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Abstract

We analyze the optimal capital structure of a bank issuing countercyclical

contingent capital, i.e., notes to be converted in common shares in case of a bad

state for the economy. This type of asset reduces the spread of straight debt but

is quite expensive. The effect on bankruptcy costs is limited (it is strong when

contingent capital is not countercyclical), the asset reduces the asset substitu-

tion incentive. Contingent capital is useful for macroprudential regulation, the

countercyclical feature is important depending on priorities (moderate the asset

substitution incentive or reduce bankruptcy costs).
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1 Introduction

The recent financial crisis has raised two new issues on the banking regulation debate:

the too big to fail problem and the management of systemic risk. In this paper we

analyze a hybrid instrument that has been proposed recently to address these issues:

countercyclical contingent capital (CCC), a debt note to be converted in capital by

a decision of the regulatory authority, see Basel Committee on Banking Supervision

[2009, 2010b], Bernanke [2009], EU Commission [2010], Squam Lake Working Group

[2009].

The too big to fail problem and the management of systemic risk are strictly con-

nected to recent developments on regulation of financial markets and institutions. The

liberalization of financial markets and the decentralization of controls on financial in-

termediation have changed significantly the financial system, in particular financial

intermediaries behave more homogeneously and are strongly interconnected in a vari-

ety of regulated and unregulated markets, see Brunnermeier [2009], Haldane [2009].

These features of the financial system have played a key role in generating the recent

crisis. In this environment, a failure in the evaluation of risk (by internal models of

banks or by credit agencies) or an exogenous event undermining significantly the value

of the assets, e.g. the fall of house prices, has caused serious drawbacks on the stability

of financial institutions and of the financial system as a whole. This is the main argu-

ment against the default of large intermediaries during a financial crisis: a default of a

large company would induce a negative externality on the financial system as a whole

(defaults come together). Because of these externalities, the default of a large bank is

no more a private event, it becomes a public issue.

In this framework there is a connection between a microeconomic event (bank de-

fault) and the macroeconomy (financial stability). This implies that we need a new

governing system acting both at the micro level - via regulation - on the stability of

financial institutions and at the macro level governing financial conditions.

During the financial crisis, financial authorities and the States have reacted to
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these problems using innovative non conventional instruments. To address the too big

to fail problem they have injected capital in banks subscribing all kinds of financial

instruments (equity, hybrid securities, debt instruments) or have guaranteed assets of

financial institutions. To cope with systemic risk, central banks have acted as lenders

of last resort both for banks and for States providing liquidity, buying assets of private

companies or of States and lowering significantly interest rates.

Passed the peak of the crisis, a huge debate arises on building a new financial ar-

chitecture capitalizing the financial crisis experience, among others see Admati and

Pfleiderer [2009], Duffie [2009], Flannery [2009], Hart and Zingales [2009], Hellwig

[2010], Kashyap et al. [2008], Squam Lake Working Group [2009]. Recently the

Basel committee on banking supervision has started to address these problems formu-

lating some proposals, see Basel Committee on Banking Supervision [2009, 2010a,b],

and strengthening capital requirements of banks (higher ratios and quality of capital,

liquidity and leverage ratios), see Basel Committee on Banking Supervision [2010c].

In this perspective, regulatory authorities have referred to contingent capital - debt

instruments to be converted into equity when a predefined event occurs, see Basel

Committee on Banking Supervision [2009, 2010b], Bernanke [2009], EU Commission

[2010]. In particular this asset seems to be well suited to address the regulation of

systemic important financial institutions.

Several types of hybrid securities have been proposed, see Barucci and Del Viva

[2010], Flannery [2002, 2009], McDonald [2010], Pennacchi et al. [2010], Raviv

[2004], Squam Lake Working Group [2009], Sundaresan and Wang [2010]. Flannery

[2002, 2009] propose mandatory subordinated convertible bonds (contingent capital

certificates): notes are converted automatically into common stocks at the current

share price if the issuing firm’s capital ratio (or an accounting ratio) falls below some

pre-specified level. Conversion is triggered automatically by the stock price and the

value of the company. Such an instrument has been employed during the financial

crisis by Lloyd’s Bank. Raviv [2004] analyses a zero-coupon debt for equity swap that

converts automatically into equity if the corporate value falls below a predetermined
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threshold. In Barucci and Del Viva [2010] we have studied the optimal capital structure

of a company issuing perpetual notes that may be converted in common shares by

a company decision or by an automatic rule. Squam Lake Working Group [2009]

proposes an instrument similar to that of Flannery [2009] with the difference that

bonds are converted in equity if two conditions are met (declaration by the systemic

regulator of a crisis status and low capital ratio). As in De Martino et al. [2010], we

call this instrument countercyclical contingent capital or certificate (CCC). McDonald

[2010] explicitly models the systemic component assuming that conversion is triggered

by an exogenous barrier on the equity price and on a financial index.

In this paper we investigate the capital structure of a bank issuing straight debt

(deposit) and CCC using contingent claim analysis in the spirit of Merton [1977],

Crouhy and Galai [1991]. The main novelty with respect to the literature is the coun-

tercyclical feature of the instrument that is analyzed in the Hackbarth et al. [2006]

framework: regulatory authority imposes conversion in a crisis period. We show that

the bank issuing also CCC becomes slightly more leveraged, large part of the risk is

absorbed by CCC holders (CCC spread is high and that of straight debt is significantly

smaller than in a standard setting), CCC reduces the asset substitution incentive while

bankruptcy costs are reduced only by issuing non countercyclical contingent capital

(conversion doesn’t depend on the macroeconomic state). So the main policy implica-

tion of our analysis is that CCC is an useful instrument for macroprudential regulation,

the countercyclical feature may be useful depending on priorities (reduce bankruptcy

costs or the asset substitution incentive). Countercyclical (or not) contingent capital

is superior to a debt restructuring forced by the regulatory authority in a bad state.

To reduce the cost of bankruptcy, conversion of CCC in equity should occur for a high

threshold (early enough).

The effects produced by the issue of CCC are similar to those produced by the

prompt corrective action (PCA) by the FDIC documented in Episcopos [2008] and

Aggarwal and Jacques [2001]. In particular the presence of CCC in the capital struc-

ture could concur in reducing the bankruptcy cost and the asset substitution incentive.
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Tighter conversion rules, in term of higher trigger barrier, reinforce these main results

as in Episcopos [2008].

To our knowledge this is the first paper that fully determines the optimal capital

structure with countercyclical contingent capital. Compared to Albul et al. [2010]

we add the countercyclicality feature, we optimally chose the capital structure and we

analyze the effect of macroeconomic conditions. In Pennacchi [2010] and Pennacchi et

al. [2010] two different kinds of contingent convertibles are analyzed when the asset

dynamic allows for jumps. Our work differs from these papers because in our setting

jumps are defined as a regime switch for macroeconomic conditions, moreover we fully

determine the optimal capital structure of the bank. The main novelty with respect to

the literature is that we determine the remuneration of default and of the write down

risk when coupons are chosen optimally.

The paper is organized as follows. In Section 2 we introduce the model for the

operating profit and the CCC instrument. In Section 3 and 4 we address the evaluation

of financial instruments of the company in a two period setting assuming that the bank

issues straight debt and CCCs and convert them marking the start of Period 1. In

Section 5 we address the optimal capital structure problem in a good macroeconomic

state. In Section 6 we provide some comparative static exercises. In Section 7 we

analyze the asset substitution problem when the bank may also issue contingent capital.

In Section 8 we concentrate on the capital structure when the economy is in a bad state.

In Section 9 we analyze the case of pure contingent capital (non countercyclical). In

Section 10 we consider a multiperiod setting with a countercyclical callable bond.

Finally in Section 11 we analyze the effect of CCC on bankruptcy costs.
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2 Countercyclical contingent capital in a switching

regime setting

We analyze the capital structure of a company issuing countercyclical contingent cer-

tificates when the instantaneous operating profit (EBIT ) is affected by macroeconomic

conditions. We follow Hackbarth et al. [2006] assuming that at time t the EBIT for

the bank is

f(x(t), y(t)) = x(t) y(t)

where

dx(t) = µx(t) dt+ σ x(t) dW (t), x(0) > 0

represents the idiosyncratic component of the EBIT . The growth rate µ < r and the

volatility σ > 0 are constant parameters and dW (t) is the increment of a standard

Brownian motion. Throughout the paper r represents the constant risk-free interest

rate. y(t) instead is a random variable that consists in persistent EBIT jumps reflect-

ing macroeconomic conditions. y(t) may assume only two states: yH and yL (yH > yL),

where yH represents a positive macroeconomic condition (GDP higher than past aver-

age, Bank Index above some level) and yL represents a bad macroeconomic condition

(onset of a crisis for example).

y(t) follows a Poisson process independent from dW (t) with transition probability

law

• λL = rate of leaving state L for state H

• λH = rate of leaving state H for state L.

So basically if macroeconomic conditions are sound, for an infinitesimal time interval

dt we have approximately a probability λH dt of the onset of a crisis. If the crisis starts,

then the EBIT will jump at the level x(t+) = x(t−)yL, where x(t−) represents the

EBIT an instant before the jump. Given the interpretation of y(t) we assume that

yL ≤ 1 ≤ yH .
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A CCC is a debt instrument that behaves in a different way depending on the state

of the economy. If macroeconomic conditions are good, i.e., y(t) = yH , then equity

holders can decide to go bankrupt without converting CCCs. On the other hand,

if macroeconomic conditions are bad (crisis or deep depression), i.e., y(t) = yL, and

the operating profit is not high enough then CCCs are converted in equity without

incurring in bankruptcy. For the moment we assume that after the conversion of CCCs

the bank may default as a normal company, i.e., the decision is only in the hands of

equity holders. This assumption will be relaxed in Section 10 when we will introduce

the possibility of dynamic debt restructuring. While the bankruptcy decision in a

good state is a pure private decision, the conversion decision of CCCs in a bad state is

imposed by the regulatory authority. CCC cannot be converted in a good or in a bad

state of the economy by an autonomous decision of equity holders. In this framework

CCCs will be converted only if the bank is performing bad and the authority recognizes

the existence of a global crisis. We assume that the regulatory authority fully observes

the process y(t), that is the regulatory authority is able to detect a state of crisis

disentangling the evolution of x(t) and that of y(t): the crisis condition is determined

by the state yL and the conversion is triggered by a barrier on x(t).

As in Barucci and Del Viva [2010] we start considering a two period framework.

Period 1 starts as CCCs are converted into equity. After conversion the capital struc-

ture of the bank is composed solely by equity and straight debt (deposits). As in

Hackbarth et al. [2006], in Period 1 the bank defaults in both macroeconomic states

(H and L) as the cash flow from operations reaches respectively the barrier x∗H1
or x∗L1

.

These default barriers are optimally chosen by equity holders. In Section 10 we will

consider the possibility that the bank issues again CCCs after their conversion.

In Period 0 the bank has the possibility to issue CCCs, along with equity and de-

posits (straight debt), that can be converted into equity if macroeconomic conditions

are bad and the cash flow reaches a lower barrier x∗L0
, see Table 1. In these circum-

stances the bank doesn’t default, a fraction of equity is allocated to CCC holders and

depositors do not bear any loss. The contract of contingent capital is such that at con-
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Period 1

if y(t) = yL and xL(t) ≤ x∗L1
→ default

if y(t) = yH and xH(t) ≤ x∗H1
→ default

Period 0

if y(t) = yL and xL(t) ≤ x∗L0
→ conversion

if y(t) = yH and xH(t) ≤ x∗H0
→ default

Table 1: Default-conversion dynamics.

version, CCC holders obtain a portion of equity equal to their par value or otherwise,

if equity results to be lower than the par value of CCCs, they will take over completely

the company, i.e., they will receive the full value of equity.

Set eL1(x
∗
L0

) the equity value after conversion in Period 1 at the conversion barrier

x∗L0
and assuming that CCCs pay a coupon cc continuously, the conversion rate of

CCCs in a bad state is

θ = min

{
cc/r

eL1(x
∗
L0

)
, 1

}
. (2.1)

A θ equals to 1 means that contingent capital holders replace completely old equity

holders in case of conversion. In this case CCC holders indeed suffer a loss because

the par value of bonds is higher than the equity value ( cc/r
eL1

(x∗L0
)
> 1). Conversion in

these circumstances produces an effect similar to bankruptcy-restructuring: depositors

continue to possess the right for a fixed stream, equity holders are ejected from the

company and CCC holders will obtain the residual claim. For a discussion on the

conversion mechanism see Barucci and Del Viva [2010], Pennacchi [2010].

If macroeconomic conditions are good and the lower barrier x∗H0
is touched, then the

bank defaults, CCC holders and depositors obtain a fraction of the net abandonment

value, and equity holders obtain the residual value. x∗H0
is chosen by equity holders.

Figure 1 provides a graphical illustration of the default and conversion dynamics.

We assume x∗Li > x∗Hi in both periods (0 and 1), i.e., the bank defaults in recession

earlier than in expansion. An assumption that is confirmed by optimal decisions in
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Figure 1: Conversion-default dynamics. The red line divides period 0 where CCCs, straight debt and

equity are contemporaneously present in the capital structure, from period 1, where after conversion

only straight debt and equity are present.

Period 1. In order to avoid a too late conversion (a conversion that leads immediately

to default after conversion), we assume that x∗L0
> x∗L1

. This assumption avoids the

trivial situation in which the conversion of CCCs, ordered by the financial authority in

order to avoid bankruptcy, will actually lead to the default after conversion.

3 Period 1 analysis

After the conversion of CCCs in equity, the company becomes a leveraged company as

in Hackbarth et al. [2006]. There are only two claimants: shareholders and straight

debtholders. There are also two other occult claimants: bankruptcy and government

(via taxes).

As a preliminary step to evaluate the value of financial assets we have to compute the

abandonment value Ai, i = L,H, i.e., the expected discounted value of the perpetual

claim to the after tax flow of operating income. Ai, i = L,H, represents the after

tax unlevered company value in the two different states. In case of default in state
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i = L,H, debtholders receive αiAi, i = L,H, the fraction 1− αi of the abandonment

value of the firm instead is lost because of bankruptcy costs. The expression of Ai is

similar to that computed in Hackbarth et al. [2006] and is provided in A.

Our strategy is to determine first the value of straight debt, then the total value of

the company and finally the value of equity by difference. The next four subsections

3.1, 3.2, 3.3 and 3.4 summarize the main results obtained in Hackbarth et al. [2006].

3.1 Debt Value

We assume that debt pays a continuous constant coupon c until time T = min {s, ∞}

where s = min{t : x(t) ≤ x∗i1}, i = L,H, is the default stopping time. Debtholders

receive a constant coupon equal to c as long as the bank doesn’t reach the lower

bankruptcy barriers x∗i1 , i = L, H.

We denote by di1(x), i = H, L, the debt value in the two states. Debt value has to

satisfy the following system of ordinary differential equations (ODEs):

• if x∗H1
≤ x ≤ x∗L1

:

rdH1(x) = µxd
′

H1
(x) +

σ2

2
x2d

′′

H1
(x) + λH [αLAL(x)− dH1(x)] + c (3.1)

• if x > x∗L1
:rdL1(x) = µxd

′
L1

(x) + σ2

2
x2d

′′
L1

(x) + λL[dH1(x)− dL1(x)] + c

rdH1(x) = µxd
′
H1

(x) + σ2

2
x2d

′′
H1

(x) + λH [dL1(x)− dH1(x)] + c

(3.2)

The solution of the system coincides with that reported in Hackbarth et al. [2006]

without the instantaneously rolling over of debt, i.e., m = 0 in their notation. As

bankruptcy occurs, debtholders receive a fraction αi of the abandonment value (A.2):

dL1(x
∗
L1

) = αLAL(x∗L1
)

dH1(x
∗
H1

) = αHAH(x∗H1
)

lim
x↓x∗L1

dH1(x, c) = lim
x↑x∗L1

dH1(x, c)

lim
x↓x∗L1

d
′

H1
(x, c) = lim

x↑x∗L1

d
′

H1
(x, c).
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Then we obtain the following formulae for debt value:

dL1(x) =

 Adx
ξ − λLBdx

γ + c
r
, x > x∗L1

αL(1− τ)KLx, x ≤ x∗L1

dH1(x) =


Adx

ξ + λHBdx
γ + c

r
, x > x∗L1

Cdx
β1 +Ddx

β2 + λH
(1−τ)αLKLx
r−µ+λH

+ c
r+λH

, x∗H1
< x ≤ x∗L1

αH(1− τ)KHx, x ≤ x∗H1

where

β1 = 0.5− µ/σ2 +
√

(0.5− µ/σ2)2 + 2(r + λH)/σ2 (3.3)

β2 = 0.5− µ/σ2 −
√

(0.5− µ/σ2)2 + 2(r + λH)/σ2 (3.4)

γ = 0.5− µ/σ2 −
√

(0.5− µ/σ2)2 + 2(r + λH + λL)/σ2 (3.5)

ξ = 0.5− µ/σ2 −
√

(0.5− µ/σ2)2 + 2r/σ2 (3.6)

and the constants Ad, Bd, Cd and Dd are reported in B. The value of Ki, i = H, L is

given by A.3.

3.2 Firm Value

The total firm value in the two states vi1(x), i = H, L, is obtained summing the present

value of the perpetual after tax income stream, the present value of the perpetual tax

benefit of debt and subtracting bankruptcy costs. We assume that company profits

are taxed at the rate τ . In order to obtain the total firm value we have to solve the

following system of ODEs:

• if x∗H1
≤ x ≤ x∗L1

:

r vH1(x) = µxv
′

H1
(x) +

σ2

2
x2v

′′

H1
(x) + λH [αLAL(x)− vH1(x)] + (1− τ)x yH + c τ

• if x > x∗L1
:r vL1(x) = µxv

′
L1

(x) + σ2

2
x2v

′′
L1

(x) + λL[vH1(x)− vL1(x)] + (1− τ)x yL + c τ

r vH1(x) = µxv
′
H1

(x) + σ2

2
x2v

′′
H1

(x) + λH [vL1(x)− vH1(x)] + (1− τ)x yH + c τ
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with the following boundary conditions:

vL1(x
∗
L1

) = αLAL(x∗L1
)

vH1(x
∗
H1

) = αHAH(x∗H1
)

lim
x↑x∗L1

vH1(x) = lim
x↓x∗L1

vH1(x)

lim
x↑x∗L1

v
′

H1
(x) = lim

x↓x∗L1

v
′

H1
(x).

Using a notation similar to Hackbarth et al. [2006] we obtain the following results for

the firm value:

vL1(x) =

 Avx
ξ − λLBvx

γ + (1− τ)KLx+ τc
r
, x > x∗L1

αL(1− τ)KLx, x ≤ x∗L1

vH1(x) =


Avx

ξ + λHBvx
γ + (1− τ)KHx+ τc

r
, x > x∗L1

Cvx
β1 +Dvx

β2 + λH
(1−τ)αLKLx
r−µ+λH

+ (1−τ)yHx
r−µ+λH

+ τc
r+λH

, x∗H1
< x ≤ x∗L1

αH(1− τ)KHx, x ≤ x∗H1

where β1, β2, γ and ξ are defined in (3.3)-(3.6) and the constants Av, Bv, Cv and Dv

are reported in B. The value of Ki, i = H, L is given by A.3.

3.3 Equity Value

The equity value in the two states ei1(x), i = H, L, is obtained subtracting the debt

value from the firm value:

eL1(x) =

 vL1(x)− dL1(x), x > x∗L1

0, x ≤ x∗L1

eH1(x) =


vH1(x)− dH1(x), x > x∗L1

vH1(x)− dH1(x), x∗H1
< x ≤ x∗L1

0, x ≤ x∗H1
.

Substituting the expression for the firm and the debt value we obtain

eL1(x) =

 Aex
ξ − λLBex

γ + (1− τ)
(
KLx− c

r

)
, x > x∗L1

0, x ≤ x∗L1

(3.7)
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eH1(x) =


Aex

ξ + λHBex
γ + (1− τ)

(
KHx− c

r

)
, x > x∗L1

Cex
β1 +Dex

β2 + (1− τ)
(

x yH
r−µ+λH

− c
r+λH

)
, x∗H1

< x ≤ x∗L1

0, x ≤ x∗H1

(3.8)

where β1, β2, γ and ξ are defined in (3.3)-(3.6) and the constants Ae, Be, Ce and De

are reported in B. The value of Ki, i = H, L is given by A.3.

3.4 Default Strategy

We assume that the default barriers in Period 1 are strategically chosen by equity

holders, in particular we assume that they are determined by applying the smooth

pasting conditions. This default strategy balances the present value of cash flow gen-

erated by the company with the cash flow that equity holders receive as the company

defaults. Set R ≡ x∗L1
/x∗H1

the ratio of the two barriers, continuity (limx↑x∗L1
eH1(x) =

limx↓x∗L1
eH1(x), limx↑x∗L1

e
′
H1

(x) = limx↓x∗L1
e
′
H1

(x)) and smooth pasting conditions ((e
′
H1

(x∗H1
) =

0, e
′
L1

(x∗L1
) = 0), where the derivative is taken with respect to x and equity values are

given in (3.7) and (3.8), yield

x∗H1
= c

1
r

ξ
ξ−γ

(
1 + λH

λL

)
− 1

r+λH

(
1 + β2Rβ1−β1Rβ2

β1−β2

)
RKL
ξ−γ

(
γ − 1 + (ξ − 1)λH

λL

)
+RKH − yH

r−µ+λH

(
R + (β2−1)Rβ1−(β1−1)Rβ2

β1−β2

)
x∗L1

= c

1
r

(
ξγ
ξ−γ + λHξγ

λL(ξ−γ)

)
− β1β2Rβ1−β1β2Rβ2

β1−β2
1

r+λH

RKL

ξ(γ−1)+γ(ξ−1)λH
λL

ξ−γ +RKH − yH
r−µ+λH

(
R + β1(β2−1)Rβ1−β2(β1−1)Rβ2

β1−β2

) .
4 Period 0 analysis

Before conversion of CCCs, we have three claimants (shareholders, straight debtholders,

contingent capital holders) and the bankruptcy claim.

4.1 Debt Value

As in Period 1, the bank pays a constant coupon c to depositors before conversion.

If macroeconomic conditions are good and the lower barrier x∗H0
is touched, then the
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bank defaults and depositors obtain a fraction δ ∈ [0, 1] of the abandonment value after

bankruptcy (αH0AH(x)) computed in x∗H0
(the fraction 1− δ goes to CCC holders). To

account for the difference in the capital structure, the default recovery ratio in Period

0 (αH0) is assumed to differ from the recovery ratio in Period 1 (αH). On the other

hand, if macroeconomic conditions are bad and the lower barrier x∗L0
is touched then

CCCs are converted in equity, the bank reorganizes its capital structure and depositors

obtain their claim with a value computed for Period 1. After conversion, the bank

redefines the bankruptcy barrier but doesn’t change the coupon of bonds. Set the debt

value di0(x), i = L, H, we have

• if x∗H0
≤ x ≤ x∗L0

:

rdH0(x) = µxd
′

H0
(x) +

σ2

2
x2d

′′

H0
(x) + λH [dL1(x)− dH0(x)] + c (4.1)

where dL1(x) is the debt value of Period 1 as derived in Section 3.1. The general

solution of the above differential equation is

dH0(x) = U1x
φ1 + U2x

φ2 + λH yp(x) +
c

r + λH
(4.2)

where φ1 and φ2 are the negative and positive root of the the following quadratic

equation

(r + λH)−
(
µ− σ2

2

)
φ− σ2

2
φ2 = 0

and yp(x) is a particular solution of the non-homogeneous Cauchy-Euler equation

yp(x) =

(∫
−2x−(1+φ1)dL1(x)

(φ1 − φ2)σ2
dx

)
xφ1 +

(∫
2x−(1+φ2)dL1(x)

(φ1 − φ2)σ2
dx

)
xφ2

• if x > x∗L0
the debt value is given by the solution of the following system of ODEs:rdL0(x) = µxd

′
L0

(x) + σ2

2
x2d

′′
L0

(x) + λL[dH0(x)− dL0(x)] + c

rdH0(x) = µxd
′
H0

(x) + σ2

2
x2d

′′
H0

(x) + λH [dL0(x)− dH0(x)] + c.

(4.3)

From the above system we can obtain a set of two independent ODEs using

j(x) = dH0(x)− dL0(x) and z(x) = λLdH0(x) + λHdL0(x). (4.3) can be rewritten

14



in term of j(x) and z(x) as

(r + λH + λL)j(x) = µxj
′
(x) +

σ2

2
x2j

′′
(x)

rz(x) = µxz
′
(x) +

σ2

2
x2z

′′
(x) + (λL + λH)c

with the following general solutions

j(x) = J1x
γ1 + J2x

γ2 (4.4)

z(x) = Z1x
ξ1 + Z2x

ξ2 +
(λL + λH)c

r
(4.5)

γi, ξi, i = 1, 2, in (4.4) and (4.5) are respectively the negative and positive roots

of the following quadratic equations

(r + λH + λL)−
(
µ− σ2

2

)
γ − σ2

2
γ2 = 0

r −
(
µ− σ2

2

)
ξ − σ2

2
ξ2 = 0.

Given the positive sign of γ2 and ξ2, the linear growth conditions

lim
x↑∞

j(x)

x
<∞, lim

x↑∞

z(x)

x
<∞

impose J2 = 0 and Z2 = 0. Substituting back j(x) = dH0(x) − dL0(x) and

z(x) = λLdH0(x) + λHdL0(x) and rearranging we obtain

dH0(x) =
λH

λL + λH
J1x

γ1 +
1

λL + λH
Z1x

ξ1 +
c

r

dL0(x) = − λL
λL + λH

J1x
γ1 +

1

λL + λH
Z1x

ξ1 +
c

r
.

Imposing the boundary conditions

dL0(x
∗
L0

) = dL1(x
∗
L0

)

dH0(x
∗
H0

) = δαH0AH(x∗H0
) (4.6)

lim
x↓x∗L0

dH0(x) = lim
x↑x∗L0

dH0(x)

lim
x↓x∗L0

d
′

H0
(x) = lim

x↑x∗L0

d
′

H0
(x)
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we obtain the debt value in the two states:

dL0(x) =

 − λL
(λL+λH)

J1x
γ1 + 1

(λL+λH)
Z1x

ξ1 + c
r
, x > x∗L0

Adx
ξ − λLBdx

γ + c
r
, x ≤ x∗L0

(4.7)

dH0(x) =


λH

(λL+λH)
J1x

γ1 + 1
(λL+λH)

Z1x
ξ1 + c

r
, x > x∗L0

U1x
φ1 + U2x

φ2 + λHyp(x) + c
r+λH

, x∗H0
< x ≤ x∗L0

δαH0KH(1− τ)x, x ≤ x∗H0

(4.8)

where the constants in the above formulae are contained in C.

A coupon dependent δ (e.g. equal to the par value ratio c/(c+ cc)) does not affect

the optimal coupons of straight debt and of CCC. This is due to the fact that the

optimal barriers and the firm value don’t depend on δ. The only effect of a change in δ

is on the portion of firm value of CCC and of straight debtholders in case of bankruptcy.

As a consequence a change of δ doesn’t affect the optimal leverage but only the spread

of debt instruments.

4.2 Countercyclical Contingent Capital

Before conversion, CCC holders receive a continuous coupon payment cc. We assume

that at conversion contingent capital holders receive a fraction θ as defined in (2.1) of

the equity value in Period 1, i.e., contingent capital holders receive a fraction of equity

value equal to the par value of the certificates.

Conversion takes place only if macroeconomic conditions are bad, i.e., state L, and

the lower barrier x∗L0
is touched. On the other hand, if the lower barrier x∗H0

is touched

when the macroeconomic state is good, then CCC holders concur with debtholders

to obtain the abandonment value of the company after bankruptcy. As debtholders

obtain the fraction δ of the recovery value, the remaining fraction (1− δ) goes to CCC

holders. The contingent capital certificate value in the two states CCCi0(x), i = L, H,

has to satisfy the following set of ODEs:

• if x∗H0
≤ x ≤ x∗L0

:

rCCCH0(x) = µxCCC
′

H0
(x) +

σ2

2
x2CCC

′′

H0
(x) + λH [θeL1(x)− CCCH0(x)] + cc

16



with general solution:

CCCH0(x) = U1x
φ1 + U2x

φ2 + λH yp(x) +
cc

r + λH

where:

yp(x) =

(∫
−2x−(1+φ1)θeL1(x)

(φ1 − φ2)σ2
dx

)
xφ1 +

(∫
2x−(1+φ2)θeL1(x)

(φ1 − φ2)σ2
dx

)
xφ2

• if x > x∗L0
:rCCCL0(x) = µxCCC

′
L0

(x) + σ2

2
x2CCC

′′
L0

(x) + λL[CCCH0(x)− CCCL0(x)] + cc

rCCCH0(x) = µxCCC
′
H0

(x) + σ2

2
x2CCC

′′
H0

(x) + λH [CCCL0(x)− CCCH0(x)] + cc

with general solutions

CCCH0(x) =
λH

(λL + λH)
J1x

γ1 +
1

(λL + λH)
Z1x

ξ1 +
cc

r

CCCL0(x) = − λL
(λL + λH)

J1x
γ1 +

1

(λL + λH)
Z1x

ξ1 +
cc

r
.

Imposing the boundary conditions

CCCL0(x
∗
L0

) = θeL1(x
∗
L0

)

CCCH0(x
∗
H0

) = (1− δ)αH0AH(x∗H0
) (4.9)

lim
x↑x∗L0

CCCH0(x, cc) = lim
x↓x∗L0

CCCH0(x, cc)

lim
x↑x∗L0

CCC
′

H0
(x, cc) = lim

x↓x∗L0

CCC
′

H0
(x, cc)

we obtain

CCCL0(x) =

 − λL
(λL+λH)

J1x
γ1 + 1

(λL+λH)
Z1x

ξ1 + cc
r
, x > x∗L0

θ
[
Aex

ξ − λLBex
γ + (1− τ)

(
KLx− c

r

)]
, x ≤ x∗L0

CCCH0(x) =


λH

(λL+λH)
J1x

γ1 + 1
(λL+λH)

Z1x
ξ1 + cc

r
, x > x∗L0

U1x
φ1 + U2x

φ2 + λHyp(x) + cc
r+λH

, x∗H0
< x ≤ x∗L0

(1− δ)αH0KH(1− τ)x, x ≤ x∗H0
.

C contains all the details of the above formulae.
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4.3 Firm Value

The total firm value is given by the sum of the present value of the unlimited after tax

income stream and the present value of the unlimited tax benefit of debt and contingent

capital minus bankruptcy costs. Indicating the company value with vi0(x), ı = L, H,

by Itô Lemma we have the following set of ODEs:

• if x∗H0
≤ x ≤ x∗L0

:

r vH0(x) = µxv
′

H0
(x)+

σ2

2
x2v

′′

H0
(x)+λH [vL1(x)−vH0(x)]+(1− τ)x yH +(c+ cc)τ

the general solution of the above equation is

vH0(x) = U1x
φ1 + U2x

φ2 + λH yp(x) +
(1− τ)x yH
r + λH − µ

+
(cc+ c)τ

r + λH

with

yp(x) =

(∫
−2x−(1+φ1)vL1(x)

(φ1 − φ2)σ2
dx

)
xφ1 +

(∫
2x−(1+φ2)vL1(x)

(φ1 − φ2)σ2
dx

)
xφ2

• if x > x∗L0
:r vL0(x) = µxv

′
L0

(x) + σ2

2
x2v

′′
L0

(x) + λL[vH0(x)− vL0(x)] + (1− τ)x yL + (c+ cc)τ

r vH0(x) = µxv
′
H0

(x) + σ2

2
x2v

′′
H0

(x) + λH [vL0(x)− vH0(x)] + (1− τ)x yH + (c+ cc)τ

the general solution of the above equation is

vH0(x) =
λH

(λL + λH)
J1x

γ1 +
1

(λL + λH)
Z1x

ξ1 + (1− τ)KHx+
τ(c+ cc)

r

vL0(x) = − λL
(λL + λH)

J1x
γ1 +

1

(λL + λH)
Z1x

ξ1 + (1− τ)KLx+
τ(c+ cc)

r
.

Imposing the boundary conditions

vL0(x
∗
L0

) = vL1(x
∗
L0

)

vH0(x
∗
H0

) = αH0AH(x∗H0
) (4.10)

lim
x↑x∗L0

vH0(x) = lim
x↓x∗L0

vH0(x)

lim
x↑x∗L0

v
′

H0
(x) = lim

x↓x∗L0

v
′

H0
(x)

18



we obtain

vL0(x) =

 − λL
(λL+λH)

J1x
γ1 + 1

(λL+λH)
Z1x

ξ1 + (1− τ)KLx+ τ(c+cc)
r

, x > x∗L0

Avx
ξ − λLBvx

γ + (1− τ)KLx+ τc
r
, x ≤ x∗L0

vH0(x) =


λH

(λL+λH)
J1x

γ1 + 1
(λL+λH)

Z1x
ξ1 + (1− τ)KHx+ τ(c+cc)

r
, x > x∗L0

U1x
φ1 + U2x

φ2 + λHyp(x) + (1−τ)yHx
r+λH−µ

+ τ(cc+c)
r+λH

, x∗H0
< x ≤ x∗L0

αH0KH(1− τ)x, x ≤ x∗H0
.

C contains all the details of the above formulae.

4.4 Equity Value

Given the value of the firm, the value of debt and that of contingent capital, the value

of equity is simply obtained as the difference:

eL0(x) =

vL0(x)− dL0(x)− CCCL0(x) if x > x∗L0

(1− θ)eL1(x) if x ≤ x∗L0

eH0(x) =


vH0(x)− dH0(x)− CCCH0(x) if x > x∗L0

vH0(x)− dH0(x)− CCCH0(x) if x∗H0
< x ≤ x∗L0

0 if x ≤ x∗H0
.

5 Optimal Capital Structure

The optimal capital structure is chosen by the three claim holders, i.e., equity, straight

debt and CCC holders. Taking the conversion barrier defined by the authority as given,

equity holders define the bankruptcy barrier in Period 1 (x∗H1
, x∗L1

) and the bankruptcy

barrier in Period 0 for a good state of the economy (x∗H0
).

The bankruptcy level x∗H0
is chosen by equity holders through smooth pasting con-

ditions. The condition requires

∂eH0(x)

∂x

∣∣∣∣
x=x∗H0

= 0.
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As already discussed, conversion takes place only if y(t) = yL and x(t) < x∗L0
. We

could assume x∗L0
to be determined according to the probability of default. Since after

conversion the bank can default in both the macroeconomic conditions the probability

of default would be a function of the distance between x and x∗L1
, x∗H1

, see Barucci

and Del Viva [2010]. The drawback of using this proxy to drive conversion is that we

would obtain a conversion barrier independent of cc. This assumption is unrealistic and

renders the optimal capital structure problem unbounded. We prefer to assume that

the regulatory authority defines the conversion barrier in a prudent way multiplying

the bankruptcy barrier in a good state (x∗H0
) decided by equity holders for a constant

R0 > 1, so x∗L0
= x∗H0

R0. This assumption is plausible, indeed, if shareholders are free

to decide a bankruptcy strategy in the bad state of the economy then they will fix a

x∗L0
> x∗H0

as in Period 1.

Given the optimal barriers, optimal coupons are obtained maximizing the value of

the company in the two states, see Leland [1994]:

max
c, cc

vi(x0)|xH0
=x∗H0

, xL0
=x∗L0

, i = H, L. (5.1)

where vi(x0) = ei(x0) + di(x0) + CCCi(x0) and where we have already substituted

x∗L1
and x∗H1

in the claim values of Period 1. Optimal coupons depend on the initial

macroeconomic conditions, so we have different optimal coupons in the two regimes:

(c∗, cc∗)L, (c∗, cc∗)H depending on the state of the economy when the capital structure

is defined.

An alternative assumption on the conversion rule would be to consider a triggering

barrier defined as a fraction of the par value of the two debt like instruments (Λ( cc+c
r

))

see Barucci and Del Viva [2010]. The main results of the analysis proposed below are

confirmed in this setting.
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Variable Parameters

risk free interest rate r = 0.055

initial level of cash flow x0 = 1

growth rate of cash flow µ = 0.005

volatility of cash flow σ = 0.25

tax advantage of debt τ = 0.15

recovery rates (period 1) αH = αL = 0.6

recovery rate (period 0) αH0 = 0.5

% recovery for straight debt holders δ = 0.7

persistence of shocks λL = 0.15, λH = 0.1

size of shocks yL = 0.9, yH = 1.1

distance barrier period 0 R0=1.2 (x∗L0
= R0 × x∗H0

)

Table 2: Initial parameters choice.

6 Comparative Statics

In this Section we illustrate the main effects on the capital structure of a bank when

the parameters of the model change. We assume that the capital structure is defined

in a good state which seems to be the more interesting and plausible case, we leave the

analysis of the bad state to Section 8. Our analysis starts from the parameter set in

Table 2.

Note that an increase of coupons play two main effects on the value of debt: on

one hand the cash flow of the note before bankruptcy goes up, on the other the de-

fault/conversion barriers go up and this leads to a lower value of debt like instruments.

These two effects may induce a nonlinear relationship between coupon/spread and

leverage: depending on the two mechanisms we may have a company with a large

spread and a large or a small leverage.

Three main observations arise from the analysis:

1) leverage with CCC is higher than in a classical setting but the difference is relatively
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small;

2) the spread of CCC is always higher than that of straight debt and it is extremely

sensitive to volatility;

3) the spread of straight debt is reduced significantly by the issue of CCC which

captures large part of company risk.

a) Variation of λL and λH

λL represents the rate of leaving the state L for the state H. As we are analyzing

the optimal capital structure decision in a good state of the economy, an increase

of λL indicates an increase in the probability of turning back to the original state

H conditional on a previous crisis. Note that an increase of λL plays two different

roles: on one hand it expresses the probability of leaving the state where there isn’t

the possibility of default for the state where the bank can default, on the other hand

it expresses the probability of leaving the state with bad performance for the state

with good performance. So as λL goes up we have a greater probability to have a good

performance but also to have default escaping the conversion in equity for CCC holders.

Figure 2 shows that an increase of λL reduces both the optimal leverage and the spread

of CCC. The rationale is that CCC looks like straight debt as the probability of moving

to the good state increases. These results show that increasing λL the company becomes

safer: the increase in the probability of a recovery conditional on a crisis state balances

a higher bankruptcy risk. Claim holders enjoy a smaller probability of conversion and

therefore the spread on CCC goes down. In the limit, as λL increases, CCC becomes

similar to straight debt and leverage is at the level of a standard company. The spread

of straight debt is almost constant and equal to half the spread obtained without CCC.

λH represents the rate of leaving the state H for the state L. An increase in λH

produces specular results to those observed for λL: the bank becomes more risky, the

spread of CCCs goes up and consequently the optimal leverage increases. In the limit,

as λH goes to zero, CCC becomes similar to straight debt and leverage is at the level

of a standard company. For CCC holders the probability of conversion in a bad state

is a risky factor that prevails over the risk of default in a good state.
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Figure 2: Effect produced by a change in λL on spreads and leverage when the capital structure is

decided in good macroeconomic conditions. Both figures compare the optimal spreads and leverage

obtained in our model with the results obtained without CCCs, i.e., the standard Hackbarth et al.

[2006] model.
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b) Variation of σ

σ is the volatility of the idiosyncratic part of the EBIT . It represents a proxy of the

riskiness of the company. As the volatility of the company goes up the spread of both

debt like instruments increase and the leverage ratio decreases, see Figure 3. Note that

the increase of the spread of CCC is much higher than that of straight debt and that

the spread of straight debt is reduced significantly by CCC when volatility is high. The

spread of CCC is higher than that of straight debt. These results suggest that CCC

absorbs large part of the risk of the company. The rationale of the decoupling between

leverage and spread is that a volatility increase augments significantly the barrier and

the probability of bankruptcy, and therefore the value of debt decreases while that of

equity goes up. On the optimal leverage we have another effect, indeed the optimal debt

ratio is obtained balancing the trade off between tax benefit of debt and bankruptcy

costs. An increase of volatility reduces the probability of a long maturity for the debt

and therefore the tax benefit is limited, this leads to a reduction of the optimal leverage.

We can conclude that the bankruptcy barrier goes up and the company becomes riskier

as volatility goes up. CCC captures large part of risk of straight debt and there is a

substitution between CCC and straight debt, see Figure 3: as long as volatility goes

up, CCC is issued in place of straight debt or in other words its value goes up much

more than that of straight debt.

c) Variation of αH = αL and of αH0

An increase in the value of αH = αL leads to an increase of the recovery value of debt

and thus to a reduction of bankruptcy costs in Period 1, i.e., bankruptcy costs only for

straight bondholders. A reduction of bankruptcy costs reduces the cost of straight debt

in Period 1. This provides an incentive to increase the coupon (and a higher spread) of

straight debt, an incentive that is reinforced by the higher tax benefit. The increase of

the coupon of straight debt produces an increase of bankruptcy risk, to maintain the

risk at a reasonable level and to exploit the incremental advantage of straight debt, the

coupon of CCC is reduced. As a consequence, we have more straight debt instead of

CCC, see Figure 4. The substitution between straight debt and CCC is almost perfect
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Figure 3: Effect produced by a change in σ on spreads, leverage and debt structure. The first two

figures compare the optimal spreads and leverage obtained in our model with the results obtained

without CCCs, i.e., the standard Hackbarth et al. [2006] model.
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with a constant leverage. This analysis is confirmed by the fact that the leverage ratio

would go up in case CCCs are not issued.

The effect of a reduction of bankruptcy costs in Period 0 (αH0) is more complex.

Indeed a reduction of the bankruptcy cost in period 0, i.e., an increase in αH0 , increases

the optimal coupon of straight debt and of CCC. This would lead to a higher spread

for both debt like instruments via a higher probability of default. However, the value

of CCC is negatively affected by a higher coupon of straight debt because it increases

the probability of conversion and this reduces its value. Instead an increase of the

coupon of straight debt, though it will increase the bankruptcy risk in both periods,

produces a higher tax benefit and a higher value. These effects explain why a reduction

of bankruptcy costs in Period 0 leads the bank to prefer straight debt to CCC and to

a higher spread of CCC and a smaller spread of straight debt, see Figure 5.

7 CCC and Asset Substitution Incentives

In this Section we investigate whether the inclusion of CCC in the capital structure

of a company changes the incentive of shareholders to invest in risky projects once

all the claims have been issued. Typically, given the particular shape of the equity

value function and the limited liability assumption, shareholders have the incentive to

increase the riskiness of the company once debt has been issued (asset substitution

incentive).

We focus on the case of a good state of the economy. Suppose that the volatility

of the cash flow returns of the bank is σ = 10%, the other parameter values are as in

Table 2, for this level of volatility the following optimal strategy results1:

1In order to speed up the calculations these optimal values are obtained numerically by imposing

a value step for the coupons of both CCC and straight debt of 0.005, thus the coupons are calculated

with an error at most equal to the 0.5% of the initial EBIT value of 1. For this reason these values

could be slightly different from those used in the comparative statics Section where we use a value

step of 0.0001.
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Figure 4: Effects produced by a change in αL = αH on spreads, leverage and debt structure. The

first two figures compare the spreads and leverage obtained in our model with the results obtained

without CCCs, i.e., the standard Hackbarth et al. [2006] model.
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Figure 5: Effects produced by a change in αH0 on spreads, leverage and debt structure. Obviously

given the absence of αH0
in the model of Hackbarth et al. [2006] it is not possible to make a

comparison of the results.
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• Good states of the economy: x∗H0
= 0.5198, x∗L0

= 0.6238, x∗H1
= 0.2824,

x∗L1
= 0.3016, c∗ = 0.425, cc∗ = 0.35, e∗H0

= 5.8985, x∗HMMH
= 0.4618, x∗HMML

=

0.4933, c∗HMM = 0.695, e∗HMM = 7.039;

• Bad states of the economy: x∗H0
= 0.5567, x∗L0

= 0.6680, x∗H1
= 0.3023,

x∗L1
= 0.3230, c∗ = 0.455, cc∗ = 0.375, e∗L0

= 4.5816, x∗HMMH
= 0.4585, x∗HMML

=

0.4898, c∗HMM = 0.69, e∗HMM = 6.5440;

where the lower script HMM refers to optimal values obtained in the model of Hack-

barth et al. [2006], that is a capital structure composed only of equity and straight

debt and where the company defaults in both states of the economy. In Figure 6 and 7

we show the increase in equity value as the ex post volatility increases. In particular the

first picture of each figure shows the equity value as a function of the ex-post volatility;

the second picture depicts the ratio e(σ)−e(σ=0.1)
e(σ=0.1)

as a function of the ex post volatility;

the third picture illustrates the first derivative of the equity value as a function of the

ex post volatility, i.e., the first derivative of the function in the first picture. Since

bankruptcy barriers are chosen by equity holders, we assume that they change their

default strategy as the volatility changes. In particular we assume that bankruptcy

barriers change according to the smooth pasting conditions, while the conversion bar-

rier remains constant as fixed by the authority at the time straight debt and CCC are

issued with volatility σ = 0.1. Note that bankruptcy barriers are decreasing functions

of volatility and this ensures that the initial conversion barrier for σ = 0.1 is always

higher than the theoretical bankruptcy barrier would be for σ > 0.1. Figure 6 shows

the asset substitution incentive when the bankruptcy barriers change for different val-

ues of λH . A similar picture is obtained for different values of λL. The Figure shows

that allowing shareholders to revise their bankruptcy strategy (barriers) the incentive

to increase the risk of the company is always lower when also CCCs are issued. The

reduction of the incentive is higher the higher is the probability of a crisis, i.e., high

λH . Our results confirm those obtained in Albul et al. [2010] when contingent capital

certificates are introduced by swapping contingent for straight debt.

29



0.2 0.4 0.6
4

5

6

7

8

9

10

11

12

13

Ex Post Volatility (σ)

 

 

0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex Post Volatility (σ)

 

 

0.2 0.4 0.6
5

6

7

8

9

10

11

Ex Post Volatility (σ)

 

 

With CCCs (λ
H

=0.1)

With CCCs (λ
H

=0.3)

Without CCCs (λ
H

=0.1)

Without CCCs (λ
H

=0.3)

Figure 6: Asset substitution incentive when the optimal capital structure is decided in good macroe-

conomic conditions and the bankruptcy barriers vary with the volatility for different values of λH .

The first picture on the left hand side depicts the value of the equity as a function of the ex post

volatility e(σ); the second picture shows the values of e(σ)−e(σ=0.1)
e(σ=0.1) ; the last picture shows ∂e(σ)/∂σ,

i.e., the derivative of the first picture.
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To complete the analysis we consider the asset substitution incentive in a bad

state of the economy when the capital structure has been defined in a good state. This

exercise shows us the incentive in adopting a riskier technology in a crisis period. Figure

7 shows the asset substitution incentive when the capital structure is defined in a good

macroeconomic condition but it immediately turns to bad for different values of λH .

In this case the presence of CCC reduces the incentive to adopt a riskier technology.

While the bankruptcy barriers are chosen by equity holders optimally, i.e., they choose

the bankruptcy barriers knowing that the new macroeconomic conditions are bad, the

optimal coupons and the conversion barrier remain fixed at the optimal value for the

first level of volatility and for the good state of the economy. The asset substitution

incentive is reduced significantly by CCC and the reduction is higher the higher is the

probability of the onset of a crisis (high λH). These results are confirmed allowing the

authority to change the conversion barrier in the bad state (as it would have been in

the bad macroeconomic condition).

8 The Bad Macroeconomic State

In the previous sections we have analyzed the capital structure of a bank when decisions

are taken in a good state, we now analyze the problem when decisions are taken in

a bad state, e.g., the company issues CCC in the middle of a crisis. Figures 8 and 9

show the sensitivity of spreads and of leverage to volatility when the capital structure

decision is taken in a bad state.

Even if bankruptcy is not allowed in the actual state, as volatility increases the

company becomes riskier and the spread of both debt like instruments goes up. Com-

paring Figure 9 (bad state) with Figure 3 (good state) we observe that the spread

of CCC is much higher than in a good state. Compared to the good macroeconomic

state, the main difference concerns the optimal leverage. The optimal leverage is not

a monotonic (decreasing) function of volatility. For a high level of volatility the op-

timal leverage is higher than in a good macroeconomic state and is is an increasing
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Figure 7: Asset substitution incentive when the decision is taken in a good state of the economy but

it immediately switches to a bad condition for different probability of λH . The first picture on the

left hand side depicts the value of the equity as a function of the ex post volatility e(σ); the second

picture shows the values of e(σ)−e(σ=0.1)
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of the first picture.
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function of the riskiness of the company. The shape is due to the relation between the

probability of touching the lower barrier, and thus conversion of CCC, and the proba-

bility of switching to a good state, and thus to face bankruptcy. The non monotonic

behaviour of the optimal leverage comes from the trade off for claim holders when the

capital structure decision is taken in a bad state of the economy: 1) given that in bad

macroeconomic conditions there is no risk of default, claim holders have the incentive

to increase the coupons of both debt like instruments to augment the tax benefit; 2)

a large optimal coupon leads to an increase of bankruptcy risk and costs if the state

of the economy switches to good. In a good state or in a framework without CCC an

increase of volatility reduces the leverage (bankruptcy is more likely), in a bad state

with CCC we observe the same phenomenon (second effect) but for a large enough

volatility the probability of switching to a good state - and therefore of bankruptcy - is

so small that the first effect prevails over the second one in the above tradeoff with an

incentive to set a high coupon (and debt value) to exploit tax benefit. The combination

of these effects explains the leverage shape in Figure 8. A reduction of the viscosity of

the bad state, i.e., an increase in λL, eliminates this trade off and the optimal leverage

turns out to be a decreasing function of volatility.

We conclude our analysis considering the asset substitution phenomenon in a bad

state (both capital structure and asset decisions are taken in a bad state). The effect

is similar to the one observed when the capital structure is defined in a good state and

asset decisions are taken in a bad state, see Figure 7.

9 Non Countercyclical Contingent Capital

In this section we compare a CCC to a contingent capital with no asymmetry, i.e.,

notes like those considered in Barucci and Del Viva [2010]: whatever macroeconomic

conditions are, contingent capital certificates are converted as the barrier x∗H0
and

x∗L0
are touched. The two barriers are decided by equity holders with no role for the

regulatory authority, on the effect of equity holders or central authority conversion
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Figure 8: Optimal leverage ratio for different values of volatility when the capital structure is decided

in bad macroeconomic conditions. The figure compares the optimal leverage obtained in our model

with the results obtained without CCCs, i.e., the standard Hackbarth et al. [2006] model.
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Figure 9: Optimal spreads for different values of volatility when the capital structure is decided in

bad macroeconomic conditions. The figure compares the optimal spread obtained in our model with

the results obtained without CCCs, i.e., the standard Hackbarth et al. [2006] model.
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decision see Barucci and Del Viva [2010]. In order to remove the countercyclicality

feature we have to modify the boundary conditions in (4.6), (4.9) and (4.10). In

particular we have to set the following conditions

dH0(x
∗
H0

) = dH1(x
∗
H0

)

CCCH0(x
∗
H0

) = θeH1(x
∗
H0

)

vH0(x
∗
H0

) = vH1(x
∗
H0

).

By these boundary conditions, contingent capital will be converted into equity even if

the state of the economy is good, i.e., H, and the lower barrier x∗H0
is touched. Given

that default in Period 0 cannot happen we have to fix a conversion barrier even for the

good state H. The smooth pasting conditions allow us to determine them as x∗H0
, x∗L0

such that:  e
′
H0

(
x∗H0

)
= 0

e
′
L0

(
x∗L0

)
= 0.

Figure 10 shows the optimal spread in case of a countercyclical and non countercyclical

contingent capital. The figure shows that elimination of countercyclicality increases the

optimal spread of contingent capital and of straight debt with the exception of straight

debt for a small volatility.

In principle the optimal spread is given by the comparison between an expected

opportunity cost, i.e., the coupon that we lose in case of bankruptcy, and an expected

positive pay-off, i.e., the recovery value at default. For a constant passage probability

the higher is this difference the higher is the spread. For low values of volatility,

because of the write down risk, the spread of straight debt with CCC is higher than

that obtained with non countercyclical CC. As volatility increases, the increase of the

coupon of straight debt with CCC is lower than in the absence of the countercyclicality

feature. Along with the higher probability of conversion, this explains the higher

spread when contingent capital is not countrecyclical. Overall our analysis confirms

that conversion of CC is a risky event: a non countercyclical CC is much more risky

than a CCC and therefore the spread is higher. Also straight debt becomes riskier
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Figure 10: Optimal spread with and without the countercyclicality feature in the bad state (L)

and in the good state (H). The conversion barriers for the non countercyclical case are obtained

endogenously applying the smooth pasting conditions to equity.

when non countercyclical CC is issued.

In Figure 11 we provide the leverage with contingent capital with and without

countercyclicality in the two states of the economy. Eliminating the countercyclicality

feature, we observe an increase in the optimal leverage. Indeed, the reduction of

bankruptcy costs (non default assumption in state H) induces to issue more debt and

as a consequence the optimal leverage goes up.

As far as the asset substitution incentive is concerned, Figures 12 and 13 show

that CCC provides a lower asset substitution incentive than that observed in case of

non countercyclical contingent capital, in a bad and in a good state, respectively. The

intuition of this result is that the optimal level of straight debt with CCC is lower

than the level in the non countercyclical case. A lower value of debt produces a lower

incentive to increase the riskiness of the company. As it can be seen from Figure 12,

if the decision regarding the capital structure is taken in a good state of the economy

then the countercyclical feature produces a stronger incentive only for a high volatility.
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Figure 11: Optimal leverage with and without the countercyclicality feature in the bad state (L)

and in the good state (H). The conversion barriers for the non countercyclical case are obtained

endogenously applying the smooth pasting conditions to the equity.

This effect is due to the possibility of going bankrupt in a good state of the economy

when CCC are issued: given that a high volatility produces a small stopping time,

the probability of exploiting the conversion feature vanishes and thus CCC behaves

like straight debt reinforcing the asset substitution incentive compared to the non

countercyclical counterpart.

We conclude that contingent capital - with and without countercyclicality - produces

positive effects in terms of a lower asset substitution incentive compared to the case

without CC. The countercyclical feature, reducing the optimal value of debt, reinforces

the magnitude of the effect.

10 Countercyclical Callable Bonds

In this section we extend the model allowing for dynamic capital structure choices:

shareholders are forced by the regulatory authority to restructure the company issuing
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Figure 12: Countercyclical v.s. Non Countercyclical asset substitution incentive in a good state of

the economy. The first picture on the left hand side depicts the value of the equity as a function of

the ex post volatility e(σ); the second picture shows the values of e(σ)−e(σ=0.1)
e(σ=0.1) ; the last picture shows

∂e(σ)/∂σ, i.e., the derivative of the first picture.
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Figure 13: Countercyclical v.s. Non Countercyclical asset substitution incentive in a bad state of

the economy. The first picture on the left hand side depicts the value of the equity as a function of

the ex post volatility e(σ); the second picture shows the values of e(σ)−e(σ=0.1)
e(σ=0.1) ; the last picture shows

∂e(σ)/∂σ, i.e., the derivative of the first picture.
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new debt. In order to maintain the countercyclicality feature we assume that the

option to restructure, avoiding bankruptcy, can be exercised only in a bad state of the

economy and is forced by the regulatory authority when an EBIT barrier is touched

in a bad state. In this setting there is no difference between CCC and straight debt,

both are called back by the company. Debt looks like a countercyclical callable bond

because it is never converted in equity: in a bad state with a poor performance bonds

are called back by the bank and other bonds are issued. We can interpret our setting

as the possibility for the regulatory authority to force debt restructuring. We refer to

this instrument as countercyclical callable bond or dynamic contingent capital.

Our analysis is similar to the one of Goldstein et al. [2001], the main difference

is that restructuring is forced by the regulatory authority in a bad state when the

performance is not good (and not in a case of a good performance as in the above

paper). Indeed, as in the previous sections, if macroeconomic conditions are good and

the lower barrier x∗H is touched then the bank defaults without debt restructuring.

As we have more than two periods, in this section we suppress the subscript 0 and 1

from the barriers and claim value notation, i.e., we use xH , xL instead of xHi , xLi . We

assume that whenever the EBIT reaches the threshold x∗L defined by the regulatory

authority during bad states, all the assets are retired at their market value and a new

capital structure decision is taken. To facilitate the comparison of this setting with the

one analyzed in the previous sections we set x∗L = R0x
∗
H . The scaling features of our

model allow us to use the dynamic framework of Goldstein et al. [2001], Hackbarth

et al. [2006], Leland [1998]2. Linearity of the optimal barriers and of coupons, on

the coupons and on the initial EBIT value respectively, implies that the optimal claim

values are scaled by the factor ρ = xi
x0

, where xi is the restructuring barrier (x∗L) and

x0 is the initial EBIT value. In the present dynamic setting the firm value satisfies the

following equation:

2It can be proved numerically that the conversion/bankruptcy barriers are proportional to straight

debt and CCC coupons. Moreover, the optimal coupon obtained is proportional to the initial firm

value x0.
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• if x∗H ≤ x ≤ x∗L:

rvH(x) = µxv
′

H(x) +
σ2

2
x2v

′′

H(x) + λH

[
x

x0
vL(x0)− vH(x)

]
+ (1− τ)x yH + cτ

• if x > x∗L:r vL(x) = µxv
′
L(x) + σ2

2
x2v

′′
L(x) + λL[vH(x)− vL(x)] + (1− τ)x yL + cτ

r vH(x) = µxv
′
H(x) + σ2

2
x2v

′′
H(x) + λH [vL(x)− vH(x)] + (1− τ)x yH + cτ.

The general solutions of the above equations are similar to the non dynamic case where

ρ = x∗L/x0. In particular for the firm value we have:

• if x∗H ≤ x ≤ x∗L:

vH(x) = U1x
φ1 + U2x

φ2 +
λH x vL(x0)

x0(r + λH − µ)
+

τc

r + λH
+
yH x (1− τ)

r + λH − µ

• if x > x∗L:

vL(x) =
1

λH + λL
Z1x

ξ − λL
λH + λL

J1x
γ +KLx(1− τ) +

τc

r

vH(x) =
1

λH + λL
Z1x

ξ +
λH

λH + λL
J1x

γ +KHx(1− τ) +
τc

r
.

The constant parameters U1, U2, J1 and Z1 are obtained applying the following bound-

ary conditions:

vL(x∗L) = ρ vL(x0)

vH(x∗H) = αH AH(x∗H)

lim
x↑x∗L

vH(x) = lim
x↓x∗L

vH(x)

lim
x↑x∗L

v
′

H(x) = lim
x↓x∗L

v
′

H(x)

Similar equations apply for the remaining claims values and are available, together

with solutions, from the authors upon request.
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Figure 14: Optimal leverage for different combinations of volatility for the countercyclical callable

bond, non countercyclical and countercyclical CC and without CC when macroeconomic conditions

are good.

The optimal leverage in the multiperiod dynamic framework for different values

of volatility is shown in Figure 14. Allowing for an automatic capital restructuring

the leverage becomes larger than the level observed in a standard company and in a

company issuing CCC. Instead, the level of leverage with automatic debt restructuring

is lower than the level of leverage of a company issuing non countercyclical CC. These

results are confirmed when the capital decision is taken in a bad macroeconomic state.

Basically the possibility of restructuring the capital structure in a future period - when

the operating profit deteriorates - increases the optimal coupons - and the leverage -

in both states of the economy.

As far as the asset substitution issue is concerned, in Figure 15 we show that

countercyclical callable bonds strongly increases the incentive to increase the risk of

the bank. The main reason for a higher incentive is an overall higher debt exposition

compared to the countercyclical contingent capital as illustrated in Figure 14.
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Figure 15: Countercyclical Callable bond v.s. Countercyclical Contingent Capital asset substitution

incentive in a good state of the economy. The first picture on the left hand side depicts the value of the

equity as a function of the ex post volatility e(σ); the second picture shows the values of e(σ)−e(σ=0.1)
e(σ=0.1) ;

the last picture shows ∂e(σ)/∂σ, i.e., the derivative of the first picture.
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11 Bankruptcy Costs

In the end we compare expected bankruptcy costs without contingent capital, with

CCC (dynamic and non dynamic case) and with non countercyclical contingent capital,

see Figure 16 for the good state of the economy and Figure 17 for the bad state. The

analysis shows that only non countercyclical CC allows to reduce bankruptcy costs

significantly. This is due to the fact that there is not bankruptcy in Period 0. CCC

increases bankruptcy costs in a bad state and has a little effect in a good state. The first

result is due to the large exposition taken by the company through a high CCC coupon.

Indeed in the bad state of the economy, given the low bankruptcy risk, the coupon of

CCC is high. This choice increases the probability of going bankrupt, together with

an increase in bankruptcy costs in the bad macroeconomic state and a small reduction

in case of a good macroeconomic state. The low probability of leaving the bad state

(λL = 0.15 in our setting) provides an incentive for this myopic decision (increase the

overall debt exposition). Indeed, an increase of λL reduces the optimal coupon for CCC

and the associated bankruptcy costs.

As it can be seen from Figure 16 the possibility to restructure the capital structure

in the future reduces the bankruptcy costs for low values of volatility. The rationale

for this effect lies on the high expected bankruptcy stopping time. Indeed, for a low

volatility there is a higher probability of changing state than of going bankrupt. There-

fore, there is a high probability to reissue debt and this reduces the optimal bankruptcy

barrier and bankruptcy costs. As the volatility increases, the probability of touching

the bankruptcy barrier goes up and this eliminates the advantage of a future debt

restructuring.

Finally we discuss the effect played by a different conversion rule of CC imposed

by the authority (either in equity or in debt). We omit the picture but the numerical

analysis shows that if the authority decides to impose an earlier conversion of the

CCC (higher R0) then there is a reduction of bankruptcy costs. As the conversion

barrier increases the bank increases the amount of straight debt issued and reduces the
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Figure 16: Bankruptcy for different combinations of volatility for the dynamic, countercyclical, non

countercyclical CCs and without CCs frameworks when the macroeconomic conditions are good.

amount of CCC. This redistribution of value occurs with a constant level of leverage.

The combination of a lower probability of default and a constant overall amount of debt

exposition (CCC plus debt) produces the reduction of bankruptcy costs. As far as the

asset substitution incentive is concerned, a more stringent conversion rule reduces the

incentive of shareholders to switch towards riskier activities. Indeed tighter conversion

rules, increasing the conversion barrier, reduces the total debt position and at the same

time reduces the incentive for shareholders to increase the risk of the company without

incurring in the costs associated with conversion.

12 Conclusions

We have analyzed the capital structure of a company issuing countercyclical contingent

capital as suggested in the recent regulatory debate, i.e., notes to be converted by a

regulatory authority decision in common shares of the bank in case of a bad state for

the economy. A dynamic capital structure model with endogenous bankruptcy for a
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Figure 17: Bankruptcy for different combinations of volatility for the dynamic, countercyclical, non

countercyclical CCs and without CCs frameworks when the macroeconomic conditions are bad.

company with equity, straight debt and contingent capital is analyzed. We have shown

that the company issuing also CCC becomes slightly more leveraged, large part of risk is

absorbed by CCC holders (CCC spread is high and that of straight debt is significantly

smaller than in a standard setting), CCC reduces asset substitution incentives while

bankruptcy costs are reduced only by issuing non countercyclical contingent capital.

Contingent capital to be converted in equity seems to be superior to automatic debt

restructuring.

These results provide some interesting insights on the use of countercylical con-

tingent capital for macroprudential regulation. First of all these notes are expensive,

they absorb large part of the risk of a riskier company. They are effective in limiting

the incentive to adopt risky strategies but they are not effective to reduce bankruptcy

costs. To address this issue, non countercylical contingent capital seems to be superior.

In order to reduce bankruptcy costs, the conversion of CCC should occur early enough.

A debt-equity swap imposed by the regulatory authority through CC seems to be a

more efficient instrument than debt restructuring.
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A Abandonment Value

Following Hackbarth et al. [2006] the abandonment value is given by

Ai(x) = E

[∫ ∞
0

e−rt(1− τ)x(t) y(t) dt

∣∣∣∣x0 = x, y0 = yi

]
, i = L, H. (A.1)

Applying Itô’s Lemma we have that Ai(x) is given by the solution of the following

system of ODE’s:

rAL(x) = µxA
′

L(x) +
σ2

2
x2A

′′

L(x) + λL[AH(x)− AL(x)] + (1− τ)x yL

rAH(x) = µxA
′

H(x) +
σ2

2
x2A

′′

H(x) + λH [AL(x)− AH(x)] + (1− τ)x yH .

Applying the boundary conditions

lim
x→∞

Ai(x)

x
<∞

lim
x→0

Ai(x) <∞,

i = L, H, we obtain the following abandonment values

Ai(x) = (1− τ)Kix, i = L, H (A.2)

with

KH =
yH
r − µ

− λH(yH − yL)

(r − µ)(r − µ+ λL + λH)

KL =
yL

r − µ
+

λL(yH − yL)

(r − µ)(r − µ+ λL + λH)
. (A.3)
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B Claim values in period one

B.1 Debt Value

The constants Ad, Bd, Cd and Dd have the following expression

Ad =
wd1 + λLBd × (x∗L1

)γ

(x∗L1
)ξ

,

Bd =

(
wd4 + ξwd1 − β1wd2(x∗L1

/x∗H1
)β1
)
wd6 −

(
wd3 + wd1 − wd2(x∗L1

/x∗H1
)β1
)
wd8

wd5wd8 − wd6wd7
,

Cd =
wd2 −Dd × (x∗H1

)β2

(x∗H1
)β1

,

Dd =

(
wd4 + ξwd1 − β1wd2(x∗L1

/x∗H1
)β1
)
wd5 −

(
wd3 + wd1 − wd2(x∗L1

/x∗H1
)β1
)
wd7

wd5wd8 − wd6wd7
,

and

wd1 = (1− τ)αLKLx
∗
L1
− c

r
, wd2 =

(
(1− τ)αHKH + wd4

x∗L1

)
x∗H1
− c

r+λH
,

wd3 = wd4 + c
r
− c

r+λH
, wd4 = −λH

(1−τ)αLKLx∗L1

r−µ+λH
,

wd5 = (λL + λH)(x∗L1
)γ, wd6 = (x∗L1

)β2 − (x∗H1
)β2
(
x∗L1

x∗H1

)β1
,

wd7 = (ξλL + γλH)(x∗L1
)γ, wd8 = β2(x

∗
L1

)β2 − β1(x∗H1
)β2
(
x∗L1

x∗H1

)β1
.

B.2 Firm Value

The constant terms Av, Bv, Cv and Dv satisfy:

Av =
wv1 + λLBv × (x∗L1

)γ

(x∗L1
)ξ

,

Bv =

(
wv4 + ξwv1 − β1wv2(x∗L1

/x∗H1
)β1
)
wv6 −

(
wv3 + wv1 − wv2(x∗L1

/x∗H1
)β1
)
wv8

wv5wv8 − wv6wv7
,

Cv =
wv2 −Dv × (x∗H1

)β2

(x∗H1
)β1

,

Dv =

(
wv4 + ξwv1 − β1wv2(x∗L1

/x∗H1
)β1
)
wv5 −

(
wv3 + wv1 − wv2(x∗L1

/x∗H1
)β1
)
wv7

wv5wv8 − wv6wv7
,
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and

wv1 = (1− τ)(αL − 1)KLx
∗
L1
− τc

r
, wv2 = (1− τ)

(
αHKH − yH+λHαLKL

r−µ+λH

)
x∗H1
− τc

r+λH
,

wv3 = wv4 + λH
(r+λH)

τc
r
, wv4 = (1− τ)

(
KH − yH+λHαLKL

r−µ+λH

)
x∗L1

wv5 = (λL + λH)(x∗L1
)γ, wv6 = (x∗L1

)β2 − (x∗H1
)β2
(
x∗L1

x∗H1

)β1
,

wv7 = (ξλL + γλH)(x∗L1
)γ, wv8 = β2(x

∗
L1

)β2 − β1(x∗H1
)β2
(
x∗L1

x∗H1

)β1
.

B.3 Equity Value

The constant terms Ae, Be, Ce and De satisfy:

Ae =
(1− τ)

(
(γ − 1)KLx

∗
L1
− γ c

r

)
(ξ − γ)(x∗L1

)ξ
,

Be =
(1− τ)

(
(ξ − 1)KLx

∗
L1
− ξ c

r

)
λL(ξ − γ)(x∗L1

)γ
,

Ce =
(1− τ)

(
(β2 − 1)

x∗H1
yH

r−µ+λH
− β2 c

r+λH

)
(β1 − β2)(x∗H1

)β1
,

De =
(1− τ)

(
(β1 − 1)

x∗H1
yH

r−µ+λH
− β1 c

r+λH

)
(β2 − β1)(x∗H1

)β2
,

C Claim Values Period 0
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D Disentangling the Two ODEsr vL = µxv
′
L + σ2

2
x2v

′′
L + λL[vH − vL] + (1− τ)x yL + (c+ cc)τ

r vH = µxv
′
H + σ2

2
x2v

′′
H + λH [vL − vH ] + (1− τ)x yH + (c+ cc)τ

(D.1)

From the above system we can obtain a set of two independent ODEs by using

j(x) = vH(x) − vL(x) and z(x) = λL vH(x) + λH vL(x): Substituting in the first

equation of D.1 the following vL(x) = vH(x) − j(x), vL(x)
′

= vH(x)
′ − j(x)

′
and

vL(x)
′′

= vH(x)
′′ − j(x)

′′
rearranging and looking at the second equation leads to the

first independent equation. The derivatives are taken with respect to x. The second

independent equation is obtained by substituting in the second equation above the fol-

lowing vH(x) = 1
λL

(z(x)− λH vL(x)), vH(x)
′

= 1
λL

(
z(x)

′ − λH vL(x)
′)

and vH(x)
′′

=

1
λL

(
z(x)

′′ − λH vL(x)
′′)

.
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