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Abstract  

 

The contributions of this paper is to propose a new panel stochastic dominance (SD) 

test- PDD test, the asymptotic properties are derived, which extends Davidson and 

Duclos (DD) SD test to a panel context, no such inference test exists in the previous 

literature, and this paper would be the pioneer. This paper further applies this new Panel 

DD test (the PDD test) to examine the dominance relationship between the UK covered 

warrants and their underlying shares. With this unique data set, the existence of 

arbitrage opportunity and the confirmation of market efficient hypothesis are hoping to 

be addressed.  

 

The PDD test also contributes to settle one of the demerits while working with financial 

derivatives time series: that the standard individual tests for Stochastic Dominance in 

time series are unsatisfactory in terms of power when the sample size is too small, and 

typically the financial derivatives have a limited life, in particular, stock options and 

covered warrants. This is because the pairwise SD tests are nonparametric, and 

nonparametric tests require large sample size, in this case, the individual tests for 

financial derivative time series may not distinguish between the null and the alternative 

hypotheses for each series, and lead to retain the null hypothesis, even if the alternative 

is true. Hence the PDD test would improve the power of individual SD tests: a panel test 

gathers all the information of all the series, and then increases the power compared to 

its corresponding individual test. It is one of the main motivations for building panel 

tests in the literature.  

 

This paper also extends the classical likelihood ratio (LR) information efficiency test to 

a panel framework to get more powerful new tests. A bootstrap methodology is 

developed to correct the size distortion of the LR test. 

 

The empirical analyses reveal that neither covered warrants nor the underlying shares 

stochastically dominate the other, indicating the nonexistence of potential arbitrage 

gains in either wealth or utility, which implies the market efficiency. Our findings show 

that UK covered warrants returns efficiently reflect the return information of the 

underlying shares.  
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1. Introduction 

There are several contributions in this study, first, a new a panel stochastic dominance 

(SD) test-PDD test, is proposed, extending Davidson and Duclos (DD) SD test to a 

panel context, there is no such study in the previous literature, and this paper would be 

the pioneer. This paper further applies this new Panel DD test (the PDD test) to 

examine the dominance relationship between the UK covered warrants and their 

underlying shares. With this unique data set, the existence of arbitrage opportunity and 

the confirmation of market efficient hypothesis are hoping to be addressed.  

 

The idea of developing a new panel stochastic dominance test arises from the need of 

examining the efficiency between derivatives and their underlying. In practice, 

(individual) stochastic dominance tests are used to assess the efficiency of financial 

markets (Wong et al. (2007, 2008)). However, the economic question that is addressed 

in the pairwise sample sets cannot be answered globally, hence in this project, a 

generalized panel stochastic dominance test is firstly been presented in the literature. 

This new panel stochastic dominance test, later will be referred as “PDD” test, is aimed 

to extend the individual SD test to a panel framework.  

 

The PDD test also contributes to settle one of the demerits while working with financial 

derivatives time series: that the standard individual tests for Stochastic Dominance in 

time series are unsatisfactory in terms of power when the sample size is too small, and 

typically the financial derivatives have a limited life, in particular, stock options and 

covered warrants. This is because the pairewise SD tests are nonparametric, and 

nonparametric tests require large sample size, in this case, the individual tests for 

financial derivative time series may not distinguish between the null and the alternative 

hypotheses for each series, and lead to retain the null hypothesis, even if the alternative 

is true. Hence the PDD test would improve the power of individual SD tests: a panel test 

gathers all the information of all the series, and then increases the power compared to 

its corresponding individual test. It is one of the main motivations for building panel 

tests in the literature. We shall expect the power of the panel PDD test is much greater 

than its corresponding individual SD test. 

 

In this paper, using the likelihood framework, a testing procedure based on averaging 

individual SD test statistics for panels will be conducted. In particular, this paper first 

proposes a test which based on the average of Davidson and Duclos (DD) (2000) 
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statistics is computed for each group in the panel, which is referred as the PDD test. 

Under very general settings, we would expect this statistic to converge in probability to 

a standard normal variate sequentially with T → ∞, followed by N → ∞. A diagonal 

convergence result with T and N → ∞ while N / T → δ, δ being a finite nonnegative 

constant, is also conjectured.
1
 Another contributions in this study is a new a panel 

likelihood ratio (PLR) information efficiency (SD) test- PLR test, extending the 

classical likelihood ratio (LR) information efficiency test to a panel context. Again, the 

asymptotic distribution of the test statistic is derived. However, the LR statistic 

distribution suffers from a large size distortion and has to be corrected. We propose a 

bootstrap methodology to correct the size distortion of the LR tests. 

 

Furthermore, this paper attempts to conducting an empirical examination on UK 

covered warrants and the underlying shares by applying the PDD and PLRtest, to assess 

the stochastic dominance relation between the derivatives and their underlying shares, 

hence lead to a discussion over the efficiency and informative role of the financial 

derivatives- UK covered warrants.  

 

The rest of the paper is organized as follows. Section 2 provides a brief review of the 

previous studies which applied the individual SD tests over difference issues; Section 3 

provides a description of the framework for panel, and derives the PDD test. The cases 

of cross sectional dependence and panel bootstrap likelihood ratio test are also 

discussed. Section 4 presents results of the Monte Carlo simulation on the performance 

of the new procedures for a variety of experimental setups. A financial application of 

the PDD test to a panel of covered warrants and the underlying shares in UK is 

addressed in Section 5. Finally Section 6 some concluding remarks is drawn.  

 

 

2. Brief review of the previous studies which applied the individual SD tests over 

difference issues and interest to extend them to panel  

 

2.1 Application Fields of Stochastic Dominance Tests 

 

Stochastic Dominance has been originally developed in the traditional expected utility 

framework. Behavioral studies have shown that the expected utility framework may not 

always provide a good description of human behavior under uncertainty. A SD criterion 

called Prospect Stochastic Dominance (PSD) has been developed to determine 

preference for all Prospect Theory individuals (Levy and Wiener (1998); Levy and 

                                                 
1
 T is the sample period, and N the number of cross sections. 
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Levy (2004)). SD offers two advantages: It requires no assumptions regarding the 

normality of return distributions, and it imposes few restrictions on investors' 

risk-return tradeoff preference. Previous literatures have applied the individual SD tests 

over difference issues. 

 

Jarrow (1986), Falk and Levy (1989), and recently some studies by Wong et al. 

(2008,2009) apply the SD test to determine the market efficiency, market rationality, 

and arbitrage opportunity by examining the whole distribution of returns, without the 

need of identifying a risk index or a specific model. In the conventional theories of 

market efficiency if one is able to earn abnormal return in normal circumstance, the 

market is considered to be inefficient or irrational. Further, Al-Khazali et al. (2008) 

used SD to detect temporal predictability of returns in the Athens Stock Exchange 

(ASE): they find a strong “day” effect and rather weak “week” and “January” effects. 

De Giorgi (2005) first proposed the “reward risk portfolio selection” model, differ from 

the Markowitz (1952), an axiomatic definition of reward and risk measures based on a 

few basic principles, including consistency with second-order stochastic dominance is 

arisen. De Giorgi and Post (2008) further derived the reward-risk Capital Asset Pricing 

Model (CAPM) analogously to the classical mean-variance CAPM.  

 

The stochastic dominance criteria were also applied in the evaluation of the portfolio 

performance; using the SD criteria, Annaert et al. (2009) evaluates the performance of 

different proportion of portfolio insurance techniques based on a block-bootstrap 

simulation, and the impact of changing the rebalancing frequency and level of capital 

protection is assessed. Ringuest et al. (2000) apply the conditional SD in R&D portfolio 

selection. Post (2003) developed a test for stochastic dominance efficiency, and Knight 

and Satchell (2008) even developed an infinite order stochastic dominance test and 

applied it to the U.S. and U.K. stock markets, and to the income data of Anderson 

(1996). Falk and Levy (1989) provide a compelling argument that the observed 

abnormal returns may be due to omitted variables, a market proxy effect, or other 

specification errors in implementing the traditional event study methodology, hence 

they propose a “cross-sectional SD” method as an alternative to traditional event 

studies. Larsen and Resnick (1999) improve the cross-sectional SD method by 

proposing a bootstrap method of statistical testing. Abhyankary, et al. (2005) use the 

idea of stochastic dominance to study the long-run post-merger stock performance of 

UK acquisition. Performance is compared by using the entire distribution of returns 

rather than only the mean as in traditional event studies. Abhyankary et al. (2008) also 

study the relative performance of value versus growth strategies from the perspective of 

stochastic dominance by using the Barrett and Donald (2003) test. Leshno and Levy 
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(2002) proposed the “almost stochastic dominance” (ASD), which can be used to 

compare the preference between stocks and bonds for the long run. The Almost 

Stochastic Dominance criterion has been developed to solve no First degree Stochastic 

Dominance (FSD) problem. The Almost Stochastic Dominance criterion has been 

recently employed in various studies (Levy (2006), Levy et al. (2004), Benitez et al. 

(2006), and Gasbarro et al. (2007)). Finally, a combination of DEA with SD criteria is 

proposed by Kuosmanen (2007) and by Lozano and Gutiérrez (2008). In their paper, six 

distinct DEA-like linear programming models are proposed for computing relative 

efficiency scores consistent with second-order stochastic dominance (SSD). The aim is 

that, being SSD efficient, the obtained target portfolio should be an optimal benchmark 

for any rational risk-averse investor. 

 

2.2 Interest of Extending SD Tests to a Panel Framework 

 

In the above section, we could see that the SD criteria have been applied to a very large 

variety of economic and financial questions. Stimulated by the facts SD test has became 

an important technique in finance literature, an extension of the classical SD tests to a 

panel framework is essential and brings a great contribution to the existing body of 

research.  

A generalized PDD model permits us to get a rigorous test on the significance level 

basis, which has a much greater power than its corresponding individual test. It is very 

useful when the time sample size is small, for instance, financial data with finite life 

like the options and covered warrants: a panel PDD test gathers all the information of 

all the series, hence increases the power compared to its corresponding individual test. 

 

3.1 Calculation of the Implied Stock Price 

 

To conduct the SD test and the likelihood ratio efficiency test to assess the covered 

warrants prices and the underlying share prices, transformation of the covered warrants 

prices to equilibrium prices for their underlying shares is required. For this purpose, we 

apply the option-implied share price model proposed by Manaster and Rendleman 

(1982).  

 

The implied stock price, Sit*, and implied standard deviations, ζit* for each pair i at 

time t can be calculated as: 





it

itit

N

jS
itit ArgS

1,

** min),(


 [ W
j 
– W

j
( Sit , ζ it ) ]

2
, (1) 

where j denotes the covered warrant number. The solution to Equation (1) minimizes 
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the sum of the squared deviations between the observed and theoretical covered warrant 

prices, where i is the number of implied share price pairs, Sit is the market share price, 

W
j
 is the observed covered warrant market prices, and W

j
( Sit , ζ it ) is the calculated 

theoretical covered warrants price. Nit represents the number of covered warrants used 

to compute the i
th

 implied price series at time t, where j≧2, since at least two warrants 

are needed to generate the argument minimum (Arg min).  

 

3.2 Panel Stochastic Dominance Test- PDD test 

 

In this section, the new panel SD (PDD) test is presented by extending the Davidson 

and Duclos (DD) test into a panel framework. 

 

Consider a sample of N cross sections (e.g. stocks) observed over T time periods. 

Suppose that investors attempt to choose between two risky assets, Xi and Yi, i=1, …, N. 

In this paper, Xi corresponds to the return of a covered warrant with a cumulative 

density function or simple called distribution Fi, and Yi corresponds to the return of 

corresponding underlying share with a distribution Gi. i is the index of the stock. 

 

The null hypothesis of non SD for all i=1,…,N. For s=1, 2, and 3, the null hypothesis of 

SD then becomes: 

 

 H0’: DUS
S

,i= DDER
S

,i, for all i=1,…N, 

 

 HA’: DUS
S

,i≠ DDER
S

,i, for some i=1, …, N0, 

 and DUS
S

,i= DDER
S

,i, for i= N0+1, …, N, 

 

 HA1’: DERi S USi, for some i=1, …, N1, 

 and DUS
S

,i= DDER
S

,i, for i= N1+1, …, N, 

 

 HA2’: USi S  DERi, for some i=1, …, N2, 

 and DUS
S

,i= DDER
S

,i, for i= N2+1, …, N. 

  

DUS
S

i represents cumulative density distribution of the underlying shares, and DDER
S

,i 

represents cumulative density distribution of the covered warrants, i represents 

different dominants order. USi represents the underlying shares,  DDER
S

,i represents the 

covered warrants. 
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This formulation of the alternative hypothesis allows for some (but not all) of the 

individual pairs of series to have SD under the alternative hypothesis. Formally, 

following Im et al. (2003), we assume the following assertion. 

 

In this section the proposed PDD test can be used to test the hypothesis that the series 

distributions are equal against the alternative of a proportion of them are being 

stochastically dominated, the series are independent across sections. 

 

Assumption 1: 

 

Under the alternative hypothesis the fraction of the individual processes 

that are stationary is non-zero, namely 

 

.10,lim 0 



N

N

N
 

 

This condition is necessary for the consistency of the PDD test. 

For s=1, 2, and 3, the number of the order, consider the DD statistic for the pair number 

i  (Davidson and Duclos, 2000):  

)(ˆ

)(ˆ)(ˆ
)(

xV

xDxD
xT

S

i

s

USi

s

DERiS

i


 ,        (2) 

where )(ˆ2)(ˆ)(ˆ)(ˆ
, xVxVxVxV s

USiDERi

s

USi

s

DERi

S

i  , for testing the equality of )(xDs

USi  and 

)(xDs

DERi . 

 

Case of Fixed T, N→∞ 

 

In this section, T is fixed. For this purpose the following assumption is made: 

 

Assumption 2: 

 

Let the joint population moments of order 2s-2 of USi and DERi be finite 

for all i=1, …, N. 

 

Assumption 3: 
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Let T be large enough so that )(xT S

i  has finite heterogeneous variances 

2

i  for all i, ..., N. 

 

A PDD test based on the average of individual DD statistics is the central focus. 

Therefore, for a fixed T (the focus of this section), the following average statistic is 

considered: 

 

 



N

i

S

i

S xT
N

NxT
1

2
)(

1
),( .        (3) 

 

Since deriving theoretical results is very difficult in the case of finite sample size, 

Davidson and Duclos (2000) do not provide any results about the moments of the DD 

statistic. It should be noted that even if bootstrap techniques are applied, it should be 

checked that at least the two first moments of the distribution exist. Hence in this 

project the two first moments of the DD distribution are computed using Monte Carlo 

experiments. 

 

Theorem 1 

Under Assumptions 1, 2, and 3, the individual statistics )(xT S

i , i = 1, …,N, 

are independent with finite second order moments. Therefore by 

Lindberg-Levy central limit theorem under the null hypothesis and as 

N→∞ the standardized ),( NxT S  statistic  

 

 
 

).1,0(
2

1),(

),(

),(),(
),( N

N

NxT

NxTV

NxTENxT
NxZ

N

S

S

SS

s  








 

 

Proof: 

A more general case where the sample sizes T differ across groups can be considered. 

Let us denote Ti the sample size of pair number i. 

 

Assumption 3’: 
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Let Ti be large enough so that )(xT S

i  has finite heterogeneous third 

moment for all i, …, N. 

 

Theorem 2 

Under Assumptions 1, 2, and 3’, the individual statistics )(xT S

i , i = 1, …, 

N, are identically but not independently distributed across i with finite 

third order moments. Therefore by Lyapunov central limit theorem under 

the null hypothesis and as N→∞ the standardized ),( NxT S  statistic 

 

).1,0(),( NNxZ
N

s  


 

 

Proof: 

The sample size T for which the third moment of )(xT S

i  is finite has to be 

determined. 

 

Case of T→∞, fixed N 

 

For T→∞, as it is proved by Davidson and Duclos (2000), the DD statistic converges to 

the standard normal distribution.  

 

Theorem 3 

Under Assumptions 1 and 2, under the null hypothesis, and as T →∞, 

 

).(),( 2 NNxTN
T

S  


 

Proof 

The proof is straightforward. 

 

Case of T→∞ first, N→∞ second 

 

Theorem 4 

Under Assumptions 1 and 2, under the null hypothesis, and as T →∞ first, and as 

N→∞ second, the standardized ),( NxT S
 statistic 
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).1,0(),(
,

NNxZ
NT

s  


 

Testing at a particular point x in the panel framework 

 

We assume that N is large enough for permitting to use the normal asymptotic 

approximation. If not, we assume that T is large enough for permitting to use the χ
2
 

asymptotic approximation, and the same reasoning holds using the critical values of the 

χ
2
 distribution instead of the normal distribution critical values. The test statistic 

presented above permits to test for the following hypotheses at point x: 

 

pairs.other   theallfor   ,)()( and

i, pairs of proportion afor   ,)()(:)('

pairs,other   theallfor   ,)()( and

i, pairs of proportion afor   ,)()(:)('

i,pair  oneleast at for   ,)()(:)('

i, pairs allfor   ,)()(:)('

2

1

0

xDxD

xDxDxH

xDxD

xDxDxH

xDxDxH

xDxDxH

s

DERi

s

USi

s

DERi

s

USiA

s

DERi

s

USi

s

DERi

s

USiA

s

DERi

s

USiA

s

DERi

s

USi













 

 

Let n(α) denotes the 1-α percentile of the normal distribution. We adopt the following 

decision rules: 

 

1. If Z(x,N)≤ n(α), accept H0(x)’, 

2. if Z(x,N)> n(α), accept HA(x)’. 

 

In the case where HA’ is accepted, the test statistic does not permit to distinguish 

between HA1’ and HA2’. Consequently, the individual )(xT S

i  statistics are examined: 

 

3. If '(x)accept    somefor )(  and   allfor  )( 1,, A

N

i

S

i

NS

i HiMxTiMxT    , 

4. if '.(x)accept    somefor   )( and   allfor  )( 2,, A

N

i

S

i

N

i

S

i HiMxTiMxT     

 

In should be noted that under the hypothesis of independence of the pairs, a large value 

for N does not violate the independence assumption required by the SMM distribution. 

Consequently, there is no restriction on the value of N. This will be wrong under cross 

sectional dependence, even for small value for N. 
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Testing for stochastic dominance in the panel framework 

 

We are faced to a similar problem (but not exactly the same) as for the non-panel 

framework: to test for panel stochastic dominance, H0’ has to be examined for the full 

support of each pair of series. Empirically, H0’ can be tested for a pre-designed finite 

number of values of x with procedure proposed by Bishop, Formby and Thistle (1992). 

Following Bishop, Formby and Thistle, we consider fixed values x1, x2, …, xM and use 

their corresponding statistics Z
s
(xk,N) for k = 1, 2, …, M to test the hypotheses H0’, 

HA’,HA1’, and HA2’ using the studentized maximum modulus distribution with M and 

infinite degrees of freedom, denoted by MM , . We denote the 1- percentile of MM  

by MM ,  and adopt the following decision rules:  

1. If | Z(xk,N) | ≤ MM , , for k=1, …, M, accept H0’, 

2. if Z(xk,N) > MM , , for some k, and Z(xk,N) <- MM , , for some other k, accept HA’. 

 

Again, in the case where HA’ is accepted, we examine the individual )( k

S

i xT  statistics: 

 

3. If 'accept  k, and  somefor )(  and k, and  allfor  )( 1,, A

MN

i

S

i

MN

k

S

i HiMxTiMxT 





   , 

4. if '.accept   k, and  somefor   )( and  k, and  allfor  )( 2,, A

MN

i

S

i

MN

i

S

i HiMxTiMxT 





    

 

It is important to note that the degree of freedom of the SMM is now equal to MN   to 

account for joint test size. 

 

Following these properties, we can now propose a panel test methodology: 

K

k

s

Kk
MNxZMax 2/,),( 


  rejects the null hypothesis. 

 

3.3 Another Panel Stochastic Dominance Test- PDD2 test 

Another way which can be used here is to base the panel test statistic on the average of 

the max individual statistics. It permits to test directly the panel framework form global 

individual test statistics, without considering the individual test statistics for each value 
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for x in the distributions of the assets. The same assumptions in subsection above are 

supposed. 

 

The maximum value of the statistics over the whole distribution, for only one pair, can 

be considered: 

x

s

i

s

i xTMaxKT )()(
~

 , 

and then the panel average statistic: 





N

i

s

i

s KT
N

KNT
1

)(
~1

),(
~

.   (*) 

 

Theorem 5 

Under Assumptions 1, 2, and 3, the individual statistics )(
~

KT S

i , i = 

1, …,N, are independent with finite second order moments. Therefore by 

Lindberg-Levy central limit theorem under the null hypothesis and as 

N→∞ the standardized ),(
~

KNT S  statistic  

 

 
 

).1,0(
),(

~

),(
~

),(
~

),(
~

N
KNTV

KNTEKNT
KNZ

NS

SS

s  





 

The expectation and the variance of these statistics are the expectation and the variance 

of the corresponding studentized maximum modulus distribution. In their paper, 

Stoline and Ury (1979) provide the critical values for the studentized maximum 

modulus distribution, but not its moments. To compute our panel statistic, the two first 

moments are required. Using Monte Carlo simulation, we computed the first four 

moments. The third and fourth moments give an idea to the rate of convergence to the 

N(0,1) distribution of our statistic. These moments are provided in Table 1. 
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Table 1: First four moments of the 
x

s

i

s

i xTMaxKT )()(
~

  statistic 

This table provides, using Monte Carlo simulations, the mean, variance, standard 

deviation, skewness, and kurtosis of the 

x

s

i

s

i xTMaxKT )()(
~

  statistic with 

parameter K, and infinite degree of freedom. 1,000,000 of simulation were run. 

 

Parameter K Mean Variance Standard 

deviation 

Skewness Kurtosis 

1 0.796 0.3630 0.6025 0.9879 3.819 

2 1.127 0.3661 0.605 0.7173 3.456 

3 1.329 0.3469 0.589 0.6196 3.389 

4 1.467 0.3265 0.5714 0.5838 3.392 

5 1.572 0.3108 0.5575 0.5867 3.504 

6 1.654 0.2972 0.5452 0.5691 3.477 

7 1.723 0.2853 0.5341 0.5614 3.456 

8 1.787 0.2782 0.5274 0.5609 3.476 

9 1.833 0.2679 0.5175 0.5692 3.491 

10 1.881 0.2639 0.5137 0.5779 3.531 

12 1.957 0.2502 0.5002 0.5740 3.512 

14 2.023 0.2423 0.4922 0.5851 3.547 

16 2.077 0.2334 0.4831 0.6037 3.617 

18 2.125 0.2291 0.4787 0.6086 3.617 

20 2.166 0.2230 0.4723 0.6230 3.695 

24 2.236 0.2140 0.4626 0.6410 3.720 

28 2.297 0.2083 0.4564 0.6235 3.631 

32 2.348 0.2011 0.4485 0.6347 3.675 

36 2.389 0.1949 0.4415 0.6360 3.671 

40 2.429 0.1898 0.4356 0.6364 3.697 

44 2.464 0.1872 0.4326 0.6607 3.757 

48 2.492 0.1837 0.4286 0.6667 3.799 

52 2.524 0.1812 0.4257 0.6840 3.825 

56 2.548 0.1777 0.4216 0.6810 3.811 

60 2.575 0.1787 0.4228 0.6877 3.840 

70 2.627 0.1703 0.4127 0.6873 3.832 

80 2.669 0.1664 0.4080 0.7016 3.906 

90 2.711 0.1626 0.4032 0.7035 3.864 

100 2.748 0.1619 0.4024 0.7186 3.879 
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In case of rejection of the null hypothesis, it can be useful to distinguish between HA1, 

and HA2. We then propose two addition test statistics: in Equation (*), 
x

s

i

s

i xTMaxT )(
~

  

is replaced by 
x

s

i

s

i xTMaxT )(
~

  or 
x

s

i

s

i xTMinT )(
~

 . Theorem 4 applies to both these 

new statistics. We also need the moments of the statistics. They are provided in Table 2 

and Table 3. 

 

Table 2: First four moments of the 
x

s

i

s

i xTMaxT )(
~

  statistic 

This table provides, using Monte Carlo simulations, the mean, variance, standard 

deviation, skewness, and kurtosis of the 
x

s

i

s

i xTMaxT )(
~

  statistic with parameter K, 

and infinite degree of freedom. 1,000,000 of simulation were run. 

 

Parameter K Mean Variance Standard 

deviation 

Skewness Kurtosis 

1 0.004626 0.997 0.9985 -0.003055 2.992 

2 0.561 0.6838 0.8269 0.1408 3.113 

3 0.8472 0.5634 0.7506 0.2089 3.13 

4 1.032 0.493 0.7021 0.2761 3.187 

5 1.166 0.4505 0.6712 0.312 3.24 

6 1.267 0.4172 0.6459 0.3422 3.251 

7 1.353 0.3914 0.6256 0.3528 3.254 

8 1.424 0.3741 0.6116 0.3826 3.306 

9 1.484 0.3569 0.5974 0.3934 3.34 

10 1.539 0.3452 0.5875 0.4272 3.359 

12 1.629 0.3216 0.5671 0.432 3.37 

14 1.702 0.3084 0.5553 0.4583 3.363 

16 1.766 0.2933 0.5416 0.4709 3.412 

18 1.823 0.2862 0.535 0.4992 3.492 

20 1.865 0.2742 0.5236 0.5098 3.498 

24 1.947 0.2625 0.5123 0.5401 3.558 

28 2.014 0.2512 0.5012 0.5382 3.51 

32 2.071 0.2431 0.4931 0.5503 3.567 

36 2.118 0.233 0.4827 0.5685 3.561 

40 2.162 0.226 0.4754 0.5603 3.57 

44 2.201 0.2224 0.4716 0.5714 3.562 

48 2.233 0.2164 0.4652 0.6 3.675 

52 2.265 0.2136 0.4622 0.6021 3.652 

56 2.291 0.2094 0.4576 0.599 3.625 

60 2.321 0.208 0.4561 0.6327 3.725 

70 2.378 0.1988 0.4459 0.626 3.685 

80 2.422 0.1918 0.438 0.6553 3.831 

90 2.469 0.1863 0.4316 0.6473 3.782 

100 2.508 0.1865 0.4318 0.6647 3.782 
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Table 3: First four moments of the 
x

s

i

s

i xTMinT )(
~

  statistic 

This table provides, using Monte Carlo simulations, the mean, variance, 

standard deviation, skewness, and kurtosis of the 
x

s

i

s

i xTMinT )(
~

  statistic 

with parameter K, and infinite degree of freedom. 1,000,000 of simulation 

were run. 

 

Parameter K Mean Variance Standard 

deviation 

Skewness Kurtosis 

1 0.004626 0.997 0.9985 -0.003055 2.992 

2 -0.564 0.6798 0.8245 -0.1521 3.061 

3 -0.8468 0.5622 0.7498 -0.2305 3.116 

4 -1.028 0.4953 0.7038 -0.2578 3.132 

5 -1.163 0.4467 0.6683 -0.3049 3.239 

6 -1.266 0.4144 0.6438 -0.3338 3.24 

7 -1.353 0.3898 0.6243 -0.3552 3.256 

8 -1.428 0.3753 0.6126 -0.3707 3.256 

9 -1.484 0.3544 0.5954 -0.3861 3.277 

10 -1.54 0.3436 0.5862 -0.4086 3.333 

12 -1.628 0.3241 0.5693 -0.4282 3.32 

14 -1.703 0.3076 0.5546 -0.4563 3.401 

16 -1.767 0.2937 0.542 -0.4802 3.45 

18 -1.82 0.283 0.532 -0.4768 3.434 

20 -1.871 0.2761 0.5255 -0.5115 3.516 

24 -1.946 0.2597 0.5096 -0.5238 3.543 

28 -2.014 0.2527 0.5027 -0.5366 3.51 

32 -2.069 0.241 0.4909 -0.5518 3.533 

36 -2.116 0.2338 0.4835 -0.5566 3.543 

40 -2.16 0.2271 0.4766 -0.5659 3.562 

44 -2.197 0.2213 0.4704 -0.6009 3.679 

48 -2.229 0.2164 0.4652 -0.5921 3.637 

52 -2.265 0.2136 0.4622 -0.6009 3.695 

56 -2.291 0.2091 0.4573 -0.6101 3.705 

60 -2.321 0.2083 0.4564 -0.6159 3.688 

70 -2.377 0.1988 0.4459 -0.6234 3.717 

80 -2.427 0.1935 0.4399 -0.6279 3.687 

90 -2.471 0.1889 0.4346 -0.6409 3.724 

100 -2.509 0.1858 0.431 -0.6599 3.757 
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3.3 SD Test for Heterogeneous Panels with Cross Sectional Dependence 

 

Sometimes the series of the panel are not necessarily on the same period; consequently, 

it is not required to take into account for cross sectional dependence between the pairs. 

Nevertheless, a methodology that accounts for heterogeneous panels with cross 

sectional dependence may be useful in the context of same period cylindrical panel data, 

where heterogeneous cross section dependence tends to be important in most empirical 

applications. 

 

The model 

 

We employ the Pesaran (2007) panel framework that enables us to account for 

heterogeneous cross section dependence. Suppose the underlying share prices St and the 

warrant prices Wt are modeled as follows: 

 St = αS + βS St-1 + uS,t   t=1,…T, 

 Wt = αW + βW Wt-1 + uW,t, t=1,…T, 

where the initial value, S0 and W0, are given, and the error term, u, has the one-factor 

structure: 

uS,t = ɣS ft + εS,t 

uW,t = ɣW ft + εW,t 

 εS,t ~ i.i.d.(0,ζS
2
) 

 εW,t ~ i.i.d.(0,ζW
2
) independent of εS,t 

in which ft is the unobserved common effect, and ε is the individual-specific 

(idiosyncratic) error. 

 

Panel Neural Test accounting for Cross Section Dependence 

 

It should be recalled that the properties of the previous panel stochastic dominance test 

are based on the assumption that the error terms are not cross-correlated. When this 

assumption is violated, the derived distributions for these test statistics are no longer 

valid: they suffer from nuisance parameter problems. The distributions of the test 

statistics are not the same as before and are not known. For the DD individual tests in 

our PDD test are correlated and hence our average PDD statistic does not have the 

stated variance in its (asymptotic) normal distribution. Even if cross sectional 

dependence is accounted for, the distribution under the null is not Gaussian: see Pesaran 

(2007) and Cerrato et al. (2007). 

 

One way out of the problem of cross-correlated errors is proposed by Maddala and Wu 
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(1999). They propose to use the bootstrap method to get the empirical distributions of 

the test statistics to make inferences. The bootstrap method for univariate time series is 

well developed. See Li and Maddala (1996) for a good introduction. Meanwhile the 

bootstrap method for panel data is in its infancy. Let us consider the model y = x β + u. 

Generally speaking, if the null hypothesis is H0: β = β0, the bootstrap method suggests 

generating bootstrap sample y* as y* = x β0 + u*, where u* is the bootstrap sample from 

u
0
 = y – x β. Since we have panel data here, we should also take care of special 

problems arising from the serial correlation. 

 

In our case, we get the bootstrap sample of the error term u
0
 from: 

Δ yi,t = ui,t
0
 

since yi,t is W or S and has a unit root. Since there are cross-correlations among ui,t
0
, Li 

and Maddala (1996) cannot resample ui,t
0
 directly. They propose resampling ui,t

0
 with 

the cross-section index fixed, i.e. instead of resampling ui,t
0
 they resample ut

0
 = (uW,t

0
, 

uS,t
0
) to get u*. In this way, they can preserve the cross-correlation structure of the error 

term. 

 

3.4 The Informational Efficiency Test -The Panel Bootstrap Likelihood Ratio Test 

 

In this section, the new panel bootstrap LR (PLR) efficiency test is presented.
2
 We 

consider the same sample as for the panel stochastic dominance test, as well as the same 

assumptions. The null hypothesis is efficiency for all i=1,…,N. 

 

It should be noted that if a panel LR statistic is constructed by averaging the individual 

LR statistics, the panel statistic will suffer from size distortion, and a new panel 

bootstrap procedure has to be developed. However, the bootstrap individual P values 

can also be used to construct a panel statistic. First, it is worth to note that under the null 

hypothesis, the bootstrap P value is asymptotically distributed as a uniform variable 

over [0,1]. (The asymptotic P value is also asymptotically distributed as a uniform 

variable over [0,1], but suffers from a large distortion from this distribution.) Then a 

panel test statistic can be constructed as follows: 

 





N

i

ip
N

p
1

1
, where pi is the bootstrap P value for the pair number i, 

Z(N)= 
)(

)(

p

pEp




, the standardized statistic. 

 

                                                 
2
 Regards LR bootstrap test, please refer to Xu and Taylor (1995) and Claessen and Mittnik (2002) 
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Under the null hypothesis and since the pi are supposed to be independent, we have: 

E( p )= 


N

i

ipE
N 1

)(
1

=E(pi)=0.5, 

V( p )= 


N

i

ipV
N 1

2
)(

1
= )(

1
ipV

N
=

N12

1
, 

thus 
N

p



12

1)( . 

 

Theorem 6 

Under the previous assumptions, as N→+∞, the following standardized 

statistic: 

Z(N)= 

N

p





12
1

5.0
 ~ N(0,1) under the null hypothesis. 

 

This bootstrap procedure can also be accommodated to cross sectional dependence. 

 

4. Performance of the Panel Stochastic Dominance tests: Monte Carlo 

Experiments 

In this section we use Monte Carlo experiments to examine small sample properties of 

the alternative panel stochastic dominance tests. We compare the performance of the 

panel test with the performance of the individual version of the tests, to examine the 

power gain. The number of Monte Carlo replications S is set equal to 1000. The DD test 

is computed on a grid of values for the possible observations x : x1, …, xI. In other words, 

the individual DD test is computed at certain values of the observation distribution. I is 

the number of values in the grid. We use the following rule to fix I: I=  )2,1min( TT , 

which is the integer part of the square root of the sample size. 

 

4.1 Simulation under the null hypothesis 

 

The observations are generated under the null hypothesis that there is no stochastic 

dominance. The size of an inference test of hypothesis is the probability to reject the 

null hypothesis at a certain significance level, say 5%. If the test is accurate, its size 

should be equal to the significance level. If there is no size distortion, the size is equal to 

the significance level. Here we choose 0.05 (i.e. 5%). Consequently, a test that 

performs correctly on the size basis should present a size close to 0.05. 
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4.1.1 First set of experiments, with respect to the sample size 

 

Simulated samples are generated from Gaussian distribution with same mean (here 0) 

and same variance (here 1). The number of cross sections N, and the sample sizes T1 

and T2 of the samples which will be compared are varying. The results are presented in 

Table 4. 

 

Table 4: Size of the tests with respect to the sample size and the number of cross 

section using Gaussian distribution 

 

No. Cross 

Sections 

Sample Individual DD 

test 

 Panel DD test 

N T1 T2 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT

 

),(
~2 KNT

 

),(
~3 KNT  

  2 20 20 0.032 0.029 0.021 0.055 0.033 0.026 

2 50 50 0.036 0.013 0.012 0.042 0.017 0.012 

2 100 100 0.029 0.019 0.012 0.043 0.028 0.017 

2 200 200 0.025 0.012 0.008 0.036 0.016 0.01 

2 500 500 0.036 0.011 0.009 0.039 0.013 0.01 

5 20 20 0.065 0.034 0.02 0.065 0.038 0.026 

5 50 50 0.03 0.021 0.015 0.036 0.028 0.018 

5 100 100 0.027 0.013 0.006 0.039 0.019 0.009 

5 200 200 0.027 0.006 0.005 0.035 0.01 0.006 

5 500 500 0.027 0.009 0.004 0.037 0.013 0.005 

10 20 20 0.047 0.038 0.03 0.048 0.046 0.032 

10 50 50 0.037 0.021 0.016 0.043 0.025 0.018 

10 100 100 0.028 0.011 0.008 0.034 0.015 0.01 

10 200 200 0.022 0.008 0.006 0.034 0.011 0.008 

10 500 500 0.02 0.006 0.003 0.025 0.007 0.004 

20 20 20 0.052 0.035 0.022 0.055 0.042 0.026 

20 50 50 0.029 0.017 0.013 0.035 0.021 0.017 

20 100 100 0.034 0.014 0.006 0.042 0.016 0.008 

20 200 200 0.023 0.014 0.01 0.029 0.019 0.014 

20 500 500 0.026 0.008 0.006 0.031 0.012 0.008 

50 20 20 0.042 0.027 0.018 0.051 0.032 0.024 

50 50 50 0.035 0.015 0.014 0.047 0.016 0.014 

50 100 100 0.018 0.009 0.008 0.036 0.014 0.012 

50 200 200 0.02 0.008 0.007 0.029 0.011 0.008 

50 500 500 0.028 0.009 0.004 0.03 0.009 0.004 

 

It can be observed that all the tests are conservative less than 0.05 (5%), and the panel 

tests presents better size properties than the corresponding individual DD tests since the 

panel tests sizes are closer to 5% than the individual tests sizes in different order. 
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4.1.2 Second set of experiments, with another sample distribution using Student 

distribution 

 

We have chosen the Gaussian distribution for the observations, but many other 

distributions can be chosen to assess the performance of the tests. Consequently, we run 

a second set of experiment using Student distribution instead of Gaussian ones to check 

that the tests perform correctly for other distribution than the Gaussian one. The results 

are presented in Table 5. 

 

Table 5: Size of the tests for Student distributed observations 

 

   Individual DD test Panel DD test 

N T1 T2 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

2 20 20 0.01 0.022 0.014 0.027 0.026 0.018 

2 50 50 0.023 0.014 0.006 0.025 0.016 0.006 

2 100 100 0.009 0.008 0.003 0.016 0.01 0.004 

2 200 200 0.008 0.008 0.003 0.013 0.011 0.003 

2 500 500 0.008 0.005 0.002 0.009 0.006 0.002 

5 20 20 0.031 0.024 0.015 0.038 0.027 0.016 

5 50 50 0.02 0.011 0.007 0.021 0.016 0.01 

5 100 100 0.015 0.008 0.003 0.02 0.008 0.004 

5 200 200 0.009 0.003 0.002 0.016 0.004 0.002 

5 500 500 0.003 0.002 0.001 0.009 0.002 0.002 

10 20 20 0.021 0.014 0.01 0.029 0.017 0.01 

10 50 50 0.015 0.01 0.009 0.021 0.013 0.009 

10 100 100 0.013 0.003 0.002 0.019 0.005 0.003 

10 200 200 0.007 0.008 0.006 0.011 0.009 0.006 

10 500 500 0.009 0.005 0.004 0.012 0.006 0.005 

20 20 20 0.024 0.017 0.013 0.024 0.018 0.014 

20 50 50 0.016 0.01 0.007 0.019 0.013 0.009 

20 100 100 0.013 0.005 0.004 0.015 0.008 0.005 

20 200 200 0.007 0.004 0.001 0.013 0.008 0.002 

20 500 500 0.009 0.004 0.002 0.012 0.006 0.002 

50 20 20 0.032 0.014 0.01 0.042 0.016 0.01 

50 50 50 0.021 0.015 0.008 0.024 0.017 0.01 

50 100 100 0.012 0.003 0 0.014 0.003 0 

50 200 200 0.008 0.003 0.003 0.011 0.005 0.004 

50 500 500 0.014 0.007 0.004 0.018 0.008 0.006 

 

4.2 Simulation under the alternative hypothesis 
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The observations are now generated under the alternative hypothesis that there is 

stochastic dominance. The power of a test is the probability to accept the alternative 

when it is true. If a test performs correctly, its power should be close to one. 

 

4.2.1 First set of experiments, with respect to the sample size 

 

In this set of experiments we make the sample size T1 and T2 varying, as well as the 

number of cross sections N. This time, the distributions are different: N(0,1) for the first 

one, N(1.4,1) for the second one. The results are presented in Table 6. 

 

Table 6: Power of the tests with respect to the sample size and the number of cross 

section using Gaussian distribution 

 

   Individual DD test Panel DD test 

N T1 T2 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

2 20 20 0.156 0.148 0.111 0.169 0.159 0.123 

2 50 50 0.297 0.297 0.237 0.338 0.329 0.261 

2 100 100 0.559 0.571 0.494 0.597 0.602 0.522 

2 200 200 0.883 0.877 0.824 0.904 0.9 0.854 

2 500 500 1 1 1 1 1 1 

5 20 20 0.117 0.149 0.11 0.167 0.175 0.132 

5 50 50 0.28 0.291 0.239 0.308 0.306 0.258 

5 100 100 0.561 0.567 0.497 0.6 0.603 0.528 

5 200 200 0.865 0.893 0.858 0.887 0.905 0.87 

5 500 500 0.999 0.998 0.997 0.999 0.999 0.997 

10 20 20 0.111 0.142 0.105 0.151 0.159 0.119 

10 50 50 0.281 0.291 0.23 0.314 0.309 0.252 

10 100 100 0.558 0.586 0.517 0.605 0.62 0.549 

10 200 200 0.875 0.87 0.831 0.899 0.883 0.842 

10 500 500 1 1 0.999 1 1 0.999 

20 20 20 0.134 0.121 0.094 0.157 0.134 0.107 

20 50 50 0.301 0.283 0.223 0.335 0.308 0.249 

20 100 100 0.545 0.56 0.484 0.587 0.587 0.508 

20 200 200 0.883 0.904 0.859 0.899 0.913 0.879 

20 500 500 0.999 0.999 0.998 1 0.999 0.998 

50 20 20 0.128 0.147 0.118 0.18 0.174 0.136 

50 50 50 0.28 0.287 0.231 0.311 0.319 0.255 

50 100 100 0.586 0.597 0.515 0.618 0.623 0.548 

50 200 200 0.876 0.887 0.844 0.889 0.895 0.857 

50 500 500 1 1 1 1 1 1 
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We can observe that our panel tests display a better power than the corresponding 

individual DD tests. 

 

We run another set of experiment using student distribution instead of Gaussian ones. 

The results are presented in Table 7. 

 

Table 7: Power of the tests for Student distributed observations 

 

   Individual DD test Panel DD test 

N T1 T2 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

2 20 20 0.089 0.092 0.066 0.094 0.1 0.075 

2 50 50 0.194 0.153 0.087 0.213 0.166 0.097 

2 100 100 0.305 0.237 0.147 0.337 0.262 0.167 

2 200 200 0.582 0.443 0.279 0.611 0.473 0.302 

2 500 500 0.831 0.766 0.535 0.841 0.779 0.558 

5 20 20 0.074 0.099 0.069 0.094 0.12 0.083 

5 50 50 0.171 0.154 0.094 0.198 0.179 0.108 

5 100 100 0.296 0.244 0.16 0.321 0.271 0.172 

5 200 200 0.584 0.429 0.268 0.608 0.467 0.289 

5 500 500 0.836 0.761 0.522 0.844 0.777 0.547 

10 20 20 0.082 0.109 0.077 0.109 0.13 0.092 

10 50 50 0.18 0.156 0.089 0.198 0.179 0.111 

10 100 100 0.341 0.27 0.172 0.365 0.302 0.199 

10 200 200 0.562 0.45 0.282 0.577 0.469 0.302 

10 500 500 0.85 0.768 0.521 0.862 0.777 0.544 

20 20 20 0.086 0.088 0.066 0.095 0.107 0.074 

20 50 50 0.158 0.137 0.087 0.189 0.166 0.099 

20 100 100 0.311 0.246 0.165 0.338 0.278 0.182 

20 200 200 0.603 0.438 0.264 0.632 0.476 0.293 

20 500 500 0.831 0.77 0.55 0.835 0.784 0.571 

50 20 20 0.087 0.107 0.074 0.102 0.119 0.081 

50 50 50 0.163 0.136 0.083 0.195 0.152 0.103 

50 100 100 0.323 0.238 0.139 0.356 0.254 0.158 

50 200 200 0.58 0.445 0.279 0.594 0.459 0.291 

50 500 500 0.85 0.757 0.506 0.864 0.778 0.535 

 

 

4.2.2 Second set of experiments, with respect to the moments 

 

We fixT1 and T2 to 100, and N=10, and we make the means μ1 and μ2 and the standard 

deviations ζ1
2
 and ζ2 of both the distributions varying: N(μ1, ζ1

2
) and N(μ2, ζ2

2
). The 

results are presented in Table 8. 
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Table 8: Power of the tests with respect to the means and the standard deviations 

 

Mean 

1 

Mean 

2 

s.d. 

1 

s.d. 

2 

Individual DD test Panel DD test 

μ1 μ2 ζ1 ζ2 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

0 0.2 1 1.2 0.238 0.07 0.029 0.275 0.083 0.034 

0 0.2 1 1.4 0.523 0.123 0.048 0.556 0.15 0.062 

0 0.2 1 1.6 0.762 0.261 0.193 0.805 0.304 0.222 

0 0.2 1 1.8 0.935 0.522 0.4 0.95 0.566 0.441 

0 0.2 1 2 0.98 0.717 0.561 0.99 0.782 0.645 

0 0.4 1 1.2 0.612 0.421 0.258 0.649 0.455 0.282 

0 0.4 1 1.4 0.756 0.332 0.113 0.784 0.36 0.127 

0 0.4 1 1.6 0.902 0.319 0.124 0.929 0.367 0.147 

0 0.4 1 1.8 0.977 0.456 0.221 0.983 0.505 0.253 

0 0.4 1 2 0.996 0.646 0.382 0.997 0.694 0.434 

0 0.6 1 1.2 0.912 0.857 0.704 0.923 0.868 0.723 

0 0.6 1 1.4 0.946 0.746 0.47 0.97 0.776 0.516 

0 0.6 1 1.6 0.981 0.665 0.284 0.99 0.7 0.312 

0 0.6 1 1.8 0.993 0.63 0.258 0.996 0.679 0.289 

0 0.6 1 2 0.998 0.698 0.285 1 0.759 0.348 

0 0.8 1 1.2 0.993 0.992 0.967 0.993 0.993 0.972 

0 0.8 1 1.4 0.995 0.964 0.875 0.995 0.967 0.881 

0 0.8 1 1.6 0.998 0.925 0.693 0.999 0.943 0.716 

0 0.8 1 1.8 0.999 0.893 0.53 1 0.918 0.561 

0 0.8 1 2 0.999 0.862 0.419 0.999 0.886 0.465 

0 1 1 1.2 1 1 1 1 1 1 

0 1 1 1.4 1 1 0.993 1 1 0.994 

0 1 1 1.6 1 0.993 0.931 1 0.994 0.942 

0 1 1 1.8 1 0.973 0.811 1 0.981 0.822 

0 1 1 2 1 0.964 0.729 1 0.974 0.763 

 

Again, we can observe that our panel tests display a better power (more close to 1) than 

the corresponding individual DD tests. 

 

4.3 Robustness with respect to the size of the grid 

 

The DD test is computed on a grid of values for x : x1, …, xI. I is the number of values in 

the grid. If I is too large, the hypothesis of independence between the DD statistics T
j
(x) 

is wrong. This is used to compute the distribution of the statistic under the null 

hypothesis. This distribution is the studentized maximum modulus distribution. 

However, if I is too small, the DD test won’t be powerful enough. 
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In this subsection, we examine the size and power of the tests when I is varying. We 

fixT1 and T2 to 100, and N=10, and we make I varying: 10% of the sample size T, 20%, 

30%… 100%. 

 

Under the null hypothesis, simulated samples are generated from Gaussian distribution 

with same mean (here 0) and same variance (here 1). The results are presented in Table 

9. We recall that the tests should display a size close to 0.05. 

 

Table 9: Size of the tests with respect to the size of the grid 

 

No.Grid Individual DD test Panel DD test 

 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

10 0.023 0.016 0.009 0.041 0.022 0.011 

20 0.03 0.014 0.007 0.039 0.014 0.009 

30 0.022 0.005 0.002 0.028 0.006 0.003 

40 0.023 0.006 0.004 0.028 0.009 0.004 

50 0.015 0.004 0.001 0.017 0.005 0.002 

60 0.025 0.006 0.002 0.026 0.007 0.003 

70 0.014 0.001 0 0.02 0.001 0 

80 0.01 0.001 0 0.01 0.001 0 

90 0.016 0.002 0.002 0.018 0.005 0.002 

100 0.01 0.002 0 0.011 0.002 0.001 

 

It can be observed that increasing the size of the grid is associated with decreasing 

power of the tests, leading to a strong undersize. Our rule to fix the size of the grid leads 

to the least decrease of the size, and then can be retained as a correct rule. 

 

Under the alternative hypothesis, the distributions are different: N(0,1) for the first one, 

N(1.4,1) for the second one. The results are presented in Table 10. We recall that the 

tests should display a power close to 1. 

 

Table 10: Power of the tests with respect to the size of the grid Student distributed 

observations 

No.Grid Individual DD test Panel DD test 

 Max 

|T1
1
(x)| 

Max 

|T1
2
(x)| 

Max 

|T1
3
(x)| 

),(
~1 KNT  ),(

~2 KNT  ),(
~3 KNT  

10 0.546 0.569 0.494 0.591 0.592 0.52 

20 0.539 0.474 0.402 0.562 0.501 0.441 

30 0.499 0.424 0.35 0.536 0.445 0.377 
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40 0.473 0.388 0.316 0.506 0.415 0.341 

50 0.464 0.376 0.312 0.5 0.402 0.33 

60 0.508 0.372 0.299 0.529 0.412 0.324 

70 0.477 0.374 0.308 0.507 0.398 0.325 

80 0.46 0.34 0.266 0.498 0.363 0.29 

90 0.441 0.314 0.238 0.477 0.348 0.264 

100 0.476 0.337 0.269 0.504 0.351 0.29 

 

We can also see that the power decreases if the size of the grid is too large. Again, our 

choice for the rule to fix the grid size seems robust. 

5. Empirical Results and Analysis 

5.1. Panel stochastic dominance tests results 

 

Table 11 provides the results dealing with the panel stochastic dominance results. The 

stochastic dominance orders presented are 1, 2, and 3. We use the max and min statistics 

to distinguish between both the alternative hypothesis HA1 and HA2. 

 

Table 11: Panel stochastic dominance tests results 

 

Statistic T1 T1 T2 T2 T3 T3 

Type Max Min Max Min Max Min 

)(
~

KT s

i  2.06422535 -2.10983099 1.00488732 -1.11652113 0.6805493 -1.00630986 

),(
~

KNZ s
 -0.70368838 0.59916801 -3.07941843 2.82681963 -3.80679682 3.07398551 

 

The associated unilateral 5% critical values for the Z statistic are - 1.645 and 1.645 (the 

normal ones). From these results, it is clear that there is no stochastic dominance of 

order one: the max statistics is not smaller than -1.645, and the min statistics is not 

greater than 1.645. We do not reject the null hypothesis that 

kk

1

wk

1

s0   xallfor  ),(xD)(xD:H  , k=1,…,I,  and for all pairs (Si,Xi), i=1,…,N. This 

suggests that there is no arbitrage opportunity between covered warrants and their 

underlying stocks. 

 

Conversely, for the order two and three, the null hypothesis is rejected. However none 

of the asset (S or W) stochastically dominates the other one at the order two and three. 

At the order two, this suggests that there is no abnormal profit obtained by switching 

from S  to W (or the reverse); and switching would not allow risk-averse investors to 
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have preference and increase their expected utility. In this scenario, there maybe no 

arbitrage opportunity and the market is also efficient if all investors are risk averse. 

 

At the order three, which assumes that all investors’ utility functions exhibit 

non-satiation, risk aversion, and decreasing absolute risk aversion (DARA), it means 

that the market is efficient if investors are associated with risk aversion and DARA. 

One would not make an expected utility by switching from S  to W , even though 

switching would allow risk-averse DARA investors to increase their expected utility.  

 

5.2 Panel Informational Efficiency Test Result 

 

The value of the panel bootstrap LR test statistic using a GED distribution for the data is 

presented in Table 12 with other comparative specifications. 

 

Table 12: Panel Informational Efficiency Test Result 

 

Test Asymptotic Bootstrap 

Error terms distribution Gaussian GED Gaussian GED 

bar p 0.00 0.11 0.18 0.38 

Z -15.29 -7.76 -9.36 -3.74 

 

The left 5% critical value of a normal distribution is equal to -1.65. All the Z statistics 

are smaller than this critical value, rejecting the null hypothesis of efficiency. However, 

the first three statistics are very small, much more than the statistic in the case of 

GED-bootstrap tests, suggesting a misspecification of the first three models. The mean 

of the p values in the case of the GED-bootstrap tests is not so small: 0.38 (under the 

null hypothesis, it should be close to 0.5). The null hypothesis may be rejected for two 

reasons: 

1. the GED-bootstrap test is not perfectly specified and reject the null hypothesis 

whereas it is true, 

2. for some pairs (Si,Wi) the algorithm to optimize
3
 the log-likelihood of the model 

has not converged, and provides some extreme values for the statistics, and then 

for the p values (which is too close to 0). This problem is often encountered 

when optimizing GARCH-type log-likelihood functions. 

                                                 
3
 The software Eviews ®  was used  to optimize the log-likelihood. 



 28 

6. Conclusions 

This paper contributes to be the first attempt to propose two new panel tests for testing 

market efficiency, one is a panel stochastic dominance test (PDD test), and a panel 

informational efficiency LR test (PLR test). We further propose a bootstrap correction 

for the size distortion of the informational efficiency LR test. Six theoretical theorems 

are carefully developed and are examined by applying both Monte Carlo simulations 

and empirical application.  

 

Monte Carlo experiments show that our panel stochastic dominance test has good size 

and power properties, better than the properties of the corresponding individual tests.  

The panel tests have less size distortion and are more powerful than their corresponding 

individual tests. This permits us to examine market efficiency for UK covered warrant 

with more powerful tests. Empirical results shows that investors perceive the same 

utility investing in UK covered warrants and their underlying shares, implying there is 

no arbitrage opportunity. The asymptotic panel LR tests also do not confirm the market 

efficiency in a first stage. However, they present some technical problems: when 

correcting these tests using bootstrap methodology and by correcting the error term 

distribution using a GED distribution instead of the Gaussian one, the results are much 

more encouraging. Our theoretical derivation and empirical results contributes largely 

to the literature and also provide importation intuition to the market participants.  
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Appendix. Summary Statistics of the Sample Set 

UK list Type Listing 
Issue 

price 
UK list Type Listing Issue price 

Ang. Amer call 2005/4/12 13.3 M&S call 2006/7/31 67.75 

 call 2005/4/12 7.8  call 2006/7/31 23.35 

 put 2005/4/12 5.35 
National 

grid 
call 2006/7/31 6.7 

Ang. Amer call 2006/7/31 41.2  call 2006/7/31 2.54 

 call 2006/7/31 27.15 
Partygami

ng 
call 2006/7/31 33.15 

 put 2006/7/31 20.9  call 2006/7/31 14.85 

Ang Amer put 
2006/10/3

1 
21.7 Pearson call 2005/4/8 60.65 

 call 
2006/10/3

1 
16.3  call 2005/4/8 17 

Antofagasta call 2006/7/31 72.15  put 2005/4/8 27.6 

 call 2006/7/31 53.75 Prudential call 2005/4/8 7.8 

 put 2006/7/31 52.25  call 2005/4/8 3.13 

Arm.hdg call 2006/7/31 23.35  put 2005/4/8 1.67 

 call 2006/7/31 12.35 Prudential call 2006/2/24 6.5 

AstraZeneca call 2005/12/1 28.28  call 2006/2/24 2.86 

 call 2005/12/1 13.42 Prudential call 2006/7/31 7.2 

 put 2005/12/1 11.17  call 2006/7/31 3.26 

AstraZeneca call 2006/2/24 25.63 Rbos call 2006/7/31 15.65 

 call 2006/2/24 10.36  call 2006/7/31 5.6 

 put 2006/2/24 19.37  put 2006/7/31 9.2 

AstraZeneca call 2006/7/31 16.4 Reuters call 2005/4/8 46.93 

 call 2006/7/31 38.7  call 2005/4/8 23.83 

 put 2006/7/31 19.2  put 2005/4/8 27.73 

Aviva call 2005/4/11 6.7 Reuters call 2006/2/24 8.14 

 call 2005/4/11 1.83  call 2006/2/24 3.77 

 put 2005/4/11 2.38  put 2006/2/24 70.36 

B sky call 2005/4/11 5.7 Reuters call 2006/7/31 56.15 

 call 2005/4/11 1.48  call 2006/7/31 30.15 

 put 2005/4/11 2.75  put 2006/7/31 22.65 

BA call 2006/7/31 70.25 Rio Tinto call 2006/7/31 41.05 

 call 2006/7/31 26.95  call 2006/7/31 21.45 

 put 2006/7/31 32  put 2006/7/31 29.95 

Bae call 2005/4/11 28.9 Rio Tinto call 2005/12/1 22.5 

 call 2005/4/11 7.3  call 2005/12/1 10.82 

 put 2005/4/11 10.05  put 2005/12/1 14.35 

Barclays put 2005/4/11 2.9 Rio Tinto call 2006/2/2 28.93 

 call 2005/4/11 3.82  call 2006/2/2 15.77 

 call 2005/4/11 1.73  put 2006/2/2 30.75 

Barclays call 2005/12/1 37.34 
Rolls 

Royce 
call 2006/7/31 67.45 

 call 2005/12/1 19.78  call 2006/7/31 30.25 

 put 2005/12/1 44.82 
Saga 

group 
call 2006/10/3 23.15 

Barclays call 2006/2/24 58.61  call 2006/10/3 12.65 

 call 2006/2/24 22.77  put 2006/10/3 23.35 

 put 2006/2/24 53.31 Shire call 2006/7/31 15.45 

Barclays call 2006/7/31 93.45  call 2006/7/31 7.55 

 call 2006/7/31 40.85 Smith call 2006/7/31 9.98 

 put 2006/7/31 26.15  call 2006/7/31 4.26 

Batob call 2005/4/11 9.35 Std.cht call 2006/2/23 15.95 

 call 2005/4/11 3.69  call 2006/2/23 5.02 

 put 2005/4/11 2.97  put 2006/2/23 10.92 

Batob call 2006/7/31 19.75 Std.cht call 2006/7/31 19.45 

 call 2006/7/31 5.05  call 2006/7/31 6.6 

BG call 2006/7/31 96.7 Tesco call 2005/4/11 29.45 

 call 2006/7/31 35.6  call 2005/4/11 6.53 

BP call 2005/4/11 40.25  put 2005/4/11 9.48 

 call 2005/4/11 18.1 Vodafone call 2005/4/11 9.48 

 put 2005/4/11 27.4  call 2005/4/11 2.37 

BP call 2005/12/1 72.12  put 2005/4/11 3.82 

 call 2005/12/1 22.94 Vodafone call 2006/2/2 13.29 

 put 2005/12/1 22.5  call 2006/2/2 7.25 

BP call 2006/2/23 51.11 Vodafone call 
2005/12/1

3 
5.33 

 call 2006/2/23 17.42  call 
2005/12/1

3 
1.63 

 put 2006/2/23 54.26  put 
2005/12/1

3 
9.53 

BP call 2006/7/31 40.15 Vodafone call 2006/8/ 10.75 

 call 2006/7/31 12.95  call 2006/8/ 3.77 

 put 2006/7/31 39.75  put 2006/8/ 7.48 

B.sky call 2006/7/31 7.5 
William 

Hill 
call 2006/7/31 5.35 

 call 2006/7/31 1.35  call 2006/7/31 1.76 

BT call 2005/4/11 14.4 Wpp call 2006/7/31 6.85 

 call 2005/4/11 6.3  call 2006/7/31 2.61 

 put 2005/4/11 11.9 Hsbc call 2006/3/1 3.82 
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BT call 2006/7/31 25.85  call 2006/3/1 1.66 

 call 2006/7/31 7.1  put 2006/3/1 5.79 

Cable & 

wireless 
call 2006/7/31 16.25 Hsbc call 2006/7/31 7.05 

 call 2006/7/31 7.45  call 2006/7/31 1.91 

Centrica call 2005/9/14 14.87  put 2006/7/31 3.52 

 call 2005/9/14 25.13 Itv call 2006/10/3 10.45 

Diageo call 2005/4/8 6.28  call 2006/10/3 5.45 

 call 2005/4/8 1.82  put 2006/10/3 10.65 

 put 2005/4/8 2.69 Land secs call 2006/2/3 22.75 

Glxsk call 2006/7/31 8.4  call 2006/2/3 12.85 

 call 2006/7/31 2.88 
Legal&Ge

n 
call 2005/4/11 11.18 

 put 2006/7/31 9.5  call 2005/4/11 2.44 

Hbos call 2005/4/8 7.58  put 2005/4/11 5.43 

 call 2005/4/8 2.73 Llds tsb call 2006/2/23 38.06 

 put 2005/4/8 3.26  call 2006/2/23 14.6 

Hbos call 2006/2/24 9.72  put 2006/2/23 68.68 

 call 2006/2/24 2.37 Llds tsb call 2006/7/31 44.55 

 put 2006/2/24 6.34  call 2006/7/31 13.75 

Hbos call 2006/7/31 10.05  put 2006/7/31 39.55 

 call 2006/7/31 2.4 Logiccmg call 2006/7/31 25.65 

Hsbc call 2005/4/7 4  call 2006/7/31 11.35 

 call 2005/4/7 2.12 M&S call 2005/4/8 18.33 

 put 2005/4/7 4.36  call 2005/4/8 4.84 

     put 2005/4/8 24.93 

             

 


