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Abstract 

We apply conditional copula models to investigate the dependence structure between returns of 

Australian equity markets and Real Estate Investment Trusts (REITS). The dependence between 

these assets has a significant impact on the diversification potential and risk for a portfolio of multiple 

assets and is therefore of great interest to portfolio managers and investors. We observe significant 

correlations and tail dependence between the considered series indicating a limited diversification 

potential of investments in REITS in Australia. Conducting a backtesting Value-at-Risk analysis, we 

also find that ignoring the complex dependence structure could lead to a significant underestimation 

of the actual risk. 
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1. Introduction 

All over the world, the market for Real Estate Investment Trusts (REITS) has shown substantial 

growth rates within the last decades. REITS were originally a tax design for corporations investing in 

real estate assets in order to reduce or eliminate the corporate income tax. In return, REITS are 

required to distribute 90% of their income, which may be taxable, into the hands of the investors. 

Overall, the REIT structure was designed to provide a similar vehicle for investment in real estate as 

mutual funds provide for investment in stocks. Since investments in real estate assets are quite 

different to those in equity, the correlation between REITS and equity markets and therefore their 

potential for diversification in a portfolio of multiple assets has traditionally been of great interest, see 

e.g. Brueggeman et al (1984), Clayton and MacKinnon (2001) or Chen et al (2004). For example, 

Hudson et al (2003) analyzing the reasons for considering real estate investments, suggest the 

reduction of overall risks of the portfolio as the most prominent one. This paper contributes to the 

literature by investigating the relationship between REITS and equity returns in the Australian market 

using an approach that combines GARCH models with different copula functions for the dependence 

structure. Our analysis focuses on the dependence structure between these assets from a 

diversification and risk management perspective for a portfolio of multiple assets and is therefore of 

great interest to investors or portfolio managers. 

Australia has long been a nation with a strong interest for property investments such that the sector 

has shown substantial growth rates throughout the last decades and has played a major role in 

domestic financial markets. Australian Real Estate Investment Trusts (AREITS) are a unitized 

portfolio of property assets, listed on the Australian stock exchange which allows investors to 

purchase a share in a diversified and professionally managed portfolio of real estate. Currently, the 

sector represents more than 5% of the total market capitalization of the S&P/ASX 200 Index. The 

market is often classified by offering four different types of REITS, see e.g.  Davidson et al (2003): (i) 

equity trusts where the assets are invested in ownerships claims to various types of properties, (ii) 

mortgage trusts where the assets are invested in claims where interest is the main source of income 

like for example mortgages, (iii) hybrid trusts that invest in both equity and mortgages and (iv) 

specialized trusts that invest for example in development and construction or are involved in sale and 

lease-back arrangements.  

As pointed out e.g. by Hartzell et al (1999) REITS returns are typically lower than returns of both 



small and large capitalization stocks. On the other hand, the literature also reports that returns from 

investement in REITS are less volatile than those of equity investments, see e.g. Mueller et al (1994); 

Ghosh et al (1996); Clayton and MacKinnon (2001) just to name a few. This is not really surprising, 

since for AREITS by regulation 95% of the income must be paid out as dividend such that a lower 

volatility of the returns could be expected, see e.g. Tien and Sze (2000).  

Another focus is usually set on investigating the correlation between returns from investments in 

REITS and stock markets, see e.g. Brueggeman et al (1984), Chen and Peiser (1999), Clayton and 

MacKinnon (2001), Hudson et al (2003) or Chen et al (2004). As mentioned above, such an analysis 

helps to determine diversification effects of REITS in portfolios of multiple assets. While earlier 

studies on the topic have shown significant negative correlations between REITS and other assets 

(Brueggeman et al, 1984), more recent studies often report weak but positive correlations between 

investments in REITS and shares (Chen and Peiser, 1999; Hartzell et al, 1999; Clayton and 

MacKinnon, 2001) that still provide some potential for diversification. Chen et al (2004) examine the 

economic significance of including REITS into an investment portfolio, and show that the 

mean-variance frontier can be augmented and the investment opportunity set can be enlarged. 

However, due to changes in the correlation structure, it may be difficult to determine diversification 

effects and constructing the Markowitz optimal portfolio through time. Glascock et al (2000) find 

time-varying correlations and suggest that since structural changes in the early 1990s REITs behave 

more like investment in stocks and less like bonds. Inspired by Engle (2002) and his work on 

Dynamic Conditional Correlation (DCC) models, also the changing nature of the dependence 

between REITS and other investments has been investigated. Huang and Zhong (2006) apply Engle’s 

model for portfolio constructing with REITS, and the authors find that the DCC model outperforms 

other correlation structures such as rolling, historical and constant correlations. Cotter and Stevenson 

(2006) use a VAR-GARCH model to study the daily REIT volatility in the US market, and the same 

methodology is applied in Zhou and Bao (2009) for the examination of cross-correlation between 

types of properties indices in Hong Kong. The studies find strong evidence of multivariate volatilities 

both in the US and Hong Kong market. Finally, Knight et al (2005) comparing UK and global public 

real estate stocks with equivalent general equity market returns find some tail dependence, in 

particular in the lower tail. They conclude that real estate and common equity stocks are more closely 

related when markets produce highly negative returns. 



Recently, there has been some criticism towards the assumptions underlying the DCC model, in 

particular with respect to the assumptions of multivariate normality for the joint distribution of asset 

returns and the use of a covariance matrix as the natural measure of dependence between the assets. 

As shown in various studies, see e.g. Cherubini and Luciano (2001), Jondeau and Rockinger (2006), 

Junker et al (2006), Luciano and Marena (2003) or McNeil (2003), the use of correlation does not 

appropriately describe the dependence structure between financial assets and could lead to inadequate 

measurement of the risk. The authors suggest the application of copula methods for modelling the 

dependence structure of the asset returns in order to overcome this problem. With respect to analysing 

the dependence structure between different financial assets, the methodology of copulas as alternative 

to the DCC model has the advantage that it doesn’t require the assumptions of joint normality for the 

distributions. Instead it allows joining arbitrary marginal distributions into their multivariate 

distribution allowing for a wide range of dependence structures by using different copulas.  

In this paper we apply copula models in order to investigate the dependence structure between returns 

of AREITS and the Australian stock market, represented by the All Ordinaries Index (AOI). Hereby, 

we contribute to the literature in several dimensions. To our best knowledge this is a pioneer study on 

investigating the nonlinear relationship between AREITS and returns of the Australian stock market. 

Further, to our knowledge this is a pioneer study on applying and testing different copula models in 

real estate markets. Finally, we provide a risk analysis comparing copula models to alternative 

approaches including the standard multivariate normal approach and a bivariate GARCH BEKK 

model with respect to risk quantification for a portfolio that combines investments in real estate and 

stock markets.  

The remainder of the paper is set up as follows. Section 2 provides a review of different copula 

models as well as the GARCH BEKK model. Section 3 describes the data while Section 4 provides an 

empirical analysis of the considered models to a time series consisting of an Australian REIT and 

equity index. We further conduct a risk analysis for an exemplary portfolio consisting of investments 

in both Australian equity and real estate markets. Section 4 concludes and provides suggestions for 

future work.  

 

2 Dynamic Correlation and Copula Models 

This section provides a brief review of the approaches that will be used in the empirical analysis to 



examine the dependence structure between the returns of ASX–REITS and the Australian All 

Ordinaries Index (AOI). First we provide a brief overview of copula functions and their application to 

dependence modelling between random variables. Then we review multivariate GARCH models as 

an alternative way to model the time-varying dependence structure between time series. 

 

2.1 Copula Functions and Estimation 

A copula is a function that combines marginal distributions to form a joint multivariate distribution. 

The concept was initially introduced by Sklar (1959), but has only gained high popularity in 

modelling financial or economic variables in the last decade. For an introduction to copulas see e.g. 

Nelsen (1999) or Joe (1997), for applications to various issues in financial economics and 

econometrics, see Cherubini et al. (2004), McNeil et al. (2005), Frey and McNeil (2003) and Hull and 

White (2004) just to name a few. As shown by Cherubini and Luciano (2001), Jondeau and Rockinger 

(2006), Junker et al (2006) or Luciano and Marena (2003), the use of correlation usually does not 

appropriately describe the dependence structure between financial assets and could lead to inadequate 

measurement of the risk. Longin and Solnick (2001) and Ang and Chen (2002) empirically show that 

generally asset returns are more highly correlated during volatile markets and during market 

downturns. Dowd (2004) suggests that the strength of the copula framework comes from its feature 

that it does not have any assumptions on the joint distributions among the financial assets in a 

portfolio. Patton (2006) and Jondeau and Rockinger (2006) illustrate how copulas can be applied not 

directly to the observed return series but for example to vectors of innovations after fitting univariate 

GARCH models to the individual return series. Overall, the use of copulas offers the advantage that 

the nature of dependence can be modelled in a more general setting than using linear dependence only 

that is explained by correlation. It also provides a technique to decompose a multivariate joint 

distribution into marginal distributions and an appropriate functional form for the dependence 

between the asset returns. 

In the following we will briefly summarize the basic ideas and properties of copulas, for a definition 

of copulas we refer e.g. to Sklar (1959) or Nelsen (2006). Let (X1,X2,..,Xd) be continuous random 

variables with distribution functions )Pr()( iiii xXxF , i=1,..,d. Following Sklar (1959), there 

exists a unique function C such that: 



))(),...,(),((),...,,Pr( 22112211 dddd XFXFXFCxXxXxX . 

Further setting iii UXF )( , the function ),...,Pr(),...,( 111 ddd uUuUuuC  is the distribution of 

))(,),((),...,,( 1121 ddd xFxFUUU  whose margins are uniform on [0,1]. This function C is called a 

copula and denotes a joint cumulative density function (CDF) of the d U~ [0; 1] distribution functions. 

Another way to express this is that a copula maps uniform distributions U~ [0; 1] into one joint 

distribution. The copula framework can be generalized for any collection of marginal distributions 

and joint distributions. In our application we will only consider the bivariate case with a function 

C(u,v) such that,  

C(u,v) = C[F(x),G(y)]. 

 

Then the function C(u,v) is defined as a copula function which relates the marginal distribution 

functions F(x) and G(y) into their joint probability distribution. Moreover, if the marginal 

distributions F(x) and G(y) are continuous, the copula function C(x,y)  is unique, see Sklar (1959) and 

the copula is an indicator of the dependence between the variables X and Y. The literature reports is a 

wide range of different copulas, see e.g. Joe (1997) or Nelsen (2006) for an overview of the most 

common parametric families of copulas. In the following we will limit ourselves to a description of a 

number of families of copulas that will be used later on in the empirical analysis. These families of 

copulas commonly used in finance include the Gaussian copula, the Student t-copula, the Clayton and 

Gumbel copula. 

The probably most intensively used copulas in financial applications are the ellipitical Gaussian and 

Student t copula. The Gaussian copula is constructed using the multivariate normal distribution and 

can be denoted by 
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Hereby, 
1
 denotes the inverse of the standard normal cumulative distribution function and  the 

standard multivariate Normal distribution with correlation matrix . The multivariate normal copula 

correlates the random variables rather near the mean and not in the tails. Therefore, it fails to 

incorporate tail dependence what can often be observed in financial data. To also add more 



dependence in the tails, alternatively, the Student t-copula can be used. The Student t-copula is 

denoted by   
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where 
1

vt denotes the inverse of the Student t cumulative distribution function with v  degrees of 

freedom and ,vt  the multivariate Student t distribution with v  degrees of freedom  and correlation 

matrix . While the concepts of a multivariate Gaussian and Student t copula seem to be quite similar, 

for the Student t copula we need to identify the degrees of freedom parameter. Depending on the 

degrees of freedom parameter, the Student t copula can also incorporate tail dependence. Hereby, low 

values of the parameter v  indicate strong tail dependence.     

Both the Gaussian and Student t copula are symmetric. However, often financial variables are 

observed to exhibit tail-dependence in only one of the tails, either the upper right or lower left edge of 

the data. For example, tail-dependence in the lower left tail indicates that the two variables show 

simultaneous extreme negative returns while when returns of one of the variables are highly positive 

this may not affect the other financial variable that much. To model asymmetric tail-dependence, 

so-called Archimedean copulas can be used, see e.g. Cherubini et al (2004). Two of the most 

prominent members of the family of Archimedean copulas are the Clayton and Gumbel copula that 

will be briefly described in the following.  

The Clayton copula is an asymmetric Archimedean copula, exhibiting greater dependence in the 

negative lower tail than in the positive upper one. The multivariate Clayton copula can be denoted by: 
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For the Clayton copula, the parameter  is used to measure the degree of dependence. The Gumbel 

copula, on the other hand, exhibits greater dependence in the upper right tail. The multivariate 

Gumbel copula is given by: 

1
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Similar to the Clayton copula, a parameter  is used to measure the dependence. For further 

properties and examples of elliptical and Archimedean copulas and the on the construction of such 

copulas by using generator functions, we refer to Nelsen (2006) and Cherubini et al (2004). 

Copulas offer various alternatives to the correlation coefficient as it comes to modeling the 

dependence structure. Often Kendall’s tau is used to measure the dependence structure when e.g. 

employing Archimedean copulas like the Clayton or Gumbel copulas as well as the elliptical 

Gaussian and Student t copulas. Kendall’s tau τ is a rank-based measure of dependence that provides 

consistent estimation of the true underlying copula as it is shown for example in Deheuvels (1979). 

The use of Kendall’s tau can easily be motivated for the bivariate case. Assume that we have 

observations of two financial variables (Xs,Ys), s=1,…n, for example the return series of two indices 

or financial assets. Instead of using the returns to measure the dependence, to calculate Kendall’s tau 

usually the ranks or the empirical probability integral transforms (ui, vi) with ˆ ( )s su F x and 

ˆ ( )s sv G y  are used. To compute τ we then draw a line to connect two pairs (us, vs) and (ut, vt). If the 

slope of this line is positive, we say the pair is concordant and count +1. If the slope of the line is 

negative, we say the pair is discordant and count –1.  This process is repeated for all choices of 

distinct pairs (us, vs) and (ut, vt). Overall, there are m= n(n – 1)/2 such choices. Kendall’s τ is then 

simply the sum of all concordant minus discordant pairs or the sum of +1s and –1s, divided by m. 

Values of τ range from –1 to +1, in the case of independence τ will be equal to 0, see e.g. Nelsen 

(1999). In some applications as an alternative to Kendall’s tau also Spearman’s rank correlation 

coefficient rho is used. For comparison of these two measures that emphasize different aspects of the 

dependence, see e.g.  (Capéraà and Genest, 1993).  

In the bivariate case, based on the estimated value of τ the corresponding dependence parameters for 

the Gaussian, Student t, Clayton and Gumbel copula can be calculated as a function of τ. As pointed 

out by Genest and Rémillard (2008) under weak regularity conditions on the copula family, this 

yields a consistent estimator of the dependence parameter. In the bivariate case, the estimated 

dependence parameters then completely specifies the Gaussian, Student t, Clayton and Gumbel 

copula are completely specified. Due to its simplicity in comparison to other estimation techniques, 

copula estimation via rank transformation and Kendall’s tau is often applied in practical applications. 



Unfortunately, it is limited to a bivariate setting because it makes inference on the dependence 

structure of the multivariate model from a chosen dependence coefficient. For our application this 

will be sufficient, but we refer to Cherubini et al (2004) for estimation of copula dependence 

parameters in a multivariate setting.  

Note that in the empirical analysis we will apply the copula framework not directly to the observed 

returns but to the vectors of innovations after fitting univariate GARCH models to the individual 

return series of ASX–REITS and the Australian All Ordinaries Index (AOI). This approach has been 

suggested and successfully applied e.g. by Patton (2006) or Jondeau and Rockinger (2006). For the 

specification of the GARCH models for the univariate series we refer to section 3. 

 

2.2 Multivariate GARCH Models 

As an alternative approach to the use of copula models we suggest to capture the different regimes of 

volatility and correlation between the returns of the considered series using multivariate GARCH 

models. The literature suggests a variety of models including the VECH model (Bollerslev et al, 

1988), the diagonal VECH model or the so-called Baba-Engle-Kraft-Kroner (BEKK) model defined 

in Engle and Kroner (1995) or Kroner and Ng (1998). One of the advantages of these models is that 

they allow for a high degree of flexibility in the estimation of the time varying covariance structure 

between the considered variables. In our paper, we decided to apply the class of BEKK model as it 

overcomes two issues that make the application of VECH or diagonal VECH models difficult: the 

problem of over-parameterisation that is typically associated with VECH models as well as the 

problem of not guaranteeing a positive semi-definite covariance matrix related to the diagonal VECH 

model. Following Engle and Kroner (1995) the multivariate GARCH BEKK model can be 

represented by the following equation: 

 

Hi,j,t=WW’+A’ ei,t-1ej,t-1A+B’ Hi,j,t-1 B   i,j=[ii,jj,ij]’    

 

Hereby W, A, B are 3*3 coefficient matrices, referring to the dynamic relationship of the variance 

and covariance in the bivariate asset case. The positive definiteness of the matrices is ensured by 

using WW’, AA’ and BB’ in above equation. Often, a further simplified version of the BEKK model 

in which A and B are diagonal matrices is used in empirical applications. This model is then referred 



to the as the ‘diagonal BEKK’ model and only requires the estimation of the main diagonal of the 

coefficient matrices W, A, B. Futhermore, often in the diagonal BEKK model for the covariance 

terms the restrictions A(3,3)=A(1,1)*A(2,2) and   B(3,3)= B(1,1)*B(2,2) are imposed such that in the 

bivariate case only seven model parameters need to be estimated. In our empirical analysis, we 

decided to apply this version of the diagonal BEKK model.  

 

3. The Data 

In this section we investigate the dependence structure between returns from Australian Real Estate 

Investment Trusts and the Australian All Ordinaries Index (AOI). With respect to Australian REITS 

we will consider monthly log-returns from the ASX 200 A-REIT index, which is an index comprising 

approximately 70 listed Australian property trusts representing various types of properties under 

management. The considered time period ranges from January 1980 to April 2009. The data for the 

considered time period was obtained from DataStream and returns are calculated based on monthly 

observations of the two indices, with a total number of 351 observations for each series. For our 

analysis we consider log-returns that are calculated as rt=ln (Pt+1/Pt) from the original price series. In 

the following we will refer to the return series of the All Ordinaries Index as AOI and to the return 

series of ASX 200 A-REIT index as AREITS. Table 1 provides descriptive statistics for the 

logreturns of the two series.  

 

Name Mean Median Max Min StDev Skew Kurtosis 

AREITS 0.08% 0.24% 9.02% -29.16% 4.29% -2.1916 14.37 

AOI 0.59% 1.06% 21.47% -47.82% 5.40% -2.1614 22.24 

Table 1: Summary statistics of log differenced AREITS and AOI for the sample period from January 

1980 to April 2009. 

 

For the considered time period, the mean and standard deviation of AREITS is 0.08% and 4.29%. 

Obviously, both the average return and the standard deviation are smaller than the comparable figures 

for AOI yielding a mean of 0.58% and a standard deviation of 5.40%. This is in line with the findings 

of other studies that generally report lower returns and standard deviations for REITS than for both 

small and large capitalization stocks (Hartzell et al, 1999; Mueller et al, 1994). Also for Australia, 



AREITS on average offer lower returns but are slightly less volatile than investments in a stock index. 

The table further indicates that both return series exhibit skewness and excess kurtosis. In particular 

for AOI a number of highly negative returns could be observed. The highest loss occurred was 47% 

for the AOI in November 1987, while the maximum loss for AREITS was 29%. 

In a first step, we test for stationarity in the returns what is a required condition for the validity of 

fitting a time-series model to the data. We apply the standard Augmented Dickey-Fuller (ADF) test 

for unit roots (Dickey and Fuller, 1979) to the returns of AOI and AREITS. Given the results in Table 

2, we clearly reject the null hypothesis of a unit root for both series and conclude that the return series 

AOI and AREITS are stationary.  

 

ADF test Test Statistic(Tau) Asymptotic p-value 

AREITS -4.76621 2.254e-006 

AOI -7.52149 8.346e-013 

Table 2: Results for ADF unit root tests for return series AREITS and AOI. The table provides the 

value for the test statistic tau as well as the corresponding p-value. 

 

We also test for normality of the return series using the Jarque-Bera test. The test statistic has an 

asymptotic chi-square distribution with two degrees of freedom and can be tested against the null 

hypothesis that the data is normally distributed. We obtain a test statistic of 2171 for AREITS and 

5874 for AOI such that both are significantly greater than the corresponding critical level of the 

chi-square distribution 5.99. Hence we can reject the null hypothesis that the return series AREITS 

and AOI follow a normal distribution and conclude that a standard multivariate normal approach is 

not really suited to model the joint dynamics of the return series.  

 

4. Empirical Results 

4.1 Time Series Models 

The results of the previous section suggest that the return series of AOI and AREITS exhibit 

non-normality and heteroskedasticity. Generally, before applying the copula framework in order to 

capture the dependence structure between the series an appropriate specification for the marginal 

distributions is required. Therefore, the models for the univariate time series should take into account 

the characteristics of the individual return series. Therefore, to capture the non-normality and the 

indicated different regimes of volatility, we decided to fit AR(1)-GARCH(1,1) models to the data: 



 

Xi,t=ci+aiXi,t-1+ei,t; 

                                                         ei,t= Zi,th
0.5

i,t 

hi,et=wi+b1ie
2

i,t-1+b2ihi,t-1 

Since both of the return series exhibit skewness and excess kurtosis we further relax the assumption 

of a normal distribution for the conditional distribution of the standardized innovations and test 

different model specifications including the Gaussian, Student t and Generalized Error Distribution 

(GED), see e.g. Newey and Steigerwald (1997). Note that for the cases when using a Student t and 

GED for the conditional distribution of the standardized innovations, the parameters of the 

AR-GARCH model are estimated using quasi-maximum likelihood. Among the tested models we 

find that in particular the AR-GARCH model with a GED distribution and tail parameter r=1.221 

performs well for the standardized innovations of AOI. For AREITS the model using a Student t 

distribution with v=7 degrees of freedom yields the best fit for the standardized innovation series. 

Estimation results for both marginal series are provided in Table 3 while a plot of the original return 

series and estimated conditional variance based on the AR-GARCH models is provided in Figure 1. 

 

AREITS: Coefficient Std.error P-value 

c 0.00082 0.002278 0.750 

a 0.13000 0.053110 0.020 

w 0.000199 9.83E-05 0.043 

b1 0.298785 0.095148 0.002 

b2 0.599135 0.119817 0.000 

AOI:    

c 0.00592 0.002840 0.050 

a 0.08000 0.05248 0.210 

w 0.000269 0.000190 0.156 

b1 0.119152 0.061481 0.053 

b2 0.778642 0.105870 0.000 

Table 3: Parameter estimates of AR(1)-GARCH (1,1) model for AREITS with a  Student t distribution 

(v=7 ) for the standardized innovations and AR(1)-GARCH (1,1) for AOI with a GED distribution 

(r=1.221)  for the standardized innovations. 

 

Figure 2 provides a kernel density plot of the standardized innovation indicating that the time series of 

innovations still exhibits some skewness and excess kurtosis. In the following section, we will now 

continue to model the dependence structure between the conditional distributions of the standardized 

innovations using different copula models. 
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 Figure 1: The time series plot for the returns (upper panel) and estimated conditional variance 

(lower panel) based on the estimated GARCH models for the return series AOI and AREITS. 
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Figure 2: Kernel smoothed density plot for standardized innovation series for AREITS (left panel), 

and AOI (right panel). The density plot indicate that both series are not normally distributed.  

 



4.2 Modelling the Dependence Structure  

As described in Section 2, a possible way to derive the dependence structure between two time series 

via a copula is to examine the dependence between the rank transforms of the series. This has the 

advantage that the possibly unknown marginal distribution is not required, since the empirical 

marginal cdf can be used. While one could also model the dependence between the ranks for the 

original return series, due to the heteroscedastic behaviour of the return series, we suggest a 

conditional approach that models the dependence structure of the standardized innovations after 

applying AR-GARCH model to the univariate series, see e.g. Patton (2006) , Jondeau and Rockinger 

(2006) and Grégoire et al (2008). To determine Kendall’s tau for the two series, in a first step the rank 

transformations of the standardized innovations are calculated. Figure 3 provides bivariate scatter 

plots of the standardized innovation series and the corresponding rank transformations. The rank 

transforms can then be used to calculate Kendall’s tau and infer the corresponding dependence 

parameters for the Gaussian, Student t, Clayton and Gumbel copula. 
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 Figure 3: Scatter plot of innovations (z1,z2) from the estimated GARCH models for AREITS and AOI 

(left panel) and corresponding rank transformations of the innovations (right panel).  

 

Based on the determined rank transforms, the estimate for Kendall’s tau yields ˆ=0.327 , with 

standard error at 0.0358, corresponding to a p-value of 0.000 such that the null hypothesis τ=0 can be 

rejected at any confidence level. Thus, Kendall’s tau is significantly different from indicating a 

significant positive relationship between the rank transformations of the innovations. Note that these 

results somehow contradict earlier studies by Brueggeman et al (1984), Chen and Peiser (1999), 

Hartzell et al (1999) or Clayton and MacKinnon (2001) reporting significant negative or only weak 



positive correlations between REITS and other assets, in particular equity investments. Therefore, for 

the Australian market the diversification potential of investments in REITS might be less significant 

than for other markets. 

 

Clayton copula ˆ2ˆ ˆ 0
ˆ1

clayton for  
0.9727 

Gumbel copula 1ˆ ˆ 0
ˆ1

gumbel for  
1.4864 

Gaussian Copula ˆ
ˆ sin( )

2
 

0.4916 

Student t copula 

(v=27.2842) 

ˆ
ˆ sin( )

2
 

0.4916         

Table 4: Estimated dependence parameters for the different copula families based on the estimated 

Kendall’s tau. ˆ=0.327 .  

 

Copulas LOGL AIC SIC HQIC 

Clayton copula 212.34 10  -96.40 -92.55 -94.87 

Gumbel copula 153.21 10  -69.40 -65.55 -67.87 

Gaussian copula 211.13 10  -94.95 -91.10 -93.43 

Student t copula 211.42 10  -93.38 -85.69 -90.34 

Table 5:  Results for loglikelihood andparsimony model selection criteria Akaike Information 

Criterion (AIC), Schwarz Information Criterion (SIC) and Hannan-Quinn Information Criterion 

(HQIC).  

Using the given relationship between Kendall’s tau and the copula dependence parameters for the 

Clayton, Gumbel, Gaussian and Student t copula in Table 1 we then calculate the corresponding 

parameter estimates that are reported in Table 4. Note that for the Gaussian, Clayton and Gumbel 

copula are completely specified by the dependence parameter, for the Student t copula we also need 

to estimate the degrees of freedom parameter v . To do this, we apply the so-called inference for the 

margins (IFM) method, see e.g. Cherubini et al (2004). The method yields an estimate of 

27.2842v for the considered rank series. In a next step we want to investigate which of the 

considered copulas is most appropriate for the dependence structure between the innovation series. 



While the estimation of the dependence parameter for each copula function is easy to implement, the 

decision which of the considered copulas provides the best fit to the actual dependence structure of 

the data is often not that straightforward. In a first step we investigate the fit of the different copulas 

based on the loglikelihood as well as parsimonious model selection criteria like the Akaike 

Information Criterion (AIC), Schwarz Information Criterion (SIC) and Hannan-Quinn Information 

Criterion (HQIC), see e.g. Greene (2003). Results are reported in Table 5. We find that these criteria 

unambiguously support the Clayton copula as providing the best fit to the data. However, Berg and 

Bakken (2006) point out that Akaika type and related information criteria are usually not able to 

provide enough understanding about the power of the decision rule employed. Therefore, Genest et al 

(2006, 2009) suggest so-called ‘blanket’ goodness-of-fit tests that are able to reject or fail to reject a 

parametric copula based on bootstrapped P value and are usually preferred in empirical applications. 

For selecting the most appropriate among various copulas, in these goodness-of-fit tests usually the 

distance between the estimated and the so-called empirical copula is examined. To derive the 

empirical copula, the empirical marginal distributions are used. Let (X1i, . . . ,Xni) be n independent 

observations of the random variable Xi with empirical marginal cdf ˆ ( )iF x , 1,...i d . Then the 

empirical probability integral transforms jiu  can be denoted by: 

njdixFu jiiji ,..1,,...1)(ˆ
.
 

For the vector u=(u1,…,ud), using the marginal cdf’s, the empirical copula is given by 

n

j

dd

n

j

djddj

emp uUuUI
n

uXFuXFI
n

uC
1

11

1

111 ),....,(
1

1
))(ˆ,....,)(ˆ(

1

1
)(ˆ  

Thus, the empirical copula is the observed frequency of ),....,( 11 dd uUuUP . Genest et al (2009) 

provide various options for copula goodness-of-fit tests, including tests based on ranks, probability 

integral transforms and Rosenblatt’s transform. They also investigate different implementations of 

the tests using the Cramér-Van Mises, Kolmogorov-Smirnov and Anderson-Darling statistic to 

measure the difference between the estimates and the empirical copula. They report in particular good 

results for the Cramér-Von Mises statistic that will also be implemented in this study. For various 

alternative tests, we refer to Berg and Bakken (2006) or Genest et al (2009). As mentioned before for 

the goodness-of-fit tests, the null hypothesis is that the examined copula provides an appropriate fit to 



the data is examined. Then for the suggested approach the test procedure for investigating whether the 

dependence structure of a multivariate distribution is well-represented by a specific parametric family 

of copulas can be summarized as follows:  

1. Based on the vectors of rank observations )U,,(U n1 and the estimated Kendall’s tau for the 

empirical data, the corresponding dependence parameters for the copula families can be 

determined. Then the values )(ˆ uC emp
and )(uC for the empirical and the estimated family of 

copulas can be calculated. 

2. Using the Cramér-Von Mises statistic, the distance between the empirical and estimated copula is 

calculated by 
n

i

ii

emp

n UCUCS
1

2 .)]()(ˆ[  

3. Then for some large integer N, the following steps are repeated: 

a) Generate a random sample from )(uC and compute the associated rank vectors )U,,(U *

n

*

1  

as well as the empirical copula )(ˆ * uC emp
. 

b) Estimate Kendall’s tau τ
*
 for the generated random sample and estimate the parametric 

copula )(* uC . 

c) Determine 
n

i

ii

emp

n UCUCS
1

2***** )]()(ˆ[ for the generated sample. 

4. From the N bootstrap samples, an approximate p-value (which measures the goodness-of-fit of 

the copula) can be calculated as the fraction of simulations with nn SS *
. If the considered copula 

provides a good fit to the actual dependence structure of the data, we should expect to get high p 

values, while for a copula providing a bad fit to the actual data, we will expect the p-value to be 

low. In this case, depending on the level of confidence, the hypothesis that the dependence 

structure of the bivariate distribution is well-represented by a specific parametric family of 

copulas is rejected. 

5.  

For the four considered copula families, the results are reported in Table 6. We obtain the smallest 

distance 273.0nS for the Clayton copula indicating that it provides the best fit to the dependence 



structure between the standardized innovation series. However, the distances for the Gaussian and 

Student t copula are only slightly higher with 277.0nS and 278.0nS .  

Copula 
nS  p-value 

Clayton 0.0273 0.083 

Gumbel 0.0694 0.000 

Normal 0.0277 0.066 

Student t with (v=28) 0.0278 0.069 

Table 6: Cramer-Van-Mises statistic for distance between estimated and empirical copula as well as 

p-values based on bootstrap goodness-of-fit tests for the different copula families.  

 

For the goodness-of-fit tests, we generate N=10,000 random samples from )(uC , compute the 

associated rank vectors )U,,(U *

n

*

1 , and calculate the approximate p-value as the fraction of 

simulations with nn SS *
. The p-value provides a measure of how much evidence we have against the 

null hypothesis of an appropriate fit of the copula to the data. We find that the null hypothesis of an 

appropriate fit of the Gumbel copula is rejected at all levels, the corresponding p-value is 0.000. The 

highest p-value is observed for the Clayton copula is 0.083 such that the null hypothesis is not 

rejected at the 1% or 5% significance level. On the other hand, for the Gaussian and Student t copula 

we obtain p-values of 0.066 and 0.069, so also for these copulas the null hypothesis of an appropriate 

fit cannot be rejected at the 1% and 5% significance level.  

Figure 4 provides pdf and cdf plots of the estimated Clayton copula for the considered data. The 

figure illustrates the tail dependence in the lower left tail exhibited by the Clayton copula. 

Overall, the Clayton copula provides the best fit according to the loglikelihood as well as for the 

considered parsimony model selection criteria. Further, it yields the smallest distance between fitted 

and empirical copula, and the highest p-value for the conducted goodness-of-fit test. So it provides 

the best fit to the dependence structure between the standardized residuals after fitting an 

AR-GARCH model to the individual return series. This is an indication in particular for lower left tail 

dependence between the two series. However, also the symmetric Student t and Gaussian copula 

provide an appropriate fit to the dependence structure and perform only slightly worse with respect to 

the considered criteria. 
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Figure 4: Plot of the estimated probability density function (left panel) and cumulative distribution 

function(right panel) for the Clayton copula. 

  

Overall, we find a significant dependence structure between the returns of the considered AREIT 

index and the AOI. These findings somehow contradict earlier studies by e.g. Brueggeman et al 

(1984), Chen and Peiser (1999), Hartzell et al (1999) or Clayton and MacKinnon (2001) reporting 

significant negative or only weak positive correlations between REITS and equity investments.  Our 

results are more in line with a more recent study by Knight et al (2005) who report some dependence 

in the lower left for the relationship between UK and global public real estate stocks with equivalent 

general equity market returns. The superior fit of the Clayton copula in our empirical analysis 

suggests that real estate and common equity stocks are more closely related when markets produce 

highly negative returns. Therefore, for the Australian market the diversification potential of 

investments in REITS might be less significant than for other markets. An explanation for this might 

also be the overvaluation of Australian real estate markets during the considered time period that 

were at least partially driven by wealth effects and portfolio shocks from Australian equity markets as 

pointed out by Frye et al (2010). This on the one hand explains the existing significant positive 

relationship between real estate and equity returns and can also be considered as a reason for joint 

highly negative returns when both markets simultaneously return to their market fundamental levels. 

Such a strong dependence in   the lower left tail can be adequately modeled by the Clayton copula. 

 

4.3 Results for the bivariate GARCH model 

As mentioned above this study aims to compare different approaches to modelling the dynamic 

dependence structure of returns from Australian REITS and the All Ordinaries Index. Therefore, we 



also applied the previously described diagonal GARCH BEKK model to the original AREITS and 

AOI return series. Note that hereby, for the mean equation a simple AR(1) process Xi,t=ci+aiXi,t-1+ei,t; 

was applied. Further, as mentioned in Section 2.2, for the variance equation A a diagonal BEKK 

model  is applied such that for the variance equation Hi,j,t=WW’+A’ ei,t-1ej,t-1A+B’ Hi,j,t-1 B , only the  

coefficients on the main diagonal of the coefficient matrix were estimated and for the covariance 

terms the restrictions A(3,3)=A(1,1)*A(2,2) are B(3,3)= B(1,1)*B(2,2) were imposed. The estimation 

of the model was conducted using Eviews using maximum likelihood estimation and results for the 

model parameters are provided in Table 7.   

                 

 Coefficients std.error Z-stat p-value 

c1 0.002557 0.001678 1.5238 0.1276 

c2 0.004279 0.002154 1.986919 0.0469 

a1 -0.068083  0.002154 -1.27796 0.2013 

a2 -0.000855  0.049915 -0.01713 0.9863 

W(1,1) 0.000149 6.84E-05 2.180742 0.0292 

W(2,2) 7.27E-05 3.28E-05 2.212662 0.0269 

W(3,3) 0.000120 4.77E-05 2.526315 0.0115 

A(1,1) 0.370196 0.032271 11.47165 0.0000 

A(2,2) 0.520696 0.054348 9.580808 0.0000 

B(1,1) 0.906939 0.020647 43.92541 0.0000 

B(2,2) 0.831442 0.036600 22.71724 0.0000 

 

Table 7: Parameter estimates for diagonal BEKK model with imposed restrictions for the covariance 

terms A(3,3)=A(1,1)*A(2,2) and   B(3,3)= B(1,1)*B(2,2) by maximum likelihood estimation.  

We find that all model parameters in BEKK model are significant at the 5% level and show the 

expected signs.  

 

4.4 Risk Analysis 

After fitting appropriate time series models to the bivariate series, in the following we conduct a risk 

analysis for a portfolio consisting of the above-mentioned Australian real estate and equity indices. 

Hereby, in particular the suggested approach using copula functions and the considered GARCH 

BEKK model are compared to a standard multivariate normal approach that is usually used for risk 

quantification. In particular we will look at the performance of the models with respect to the 

adequate quantification of Value-at-Risk.  

The Value-at-Risk (VaR) method was first suggested as a standard measure of risk in the 1990s, see 

e.g. JP Morgan (1996). Since then, it has become the probably most popular tool for internal capital 



allocations, determining regulatory capital and reporting in risk management of financial institutions. 

Generally, VaR can be written as: 

VaR(a)= Fp(x)>a 

where Fp is the probability distribution of the portfolio returns X, measured against some threshold 

probability level a, which usually refers to a probability of e.g. 0.1%, 1% or 5%. Thus, for example 

the one-day VaR99% can be interpreted in a way that we are 99% confident that the loss of the 

portfolio will not exceed VaR99% within one day. Traditionally, financial returns are assumed to 

follow a normal distribution, such that a standard variance-covariance approach can be used. In this 

case, the dependence structure between the different assets in the portfolio is then completely 

described by a correlation matrix.  

It is important to point out that an inadequate estimation of VaR can lead to serious problems incurred 

from e.g. the underestimation of risk and inadequate capital allocations. Problems with a static 

variance-covariance approach might include the following issues: (i) non-normality of the marginal 

distributions, (ii) misspecifying the actual dependence structure by the use of correlation as the only 

measure of dependence and (iii) ignoring the dynamic dependence structure between the considered 

return series. In the following, we therefore illustrate how the applied copula and GARCH BEKK 

approach may be used to appropriately describe the dependence structure and risk for a portfolio 

consisting of investments in equity and REITs. 

Recall that in order to deal with the heteroscedastic behaviour of the return series, initially univariate 

or bivariate GARCH models were fitted to the return series. As illustrated in Figure 1, both 

standardized innovation series still exhibit some skewness and excess kurtosis. Therefore, to 

appropriately capture the risk instead of using a normal distribution for the innovation series we use a 

non-parametric estimate for the distribution of the marginal innovation series. Hereby, a Gaussian 

kernel was applied in order to determine the nonparametric estimate of the CDF. For modelling the 

dependence structure between the standardized innovation series, the copula functions estimated in 

section 4.2 can be applied. Due to superior fit of the Clayton copula in comparison to the other 

investigated copulas, in the following we will provide results only for the model using the Clayton 

copula. Results for the Gaussian, Student t and Gumbel copula are available upon request to the 

authors. In order to determine VaR figures for a portfolio, we require not only a forecast for the 

expected return but for the whole distribution of the portfolio returns. In the following we will briefly 



describe the necessary steps to determine distributional forecasts for a portfolio consisting of 

investments in the All Ordinaries Index and ASX 200 A-REIT index. For a more detailed description 

we refer to e.g. Frees and Valdez (1998), Genest and MacKay (1986), Lee (1993) or Marshall and 

Olkin (1988). In a first step, we simulate pairs of bivariate uniformly distributed random variables 

(u1,t, u2,t) from a Clayton copula with dependence parameter 0.9727 .  
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Figure 5: 10000 simulated standardized innovations based on probability integral transform of 

uniformly distributed random variables (u1,t, u2,t) from a Clayton copula with dependence parameter 

0.9727 . 

 

The obtained random numbers are then plugged into the inverse of the nonparametric CDF for the 

standardized residuals such that by setting Zi,t =F
-1

(ui,t), i=1,2 a pair of dependent innovations are 

obtained. Figure 5 shows an exemplary bivariate plot for 10000 simulated standardized innovations 

using the Clayton copula. The simulated innovations in combination with the estimated AR-GARCH 

model   

Xi,t=ci+aiXi,t-1+ Zi,t h
0.5

i,t,, for i=1,2. 

  

for each of the marginal series can then be used in order to determine a distributional forecast of the 

returns. Hereby, Xi,t-1 denotes the most recent return observation, ci and ai are parameters of the 

estimated AR(1) process, Zi,t the simulated innovation for series i, h
0.5

i,t the estimated conditional 

standard deviation for period t from the AR-GARCH model. Then, using the asset weights for the two 

investments, a probability distribution of portfolio returns for the next period t+1 can be determined. 



Using the 0.1%, 1%, 5% and 10% quantile of this distribution, we can calculate the corresponding 

99.9%, 99% and 95% Value-at-Risk figures for each period. For an exemplary portfolio we choose 

the weights as 17% for investment in AREITS and 83% for investments in the AOI. Note that these 

weights can be determined using modern portfolio theory by choosing the portfolio on the efficient 

frontier yielding the best expected return to volatility combination with respect to the Sharpe ratio. Of 

course, alternative portfolio weights could be applied and were also tested in the empirical analysis.  

A similar procedure is conducted to obtain forecasts of the portfolio return distribution for the 

estimated GARCH BEKK model. In this case the Cholesky decomposition of the correlation matrix 

for time t can be used to simulate dependent random variables for the standardized innovations, see 

e.g. Cherubini et al (2004). Then using the corresponding weights for the investments in AREITS and 

AOI and the estimated parameters of the bivariate GARCH model it is straightforward to determine a 

probability distribution of the portfolio returns for forthcoming periods that can be used to calculate 

the corresponding VaR figures. 

Figure 6 and 7 provide a plot of the actual returns for the exemplary portfolio and the 99% VaR 

forecasts for the conditional copula and the GARCH BEKK model. From a first glance, we find that 

both models provide similar results with respect to capturing the dynamics of the portfolio return 

quite well. Results on the number of exceedances for determined 90%, 95% and 99%-VaR figures are 

provided in Table 8. Hereby, three different models are considered: (i) a standard (static)  

variance-covariance approach that estimates the return distribution of the portfolio based on the 

observed individual returns and correlation between the return series, (ii) the described framework 

using AR-GARCH models for the marginal series in combination with a Clayton copula to model the 

dependence structure between the standardized residuals, (iii) the described GARCH-BEKK model 

that provides dynamic estimates of the variances and covariance between the two series. We compare 

the number of actually observed exceedances to the expected ones in order to evaluate the model 

performance with respect to an appropriate quantification of the risk, see e.g. Christoffersen (1998). 

We find that the static variance-covariance approach underestimates the risk at all confidence levels 

such that we observe significantly more exceedances of the estimated VaR than expected. On the 

other hand, the number of exceedances is significantly reduced for the two dynamic models in 

comparison to that of the static one. Both models yield approximately the expected number of 

exceedances for the 90% and 95% VaR. For the 99.9% VaR level the more conservative copula 



approach including tail dependence seems to provide a more appropriate quantification of the risk 

yielding only one exceedance while there are two exceedances for the GARCH-BEKK model.  

 

 MODEL 95% level  99% level 99.9% level 

Static Bivariate 

Normal 

 23/ (17.55) 7 / (3.51) 2 / (0.35) 

Dynamic Clayton 

copula 

15/ (17.55) 3/ (3.51) 1 / (0.35) 

Diagonal BEKK 

model 

18/ (17.55) 4 / (3.51) 2/ (0.35) 

Table 8: Actual and expected number (in brackets) of exceedances at 95%, 99% and 99.9% 

confidence levels for static bivariate normal, diagonal BEKK and Student t copula models.  

 

Conducting robustness tests for various alternative portfolio weights yields quite similar results both 

for the static variance-covariance approach and the considered dynamic models. For all considered 

combinations of investment weights the static approach clearly underestimates the actual risk for the 

portfolio, while the considered dynamic models lead to a more appropriate risk quantification. 

Further, in the extreme tail - 99.9% VaR – the copula framework provides the most conservative risk 

figures. Overall, our backtesting study suggests that the dynamic models clearly outperform a static 

variance-covariance approach. Reasons for this are that the dynamic approaches can take into account 

important features of the series like heteroscedasticity, non-normality of the returns or standardized 

residuals, changes in the correlation structure through time and tail dependence. 
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Figure 6:  Actual returns and estimated 99% VAR based on a dependence structure modeled using 

the Clayton copula for a portfolio with weights 17% in AREITS and 83% in AOI.   
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Figure 7:  Actual returns and estimated 99% VAR for a portfolio with 17% in AREITS and 83% in 

AOI based on the estimated diagonal GARCH BEKK model.    

 

 

5. Conclusion 

This paper provides an investigation of the dependence structure between monthly returns from 

Australian Real Estate Investment Trusts (AREITS) and the All Ordinaries Index (AOI) for the time 

period 1980 to 2009. Australia has long been a nation with a great interest in property investments 

such that in the last decades also investments in REITS have shown substantial growth rates. The 

literature argues that generally real estate investments enable investors to further diversify their 

portfolio. In this study we apply univariate and multivariate GARCH models in combination with 

different copula models including the Clayton, Gumbel, Gaussian and Student t copula in order to 

investigate the dependence structure between Australian real estate and equity returns. To our best 

knowledge this is one of the first studies to apply and test conditional copula models in these markets. 

We find significant correlations between the returns of an Australian REIT index and the AOI. These 

findings somehow contradict earlier studies by e.g. Brueggeman et al (1984), Hartzell et al (1999) or 

Clayton and MacKinnon (2001) reporting significant negative or only weak positive correlations 

between REITS and equity investments.   

With respect to the dependence structure, we apply different multivariate GARCH and copula models. 

For the latter we also apply goodness-of-fit tests in order to determine which of the copula functions 

best describes the dependence structure between the series. Overall, the Clayton copula provides the 

best fit to the dependence structure between the series with respect to various considered model 

selection criteria.Thus, we find that the return series exhibit dependence particularly in the lower left 



tail suggesting that Australian real estate and common equity stocks are more closely related when 

markets produce highly negative returns. Our results are more in line with a study by Knight et al 

(2005) who report some tail dependence, particularly in the lower tail, when investigating the 

relationship between UK and global public real estate stocks with equivalent general equity market 

returns. Therefore, also for the Australian market the diversification or hedging potential of 

investments in REITS might be limited. An explanation for this could be that the overvaluation of 

Australian real estate markets during several years of the considered time period was also driven by 

wealth effects and portfolio shocks from Australian equity markets, see e.g. Frye et al (2010). This 

explains not only the positive relationship between real estate and equity returns but also joint 

extreme negative returns when both markets simultaneously return to their market fundamental levels 

as during the financial crisis.  

We also provide a risk analysis for the different models with respect to the quantification of the risk 

for a portfolio combining investments in real estate and equity markets. Our results show that copula 

functions provide a powerful tool for modelling the dependence structure between financial assets. 

We also find that dynamic models clearly provide a more appropriate measurement of the risk in a 

portfolio. Both using univariate AR-GARCH models in combination with copula functions for the 

dependence structure between the standardized residuals as well as a bivariate GARCH BEKK model 

provide an adequate quantification of the risk for a portfolio of investments in REITS and equity. Our 

findings further suggest that ignoring heteroscedasticity of the marginal series and the complex 

dependence structure in favor of a simple static multivariate normal model leads to a severe 

underestimation of the actual risk.  

Extensions of the conducted work could examine the impacts of the detected dependence structure on 

optimal portfolio construction, e.g. by including asymmetric or tail dependence in the asset allocation 

decision, see e.g. Patton (2004) or Hatherley and Alcock (2007). Furthermore, since the analysis so 

far is only based on a bivariate setting, future research should extend the analysis to the multivariate 

case including various other asset classes next to real estate and equity returns. 
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