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Abstract

This study presents a simple model of price formation with insider informa-

tion in an electronic call auction. Based on our model we derive a measure of

transaction costs in electronic call auctions. We decompose transaction costs

in a difference in valuation and an asymmetric information part. These com-

ponents are similar to the components of the bid-ask spread in an order-driven

continuous market and therefore allow for a direct comparison of the compo-

sition of trading costs in continuous and periodic auctions. Empirical results

for twenty stocks from Euronext Paris are provided. We find strong evidence

for the asymmetric information component of transaction costs but in contrast

to continuous markets there is no negative relationship between liquidity and

asymmetric information problems. Thus, we conclude that for illiquid stocks

call auction trading leads to lower transactions costs than continuous trading.
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1 Introduction

The last decade has seen a sharp increase in the use of call auctions in stock markets

all over the world. The London Stock Exchange introduced opening and closing

auctions in 1997 and 2000, respectively. The Australian Stock Exchange (1997)

and the Toronto Stock Exchange (2004) both introduced closing auctions. In 2004

NASDAQ created NASDAQ CROSS, an order facility to obtain single opening and

closing prices. On a practical level this renaissance has been made possible by

progress in information technology which enables to gather huge amounts of orders

and process them into a transaction price at a great speed. On a theoretical level

the most prominent advantage is the common belief that periodic call auctions are

better suited to aggregate asymmetric information than continuous markets. As a

result, call auctions are thought to be most useful in times of market stress, such as

the beginning or end of a trading day or the reopening of trade after a trading halt

during a continuous trading session.

Yet, we know little about the impact of asymmetric information on transaction

costs in an electronic call auction.1 In fact, there is no generally accepted notion

of transaction costs in call markets. In continuous markets, order- or quote-driven,

the transaction price at a specific point in time differs whether the incoming order

that triggers the transaction is a buy or a sell order. Other things being equal a

buy order typically executes at a higher price than an incoming sell order. The dif-

ference between these two transaction prices, the bid-ask spread, is used to measure

transaction costs. In a periodic call market, however, since all traders, buyers and

sellers, trade at the same price there is no such bid-ask spread [cp. Economides and

Schwartz (1995)]. As an alternative the bid-ask spread in a call auction is defined as

the difference of the prices corresponding to the lowest limit sell and highest limit

buy orders that have not been executed. Since usually no trade takes place at these

prices this concept of the bid-ask spread is not appropriate to measure actual trans-

action costs. Therefore some studies use the measure proposed by Roll (1984) to

1According to Pagano and Schwartz (2003) “the call auction is the least understood of the three

major trading regimes” (p. 440).
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estimate transaction costs in call markets [e.g. Haller and Stoll (1989) and Stoll and

Whaley (1990)]. Madhavan (1996) and Kehr, Krahnen and Theissen (2001) define

transaction costs as the difference of the prices resulting from an additional buy

order and an additional sell order of equal size. But a theoretical understanding of

the determinants of these measures of transaction costs in an electronic call auction

is still lacking.

A second difficulty that arises when studying transaction costs in call auctions

is that some call auctions operate with active market makers (NYSE) while others

do not (Euronext and Xetra). Most of the existing studies on call auctions assume a

market maker who sets the transaction price according to the information she infers

from the incoming orders and other factors such as her inventory or price continuity

guidelines. The nature of transaction costs in a call auction operating without a

market maker, however, is not well understood.

To overcome these problems we present a simple model of price formation in

an electronic call auction. Based on this model we derive a new measure to assess

trading costs in call auctions which can be directly compared to the bid-ask spread

in continuous markets. For certain order sizes this measure coincides with the one

proposed by Madhavan (1996) and Kehr, Krahnen and Theissen (2001). The theo-

retical model enables us to decompose transaction costs in a difference in valuation

and an asymmetric information part. These components are similar to the ones

obtained by Handa, Schwartz and Tiwari (2003) for the bid-ask spread in an order-

driven continuous market. This facilitates a direct comparison of the composition

of trading costs in continuous and periodic auctions.

Another important feature of the call auction is that it consolidates order flow

over time. This is the reason why many stock exchanges, e.g. Xetra and Euronext,

organise trade in the least liquid stocks via call auctions only. If call auctions are

combined with continuous trading, traders –apart from selecting limit prices and

order quantities– have the additional choice of the trading mechanism. Brooks and

Su (1997) show that liquidity traders can reduce trading costs by trading at the

opening call and not wait for continuous trading to start. To abstract from this

decision between different trading mechanisms we focus on pure call auction trading
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only. For this reason we estimate our model using data from a trading category at

Euronext Paris that comprises stocks that are only traded in morning and afternoon

call auctions without a continuous trading phase. This trading category has received

little attention in the literature, probably because it is negligible in terms of market

capitalization. Considering the number of firms whose shares are traded in this

trading category, however, it is not negligible.2 A notable exception is Venkataraman

and Waisburd (2007) which shows that the introduction of a designated market

maker increases market quality in this trading category.

Studying transaction costs in this trading category is also important from a

policy perspective. Euronext Paris introduced this trading segment for less active

stocks that can only be traded in call auctions in response to high bid-ask spreads for

these stocks. Easley, Kiefer, O’Hara and Paperman (1996) report that infrequently

traded stocks have substantially higher bid-ask spreads than more frequently traded

stocks and they show that at least one reason for this is the fact that the probability

of informed trading is decreasing in trading volume. Whether the introduction of

a pure call auction trading segment helped to overcome this problem has not been

studied so far.

In order to estimate our theoretical model we adopt the Bayesian approach. The

Bayesian approach has the advantage that it is easy to obtain finite-sample marginal

posterior distributions for parameters of interest that are functions of the estimated

model parameters.3

The main result of our model is that in electronic call auctions the asymmetric

information impact is reflected in the liquidity traders’ limit prices and thus trans-

lates into the transaction price. Further, our model implies that transaction costs,

defined as twice the deviation of the transaction price from the average trader’s un-

conditional expectation, are a decreasing function of liquidity and increasing with

information asymmetries. We estimate our model for twenty stocks that are only

traded in electronic call auctions on Euronext Paris and decompose transaction costs

2In 2005 roughly one third of all stocks traded at Euronext Paris were traded in call auctions

only.

3Hasbrouck (2009) also proposes a Bayesian approach to estimate trading costs.
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in a difference in valuation and an asymmetric information component. Consider-

ing that the stocks in our sample are in the least liquid trading category estimated

transaction costs are remarkably low. We find that insider trading accounts for an

important part of transaction costs. The proportion of transaction costs attributable

to asymmetric information in the call auction market is only insignificantly lower

than the results of Jong, Nijman and Röell (1996) for the continuous market on the

Paris Bourse.

In comparison to continuous markets there have been relatively few attempts

to model call auctions. Mendelson (1982) shows that the transaction price in a

periodic call auction fluctuates around the asset’s true value. The variance of the

transaction price decreases as the market becomes more liquid. Ho, Schwartz and

Whitcomb (1985) show that the transaction price of a call auction might deviate

from its Pareto efficient value if i) the propensities to trade are asymmetric across

traders or ii) traders have biased beliefs about the market clearing price. Introducing

asymmetric information Madhavan (1992) shows that in the absence of a strategic

market maker the call auction price is an unbiased estimator of the asset’s true

value.4

There are several empirical studies that analyse the impact of call auctions on

market quality. Pagano and Schwartz (2003) and Pagano, Peng and Schwartz (2008)

study the effect of the introduction of opening and closing call auctions on Euronext

Paris and Nasdaq, respectively. Both studies find that the introduction of call

auctions helped to improve price efficiency. Amihud, Mendelson and Lauterbach

(1997), Lauterbach (2001) and Muscarella and Piwowar (2001) analyse how moving

a stock from call auction trading to continuous trading or vice versa affects its

price and trading volume. Amihud, Mendelson and Lauterbach (1997) show for

the Tel Aviv Stock Exchange that transferring stocks from call auction trading

4In addition, there is a branch of the auction theory literature devoted to call auctions. These

studies focus primarily on private information about reservation values [see e.g. Satterthwhaite

and Williams (1993), Rustichini, Satterthwhaite and Williams (1994) and Cason and Friedman

(1997)]. By assuming a continuum of liquidity traders we abstract from incentives to misreport

private valuation.
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to continuous trading leads to an increase in the stocks value and liquidity. They

attribute this value improvement to a reduction in transaction costs. Supplementing

Amihud, Mendelson and Lauterbach’s study Lauterbach (2001) finds that moving

stocks from continuous trading back to call auction trading is on average associated

with a decline in liquidity and value. However, Lauterbach (2001) also reports that

low volume stocks fared better under call auction trading. For the Paris Bourse

Muscarella and Piwowar (2001) also demonstrate a positive liquidity and value effect

of transferring stocks to continuous trading, but contrary to Lauterbach (2001) they

do not find that call auctions are better suited for infrequently traded stocks. Ellul,

Shin and Tonks (2005) study the traders’ choice between a dealership market and

a call auction on the London Stock Exchange. The present paper is also related to

Easley, Kiefer and O’Hara (1993) who estimate the probability of information-based

trading in continuous trading on the NYSE.

This paper is organised as follows. In section 2 we present our stylised model of an

electronic call auction. In section 3 we describe the equilibrium order strategies and

derive implications for the transaction price and the proposed measure of transaction

costs. Section 4 outlines the estimation procedure. (The details of the estimation

algorithm are provided in the Appendix.) In Section 5 we present the data and the

empirical results. Section 6 discusses the determinants of the estimated components

of transaction costs and section 7 concludes.

2 A stylised model of a call auction

The precise design of call auction mechanisms can vary considerably. For this anal-

ysis we consider the most basic call auction algorithm. Traders can place limit and

market orders during the order accumulation phase. While market orders are exe-

cuted with certainty, limit buy (sell) orders are only executed when the associated

limit price is higher (lower) than the transaction price. The order accumulation

phase ends at a specified time and the transaction price is determined such that i)

all market orders execute and ii) all limit sell orders with a limit price lower than the

transaction price and all limit buy orders with a limit price higher than the trans-
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action price execute. If there is a range of prices that satisfy these conditions the

transaction price is the midpoint of this range. The asset traded in this call auction

and the traders participating in the auction are described in the next subsection.

2.1 Model assumptions

One risky asset is traded in the call auction. The asset’s true value at time t, �t,

follows a random walk with drift:

�t = �+ �t−1 + "t , (1)

where � is the drift parameter and "t ∼ N(0, �2) reflects news potentially available

to an insider but unobservable to other market participants prior to the end of

auction t.5 After auction t the realisation of "t becomes common knowledge.

There are two types of risk-neutral liquidity traders: buyers and sellers. They

differ in their valuation of the stock. Buyers are willing to pay a premium on

the price of the stock while sellers demand a discount. These differences represent

personal portfolio considerations such as individual tax brackets and liquidity shocks

[cp. Foucault (1999) and Handa, Schwartz and Tiwari (2003)]. More specifically,

buyer k is characterised by a premium k she is willing to pay, where k is uniformly

distributed on the interval [k, k]. Hence, buyer k’s personal valuation of the asset

is �t + k. Each buyer submits one limit buy order for one unit of the asset. Her

decision problem is to set an upper limit price bkt for the buy order to maximise her

pay-off

Ukb,t =

⎧⎨⎩
�t + k − pt if bkt ≥ pt,

0 if bkt < pt ,

(2)

where pt is the transaction price determined according to the rules specified above.

Similarly, there is a continuum of sellers characterised by a discount on the value

of the stock of size k.6 Seller k’s personal valuation of the asset is �t − k. Each

5The drift parameter � is not important for the theoretical analysis and might be set equal to

zero. However, it will later be useful as an interpretation of the intercept of the estimation model

in the empirical part.

6The assumption that there is a continuum of liquidity buyers and sellers is not crucial for our
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potential seller places one limit sell order for one unit of the stock with limit sell

price skt in order to maximise her pay-off

Uks,t =

⎧⎨⎩
pt − (�t − k) if skt ≤ pt,

0 if skt > pt.

(3)

In addition, there is a potential insider who values the stock at a premium or a

discount of size ki with equal probabilities. With probabilities � this trader learns

the sign of the realisation of "t. The interpretation of such a signal is that the

insider knows some company-related news before it is revealed to the public but she

is uncertain about the reaction of the market and hence the exact impact on the

asset’s true value. The potential insider is assumed to be risk-neutral and trades

an amount of � ∈ (0, a] assets via market sell or market buy orders.7 Assuming a

premium of ki her pay-off is

Ui,t =

⎧⎨⎩
� (�t + ki − pt) for a market buy order,

� (pt − (�t + ki)) for a market sell order .

(4)

If the potential insider values the stock at a discount of ki the sign of ki in equation

(4) is reversed.

The presence of the potential insider serves two purposes: Firstly, for � > 0

it introduces asymmetric information into the model and secondly, it captures the

randomness of the order flow. While on average the number of buy and sell orders

are the same, in each auction there is a positive or negative order imbalance of

size � relative to the maximum trading volume. Hence � measures the degree of

information asymmetries and � can be interpreted as the volatility of the order flow

and, thus, provides a measure for the liquidity of the market.

All traders are active for only one period. After an auction has ended a new,

identical group of traders arrives at the market.

main result, namely that liquidity traders adjust their limit prices according to the presence of an

insider. But it greatly simplifies the analysis because we do not have to work with step functions.

7We will later see that for some boundary on a the assumption that the potential insider trades

only via market orders is not necessary. However, it might be in her interest to use market orders,

since specifying a limit price could unveil information to other market participants.
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3 Equilibrium order strategies and implications

Given these three types of traders and the basic call auction algorithm described

above we obtain the following proposition:

Proposition 1 If a = min{ (1−�)
√

2/� �−ki−k
2 (k̄−k)

,
ki−k−�

√
2/� �

2 (k̄−k)
} the following strate-

gies constitute an equilibrium:

� bkt = �t−1 + �+ k + �
√

2/� � ,∀k ∈ [k, k]

� skt = �t−1 + �− k − �
√

2/� � ,∀k ∈ [k, k]

� the insider places a market buy (sell) order when she observes a positive (neg-

ative) realisation of the noise component or when she receives no information

and has a higher (lower) personal valuation of the stock than the average trader.

Proof 1 To see that Proposition 1 constitutes an equilibrium, consider a buyer of

type k∗ and suppose that all other traders play the equilibrium strategies given in

Proposition 1. If the limit order of buyer k∗ is binding, i.e. if buyer k∗’s limit

price determines the transaction price, the insider must have placed a market buy

order. Let qt be an indicator variable which is 1 if the insider places a buy order

and -1 if the insider places a sell order. The conditional expectation of "t given the

insider’s market buy order is E("t∣ qt = 1) = �E("t∣ "t > 0) = �
√

2/� � .8 Therefore

the maximum price buyer k∗ is willing to pay is �t−1 + � + k∗ + �
√

2/� � . If the

buyer would set a higher limit price, she might incur an expected loss, with a lower

price she might forgo expected profits. Of course a symmetric argument applies for

a seller.

Now consider the potential insider who receives the signal "t > 0 and assume

that all liquidity traders follow the equilibrium strategies. If the insider chooses

a market buy order of size � the transaction price is the limit buy price of the

buyer k = k + (k̄ − k)�, i.e. b∗t = �t−1 + � + k + (k̄ − k)� + �
√

2/� � . (See also

8To see this, observe that the density of "t conditional on "t > 0 is

f("t∣"t > 0) = f("t)/P ("t > 0) = 2f("t) . Then, E("t∣"t > 0) = 2
∫∞
0
"tf("t) d"t =√

2/� [−� exp{−"2t/(2�2)}]∞0 =
√

2/� [0− (−�)] =
√

2/� � .
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Figure 1.) Therefore, the insider’s utility from a market order is Umi,t = � [E(�t∣"t >

0)± ki − b∗t ] = �[±ki + (1− �)
√

2/� � − k − (k̄ − k)�] .

If the potential insider chooses a limit order her utility is the same as for a

market order whenever her limit price exceeds b∗t and utility is zero for limit prices

lower than b
k
t = �t−1 +�+k+�

√
2/� � , because these orders will not execute. If the

insider chooses a limit price in-between these two prices her order is only partially

executed. The potential insider’s utility from a limit buy order with limit price bi is

U li,t =

⎧⎨⎩
�(±ki + (1− �)

√
2/� � − k − (k̄ − k)�), bi ≥ b∗t ,

bi−�t−1−�−�
√

2/� �−k
k̄−k (E(�t∣"t > 0) ± ki − bi), b

k
t ≤ bi < b∗t ,

0, bi < b
k
t .

(5)

Maximizing equation (5) with respect to bi shows that the insider chooses a limit price

above b∗t and is therefore indifferent between a limit and a market order whenever

� <
(1−�)

√
2/� �−ki−k

2 (k̄−k)
.

If the potential insider does not receive a signal but adds a premium ki to the

value of the stock her utility from a market buy order is Umi,t = � [E(�t) + ki − b∗t ] =

�[ki − �
√

2/� � − k − (k̄ − k)�] . The utility from a limit buy order with limit buy

price bi is

U li,t =

⎧⎨⎩
�(ki − �

√
2/� � − k − (k̄ − k)�) , bi ≥ b∗t ,

bi−�t−1−�−�
√

2/� �−k
k̄−k (E(�t) + ki − bi) , b

k
t ≤ bi < b∗t ,

0 , bi < b
k
t .

(6)

Maximizing equation (6) with respect to bi shows that the insider chooses a limit price

above b∗ and is therefore indifferent between a limit and a market order whenever

� <
ki−k−�

√
2/� �

2 (k̄−k)
.

Thus, the condition � < a = min{ (1−�)
√

2/� �−ki−k
2 (k̄−k)

,
ki−k−�

√
2/� �

2 (k̄−k)
} ensures that

the insider chooses a market buy order when i) she observes a good signal and ii)

she receives no signal and adds a premium to the value of the stock. Due to the

symmetry of the situation the same condition applies for a market sell order.

Of course there exist multiple equilibria, e.g., a buyer of type k > k + (k̄ − k)�

can set any limit buy price greater than �t−1 +�+k+ (k̄−k)�+�
√

2/� � since her
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Figure 1: The graphical representation of the order book and the transaction price.

In Panel (a) the potential insider places a market buy order of size � resulting in

transaction price p+
t = �t−1 +�+k+ (k̄−k)�+�

√
2/� � . Panel (b) corresponds to

a market sell order and transaction price p−t = �t−1 + �− k− (k̄− k)�− �
√

2/� � .

order will always be executed and her limit price will never be binding. However,

if we assume some uncertainty over � on the part of the liquidity traders, every

liquidity trader will set her limit price such that she will break even if her limit price

is binding. Hence, they will behave according to Proposition 1. Moreover, we are

primarily interested in transaction prices resulting from these equilibrium strategies

and since transaction prices are given by the limit prices of liquidity traders who

know that their limit prices are binding these prices are unique.

Proposition 1 shows that the liquidity traders’ limit prices consist of three parts:

the asset’s unconditional expectation, the personal premium or discount and the

informational impact of the potential insider trading in the same direction. Note

that it is not important that a liquidity trader observes the order of the potential

insider since her limit price can only be binding when the potential insider trades in

the same direction. This implies that transparency of the order book is not an issue

here.
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3.1 The transaction price

Given these strategies the order book of auction t can be illustrated by one of the

two panels in Figure 1. Figure 1(a) depicts the situation where the potential insider

places a market buy order. The market order shifts the orders of the buyers � units

to the right so that the last limit buy order that can be executed is that of buyer

k+ (k̄− k)� . The limit price of this buyer determines the transaction price. Figure

1(b) shows the case where the potential insider sells. Here the transaction price is

the limit price of the seller with discount k+(k̄−k)� . We represent the two possible

constellations of the order book by the indicator variable qt: qt = 1 denotes a market

buy order by the insider, qt = −1 denotes a market sell order by the insider. Hence,

the transaction price of auction t can be written as

pt = �t−1 + �+ (k + (k̄ − k)�) qt + �
√

2/� � qt . (7)

If qt = 1 , the transaction price pt exceeds the unconditionally expected true value of

the asset, if qt = −1 , pt falls below that value by the same amount. This symmetry

of the transaction price around the unconditional expectation of the asset’s true

value leads us to our definition of transaction costs.

3.2 Measures of transaction costs

We define the theoretical measure of transaction costs as the difference of the trans-

action price that would result from a buy order by the potential insider and the

price corresponding to a market sell order. Of course, for each particular auction

only one of these two prices is observable.

Definition 1 Transaction costs in an electronic call auction are defined as the dif-

ference of the two transaction prices that would result from a positive order imbalance

and a positive order imbalance, respectively:

S = pt(qt = 1)− pt(qt = −1) .
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It should be stressed that this measure does not capture the transaction costs faced

by an individual trader.9 It reflects the deviation of transaction prices from the

unconditional expectation of the asset’s true value caused by order imbalances and

asymmetric information. Plugging the expression for the transaction price (equation

(7)) in our definition of transaction costs we obtain

S = pt(qt = 1)− pt(qt = −1)

= 2(k + (k̄ − k)�) + 2�
√

2/� � . (8)

Corollary 1 Transaction costs in an electronic call auction consist of two compo-

nents: a difference in valuation component (2(k + (k̄ − k)�)) and an asymmetric

information component (2�
√

2/� �).

Thus, in this model transaction costs consist of two components. The first com-

ponent is the difference in valuation of the buyer with the lowest limit buy price

and the seller with the highest limit sell price whose orders are being executed.

The second component is the familiar asymmetric information component which is

a positive function of the impact of private information on the order book, �, and

the variance of the potentially available news, �2 (see, e.g., Glosten and Milgrom

(1985)). Hence, the two components of transaction costs in a call auction have

similar interpretations as those Handa, Schwartz and Tiwari (2003) find for the bid-

ask spread in an order-driven market. Note, however, that transaction costs in a

call auction are minimised for � = 0 whereas Handa, Schwartz and Tiwari (2003)

show that the bid-ask spread in a continuous call market is largest for a zero order

imbalance.

Madhavan (1996) and Kehr, Krahnen and Theissen (2001) define trading costs

as the difference between the two hypothetical transaction prices which result from

adding an additional market buy order and an additional market sell order of the

same size, say Δ , respectively. Using equation (7) and assuming � ≤ 1/2 this

9This is also pointed out in Theissen (2000).
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measure of transaction costs can be written as

S̃(Δ) =

⎧⎨⎩
2Δ(k̄ − k) if Δ < � ,

2(k + (k̄ − k)Δ) + 2�
√

2/� � if � ≤ Δ < 1− � ,

2k + (k̄ − k)(1− �+ Δ) + 2�
√

2/� � if Δ ≥ 1− � .

(9)

For an order size equal to the average order imbalance � this definition is equal to

equation (8). Using order book information Kehr, Krahnen and Theissen (2001)

calculate S̃ for large and small Δ for the opening, noon and closing auction at the

Frankfurt Stock Exchange. They find that the increase in trading costs associated

with a change from a small order size to a large order size is surprisingly large.

Equation (9) shows that this is in line with our model. For low order sizes, i.e.

Δ < � , the investor faces no asymmetric information effect and if traders within

both of the two groups, buyers and sellers, are homogeneous, i.e. k̄−k → 0, trading

costs go to zero. For heterogeneous traders S̃ increases linearly with order size until

Δ = � where transaction costs jump to a new level. This level coincides with our

proposed measure and therefore contains the full difference in valuation component

as well as the asymmetric information component. For higher order sizes transaction

costs increase again linearly until they jump again at Δ = 1 − � . From that point

on the relation between order size and transaction costs is flatter.

3.3 The transactions return process

Taking the first difference of equation (7) and substituting equation (1) yields

pt − pt−1 = �+ (k + (k̄ − k)�)(qt − qt−1) + �
√

2/� � (qt − qt−1) + "t−1 . (10)

Although there is no explicit bid-ask spread in a call market equation (10) implies

negative serial correlation between successive returns just as Roll (1984) finds for

continuous markets.10 The result that asymmetry in the order flow leads transaction

10Equation (10) implies that the measure proposed by Roll (1984) is as applicable to call auctions

as it is to continuous markets, i.e. it is downward biased in the presence of positive correlation in

qt and does not fully account for the asymmetric information component as pointed out by Choi,

Salandro and Shastri (1988) and George, Kaul and Nimalendran (1991), respectively.
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returns to be negatively correlated has been previously noted by Ho, Schwartz and

Whitcomb (1985), in the present model, however, the correlation is further increased

by asymmetric information problems.

4 Estimation

When estimating equation (10) ex post it should be noted that conditional on qt , "t

is not normally distributed anymore. The distribution of "t given qt is normal with

probability (1− �) and truncated normal with probability � , i.e.

"t∣ qt =

⎧⎨⎩
qt ⋅ "t∣("t > 0) with prob. � ,

"t with prob. (1− �) .

(11)

Therefore we estimate equation (10) using the following mixture model

pt− pt−1 = �+S/2 ⋅ (qt− qt−1) + �t−1 ⋅ qt−1 ⋅ "t−1∣("t−1 > 0) + (1− �t−1) ⋅ "t−1 , (12)

where for each t the latent variable �t equals 1 if the insider has received a signal

about the direction of "t and zero otherwise. In this mixture model specification �

is a hyperparameter that represents the probability that �t = 1 . Using the estimates

for � and � one can split the measure of transaction costs, S, in its two components.

The generalisation that the order imbalance might be zero for a particular auction

is easy to accommodate in our model. Although liquidity traders will adjust their

limit prices if they are able to observe that the potential insider does not trade,

equation (7) does still hold if we assume that i) limit buy and sell prices of the

last orders that are being executed will be symmetric around the unconditional

expectation of the asset’s true value and ii) in the case of a zero order imbalance the

transaction price is at the mid-point between the lowest limit buy and the highest

limit sell price which are being executed.

We estimate the mixture model of equation (12) with this extension. Of course,

�t cannot equal 1 when qt = 0 and thus � is the proportion of informed trade relative

to the total number of participations by the potential insider.

The prior distributions of the unknown parameters �, S, � and � are chosen to be

noninformative. The joint prior of �, S and � is p(�, S, �) ∝ �−2 and � ∼ beta(1, 1).

14



Since the posterior distribution is not analytically tractable we use numerical

techniques to draw inferences. Random draws from the joint posterior distribution

of the parameters are obtained using a Gibbs sampler with 3000 iterations, where

the draws of the first 1000 iterations are discarded. Tests with simulated data and

repeated estimation with different starting values have shown that this number of

iterations is enough for the Gibbs sampler to converge.11

For each draw of S, � and � we calculate the asymmetric information component

Λ = �
√

2/� � and difference in valuation component K = S/2− Λ . The mean and

standard deviation of the marginal distributions of these parameters are presented

in Table 2.

5 Empirical analysis

5.1 Data

In order to estimate the model we use data from a trading category at Euronext Paris

that consists of stocks that trade in two call auctions per day only. At the end of 2005

this trading category comprised 250 stocks which make up approximately 30% of all

firms traded at Euronext. For the analysis we randomly chose twenty companies.

Data on transaction prices as well as best bid and ask prices and trading volume are

provided by Euronext. Table 1 presents summary statistics for these stocks for the

period between 1/01/2006 and 31/12/2006.

At the end of 2005 these twenty firms have an average market capitalization of

¿407 million, ranging from 157 million to 962 million. The number of trades in the

year 2005 varies considerably across the twenty stocks; from 160 to 6,266 trades.

Turnover ranges from ¿264,000 to ¿39 million with an average of approximately

¿5.9 million.

The year 2006 had 255 trading days. Thus, with two call auctions a day there

were 510 possible observations per stock. However, not all auctions had sufficiently

demand and supply to facilitate trade. If the limit buy and limit sell orders of a

11The details of the estimation procedure are given in the Appendix.
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particular auction could not be matched, i.e. if no transaction price exists which

generates positive trading volume, this observation is discarded. Therefore only

auctions that resulted in a transaction price are considered. The resulting number

of auctions varies across stocks between 45 and 488 (see the seventh column of Table

1).

The indicator variable qt is set to 1 if the transaction price of auction t is closer to

the ask price and it is set to -1 if the transaction price is closer to the bid price.12 In

some instances these three prices coincide. This can be interpreted as the potential

insider not participating in this day’s auction and thus all orders being executed. In

these cases the indicator variable is set to zero.

Column 8 of Table 1 shows the volatility of the transaction returns, rt = pt−pt−1 .

Volatility varies between 0.68 and 9.46 with an average of 2.4. Average prices vary

from ¿1.55 to ¿6118.35. The last column provides average bid-ask spread in 2006,

where the bid-ask spread is defined as the difference of the lowest limit sell and the

highest limit buy price that remain in the order book after the auction has cleared.

Average bid-ask spreads range from 0.53% to 15.81% with an cross-section average

of 3.25%.

5.2 Results

Table 2 shows the results of the estimation for each of the twenty assets. Average

transaction costs are 1.85. They vary between 0.40 and 5.45. As expected these

actual transaction costs are on average lower than the bid-ask spreads. The only

two stocks for which transaction costs exceed the bid-ask spread are Banque de

la Reunion and Crcam oise. This provides additional evidence for the claim that

bid-ask spreads are not a good measure of trading costs on call auctions since they

overestimate actual costs.

Kehr, Krahnen and Theissen (2001) apply their measure of transaction costs

to the opening auction of fifteen stocks on the Frankfurt Stock Exchange in 1996

12This procedure is analogous to trade indicator classification in continuous markets (see, e.g.,

Finucane (2000) for a discussion). It is based on the assumption that the bid-ask spread is symmetric

around the unconditional or conditional expectation of the true value of the asset.
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and find average transaction costs of 0.33 and 2.37 for small and large order sizes,

respectively.13 Thus, our estimated transaction costs are roughly comparable with

the previously documented transaction costs in auction markets for large orders.

Kasch-Haroutounian and Theissen (2009) report effective half spreads for continu-

ously traded stocks on Euronext Paris from May to July 2002. From the 40 French

stocks in their sample the two lowest quartiles together have approximately the same

market capitalization as the stocks in our sample. Kasch-Haroutounian and Theis-

sen (2009) find an average effective half spread of 0.793% for these stocks. Given

that the average daily turnover of these continuously traded stocks is larger than

the average annual turnover in our sample transaction costs for the stocks traded

in call auctions only are remarkably low.

The second column of Table 2 shows the difference in valuation component K =

k+(k̄−k)� . The average difference in valuation component is 0.74 across the twenty

stocks. If traders within each group are relatively homogeneous, i.e. k̄ − k is small,

differences in valuation are largely attributable to personal portfolio considerations

and thus do not depend on the trading mechanism. With this assumption we can,

therefore, check the results of our decomposition by comparing the estimates of the

difference in valuation with the estimates obtained by Handa, Schwartz and Tiwari

(2003) for the continuous auction. The average difference in valuation in the call

auction mechanism is higher than the estimates of the difference in valuation Handa,

Schwartz and Tiwari (2003) find for the order-driven market on Euronext Paris but

the difference is not statistically significant.14

The proposed decomposition of transaction costs by subtracting �
√

2/� � from

S/2 is only correct if the liquidity traders assess the asymmetric information com-

13Kehr, Krahnen and Theissen (2001) also calculate transaction costs for the noon and closing

auction but the opening auction is the most appropriate auction to compare with daily auctions

since it is preceded by the longest interval where no trading takes place.

14Handa, Schwartz and Tiwari (2003) assume two types of traders: one type values the stock

at Vℎ the other at Vl . The difference Vℎ − Vl relative to the mid-quote corresponds to 2K in the

present model. The average difference in valuation for their sample of 40 stocks on Euronext Paris

CAC40 index amounts to 1.04% .
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ponent correctly. If the liquidity traders underestimate the informational impact

of the potential insider, by underestimating � or �, the decomposition attributes

too large a part of transaction costs to asymmetric information and the estimated

difference in valuation component will be too small. The fact that our estimate of

the difference in valuation is comparable to and even higher than the difference in

valuation component found by Handa, Schwartz and Tiwari (2003) suggests that on

average liquidity traders correctly incorporate asymmetric information in their limit

prices.

Column 3 reports the average asymmetric information component Λ = �
√

2/� � .

The average over the twenty stocks is 0.18. It varies between 0.03% and 0.93% of

the stock price. Since � is restricted to lie between 0 and 1 and � is strictly positive

the asymmetric information component, Λ, cannot be negative. Thus, we cannot

assess the significance of the asymmetric information component by looking at the t-

statistics. But clearly, Λ is significantly greater than zero whenever � is significantly

greater than zero.

The average probability that the potential insider has superior information is

0.17 across the twenty stocks. For Cfcal Banque only 4% of the orders submitted

by the potential insider were triggered by inside information. For Banque de la

Reunion the potential insider was informed in 64% of the auctions she participated

in. The estimated probabilities of inside information in a transaction are lower than

the results of Handa, Schwartz and Tiwari (2003). They estimate the probability of

trading with an informed investor to be 0.34 on average ranging from 0.10 to 0.57.

� is continuously distributed between 0 and 1. Hence, P (� = 0) is zero. We

can, however, assess the significance of � by evaluating the Bayes Factor for the

mixture model versus the restricted model with � = 0 .15 If we ascribe equal prior

probabilities to the competing models the Bayes Factor, BM,R , is the posterior

odds ratio. BM,R/(1 + BM,R) is the implied posterior probability that the mixture

model is the correct model, i.e. � > 0 . This probability is reported in the last

15Note that the restricted model is a simple regression of rt on a constant and qt − qt−1 with

normally distributed disturbances.
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column of Table 2.16 The probability that � is positive exceeds 85% for all stocks

in the sample. For nineteen stocks � is significantly positive on a 10%-level and

seventeen stocks show significant insider trading on a 5%-level. Since the asymmetric

information component is a linear function of the probability of inside information

in an auction, � , the asymmetric information component is significantly positive

whenever � is significantly positive. This shows that the asymmetric information

component should not be neglected in call auctions.

Both the differences in valuation and the asymmetric information component

seem to be smaller in a call auction than in an order-driven market. Thus, one

might ask what the relative importance of asymmetric information on transaction

costs are in the two trading mechanism. Comparing column 4 of Table 2 with the

results of Jong, Nijman and Röell (1996) for the continuous market on the Paris

Bourse we see that the asymmetric information component constitutes a smaller

part of transaction costs in electronic call auctions. The average proportion of the

asymmetric information component of total trading costs for the call auction is 20%

while the asymmetric information component in continuous trading amounts to 45%

of the bid-ask spread.

Column 6 and 7 of Table 2 document the familiar insight that transaction costs

induce additional volatility to the trading process. For each individual stock the

standard deviation of the return on the true value � is lower than the standard

deviation of the transaction return. The trend in the true value process � is positive

for most the stocks in our sample although it is only significant for six stocks.

6 Determinants of transaction costs

In the preceding section we estimated transaction costs and their components in elec-

tronic call auctions. In the following we want to study whether the two components

conform to the predictions of our theoretical model.

The model predicts that the difference in valuation component is an increasing

16We simulate the Bayes factor with the bridge sampling technique proposed by Meng and Wong

(1996). (See Appendix.)
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K BAS TRADES TO N STDEV P

K 1

—–

BAS 0.96 1

(14.35) —–

TRADES -0.43 -0.41 1

(-2.01) (-1.89) —–

TO -0.20 -0.22 0.16 1

(-0.88) (-0.95) (0.69) —–

N -0.74 -0.75 0.66 -0.17 1

(-4.61) (-4.79) (3.76) (-0.72) —–

STDEV 0.76 0.74 -0.31 -0.18 -0.64 1

(4.93) (4.63) (-1.36) (-0.77) (-3.53) —–

P 0.07 0.12 -0.26 -0.19 -0.23 -0.02 1

(0.28) (0.50) (-1.14) (-0.81) (-1.03) (-0.08) —–

Table 3: Correlations of the difference in valuation component K with stock charac-

teristics. t-statistics are given in parentheses.

function of illiquidity measured by the relative order imbalance, � . If the potential

insider’s order absorbs a large amount of the liquidity traders’ orders the limit price

that will determine the transaction price will stem from a trader with a high premium

or discount.

Since we do not have data of the order imbalances we use the following proxies for

liquidity: average bid-ask spread in 2006 (BAS), number of trades in 2005 (Trades),

turnover in 2005 (TO) and the number of auctions in 2006 (N). Table 3 presents

the correlations of the difference in valuation component K with these proxies. The

average bid-ask spread is strongly correlated with the difference in valuation com-

ponent; the correlation coefficient is 0.96. But also other proxies for liquidity are

significantly correlated with K. This is especially true for the number of trades

which is measured for 2005. This shows that the causality is in deed from liquidity

to difference in valuation component and not the other way around. In addition,

the difference in valuation component is positively correlated with the volatility of

the returns, although the causality is less clear.
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Λ BAS TRADES TO N STDEV P

Λ 1

—–

BAS 0.33 1

(1.50) —–

TRADES -0.08 -0.41 1

(-0.34) (-1.89) —–

TO 0.28 -0.22 0.16 1

(1.24) (-0.95) (0.69) —–

N -0.51 -0.75 0.66 -0.17 1

(-2.49) (-4.79) (3.76) (-0.72) —–

STDEV 0.77 0.74 -0.31 -0.18 -0.64 1

(5.15) (4.63) (-1.36) (-0.77) (-3.53) —–

P -0.19 0.12 -0.26 -0.19 -0.23 -0.02 1

(-0.80) (0.50) (-1.14) (-0.81) (-1.03) (-0.08) —–

Table 4: Correlations of the asymmetric information component Λ with stock char-

acteristics. t-statistics are given in parentheses.

In contrast, the asymmetric information component should not be directly af-

fected by liquidity. The determinants of the asymmetric information component are

the probability of insider participation, �, and the volatility of the true value, � .

These two variables have been used to decompose the spread, thus, the positive re-

lationship between these two variables and the asymmetric information component

is present by construction.

Table 4 confirms that the asymmetric information component (Λ) is not very

closely related to the proxies for liquidity. The only liquidity proxy that has a

significant impact is the number of auctions (N) and this effect is due to the close

correlation between the number of auctions and volatility �. As predicted by our

model this implies that the relation between liquidity and transaction costs is largely

attributable to the difference in valuation component. Moreover, Table 4 shows that

using the bid-ask spread to measure transaction costs in call markets is problematic,

because the bid-ask spread reflects only the difference in valuation component and is

not informative about the asymmetric information component. Finally, Λ is strongly
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� 1/BAS TRADES TO N STDEV P

� 1

—–

1/BAS 0.41 1

(1.93) —–

TRADES 0.39 0.74 1

(1.79) (4.7) —–

TO 0.53 0.13 0.16 1

(2.62) (0.54) (0.69) —–

N 0.08 0.72 0.66 -0.17 1

(0.34) (4.39) (3.76) (-0.72) —–

STDEV -0.18 -0.63 -0.31 -0.18 -0.64 1

(-0.75) (-3.42) (-1.36) (-0.77) (-3.53) —–

P -0.23 -0.27 -0.26 -0.19 -0.23 -0.02 1

(-1.00) (-1.18) (-1.14) (-0.81) (-1.03) (-0.08) —–

Table 5: Correlations of probability of insider information � with stock characteris-

tics. t-statistics are given in parentheses.

correlated with the volatility of returns.

The probability that an order of the potential insider is triggered by inside infor-

mation is an exogenous parameter in our model. One could ask, however, whether

there are certain stock characteristics that make informed trade more likely. Table

5 shows the relationship between � and the inverse of the bid-ask spread and other

stock characteristics. The probability of informed trade is higher when the bid-ask

spread is low. Turnover in 2005 is also positively correlated with �. Although this

relationship is not explicitly formalized in our model, it is quite intuitive: Suppose,

e.g., that obtaining a signal about the future realisation of the stock’s value requires

some small cost. Then it might not be worthwhile for the potential insider to invest

in the signal if she expects that there will be few liquidity traders and she will only

be able to trade one or two shares. If, however, the market is very liquid she can

easily recoup her costs by trading a large quantity of shares.

Interestingly, the correlation between the probability that the insider receives

a signal and other measures of trading activity like the number of trades in 2005
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and number of auctions is positive but insignificant. In contrast, Easley, Kiefer,

O’Hara and Paperman (1996) find that on the NYSE the probability of informed

trade was decreasing in trading activity. Thus, Euronext Paris’ decision to introduce

a pure call auction trading segment for less actively traded stocks was a successful

policy measure since it not only helped to keep transaction costs low in general but

also eliminated the negative relationship between trading activity and probability

of informed trading.

7 Conclusions

We have presented a model of price formation in an electronic call auction. In our

model asymmetric information is reflected in the liquidity traders’ limit prices and

therefore affects the transaction price. Our model implies that transaction costs,

defined as twice the deviation of the transaction price from the average trader’s un-

conditional expectation, are a decreasing function of liquidity and increasing with

information asymmetries. We estimate our model for twenty stocks on Euronext

Paris and decompose transaction costs in a difference in valuation and an asymmet-

ric information component. Considering that the stocks in our sample are in the

least liquid trading category estimated transaction costs are remarkably low. More-

over, in contrast to continuous markets for infrequently traded stocks information

asymmetries do not lead to excessive transaction costs.

However, our results do not preclude that it can be desirable for liquid stocks to

switch from one or two call auctions a day to a continuous trading mechanism as

shown by Amihud, Mendelson and Lauterbach (1997). We show that call auction

trading breaks the negative relation between liquidity and the asymmetric informa-

tion component of transaction costs that is present in continuous markets and thus

prevents excessive transaction costs for illiquid assets. This is in line with Lauter-

bach’s (2001) finding that illiquid stocks fared better under the call auction trading

regime than under a continuous trading. Our findings are also in accordance with

Venkataraman and Waisburd (2007) who show that for very illiquid stocks the in-

troduction of a designated market maker can improve market quality. By reducing
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the order imbalance the designated market maker lowers the difference in valuation

component of transaction costs.

Appendix

This appendix provides the details of our estimation procedure. In Section A we

derive the posterior distribution. Section B describes the MCMC algorithm used to

obtain draws from the posterior distribution and in Section C we present the method

for our model check.

A Derivation of posterior distribution

A.1 Likelihood

The likelihood of observing return rt given the parameters �, S, �, {�t−1}, � is

p(rt∣�, S, �, {�t−1}, �) = (
2√
2� �

exp{−(qt−1(rt − �− S/2(qt − qt−1)))2

2�2
})�t−1

×(
1√
2� �

exp{−(rt − �− S/2(qt − qt−1))2

2�2
})(1−�t−1)

= 2�t−1
1√
2� �

exp{−(rt − �− S/2(qt − qt−1))2

2�2
} .

The joint likelihood of the return vector r = (r2, r3, ..., rT ) is given by

p(r∣�, S, �, {�t−1}, �) =

T∏
t=2

2�t−1
1√
2� �

exp{−(rt − �− S/2(qt − qt−1))2

2�2
} .

A.2 Priors

We assume an uninformative (and improper) joint prior for �, S and � :

p(�, S, �) ∝ �−2 .

We further assume that a priori � follows a beta distribution. The density of the

beta distribution is given by

p(x;�, �) =
Γ(�+ �)

Γ(�) Γ(�)
x�−1 (1− x)�−1.
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For the prior of � we choose � = � = 1 such that the beta distribution equals a

uniform distribution on [0, 1]. Given � the prior for {�t−1}Tt=2 is

p({�t−1}∣�) =
T∏
t=2

��t−1(1− �)1−�t−1 = �ℎ(1− �)T−1−g−ℎ,

where ℎ =
∑T

t=2 �t−1 and g =
∑T

t=2 q
2
t−1 .

A.3 Posterior

Multiplying the likelihood of the return vector with the prior densities we get the

posterior density up to normalizing constant:

p(�, S, �, {�t−1}, �∣r) ∝ �−2�ℎ(1− �)T−1−g−ℎ
T∏
t=2

2�t−1
1√
2� �

exp{−(rt − �− S/2(qt − qt−1))2

2�2
}

∝ �−(T+1)�ℎ(1− �)T−1−g−ℎ2ℎ exp{−
∑T

t=2(rt − �− S/2(qt − qt−1))2

2�2
} .

This posterior density is not analytically tractable and therefore we have to use

numerical tools to draw inference about the parameters of interest.

B Obtaining draws from the posterior distribution

Gibbs sampler with three blocks:

1. Draw �, S, {�t−1}∣�, �, r with a Metropolis-Hastings algorithm. The proposal

density of �̃, S̃ at the j-th step of the Metropolis-Hastings algorithm isN((�j−1, Sj−1), V ) ,

where V is the inverse of the negative of the Hessian. The conditional posterior

probability of �t−1 = 1 given � is

P (�t−1 = 1∣�, r) =
p(�t−1 = 1∣�, r)

p(�t−1 = 1∣�, r) + p(�t−1 = 0∣�, r)
=

2�

2�+ (1− �)
.

The joint proposal density for a move from {�, S, {�t−1}} to {�̃, S̃, {�̃t−1}} is

q({�, S, {�t−1}}, {�̃, S̃, {�̃t−1}}∣�, �, r) = (2�)−1∣V ∣−1/2

× exp{−1

2
((�̃, S̃)− (�, S))V −1((�̃, S̃)− (�, S))′}

× (
2�

2�+ (1− �)
)ℎ̃(

1− �
2�+ (1− �)

)T−1−g−ℎ̃ .
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The proposal is accepted with probability min{�({�, S, {�t−1}}, {�̃, S̃, {�̃t−1}}), 1} ,

where

�({�, S, {�t−1}}, {�̃, S̃, {�̃t−1}}) =
�ℎ̃(1− �)T−1−g−ℎ̃2ℎ̃ exp{−

∑T
t=2(rt−�̃−S̃/2(qt−qt−1))2

2�2 }

�ℎ(1− �)T−1−g−ℎ2ℎ exp{−
∑T

t=2(rt−�−S/2(qt−qt−1))2

2�2 }

× exp{−1/2((�, S)− (�̃, S̃))V −1((�, S)− (�̃, S̃))′}
exp{−1/2((�̃, S̃)− (�, S))V −1((�̃, S̃)− (�, S))′}

×
( 2�

2�+(1−�))ℎ( 1−�
2�+(1−�))T−1−g−ℎ

( 2�
2�+(1−�))ℎ̃( 1−�

2�+(1−�))T−1−g−ℎ̃

=
exp{−

∑T
t=2(rt−�̃−S̃/2(qt−qt−1))2

2�2 }

exp{−
∑T

t=2(rt−�−S/2(qt−qt−1))2

2�2 }
.

2. Draw �∣�, S, {�t−1}, �, r from a beta(ℎ+ 1, T − 1− g − ℎ+ 1) distribution.

3. Draw �∣�, S, {�t−1}, �, r with a M-H algorithm. The proposal density of a

move from � to �̃ is the scaled inverse �2-distribution:

q(�, �̃) =
((T − 1)/2)(T−1)/2

Γ((T − 1)/2)
�T−1�̃−(T+1) exp{−(T − 1)�2

2�̃2
} .

The probability that proposal �̃ is accepted is then given by min{�(�, �̃), 1},

where

�(�, �̃) =
�̃−(T+1) exp{−

∑T
t=2(rt−�−S/2(qt−qt−1))2

2 �̃2 }

�−(T+1) exp{−
∑T

t=2(rt−�−S/2(qt−qt−1))2

2�2 }

×
�̃T−1�−(T+1) exp{−(T−1)�̃2

2�2 }
�T−1�̃−(T+1) exp{−(T−1)�2

2�̃2 }

=
exp{−

∑T
t=2(rt−�−S/2(qt−qt−1))2

2 �̃2 }�̃T−1 exp{−(T−1)�̃2

2�2 }

exp{−
∑T

t=2(rt−�−S/2(qt−qt−1))2

2�2 }�T−1 exp{−(T−1)�2

2�̃2 }
.

C Model choice

We test our model against the alternative where � = 0 and consequently all �t−1,

for t = 2, ..., T are zero. Model 1 is the unrestricted model (� > 0) and model 2 is

the restricted (� = 0) model. All parameters of model i ∈ {1, 2} are grouped into

the set �i . The posterior odds ratio of the two models is

Pr(M1∣y)

Pr(M2∣y)
=
Pr(M1)

Pr(M2)

∫
p(r∣�1,M1) p(�1∣M1) d�1∫
p(r∣�2,M2) p(�2∣M2) d�2

.
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We assume equal prior probabilities for the two models and, thus, the posterior odds

ratio is the ratio of the marginal likelihoods of the two models, also called the Bayes

factor. Note that the marginal likelihood is the (inverse of) the normalising constant

and therefore in order to find the model that better explains the data we have to

calculate the ratio of two normalising constants. From the many methods available

to tackle this problem, we choose iterative bridge sampling proposed by Meng and

Wong (1996).

Let wij for j = 1, ..., ni be the generated draws of model i and si = ni/(n1 +

n2), i ∈ {1, 2} . Define lij = q1(wij)/q2(wij) , where qi( ) is the (unnormalised) pos-

terior density of model i . Meng and Wong (1996) show that the following iterative

method converges to the desired ratio of normalising constant, and hence, the pos-

terior odds ratio:

r̂
(t+1)
O =

1
n2

∑n2
j=1(

l2j

s1l2j+s2r̂
(t)
O

)

1
n1

∑n1
j=1( 1

s1l1j+s2r̂
(t)
O

)
(13)
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Jong, F. D., T. Nijman and A. Röell (1996): “Price effects of trading and

components of the bid-ask spread on the Paris Bourse,” Journal of Empirical

Finance, 3, 193–213.

Kasch-Haroutounian, M. and E. Theissen (2009): “Competition between

exchanges: Euronext versus Xetra,” European Financial Management, 15(1),

181–207.

Kehr, C.-H., J. P. Krahnen and E. Theissen (2001): “The anatomy of a call

market,” Journal of Financial Intermediation, 10(3), 249–270.

Lauterbach, B. (2001): “A note on trading mechanism and securities’ value:

The analysis of rejects from continuous trade,” Journal of Banking and Finance,

25, 419–430.

Madhavan, A. (1992): “Trading mechanisms in securities markets,” Journal of

Finance, 47(2), 607–641.

(1996): “Security prices and market transparency,” Journal of Financial

Intermediation, 5, 255–283.

Madhavan, A. and V. Panchapagesan (2000): “Price discovery in auction

markets: A look inside the black box,” Review of Financial Studies, 13(3),

627–658.

Mendelson, H. (1982): “Market behavior in a clearing house,” Econometrica,

50(6), 1505–1524.

Meng, X.-L. and W. H. Wong (1996): “Simulating ratios of normalizing

constants via a simple identity: A theoretical exploration,” Statistica Sinica, 6,

831–860.

Muscarella, C. J. and M. S. Piwowar (2001): “Market microstructure and

securities values: Evidence from the Paris Bourse,” Journal of Financial

Markets, 4, 209–229.
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