; Ivashina, 2009; Focarelli et al. 2008).

One strand of the literature investigates the implications of information asymmetries among lenders on the structure of loan syndicates and possible moral hazard and opportunistic behaviour consequences (Simons, 1993; Jones et al. 2005; Panyagometh and Roberts, 2002; and Sufi, 2007). These studies conclude that arranger opportunistic behaviour is non-existent. Arrangers are found to hold larger proportions\(^1\) of low quality loans granted to borrowers that require more monitoring.

Another strand of the literature looks at the effects of such information asymmetries on loan pricing (Ivashina, 2009; Focarelli et al., 2008 and Bharath et al., 2010). These studies find that when arrangers retain a higher proportion of a syndication, participants view borrowers as less risky and the loans carry lower prices. To measure information asymmetries the aforementioned studies use the size of the syndicate or the share of the loan held by the arranger. These indirect proxies, however, fail to capture the participant banks’ information set about the borrower. In the case of repetitive lending, participants will not solely rely on

\(^1\) A larger share of the loan retained by the arranger increases the latter’s “skin in the game” and is often viewed as a mechanism to alleviate arranger moral hazard.
information passed on by the arranger but will consider their own information set too. As a consequence we suggest that direct measure of participant banks’ past relationships with borrowers provides a better indicator of syndication information asymmetries than the aforementioned indirect proxies.

Syndicate composition and structure has a major influence on loan pricing (Harjoto et. al., 2006; Sufi, 2007; Focarelli et al., 2008 and Ivashina, 2009). In a bilateral loan the price is determined by a single lender depending on its information set about the riskiness of the borrower and the loan terms. In lending syndicates the price of the loan is determined by negotiations between the arranger and the participant banks. Based on the aforementioned literature, it is reasonable to expect that information asymmetries between arrangers and participants would be reflected in loan prices. On the one hand, participant banks might require an extra risk premium at the initial pricing stage if they have less information than the arranger on the credit quality of the prospective borrower. On the other hand, participant banks may demand higher prices to hedge against any possibility of ex-post arranger moral hazard in monitoring activities.

In this paper we examine the effects of information asymmetries among lenders on syndicated loan prices using direct measures of the arrangers’ and participants’ information sets about the borrower. Specifically, we measure the past relationship of each participant and arranger separately by using the previous number of borrowing/lending interactions as well as the duration of these relationships. This enables us to compare the information set of the syndicate participants with that of the arranger for each transaction. Subsequently we use these measures to investigate the impact of past lending relationships (between arrangers, participants and borrowers) as well as syndicate information asymmetries on syndicated loan pricing.

Using a sample of 5,842 syndicated loan transactions, we find that when participant banks have information inferiority in the syndicate, they require higher returns for the increased risk (arising from the asymmetries). This is amplified when the borrowers are more opaque.2 The availability of a borrower credit rating significantly reduces information asymmetries among syndicate members. We also provide evidence that the presence of reputable arrangers

2 Defined as either not having a credit rating or accessing the syndicated loan market for the first time See Section 4.2.
leads to lower prices only for those borrowers with fewer asymmetric information problems. For opaque borrowers, mandating a reputable arranger facilitates access to the syndicated loan market but does not lower the cost of borrowing.

The rest of the paper is structured as follows: The following section provides a brief literature review on arranger moral hazard and pricing also noting the influence of arranger bank reputation. Section 3 details the data, methodology and variables. In Section 4 we present the results and Section 5 concludes.

2. MORAL HAZARD, REPUTATION AND LOAN PRICING

The literature on financial intermediation explains the nature and purpose of banking in terms of the bank’s capacity to mitigate asymmetric information. In this respect, banks are quite distinct compared to other “arm’s lengths” lenders and providers of direct finance. Established literature (see for example Petersen and Rajan, 1994; Berger and Udell, 1995; Bhattacharya and Thakor, 1993; Boot, 2000) suggests that relationship banking, involving repeat lending to the same borrower, helps to reduce information asymmetries and lowers loan prices.

Asymmetric information has two facets in loan syndications. Firstly, there are information asymmetries between the group of lenders and the borrower. Secondly, there are information asymmetries among the arranger and participant banks. The arranger is likely to have more proprietary information about the borrower than participants, either because it has experience in lending to the particular borrower/sector, or because it is the borrower’s relationship bank. Information asymmetries among the syndicate members may arise before and after loan signing. At the initial pricing phase the participant banks depend on the arranger to evaluate the riskiness of the borrower. Here there is a first type of moral hazard problem. As the lead bank is likely to know more about the borrower, it may be tempted to retain lower shares of riskier loans, syndicating a higher proportion to less informed participants and collecting syndication fees upfront. Subsequently, once the loan is extended participant banks rely on arranger banks’ to monitor the performance of the borrower. Delegation of monitoring to the arranger leads to the second type of moral hazard as the arranger bears all the costs attached to the monitoring activity but shares only part of the benefits from engaging in a relationship.
Several studies (Simons, 1993, Jones et al. 2005, Panyagometh and Roberts, 2002 and Sufi, 2007) have examined the role of arrangers and potential opportunistic behaviour. Simons (1993) and Jones et al. (2005) find that arrangers typically retain larger shares of loans if borrower credit ratings are lower. Panyagometh and Roberts (2002) also find that arrangers do not take advantage of information asymmetries and hold larger loan shares when company credit ratings are subsequently downgraded. Sufi (2007) confirms that when borrowers require high levels of monitoring, lending syndicates tend to be more concentrated and the lead bank retains a higher share of the loan. In summary, there is a consensus in the literature that arranger banks do not appear to exploit their information advantages and the share of the loan held by the arrangers actually acts as a signal of their commitment to efficiently monitor the borrower.

One factor limiting arranger moral hazard is the arranger’s reputation. As the arrangers are responsible for due diligence, allocation of the loan to other syndicate members, and ex post monitoring, banks in the syndicate will often rely on the lead bank’s reputation in making lending decisions (Ross, 2010). Since the arranger and participants are repeat players in the loan syndication market, if the lead arranger shirks in its due diligence and monitoring activities, it faces a credible threat of loss of reputation and future income (Pichler and Wilhelm, 2001). Investment and commercial banks engaged in an arranger role have to build trust with potential participants, on pain of foregoing substantial fee income from subsequent syndicated loan arranging activities3. More reputable arrangers, who are well known and experienced in the syndicated loan market, have greater ability to overcome moral hazard problems (Sufi, 2007; Ivashina, 2009)4,5

Although there is a body of literature investigating the implications of lender information asymmetries on the structure of loan syndicates, so far only a few studies have explored the

3 Thomson Financial reports that the fee income from global debt underwriting activities (including bond and loans) amounted to $6.6 billion in 2007 and two thirds of this was earned by the top 10 arrangers.
4 Gopalan et al. (2007) and Gatti et al. (2008) point out that reputable and experienced lenders can enhance monitoring and this attracts participants.
5 From a borrowers’ perspective, the reputation of the arranger bank is also an important factor in the success of syndication. Dennis and Mullineaux (2000), Lee and Mullineaux (2001) and Panyagometh and Roberts (2002) examine the influence of arranger’s reputation on the success of loan syndications. They find that reputable arrangers generally have a wider network of contacts compared to their less reputable counterparts. Ceteris paribus, they are better placed to establish a wider, more geographically diverse range of participants when setting up a syndicate. Moreover, these studies also suggest that borrowers incur lower interest spreads if they mandate a reputable arranger.
effect of such information asymmetries directly on loan prices. Focarelli et al. (2008) test whether syndicated loans, where a larger share of the facility is retained by the arranger (signalling arranger commitment) have lower prices. Controlling for various factors, they find that loans where arrangers’ retain a higher proportion are judged as less risky and hence have lower prices. Ivashina (2009) finds that information asymmetry within a lending syndicate and the cost of borrowing can be reduced by increasing the share of the loan retained by the lead arranger. Bharath et al.’s (2010) work is a rare attempt to quantify information asymmetries among syndicate members. They use observed syndicate structure to proxy for information asymmetries among syndicate members. Specifically they utilize three main proxies: the loan share retained by the arranger(s), the size of the syndicate (number of lenders involved) and the concentration of holdings by syndicate members. A compact syndicate structure with a small number of participants is expected to entail lower information asymmetries between participants and the arranger. Arrangers also signal their commitment by holding a larger share of the loan. Bharath et al. (2010) conclude that past relationships can mitigate syndicate moral hazard issues by serving as a commitment to monitor and this leads to lower costs for the borrower.

A shortfall of the abovementioned literature is the reliance on indirect proxies to measure information asymmetries. These measures (typically, loan share retained by arrangers and features of the syndicate structure) fail to directly capture the participant banks’ information set about the borrower. The following section describes the direct measures we use to gauge previous lending relationships and syndicate information asymmetries, and is followed by the pricing model and sample description.

3. METHODOLOGY and DATA

Following the loan pricing literature (such as Agbanzo et al., 1999, Carey and Nini, 2007 and Ivashina, 2009) we rely on a linear model that explains loan price as a function of information asymmetries among lenders, existence of previous lending relationships, arranger reputation and a number of control factors in relation to loan terms, borrower characteristics and the macroeconomic environment. Prior to introducing the models we explain the

They find that relationship banking is more valuable (and therefore yields lower spreads) when information asymmetries are higher between the borrower and lenders and also among the syndicate members.
construction of the variables used to measure previous lending relationships and information asymmetries among syndicate members.

3.1 Previous lending relationship measures

Following Boot (2002) we measure previous lending relationships according to the number of (bank-borrower) interactions and time \(^7\). Firstly, there might be multiple interactions where the creditor and the borrower engage in lending/repayment cycles several times. As the interaction increases between the counterparties through engagement of successive lending/repayment cycles, the bank’s extraction of proprietary information may be amplified. Hence we use repetitive lending – the number of loans contracted between the same lender and borrower before the present loan – as the first proxy for defining the extent of the relationship between the bank and the borrower. Secondly, a longer period of interaction between the borrower and the lender (independent of the number of lending/repayment cycles) may lead to a lessening of information asymmetries over time and strengthens the relationship. Thus we use length of the relationship as a second parameter for capturing the intensity of the relationship \(^8\).

We measure repetitive lending and length of the relationship separately for both arrangers and participants to gauge the impact of these factors on pricing. In general, arrangers are assumed to be the relationship banker of the borrower and participant banks mostly rely on the arranger bank for proprietary customer information. This might be the case when the participant joins a syndicate for a specific borrower for the first time. However, the participant bank will become more familiar with the same borrower in case of repetitive lending and over time information asymmetries will diminish. Thus, in subsequent syndications for the same borrower, the participants are likely to rely on arrangers to a lesser extent. In summary, both participants and arrangers will develop their own relationships and

\(^7\) The term relationship banking is not sharply defined in the literature, apart from references to “close bank relationships” (Boot, 2000). A typical feature relates to obtaining customer-specific (soft and hard) information that is not readily available public information. In syndicated lending participant banks’ ability to form “close banking relationships” may be limited. As proxy measures, we focus on the number and cumulative duration of previous bank-borrower relationships. In the remainder of the paper we choose to use the term ‘repeat lending’ rather than relationship lending as this better explains past interactions between arrangers, participants and borrowers in a syndicated loan format, although we recognise that more repetitive lending activity implies stronger relationships.

\(^8\) Due to data restrictions both of these measures are calculated from 1993 onwards. Dealings prior to 1993 as well as dealings outside of the syndicated loan market are not considered.
will have their own information sets about the borrower as well as dealings outside the syndicated loan market.

We calculate these repeat lending variables for both arrangers and participants as follows:

1. **Arrangers’ repetitive lending (ArrRepeat)** is the average number of loans that each arranger has previously arranged for the borrower before the present loan between 1993 and 2006\(^\text{10}\).

2. **Arrangers’ length of relationship (ArrLenght)** is the average of all arrangers’ length of relationships (measured in years) from the time when they first engaged in a syndicated loan transaction with a specific borrower up to the present loan between 1993 and 2006\(^\text{11}\).

3. **Participants’ repetitive lending (PartRepeat)** is an average of all syndicate participants’ previous participations in syndications for the borrower weighted by their amount of participation in the current loan\(^\text{12}\). As participants contribute to the loan disproportionately, by using a weighted average we control for the importance given to the loan by a specific participant’s previous relationship with the borrower\(^\text{13}\).

4. **Participants’ length of relationship (PartLenght)** is an average of all participants’ length of relationship from the time when they first engaged in a syndicated loan

\(^9\) Additionally we employ an alternative simpler relationship variable, \textit{Rel dummy}, a dummy variable taking the value of 1 if either arrangers or participants have a past relationship with the borrower (acting as arrangers or participants, respectively) and 0 otherwise. Ivashina (2009) also controls for relationship lending, but only for the arrangers’ relationship with a dummy variable.

\(^10\) For instance, if a loan syndicate is managed by two arrangers with 2 and 4 previous transactions with the borrower then ArrRepeat will be 3 for the current loan syndicate’s arrangers.

\(^11\) For instance, in a loan syndicate with two arrangers, if an arranger has known the borrower for 5 years and the other for 6 then ArrLenght will be 5.5.

\(^12\) Ideally this measure can be calculated more precisely by integrating the amount of the past loans to the borrower since the lender will be paying more attention to the borrower if it contributes larger amounts. However more data on the bank side is needed to calculate this complicated proxy as the amount of the loans should be weighted with the total assets (or total loans) of the bank to gauge the real importance of the loan to the bank. However, considering that participant banks contribute to syndicated loans more or less in similar amounts such a measure is unlikely to yield different results. Also, our alternative repetitive lending measures, length of relationships and number of past lending arrangements are highly correlated, and this is likely to be the same for alternative relationship measures such as total past loans to borrower and the share of total loans to individual bank’s balance sheets.

\(^13\) For instance, assume that a loan syndicate has two participant banks (excluding the arrangers) with a record of 2 and 4 previous transactions with the borrower. They contribute to the loan at 60% and 40% respectively (as a percentage of participants shares only, excluding the arrangers share). In this case PartRepeat would be calculated as \((0.60 \times 2) + (0.40 \times 4)\) equalling 2.8.
transaction with the borrower. Once again we use values weighted by participant contributions\(^{14}\).

3.2 Measures for information asymmetry among arrangers and participants

To capture the effect of information asymmetries among arranger and participant banks we introduce the *difference in the number of previous lending relationships* (DiffRepeat) and the *number of participant per arranger* (PartPerArr). DiffRepeat is equal to ArrRepeat divided by PartRepeat. A greater DiffRepeat ratio signals an information superiority of the arrangers over participants. PartPerArr equals the number of participants divided by the number of arrangers organising the syndicate. A larger amount of arrangers per participant reflects the possibility of a more intensive information exchange between the arrangers and participants. Moreover, as arrangers mostly undertake monitoring activities, a larger number of arrangers would lower debtor moral hazard, which should be reflected in lower credit risk for participants and therefore lower loan pricing.

3.3 Two stage estimation methodology

We utilize a two-stage estimation methodology to take into account the simultaneity effects between loan price and arrangers’ loan retention. Ivashina (2009) points out that the lead bank share and loan price are simultaneously determined as a result of the interaction between participants’ demands and the lead bank’s demand. Participants may demand a lower price if the arranger retains a larger share, because in such cases, the arranger has more incentives to perform monitoring duties. On the other hand, the arranger sets the loan price depending on its own retained share, and the latter has implications for its own credit-risk exposure and diversification of its loan portfolio. As in Ivashina (2009) to overcome simultaneity effects we estimate a two-stage least squares model. At the first stage we estimate arrangers’ share retention by using control variables to reflect the borrower’s credit risk as well as the risk of the specific loan. The following model is estimated:

\[
\% h = + \sum \sum x + \sum \sum x + \sum x + \sum x + \sum x + \sum x
\]

\(^{14}\) For instance, assume that a loan syndicate has two participant banks (excluding the arrangers) which have known the borrower for 1 and 5 years respectively. If the participants contribute to the loan at 60% and 40% respectively (as a percentage of participants shares only, excluding the arrangers share), then PartLenght would be calculated as \((0.60 \times 1) + (0.40 \times 5)\) equalling 2.6.
Variables are described below:

- **% arrshare** is the portion of the syndicated loan retained by the arranger divided by the total loan size.

- **Firstime** is a dummy variable that identifies first time borrowers in the syndicated loan market and takes the value 1 if the borrower taps the market for the first time and 0 otherwise. The lack of familiarity of market participants with a new borrower, requiring intensive monitoring, signals potentially higher information asymmetries and may have an impact on loan price\(^{15}\).

- To control for loan terms we utilize: **loan size, maturity, presence of guarantees** and **presence of collateral**.
 - **Log loan size** is the natural logarithm of the syndicated loan’s size expressed in USD millions
 - **Maturity** is the duration of the loan in years.
 - **Guarantee** is a dummy variable taking the value of 1 if the loan is guaranteed and 0 otherwise. The loan is guaranteed by a third party in the event that the borrower defaults.
 - **Collateral** is a dummy variable taking the value of 1 if there are any properties or assets pledged to secure the loan and 0 otherwise. Collateral becomes subject to seizure on default.

- **Loan purpose** is a set of dummy variables depending on the purpose of the loan classified as general corporate use, capital structure, project finance, transport finance, corporate control and property finance.

- **Instrument type** is a set of dummy variables depending on the type of the deal classified as term loan, revolving credit, standby facility, evergreen facility, note issuance facility, mezzanine loans and multiple option facility.

- **Borrower credit rating** is a set of dummy variables reflecting the credit rating (AAA, AA, A, BBB, BB, BB, CCC, CC, C or not rated) of the borrower issued by the credit agencies (Moody, S&P or Fitch) at the time of the issuance.

\(^{15}\) Due to data restrictions firms entered the market prior 1993 cannot be detected. Any firm appearing on the database after 1993 for the first time is marked as a first time borrower.
• *Business sector* is a set of dummy variables depending on the business of the borrower which is classified as contraction and property, high-tech industry, infrastructure, population related services, state, manufacturing and transport.

• *Market of issuance* are proxied with two dummy variables for loans issued in the US or European financial markets.

• *Year* dummy variables (1993 to 2006) are used to control for macroeconomic environment.

The main model is estimated in the second stage by using computed arranger shares derived from first stage estimates in equation (1):

\[
\begin{align*}
\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \sum \sum \beta_i x_{ij} + \sum \beta_j x_{jk} + \sum \beta_k x_{kl} + \sum \beta_l x_{lm} +
\end{align*}
\]

(2)

where,

• *Loan price* is measured as basis points spread over LIBOR. Like Bharath et al. (2010), Ivashina (2009) and Sufi (2007) we use the all-in drawn spread (AISD) which measures the interest rate spread plus any associated fees in originating the loan. Thus, AISD is an all-inclusive measure of loan price.

• *ArrRepeat, ArrLenght, PartRepeat* and *PartLenght* are the previous lending relationship indicators that are explained in detail in section 3.1 above.

• *DiffRepeat* and *PartPerArr* are the proxies, described in section 3.2 above, that capture the level of information asymmetries among syndicate members.

• *Arranger share* is the estimated share retention of the arranger from equation 1.
• **ArrReputation**, takes the value of 1 if the arranger bank is declared as a top 10 arranger (in terms of number of deals) by the Thomson Reuters Financial League tables between 1993 and 2006, and 0 otherwise.\(^{16}\)

• Additionally we employ a simple alternative relationship variable, **Rel_dummy**, that represents any interaction between the lending syndicate and the borrower. **Rel_dummy** is a dummy variable taking the value of 1 if either arrangers or participants have a past relationship with the borrower and 0 otherwise.

Control variables for *loan terms, loan purpose, instrument type, borrower credit rating, borrower sector, market of issuance, year and firstime* are the same as described above in the first-stage model.

3.4 Data

We obtained our data from Loanware, a commercial database that contains detailed information on syndicated loan contracts. Information is provided on the loan terms (such as maturity, loan size, collateral, covenants) and identification of the borrower, lead arrangers, and participant lenders. Although the database reports over 112,000 syndicated loans issued globally between 1993 and 2006, variables that are central for the analysis are only partially available. Specifically the names of the lead arranger and participant lenders are not present for each loan. Furthermore the distribution of shares retained by lead arranger and participant banks is only available for a fraction of the loans. We also exclude those loans where there are no participants other than the arrangers themselves.\(^{17}\) The final sample includes 5,842 syndicated loans facilities granted to non-financial firms between 1993 and 2006.

3.5 Descriptive Statistics

Table 1 presents the summary statistics for the basic loan characteristics of the sample. The average number of arrangers is 3.3 institutions per syndicate and a typical syndicated loan has an average of 13.6 providers. On average the arrangers retain around 40 per cent of the loan and this share increases to 43 per cent if the firm does not have a credit rating.\(^{18}\) In other

\(^{16}\) We also used an alternative proxy to measure arranger reputation where we assigned the top ten arrangers with highest activity in terms of number of deals and total volume. This yielded similar results and so is no reported here. Results are available from the authors on request.

\(^{17}\) In some syndicated loans arrangers are the only participants. In such cases there is no asymmetric information among arrangers and participants.

\(^{18}\) Mean difference tests show that the difference is statistically significant.
words, arrangers’ commitment increases as asymmetric information between the group of lenders and the borrower widens. The average size of a typical syndicated loan is $396 million. The average maturity and spread amounts to 3.6 years and 116 basis points over LIBOR, respectively.

Table 2 displays descriptive statistics and correlations relating to the repeat lending measures. On average participants banks have a longer borrower relationship than arrangers - both in terms of the number of past transactions and duration of the relationships (Panel A). DiffRepeat, reflecting the difference in the level of asymmetric information between the arranger and participant banks, has a mean value of 0.95. The mean and median DiffRepeat values suggest that on average the previous lending relationship experience of the arranger and participants are similar. A visual inspection of the data reveals where this finding stems from. Arrangers tend to work with the same participant banks when they are extending new loans, or rolling over deals to existing borrowers. In other words the loan syndication structure in terms of participants changes only slightly when the same borrower taps the market. However this is not the case for all transactions in our sample. As the minimum and maximum figures suggest, in some transactions there are large information asymmetries among syndicate participants.

To observe the level of information asymmetries further, in Table 2 Panel B we provide a frequency distribution of the ArrRepeat differences between the arrangers and participants for each loan transaction. We observe that in 71 per cent (54.2 per cent + 16.8 per cent) of the loan deals ArrRepeat differences are not more than 0.5 times. In other words, none of the parties (either arrangers or participants) have a significantly higher previous lending relationship with the borrower. However, in the remaining 29 per cent of the deals one of the parties has information advantage over the other. This corresponds to 1,693 syndicated loan deals in our sample. Specifically, in 677 (or 12 per cent) of these deals one of the parties has no previous relationship with the borrower while the other party has dealt with the borrower at least once. Therefore, although in the majority of transactions we observe similar syndicate members displaying minimal information asymmetries, in around one third of all deals there may be significant asymmetries affecting spreads.

Finally, we examine the association between our relationship variables through correlation analysis (presented in Table 2 Panel C). Coefficients show that our alternative relationship
variables for arrangers and participants are highly correlated. This has implications for our analysis. Firstly, it does not make a difference if we measure repeat lending either by the number of interactions or length of time of the lending relationships. Secondly, as arrangers and borrowers mainly work together in successive deals the value of their relationship variables (both repetition and length) are similar. Due to multicollinearity issues therefore we can only employ one of these variables at a time in the regressions, the findings of which are presented in the following section.

[Insert Table 1 and Table 2 about here]

4. RESULTS

4.1 Whole sample
In Table 3 we report the coefficient estimates from the second stage of the two stage estimations.19,20 The estimates are presented in six columns employing the key independent variables alone (Columns I – IV) or simultaneously (Columns V and VI)21. The signs and significance of the variables are consistent in all models. Arr\textit{Repeat} is found to be negative and statistically significant22. As the interaction increases between syndicate members and the borrower through the engagement of successive lending/repayment cycles, banks’ extraction of proprietary information amplifies and the subsequent reduction in information asymmetries reduces risk and therefore loan prices. The negative sign on the alternative Rel_dummy variable also confirms our findings that also coincide with Bharath et al. (2010) and Ivashina (2009).

[Insert Table 3 about here]

19 Results of the first stage regressions estimating arranger share are available upon request.

20 We briefly report on the control variables utilized. The coefficients are in line with the existing literature on the pricing of syndicated loans. In accordance with Carey and Nini (2007), spreads are lower when the loans are arranged in the European market. Spreads increase with maturity and decrease with the size of the facility. All else equal, externally guaranteed loans carry lower spreads while the presence of collateral tends to be associated with higher interest rates. The latter result, which is commonly observed in the literature, is attributed to the fact that lenders demand (and obtain) collateral pledges only from those borrowers that pose the higher risk. We find that the proxies for overall market conditions do not have a significant effect in the pricing regression. It appears that the year dummy variables account for most of the systematic variation in the spreads.

21 Control variables are not reported.

22 As noted before, due to complications of multicollinearity, we only use one relationship variable which is Arr\textit{Repeat}. In untabulated regressions we observe similar results for other relationship variables (Arr\textit{Lenght}, Part\textit{Repeat} and Part\textit{Lenght}) described above.
Two variables employed to signal the possible information asymmetries among arrangers and participant banks are \textit{DiffRepeat} and \textit{PartPerArr}. We report a significant and a positive coefficient for \textit{DiffRepeat}. Arrangers’ information advantage over participants, gained through previous lending relationships with the prospective borrower leads to higher spreads. In other words, if participant banks have information inferiority in the syndicate, they demand a higher spread due to asymmetries between them and the borrower. This finding may have several interpretations. Firstly, it is noticeable that participants have a tendency to demand higher spreads for the increased risk that arises from information asymmetries when arrangers have information superiority. Secondly, participants seem to be aware of moral hazard (in the form of insufficient monitoring by the arrangers) and therefore require a higher spread for the risk involved. Finally, our results demonstrate the bargaining power of participant banks on the pricing of syndicated loans. Participants have the ability to influence pricing depending on their own information set about the borrower.

We also find that \textit{PartPerArr} is positive indicating that loan spreads increase when the number of participants per arranger increases. The flow of information between the arrangers and participants during the formation stage of the syndicate is potentially limited since the arranger(s) need to market the loan to a larger group of participants. Potential information asymmetries observed in such syndicates are higher and participants attempt to compensate for such asymmetries by demanding higher spreads.

\textbf{4.2 Opaque borrowers}

We further examine the impact of asymmetric information on the cost of borrowing for opaque borrowers. Firstly, we include into the main regression a dummy variable to indicate first-time borrowers (Table 3, Model VI). A higher degree of information asymmetry is expected for new firms in the debt market and for firms which do not have a credit rating. Arguably, for such borrowers information asymmetries between arranger and syndicate members can be high. Therefore, arranger moral hazard is more likely to occur. The coefficient and sign of this variable indicates that a new borrower tapping the market pays higher spreads.

[Insert Table 4 about here]
Secondly, we divide our sample into two groups of firms with and without credit ratings (Table 4). The results reveal that the impact of \(\text{ArrRepeat} \) and \(\text{DiffRepeat} \) on loan spreads is significantly higher for borrowers without a credit rating: both variables display significantly higher coefficients when compared to the whole sample (in Model VI, Table 3). It appears that borrowers that potentially have higher information asymmetries benefit more from previous repeat lending in terms of lower spreads. Besides, the magnitude of information set differences between arrangers and participants has a stronger effect on spreads when the borrower does not have a credit rating. In such cases if the arrangers have information superiority about the borrower then participant banks anticipate higher arranger moral hazard and, therefore, demand higher spreads. For borrowers with a credit rating both \(\text{ArrRepeat} \) and \(\text{DiffRepeat} \) are insignificant. The availability of credit ratings significantly reduces information asymmetries and the impact of information set differences among arrangers and participants on spreads. In Table 4 we also present results for those observations where there are minimal information asymmetries among lenders. This subsample consists of observations where \(\text{DiffRepeat} \) is equal to 0. In these cases \(\text{ArrRepeat} \) loses its significance. This may be due to the fact that there are a lot of first time borrowers in the restricted sample with no previous relationship banking with the lending syndicate.

4.3 Arranger reputation and loan retention

Another interesting finding is the relation between arranger reputation and loan spreads. Sufi (2007) argues that reputation can mitigate, but not completely eliminate, problems of asymmetry. Arrangers refrain from opportunistic behaviour to protect their reputation and to secure future business from both lenders and borrowers. The literature (Dennis and Mullineaux, 2000; Lee and Mullineaux, 2001; Panyagometh and Roberts, 2002) also reports that arranger reputation leads to lower spreads for borrowers. Here we provide evidence that partially supports this argument. We find \(\text{ArrReputation} \) to be statistically significant only for borrowers with a credit rating. For less opaque borrowers, an experienced and well known arranger has an impact on the pricing and lowers spreads. Perhaps participants have more confidence on reputable arrangers’ monitoring skills and do not anticipate arranger moral hazard. Hence they agree to lower spreads. Reputation effects on pricing are not significant for opaque borrowers. Mandating a reputable arranger certainly facilitates opaque firms’ access to funds in the syndicated loan market but does not benefit them in terms of lowering borrowing costs.
Theory predicts that asymmetric information will cause participants to demand higher spreads and greater loan retention by lead/arranger banks should reduce this effect (Ivashina, 2009). Like Bharath et al. (2010) and Ivashina (2009) we find a negative relationship between the share of the loan retained by the arranger and the spread (Table 3). Greater loan retention reduces participant banks’ anticipation of arranger moral hazard, as the arranger is expected to put the optimum effort into monitoring the borrower. However, this does not seem to be the case for opaque borrowers (Table 4). For borrowers without a credit rating we report a positive relationship between the share held by the arranger and the spread. This finding reflects the fact that we are unable to control for the borrowers’ default risk in these models through credit ratings. In fact the results capture the default risk effects of the borrowers’ on spreads. Arrangers keep a higher share of risky loans and this is more likely for opaque borrowers (Panyagometh and Roberts, 2002 and Sufi, 2007). In our sample the average share retained by the arranger is 37% for borrowers with a credit rating and 43% for borrowers without a rating.

Overall, the certification effect of obtaining a credit rating provides an alternative market test for borrower’s credit standing and places credit risk in a quantifiable band for creditors’ assessment. On the other hand, for unrated borrowers there remains greater uncertainty. The certification effect of the credit rating together with arrangers’ reputation is strong enough to lower spreads, whereas, the arranger reputation by itself does not guarantee lower spreads. This is consistent with findings in the extant literature that information asymmetries are not necessarily lowered just by reputation even if arrangers hold larger shares of unrated issues.

5. CONCLUSION

Recent studies have examined the moral hazard and opportunistic behaviour by arrangers in loan syndications. Although these studies do explain the influence of asymmetric information on the structure and formation of the lending syndicates, they often do not use direct indicators of the lenders’ knowledge about the borrower. Rather, they rely on indirect indicators for arrangers’ and participants’ information sets that are contingent on syndicate size and arranger behaviour. In this paper we use alternative (direct) indicators for gauging information asymmetries among the members of lending syndicates. In particular we measure the relationship of each participant and arranger separately by using the previous
number of borrowing/lending interactions and duration of these interactions with the borrower.

We find that when participant banks have information inferiority in the syndicate, higher spreads are charged. This is amplified when the borrowers are more opaque. Our results imply that participants with information inferiority consider possible arranger moral hazard in monitoring and therefore require higher spreads. The availability of borrower credit ratings significantly reduces information asymmetries and nullifies the impact of information set differences among arrangers and participants. Rated borrowers are also less likely to benefit from relationship banking in terms of the cost of borrowing. One other significant finding is the link between arranger reputation and loan spreads. We provide evidence that the presence of reputable arrangers leads to lower spreads but only for those borrowers with potentially fewer asymmetric information problems. All in all, our results suggest that there are complex interactions between borrower ratings, arranger reputation and share retention in mitigating information asymmetries in the syndicated lending business.
Table 1
Summary statistics of basic loan characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Arrangers</td>
<td>3.3</td>
<td>2</td>
</tr>
<tr>
<td>Number of Providers</td>
<td>13.6</td>
<td>11</td>
</tr>
<tr>
<td>Arranger share – all firms</td>
<td>40.4</td>
<td>36.0</td>
</tr>
<tr>
<td>– firms with credit rating</td>
<td>37.0</td>
<td>31.5</td>
</tr>
<tr>
<td>– firms without credit rating</td>
<td>42.8</td>
<td>40.0</td>
</tr>
<tr>
<td>All-drawn spread over LIBOR (basis points)</td>
<td>116</td>
<td>85</td>
</tr>
<tr>
<td>Amount (USD million)</td>
<td>396</td>
<td>150</td>
</tr>
<tr>
<td>Maturity (years)</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5842</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Summary statistics and correlations between repeat lending variables

ArrRepeat is an average of all arrangers’ previous lending arrangements with the borrower. For instance, if a loan syndicate is managed by two arrangers with 2 and 4 previous transaction record with the borrower then ArrRepeat will be 3 for the current loan syndicate’s arrangers. ArrLength is measured by years, this proxy is the average of all arrangers’ length of relationship from the time when they engage in first syndicated loan transaction with the borrower. For instance, in a loan syndicate with two arrangers, if an arranger has known the borrower for 5 years and the other for 6 then ArrLength will be 5.5. PartRepeat is an average of all syndicate participants’ previous lending arrangements with the borrower, weighted by their amount of participation to the current loan. PartLength is an average of all participants’ length of relationship from the time when they engage in first syndicated loan transaction with the borrower (weighted by participant contributions).

Panel A

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrRepeat</td>
<td>0.66</td>
<td>0.37</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>PartRepeat</td>
<td>0.83</td>
<td>0.80</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>ArrLength</td>
<td>0.87</td>
<td>0.26</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>PartLength</td>
<td>1.28</td>
<td>0.89</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>DiffRepeat</td>
<td>0.95</td>
<td>1.00</td>
<td>0.43</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Panel B: Frequency distribution of ArrRepeat differences between the arrangers and participants (in absolute value)

<table>
<thead>
<tr>
<th>Range</th>
<th>Frequency</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 0.25</td>
<td>3,165</td>
<td>54.2%</td>
</tr>
<tr>
<td>0.26 - 0.50</td>
<td>984</td>
<td>16.8%</td>
</tr>
<tr>
<td>0.51 - 0.75</td>
<td>493</td>
<td>8.4%</td>
</tr>
<tr>
<td>0.76 - 1.00</td>
<td>609</td>
<td>10.4%</td>
</tr>
<tr>
<td>1.01 - 2.00</td>
<td>497</td>
<td>8.5%</td>
</tr>
<tr>
<td>2.01 - 3.00</td>
<td>76</td>
<td>1.3%</td>
</tr>
<tr>
<td>3.01 - 4.00</td>
<td>18</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total</td>
<td>5,842</td>
<td>100%</td>
</tr>
</tbody>
</table>

Panel C: Correlations

<table>
<thead>
<tr>
<th></th>
<th>ArrRepeat</th>
<th>ArrLength</th>
<th>PartRepeat</th>
<th>PartLength</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrRepeat</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArrLength</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PartRepeat</td>
<td>0.84</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>PartLength</td>
<td>0.53</td>
<td>0.82</td>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Number of observations 5,842

* All coefficients are significant at 1% level.
Table 3
Determinants of loan spread – asymmetric information effect among lending syndicate

<table>
<thead>
<tr>
<th>Independent Variable: Loan Price (All-in drawn spread, basis points over LIBOR)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrRepeat is an average of all arrangers’ previous lending arrangements with the borrower. For instance, if a loan syndicate is managed by two arrangers with 2 and 4 previous transaction record with the borrower then ArrRepeat will be 3 for the current loan syndicate’s arrangers. Rel_dummy is a dummy variable taking the value of 1 if either arrangers or participants have a past relationship with the borrower and 0 otherwise. DiffRepeat is equal to ArrRepeat divided by PartRepeat (PartRepeat is an average of all syndicate participants’ previous lending arrangements with the borrower, weighted by their amount of participation to the current loan). PartPerArr equals to the number of participants divided by the number of arrangers organising the syndicate. Firstime is a dummy variable that identifies the first time borrowers in the syndicated loan market is also employed. ArrReputation, takes the value of 1 if the arranger bank is declared as top 10 arrangers (in terms of number of deals) by Thomson Financial League tables between 1993 and 2006 and 0 otherwise. ArrShare is the arrangers’ loan retention. It is estimated at the first stage regression by using control variables reflecting the credit risk of the borrower and the specific loan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>ArrRepeat †</td>
<td>-13.88**</td>
<td>-23.37***</td>
<td>-17.59***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.66)</td>
<td>(4.38)</td>
<td>(4.92)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel_dummy</td>
<td>-9.92***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiffRepeat †</td>
<td>8.78*</td>
<td>24.44***</td>
<td>19.03***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.35)</td>
<td>(6.39)</td>
<td>(6.69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PartPerArr ‡</td>
<td>4.29***</td>
<td>4.16***</td>
<td>3.48***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.65)</td>
<td>(1.61)</td>
<td>(1.61)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firstime</td>
<td>6.78**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArrReputation</td>
<td></td>
<td>-7.47***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.49)</td>
<td>(9.52)</td>
<td>(8.85)</td>
<td>(9.61)</td>
<td>(9.30)</td>
<td></td>
</tr>
<tr>
<td>Control Variables ‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Log loan size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Presence of guarantees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Presence of collateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Market of issuance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Instrument type – term loan, revolving credit, standby facility, evergreen facility, not issuance facility, mezzanine loans and multiple option facility.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Loan purpose – general corporate use, capital structure, project finance, transport finance, corporate control and property finance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Business Sector – contraction and property, high-tech industry, infrastructure, population related services, state, manufacturing and transport.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Year fixed effects – 1993 to 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations: 5,842 in all models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>43%</td>
<td>43%</td>
<td>42%</td>
<td>42%</td>
<td>43%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are reported in parenthesis.
***, ** and * represents significance levels at 1%, 5% and 10%, respectively
† Log form is used.
‡ Coefficients are not reported and available upon request
Table 4
Determinants of loan spread – various subsamples

Independent Variable: Loan Price (All-in drawn spread, basis points over LIBOR)

ArrRepeat is an average of all arrangers’ previous lending arrangements with the borrower. For instance, if a loan syndicate is managed by two arrangers with 2 and 4 previous transaction record with the borrower then ArrRepeat will be 3 for the current loan syndicate’s arrangers. DiffRepeat is equal to ArrRepeat divided by PartRepeat (PartRepeat is an average of all syndicate participants’ previous lending arrangements with the borrower, weighted by their amount of participation to the current loan). PartPerArr equals to the number of participants divided by the number of arrangers organising the syndicate. Firstime is a dummy variable that identifies the first time borrowers in the syndicated loan market is also employed. ArrReputation, takes the value of 1 if the arranger bank is declared as top 10 arrangers (in terms of number of deals) by Thomson Financial League tables between 1993 and 2006 and 0 otherwise. Arrshare is the arrangers’ loan retention. It is estimated at the first stage regression by using control variables reflecting the credit risk of the borrower and the specific loan.

<table>
<thead>
<tr>
<th></th>
<th>Borrowers without credit rating</th>
<th>Borrowers with credit rating</th>
<th>All firms</th>
<th>Borrowers without credit rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrRepeat†</td>
<td>-32.61***</td>
<td>-2.48</td>
<td>-9.83</td>
<td>-16.09</td>
</tr>
<tr>
<td></td>
<td>(7.60)</td>
<td>(5.71)</td>
<td>(10.78)</td>
<td>(12.99)</td>
</tr>
<tr>
<td>DiffRepeat†</td>
<td>39.03***</td>
<td>-0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.60)</td>
<td>(8.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PartPerArr‡</td>
<td>2.98</td>
<td>2.70</td>
<td>5.88**</td>
<td>6.17**</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td>(2.21)</td>
<td>(2.69)</td>
<td>(3.11)</td>
</tr>
<tr>
<td></td>
<td>(4.21)</td>
<td>(4.26)</td>
<td>(4.44)</td>
<td>(5.39)</td>
</tr>
<tr>
<td>Firstime</td>
<td>3.48</td>
<td>3.53</td>
<td>6.30</td>
<td>7.53</td>
</tr>
<tr>
<td></td>
<td>(4.21)</td>
<td>(4.26)</td>
<td>(4.44)</td>
<td>(5.39)</td>
</tr>
<tr>
<td>ArrReputation</td>
<td>-1.84</td>
<td>-17.92***</td>
<td>-4.02</td>
<td>-5.04</td>
</tr>
<tr>
<td></td>
<td>(3.27)</td>
<td>(3.87)</td>
<td>(3.85)</td>
<td>(4.43)</td>
</tr>
<tr>
<td>ArrShare‡</td>
<td>40.49**</td>
<td>8.27</td>
<td>11.07</td>
<td>57.23**</td>
</tr>
<tr>
<td></td>
<td>(17.07)</td>
<td>(11.77)</td>
<td>(15.64)</td>
<td>(24.76)</td>
</tr>
</tbody>
</table>

Control Variables

Contract characteristics
1. Loan size
2. Maturity
3. Presence of guarantees
4. Presence of collateral
5. Market of issuance
6. Instrument type – term loan, revolving credit, standby facility, evergreen facility, not issuance facility, mezzanine loans and multiple option facility.

Borrower characteristics
8. Loan purpose – general corporate use, capital structure, project finance, transport finance, corporate control and property finance.
9. Business Sector – contraction and property, high-tech industry, infrastructure, population related services, state, manufacturing and transport.

Other variables
10. Year fixed effects – 1993 to 2006

Number of observations: 3,506 2,360 2,430 1,803
R² 36% 59% 42% 37%

Note: Robust standard errors are reported in parenthesis.
***, ** and * represents significance levels at 1%, 5% and 10%, respectively
† Log form is used.
‡ Coefficients not reported and are available upon request
± This subsample consists of observations where DiffRepeat is equal to 0
REFERENCES