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Abstract

This paper studies the excess returns on stocks, associated to various company

fundamentals on a panel of US stocks from 1979 to 2008. The returns premia are

measured using a random coefficient panel data model on the individual stock level.

We show that the HML and SMB factors in the Fama and French model probably

have no particular economic meaning as sources of systematic risk other than

being proxies for the impact of the book-to-price and size characteristics. While

the book-to-price ratio, market capitalization, past year sales growth and the share

of reinvested profits generate significant premia, earnings history and forecasts are

of little predictive power. We statistically confirm the time-varying nature of the

style premia but find no strong evidence for the value and growth momentum in a

multivariate setting when the systematic risk is controlled for. Some of the premia

are positively correlated with the market return and between each other, while

others seem to be unrelated. Variations in premia associated with companies’

high internal growth and growth of sales are positively correlated between each

other, with the market return and with the value premium. Variations of the size

premium are probably driven by different factors.
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1 Introduction

For describing the link between stock returns and company fundamentals, the Fama

and French (1993) three-factor model is the first reference. Among various extensions

of the capital asset pricing model (CAPM) by Sharpe (1964), it has so far been the

most successful as of its empirical performance and influence on the financial industry.

It represents the equity premium as a sum of three components: the traditional CAPM

market beta, and the betas to two specially designed factors, HML (High Minus Low)

and SMB (Small Minus Big). The HML factor is the difference in returns on portfolios

including high book-to-price (BtP) stocks, also called “value stocks”, and low BtP stocks,

also called “growth” stocks. SMB is the difference in returns on portfolios, including

low and high market capitalization (MCAP) stocks. In practitioners’ world, value and

size are often referred to as investment style factors.

The lack of theoretical underpinnings for the Fama and French artificial risk factors

stimulated intensive research over the last two decades. The effort is mainly concen-

trated on finding fundamental economic factors, to which HML and SMB are proxies.

This would fit the three-factor model within framework of the intertemporal CAPM by

Merton (1973), which explains equity returns by unpredictable shifts in the investment

opportunity set. Both dynamic and cross-sectional properties of the style factors are

explored in literature. Some time series evidence in favor of their ICAPM interpretation

is provided in Guo et al. (2009). In dynamic cross-section analysis, Hahn and Lee (2006)

and Petkova (2006) demonstrate that the Fama and French factors can be replaced by a

series of ICAPM predictors (notably, the term spread and the credit spread). However,

Lioui and Poncet (2010) show that these results are, to a big extent, due to statisti-

cal artifacts. There is no widely accepted consensus on the origin of the style premia,

meaning that the value and size puzzles still stand.

So, why yet another paper on this topic? We believe that the “mechanics” of the

three factor model itself is not explored enough, both from the statistical and economic

viewpoints. SMB and HML are artificial constructions, based on the fundamental char-

acteristics of companies. An early paper by Fama and French (1996) claims that pricing

anomalies related to the link between average future returns and stocks characteristics

(earnings-to-price, cash flow-to-price, past sales growth, long term and short-term past

earnings and others) are all eliminated by including HML and SMB factors in a CAPM.

The stocks in a sample are first classified into a set of portfolios according to a char-

acteristic in question and then their returns are regressed on the three factors. This

time-series regression smooths out all variations from average returns that are observed

unconditionally (constant terms in all ranked portfolios are approximately equal). So the

additional return, computed over many years, is small for the stocks ranking high/low

according to this characteristic.
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We think that such evidence is insufficient because the statistical procedure, used

to obtain it, is too restrictive. One reason is that the three-factor model tests are

favorably biased due to the factor structure, induced by the construction of the set of

the characteristics-based portfolios, as shown in a recent paper by Lewellen et al. (2010).

Another reason is that the impact of fundamentals, significant in cross-section, can vary

in time, so that the overall effect, recorded over many years, could be insignificant if

outperformance and underperformance periods offset each other.

The goal of this paper is to explore the impact of company fundamentals on stock

returns. We study whether company fundamentals generate returns premia, once the

conventional systematic risk factors are accounted for, and if so, if these premia are

constant in time and what are the corresponding dynamic patterns. Here we do not

attempt to explain the nature of excess returns associated to the fundamentals.

Doubts on the relevance of the HML and SMB factors were raised, among others, by

Daniel and Titman (1997), who argued that the loadings on the style factors are no more

than proxies for the loadings on the company characteristics themselves, and the latter

have possibly nothing to do with the systematic risk. Namely, it is the characteristic

(high book-to-market) rather than the covariance (high sensitivity to HML) that is

associated with high expected returns. Their arguments were subject to further empirical

investigations in (Daniel et al., 2001, Davis et al., 2000) with contradictory results.

Daniel and Titman’s critics is based on the statistical evidence from the excess returns on

the portfolios, obtained by the multi-way sorts on various fundamental characteristics.

This approach imposes important restrictions on the number of accounting variables,

whose impact on returns can be studied simultaneously, and it suffers from the two

drawbacks, mentioned above in the discussion of the Fama and French (1996) tests.

In this paper we adopt an alternative approach, based on the panel data regressions

on the individual stocks level. Previous literature argued, though without any analytical

or empirical proof, that using portfolios instead of stock reduces the specific risk and

yields more precise estimates of factor loadings and risk premia. But the loss of precision

due to possible errors in the estimates of individual betas, which is the main Fama and

French’s argument for using portfolios rather than stocks, can be compensated by a

large number of stocks and periods in our sample and by the absence of test biases due

to the factor structure in portfolio construction. In a recent paper Ang et al. (2009)

show analytically and confirm empirically that the more efficient estimates of betas

from creating portfolios do not lead to lower asymptotic variances of factor risk premia

estimates. On the contrary, shrinking the dispersion of betas leads to higher asymptotic

variance of these estimates.

Besides, looking at individual stocks is natural when dealing with the accounting

fundamentals that are only available on the company level. Despite measurement errors

in individual betas, the three-factor model, if it were true, should perform reasonably well
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on the disaggregated level, compared to the alternative characteristics model. Finally,

explaining and predicting individual stock returns is by itself an important problem,

arising in financial management fare applications, such as estimating the cost of capital

(see Bartholdy and Peare, 2005).

As we are working with panel data, we have to develop adequate statistical tools

for estimating time-varying premia. Our statistical inference is based on a random

coefficient panel data model with Kalman filtering, close to the ones proposed in Cooley

and Prescott (1976) and Harvey (1978). To our knowledge, this is the first attempt to

apply such models to stock market data and to large samples of rotating data. One of

the advantages of our approach is the possibility to asses the premia on fundamentals

in a multivariate setting, i.e. when all other factors are kept constant. We develop our

definitions of returns premia on fundamentals (“style premia”) suitable for the stock

level setting and asses these premia.

We find that on the individual stock level the loadings on the SMB and HML factor

are largely due to the cross-sectional correlations between betas and characteristics and

the three-factor model is not capable of consistently explaining the pricing anomalies,

associated with various accounting fundamentals. Several accounting fundamentals do

generate significant return premia, regardless of whether the sensitivities to the conven-

tional systematic risk factors and price momentum are controlled for or not. Testing a

large set of accounting fundamentals, we find that the book-to-price ratio, company size,

past year sales growth and the amount of reinvested return on equity (“internal growth”)

have the most pronounced impact on returns. Surprisingly, indicators related to earnings

and their growth and analysts’ forecasts have relatively small impact. Besides, indicators

computed over the past year contain more information than the long-term averages.

We explore the properties of the return premia, associated to the retained factors, and

show that they are variable in time, though almost no evidence for statistically significant

style momentum is found. Some of the premia are positively correlated with the market

return and between each other, while others seem to be unrelated. Companies with

high internal growth perform well in good times and at the same periods as the stocks

with high sales growth and the value stocks do. The variations of the size premium are

probably due to different factors, so that they are unrelated to the premia on the other

fundamentals.

The rest of the paper is organized as follows. Section 2 discusses the data used

in our study. Section 3 describes our model and sets up the testable hypotheses. In

Section 4 we compare Fama and French (1993) and Daniel and Titman (1997) models

for the expected excess returns. In Section 5 we estimate the time-varying style premia,

associated with different fundamentals, perform various tests related to their dynamics

and discuss the results. Finally, Section 6 summarizes the main findings.
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2 Data

Our data includes all stocks, quoted on the New York Stock Exchange from 1979 to 2008

and available in the Datastream database. Overall, the sample includes 9,363 stocks,

for which prices and market capitalizations are collected on the monthly basis. Monthly

returns are used for pre-estimation of various sensitivities to factors (betas), while asset

pricing models are tested and premia are estimated on quarterly data. We also performed

some test and estimations of asset pricing models on the monthly data, but as explained

further the dimension of the problem becomes too high and the estimation methods had

to be simplified due to the computation burden. Besides, many explicative variables

(accounting fundamentals) are available only at quarterly basis, so monthly estimates

do not make much sense.

The sample includes the securities that were delisted, thus the survival bias is avoided.

The dependent variable is the total return, i.e. the sum of the capital gain and the

dividend yield during a given time period. If stock price does not change for more than

three weeks, the returns for that period, extended by one week before and after, are

excluded, because the trade for that stock is considered inactive and the stock itself

illiquid.

The total return (including dividends) on the S&P500 Index is used as a proxy for the

market portfolio. Monthly returns on the 3-months US Treasury bills are used as risk-

free rates of returns. SMB and HML factors are constructed according to the Fama and

French procedure of independent sorts from the top and the bottom of the distribution

of BtP and MCAP. Unlike many other authors, we do not use the data for SMB and

HML portfolios available on Kenneth French’s website but compute them ourselves in

order to obtain factors representative of our sample.

Accounting characteristics of the issuers come from the same data provider and are

collected at the highest frequency available for each case (monthly, quarterly or yearly).

We do not require that the same companies have data for all characteristics. The raw

indicators are used to compute the fundamental factors that potentially have explanatory

power for future returns. Our choice of factors is motivated both by the evidence in the

academic literature, by common market practice and by common sense that hints us that

some of them can be helpful to predict future cash flows and/or to proxy the sensitivity

to risk factors.

The set of explicative variables includes a group of ratios of price to fundamental ac-

counting characteristics, measuring companies’ performance: book-to-price value (BtP),

earnings-to-price (EtP), sales-to-price (StP) and cash flow-to-price (CFtP). Accompa-

nied by the dividend yield (DY), they form a set of “value” factors, commonly used by

both researchers and market practitioners. The size factor is as usually captured by the

market capitalization (MCAP).
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We also use direct measures of growth, computed over 1, 3 and 5 years: growth of

sales-per-share (gSpS, gSpS3, gSpS5) and growth of earnings-per-share (gEpS, gEpS3,

gEpS5). Motivated by the market practice, we add a set of forecasts, representing the

consensus of financial analysts over future companies’ performance: forecast of growth of

earnings-per-share over one year (fgEpS), forecast of long term growth of earnings-per-

share (fgEpS5) and projected earnings-to-price (fEtP). All forecasts come from IBES.

We also use the indicator of internal growth (IG, IG5), which is the reinvested part of

the return-on-equity (ROE). This indicator is used by many index providers and char-

acterizes the level of companies’ investment activity. It is computed as (1-PR)×ROE,

where PR is the dividend payout ratio. For IG5 a five-years average is taken.

From the practical viewpoint, it is important to analyze the variables that are used

in financial industry as benchmarks of style investment. Table 1 reports the lists of such

variables, used by global style index providers. It is noteworthy that index providers

define separate dimensions for value and growth (except DJ STOXX), i.e. different sets

of indicators are used to construct value and growth portfolios. On the contrary Fama

and French (1993, 1996) and Lakonishok et al. (1994) refer to the growth stocks as those,

which are not value (i.e. high BtP for value and low BtP for growth). The rationale for

this approach is that the high market value relative to fundamentals implies high future

growth rate, projected by rational investors.

Table 1: Accounting Fundamentals used as Style Factors

Indicator Notation Used by Index Providers
Price to Book ratio PtB DJ, FTSE, MSCI, S&P
Projected Price to Earnings fPtE DJ, MSCI
Price to Earnings PtE DJ
Price to Sales PtS FTSE, S&P
Price to Cash Flow PtCF FTSE, S&P
Dividend Yield DY DJ, FTSE, MSCI, S&P
Projected Growth of Earnings per Share fgEpS DJ, FTSE, MSCI
Growth of Earnings per Share gEpS DJ, FTSE, MSCI, S&P
Growth of Sales per Share gSpS FTSE, MSCI, S&P
Projected Growth of Sales per Share fgSpS FTSE
Internal Growth IG FTSE, MSCI
Market Capitalization MCAP DJ, FTSE, MSCI, S&P

Growth variables can be computed over different time horizons, as explained in the text.

Finally, we use past returns over one month, one quarter and one year to represent

the so-called price momentum (PM1m, PM1q, PM1y). There is much empirical evidence

in favor of the predictive power of momentum variables. Jegadeesh (1990) evidence

for the mean-reversion in monthly returns returns and thus profitability of short-term
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contrarian strategies. Jegadeesh and Titman (1993) find outperformance for portfolios

of stocks with high historical 3-month and yearly returns. Carhart (1997) add one-year

momentum as a risk factor in the Fama and French framework to construct a four-factor

model. Though momentum has nothing to do with the accounting fundamentals, we

include it in the analysis along with the value and growth factors mainly in order to see,

whether its effect is persistent, once these factors are controlled for.

For robustness purposes all factors are pre-processed using a probability integral

transform, which enables mapping characteristics to a range from zero to one. So we do

not consider absolute values of indicators, but only the relative ranking of stocks. This

secures that the impact of outliers on the results is minimal. We carried out the same

estimation procedure with the unprocessed values of company characteristics and found

roughly similar results.

For the factors that use accounting data in their definitions (e.g. book-to-price ratio,

earnings-per-share) we apply a 3-month lag when including them into regressions in order

to ensure that the corresponding indicators are publicly available at the date when they

are supposed to be used for returns prediction. For the factors, depending on market

data only (e.g. market betas, price momentum) no lags are needed.

The actual number of stocks available depends on the availability of the data for

particular periods and for various indicators. It ranges from 408 for the long term

historical growth of indicators in the early 80’es to about 1,200 for most variables in

the recent years. For panel data modeling we need to construct rotating samples with

a fixed number of observations per unit of time. In such samples, stock are replaced

randomly in a fixed proportion. More details on these techniques are given in Section 3.

3 A Model for the Panel of Individual Stock Returns

Let us first introduce some formalism, necessary to represent different asset pricing mod-

els in the setting of the individual stocks panel data. Denote ri,t the total return (capital

gain and dividend yield) on stock i, i ∈ {1, . . . , N}, over period t, t ∈ {1, . . . , T} and r
f
t

the risk-free rate of return over period t. Our model assumes that the excess returns are

explained by a set of different factors that can be of different nature: companies’ fun-

damentals directly or the sensitivities of each stock to systematic risk factors, denoted

as “betas”. In the latter case we describe the setting of the classic asset pricing models,

such as CAPM or the three-factor model. This can be written:

ri,t − r
f
t = ct +

K∑

j=1

γ
j
t θ

j
i,t + νi,t (1)
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with θ
j
i,t the value of factor j, j ∈ {1, . . . , K}, for company i at date t, γ

j
t the return

premia associated in period t with a unitary increase in the value of the factor. In a

general setting, the term νi,t can be represented by the equation:

νi,t = ν̄ + νt + νi + ν̃i,t, (2)

whose terms are a constant, a time effect, an individual effect and an error term. We

further assume the absence of individual effects, which is consistent with no arbitrage. In

other words, no stock is supposed to systematically generate excess returns, unexplained

by the model factors. Starting with a model including individual effects and then testing

their absence might seem more appropriate, but this is extremely complex in our context

of time-varying premia and rotating sample. The absence of individual effects is crucial

for being able to carry out the estimation procedures. We also suppose that ν̃i,t is a

Gaussian zero-mean noise, iid in time and space.

The Fama and French (1993) three-factor model is a particular case of (1) and can

be represented by:

ri,t − r
f
t = γM

t βM
i,t + γHML

t βHML
i,t + γSMB

t βSMB
i,t + νi,t (3)

with γM
t , γHML

t and γSMB
t the time-varying premia on the HML and SMB factors. They

measure how much the expected return of a stock varies, when its loading βHML
i,t or βSMB

i,t ,

measuring the sensitivity of stock i returns to each of the factors, increases by one.

The alternative stock characteristics model in Daniel and Titman (1997) suggests

that:

ri,t − r
f
t = γM

t βM
i,t + γBtP

t BtPi,t−l +γMCAP
t MCAPi,t−l +υi,t (4)

with γBtP
t and γMCAP

t measuring the return premia, generated by companies’ character-

istics BtPi,t−l and MCAPi,t−l at the past period, taken with lag l equal to 3 months.

In (3) the loadings β
j
i,t to the three factors have to be measured from N time series

regressions for each stock. The classical Fama and MacBeth (1973) procedure suggests

estimating them from 4-years long rolling windows. To this end we use a three-factor

time series model for each stock i, defined over a historic period [t − L; t], L = 4 years.

It is given by the following equation, verified at each date t − l, l ∈ {1, . . . , L} :

ri,t−l − r
f
t−l = γM

t−l β
M
i + γBtP

t−l βBtP
i + γMCAP

t−l βMCAP
i + ωi,t−l (5)

with ωi,t−l a Gaussian white noise and all other notations unchanged. Then estimates

β̂
j
i,t can be used in T cross-sectional regressions to estimate γ

j
t

1.

1In principle, time-varying betas can be estimated in many alternative ways: by Flexible Least
Squares (FLS) method of Tesfatsion and Veitch (1990) or by Kalman filtering, supposing that the
coefficient is a random walk. We implemented these alternative methods and our findings were generally
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The estimation of the model (1) may depend on the dynamic structure of γ
j
t . We

describe it by an autoregressive random coefficient model of the form:

γ
j
t = cj + φj γ

j
t−1 + ε

j
t (6)

with cj and φj coefficients, |φj| ≤ 1, and ε
j
t a random innovation term. If all φj are

strictly smaller than one, the model describes a stationary process that corresponds to

the “return to normality”, first used in Harvey (1978). The case φj = 1 correspond to

the random walk model of Cooley and Prescott (1976). The case φj = 0 corresponds to

the case when the premium is a white noise.

Together equations (1) and (6) describe a random coefficient panel data model. We

estimate it by the maximum likelihood method, inspired by Hsiao (2003, p. 158-161).

The maximum likelihood function is constructed for the prediction errors from the

Kalman filter, designed for (6). The stocks for which data is available are not the

same at different dates, so the estimation is done for a rotating sample. Due to the

absence of individual effects, we can substitute stocks without any consequences. The

number of stocks with available data increases dramatically in 1999 (from about 500 to

about 1000, the exact number depending on model specification), so we choose to define

two subsamples: before Q1-99 and after Q1-99 with a fixed number of stocks in each of

them. As the maximum likelihood function is additive in time, we simply decompose

it into two terms, corresponding to each subsample. The outcome of the Kalman filter

for the first subsample are used as initial values for the second subsample to ensure

consistency. The estimation procedure is described in details in Appendix A.

As general goodness-of-fit measures we use the log-likelihood tests, computed for the

naive null model, in which all premia to factors are equal to zero, and for a model in

which there are no explicative factors except the time-specific constant. We systemati-

cally report the p-values (denoted p1 and p2), based on the χ2-statistics with the number

degrees of freedom, corresponding to the difference in the dimensionality of the full and

restricted models, which is 3(K + 1)− 1 and 3(K + 1)− 3 for the two tests respectively.

Besides, for illustration purpose, we report the ratio of the sum of the squared errors

to the total sum of squares, resulting from the preliminary OLS estimates of premia,

obtained by running cross-sectional regressions for each date (sum of squares are ag-

gregated over all time periods both in the numerator and the denominator). We call

the resulting indicator R2, because it corresponds to a weighted average coefficient of

determination, with the weights being the portion of each period in the total sum of

squares. The reader must note that in the context of models on individual stock level

with returns as dependent variable only a small portion of variance can be explained by

similar to those we obtained with the rolling windows procedure. These results are not reported here
and are available from the authors on request.
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the regressors, whatever they are. Explaining about 5% - 15% of the total variance of

returns in cross-section is already a relative succes.

For assessing the significance of coefficients and other specific hypotheses, two ap-

proaches are possible. The first is based on likelihood ratio tests, when the likelihood

function is constrained to the parameter values corresponding to the null hypothesis. The

second approach is based on bootstrapping the distribution of parameters and testing

whether the confidence intervals include zero. For specific tests, distributions of param-

eters under the null hypothesis must be simulated. We obtained very similar results

with both approaches and report the results obtained from the bootstraps procedures,

because they allow to obtain straightforward measures for the standard deviations of

parameters.

The errors in coefficient estimates are estimated by a two-step bootstrap algorithm.

First, the dynamics of risk premia is simulated from K equations (6) by bootstrapping

(resampling residuals) from the distribution of estimated innovations in these equations.

Then the stock returns are simulated by bootstrapping from the estimated errors in (1).

We compared the results obtained with resampling from raw residuals and from studen-

tized residuals and found no significant differences. The results reported correspond to

resampling from raw residuals. As our sample sizes are always rather significant (T ×N

with T > 50 and, in most cases, N > 100), the problems associated to “over-optimistic”

confidence intervals from bootstrap in small samples are not relevant (see Schenker,

1985). Design of specific tests, based on the bootstrapping procedures, is described in

the following sections.

4 Model Specification: Characteristics vs Betas

Before exploring the properties of return premia, related to fundamentals, we need to

solve the general specification problem, i.e. to chose the most appropriate way of mod-

elling the impact of companies fundamentals on the returns. We can rather use the

model in form of the sensitivities to factor portfolios, like in (3), or a model where

returns are directly explained by company characteristics, like in (4).

The arbitrage between the two models is subtle. For the Fama and French model

(3) to make sense, some relation similar to the Daniel and Titman model (4) must hold.

Indeed, recall the definition of HML and SMB factors. They are constructed as return

differentials for portfolios of stocks with high and low BtP and MCAP characteristics.

For the factors to be meaningful, these characteristics must have some discriminative

power over returns. So the real question is not whether (4) holds, but whether (3) is a

relevant explanation of expected returns by loadings to systematic risk factors. In our

view, the answer would be positive if loadings on HML and SMB factors explain expected
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returns significantly even if characteristics and loadings do not match (say, some stock

having high loading on HML and low BtP should have higher expected return than a

stock with low loading on HML and high BtP).

A negative answer to this question would suggest that the Fama and French factors

are only proxies for stock characteristics and, whenever the latter are available, one

should privilege their direct usage. Note that the practical use of (4) is somewhat simpler,

allowing for the prediction of stock returns and building style arbitrage strategies, since

returns at period t depend on the observable characteristics, known at t− 1. The use of

(3) is less direct, because it requires the estimation of unobservable loadings. However,

this does not undermine the utility of (3) for portfolio style analysis. To explain excess

returns in a manager’s portfolio when the characteristics of stocks in the portfolio are

unobservable, we would have to rely on the loadings to HMB and SML that can be valid

proxies for characteristics.

The above-mentioned model choice criterion is not straightforward to implement

because the characteristics and betas to the corresponding factors are significantly cor-

related in cross-section. We need to detect whether the Fama and French historical betas

have predictive power on returns because they are correlated to companies fundamentals

or they are significant by themselves. To design a statistical test, we construct a special

subsample of stocks, whose betas and characteristics do not match. A reduced sample

for testing the mechanism of the impact of the BtP ratio includes, at each period, 30% of

all stocks that have most important differences in ranking according to BtP and βHML
i .

By analogy, another sample is constructed for the stocks, having most important differ-

ences in ranking according to MCAP and βSMB
i . The model that behaves in the same

way when estimated for the full and for the reduced sample is deemed to be the true

model, while the other can be considered as a proxy model. In all cases the independent

variables are converted to ranks by the probability integral transform.

In Table 2 we report the results of comparison of two alternative specifications:

company characteristics BtP and MCAP as factors (a, the left panel of the table) and

covariances with HML and SMB portfolios as factors (b, the right panel of the table).

Each model is estimated with the random coefficient panel data approach in three dif-

ferent samples: full sample, including all time periods available (the upper block of the

table), reduced sample based on BtP ranking (the middle block of the table) and reduced

sample, based on MCAP ranking (the bottom block of the table).

In columns (1a,b) - (3a,b), for illustration purpose, we report the portion of time pe-

riods when the cross-section estimate of γ
j
t is significant at 0.9 confidence level, and then

the portion of positive and negative premia among those that are significant. Columns

(4a,b) contain the estimates of the average quarterly premia γ̄j, associated to a unitary

increase in the independent variable. For example, the value 0.0182 of the premium

in the characteristics model, estimated in the full sample, means that, all other thing
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equal, expected quarterly log-return on the stock with the highest BtP ratio is by 1.82%

higher than the expected log-return on the lowest BtP ratio stock (7.28% in annualized

terms). In other words, the premium for a one-centile increase in BtP ratio is about

2bp quarterly and 7bp annually. Below the average premia estimates we report their

bootstrapped standard deviations (in brackets) and the p-values of the significance test.

Our results unambiguously evidence in favor of the characteristics model. In the

full sample, as expected, both specifications behave in a similar way. Betas to HML

and SMB as well as BtP and small MCAP characteristics generate positive premia.

However, we note that the characteristics model has better explicative power in terms of

the explained portion of the returns variation. The premium on the BtP characteristics

is almost the same as on the beta to HML (about 1.8% quarterly). The premium on the

MCAP characteristics is slightluy higher than on the beta to SMB (1.7% against 1.2%

quarterly).

Table 2: Characteristics vs Covariances⋆

(1a) (2a) (3a) (4a) (1b) (2b) (3b) (4b)

Characteristics, Full Sample Covariances, Full Sample

M 58 60 40 0.0065 M 52 51 49 0.0042

(0.0037) (0.0038)

0.029 0.114

BtP 50 65 35 0.0182 HML 48 70 30 0.0177

(0.0073) (0.0089)

0.003 0.0190

MCAP 48 63 37 0.0172 SMB 43 62 38 0.0116

(0.0095) (0.0107)

0.039 0.128

Const 56 62 38 0.0127 Const 65 68 32 0.0243

(0.0075) (0.0137)

0.041 0.007

p1=0.008, p2=0.012, R2=0.0506;

T1=68, N1=440 (Q1-82:Q4-98) /

T2=40, N2=959 (Q1-99:Q4-08)

p1=0.0154, p2=0.0282, R2=0.0395;

T1=68, N1=421 (Q1-82:Q4-98) /

T2=40, N2=906 (Q1-99:Q4-08)

Characteristics, BtP Sample Covariances, BtP Sample

M 35 71 29 0.0126 M 16 45 55 0.0027

(0.0054) (0.0063)

0.004 0.291

BtP 32 71 29 0.0286 HML 20 31 69 -0.0277

(0.0112) (0.0151)

0.008 0.042

MCAP 24 58 42 0.0151 SMB 27 59 41 0.0179

continued on the next page. . .
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continued from the previous page. . .

(1a) (2a) (3a) (4a) (1b) (2b) (3b) (4b)

(0.0134) (0.0212)

0.157 0.193

Const 30 55 45 0.0046 Const 35 81 19 0.0750

(0.0106) (0.0257)

0.330 0.001

p1=0, p2=0.003, R2=0.1044;

T1=68, N1=111 (Q1-82::Q4-98) /

T2=40, N2=252 (Q1-99:Q4-08)

p1=0, p2=0.004, R2=0.1002;

T1=68, N1=123 (Q1-82:Q4-98) /

T2=40, N2=259 (Q1-99:Q4-08)

Characteristics, MCAP Sample Covariances, MCAP Sample

M 34 55 45 0.0031 M 31 81 19 0.0165

(0.0054) (0.0062)

0.247 0.0040

BtP 34 58 42 0.0156 HML 27 56 44 0.0157

(0.0118) (0.0107)

0.065 0.1670

MCAP 42 56 44 0.0167 SMB 33 35 65 -0.0391

(0.0144) (0.0305)

0.146 0.1190

Const 37 64 36 0.0214 Const 49 88 12 0.0785

(0.0088) (0.0241)

0.008 0

p1=0, p2=0.009,R2=0.0905;

T1=68, N=112 (Q1-82:Q4-98) /

T2=40, N=255 (Q1-99:Q4-08)

p1=0, p2=0.001, R2=0.1166;

T1=68, N1=138 (Q1-82:Q4-98) /

T2=40, N2=286 (Q1-99:Q4-08)

⋆ a - model with characteristics as factors, b - model with covariances as factors; (1) periods when

variable is significant, % of all periods; (2),(3) positive and negative impact, % of periods when

variable is significant; (4) average premium in quarterly log-return, its standard deviation and p-value

of the significance test. p1 and p2 are p-values of two likelihood ratio tests, described in Section 3. R2

is the percentage of variance, explained by the model. T and N are reported separately for two

subsamples before and after 1999.

On the reduced samples the models behave in the way that the characteristics and

not the factor loadings predict: the sign of premia reverses to negative values for both

the HML and SMB betas in the reduced samples. So, for the beta to the HML factor

the premium in the full sample was estimated at about 1.8% in the full sample and at

-2.7% in the reduced sample, based on the BtP. This happens because, by contruction of

the sample, stocks with higher sensitivity to HML have lower BtP. For the beta to SMB

the change is even more spectacular: the premium slides from 1.1% to -3.9%. For the

characteristics models we record no changes in the directions of the the premia estimates

across the samples, though the significance of estimates decreases in the reduced samples

due to the smaller number of stocks included in it.
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5 Exploring the Return Premia

In this section we study the properties of return premia on a broader set of company

fundamentals, than just the BtP ratio and company size. Besides the main question of

which characteristics generate significant average excess return over time, we study the

dynamics of these excess returns in more detail. For each characteristics we formulate

and test a series of hypotheses, described below.

H1: Positive expected premium. The characteristics generates an average re-

turn premium above zero, i.e. buying stocks with high (or low) value of characteristics

generates expected return higher than on average, all other characteristics being equal.

To assess this assumption, we simply test the significance of the average premium, com-

puted over time, as we did in the previous section. The null hypothesis is that the

expected premium is equal to zero: γ
j
t = 0.

H2: Positive expected premium at any date. Buying stocks with high (or low)

value of characteristics generates non-negative expected excess return at any period.

The null hypothesis is that mint{γ
j
t } > 0 and to asses it we need to bootstrap the

distribution of mint{γ
j
t }.

H3: Negative expected premium at any date. Buying stocks with high (or

low) value of characteristics generates negative expected excess return at any period.

The null hypothesis is that maxt{γ
j
t } < 0 and it is assessed in the same way as the

previous hypothesis by bootstrapping.

H4: The premium is constant in time. Buying stocks with high (or low) value

of characteristics generates expected excess return γ
j
t = γ̄j at any period. Here we need

to test if the differences in the estimates of the premia for different periods are due

to estimation errors or there really are some patterns. We bootstrap the distribution

of the time volatility of the estimated expected premium v =
√

Var {γ̂j
t } under the

null hypothesis. To get this distribution we replace the estimated values of the premia

by their time average and simulate (1) by bootstrapping from the residuals. The null

assumption is rejected when the observed standard deviation of premia is higher than it

is probable in the case when the time differences are only due to statistical error.

H5: Positive (negative) autocorrelation in expected premia. The null hy-

pothesis is that the subsequent changes in expected premia are linearly uncorrelated.

We test the significance of the first order autocorrelations.

We studied a wide set of variables, listed in Table 1. We report in Table 3 the

results for a model that contains market beta, four company fundamentals that were

found to generate positive expected premium at 0.9 confidence level and a time effect

variable (constant in cross-section). This model includes two traditional “value” (BtP)

and “small” (MCAP) variables and two growth variables: the one-year historical Growth

of Sales per Share (gSpS) and the Internal Growth (IG), equal to the product of the
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Return one Equity (ROE) and the portion of reinvested profits, i.e. one minus the Payout

Ratio (PR). Estimation results for several other combinations of factors are presented

in Appendix B and more results are available from the authors on request.

Before discussing the results of the tests, described above, let us comment on the

list of the retained factors. Several observations regarding this list of factors deserve

special comments. First, among all the ratios of company performance indicators to

market price, i.e. Book-to-Price (BtP), Earnings-to-Price (EtP), Sales-to-Price (StP),

Cash Flow-to-Price (CFtP), Dividend Yield (DY), the BtP ratio seems to be the most

discriminating, which is consistent with the previous literature on the Fama and French

model. However, one should keep in mind that all these five factors are highly correlated

in cross-section, so that including any of them as a value factor yields rather similar

results. However, when trying to include BtP and EtP in the same regression, we obtain

slightly negative loadings on EtP (see Table 4 in Appendix B). Among companies that

have low growth prospects, as rendered by their high BtP ratio, those that have lower

than average earnings yield higher expected premia. In Fama and French terms, such

companies are in “double distress”. Similar results are obtained for CFtP, while for

StP and DY we get statistically insignificant positive premia, when the BtP ratio is

controlled for.

Second, notice the absence of the Earnings-per-Share (EpS) among the retained

growth indicators, regardless of whether the forecasts or the historical values are taken

and whatever the time horizon. On the contrary, the growth of Sales-per-Share and

portion of reinvested profits generate positive premia. The latter are less direct measures

of future invested opportunities than the EpS is. One possible explanation, consistent

with the behavioral finance, may be that these indicators are underlooked by analysts

and investors, compared to the realized earnings. So the information they contain is

integrated in prices more slowly. The logic described for the past earnings can also

apply to the publicly available earnings forecasts. In Table 6 of Appendix B we report

the results for a model, including the short-term and long-term consensus forecasts of

the EpS growth, demonstrating the absence of any significant impact of the latter on

the returns. If these forecasts are of any value, our regression with a 4-month lag may

simply be not enough reactive to reflect their impact. Another explanation within the

risk paradigm could be that growth prospects of companies with growing sales and high

reinvested profits are also more risky. Here we do not dispose of the elements necessary

to discriminate between these competing paradigms an leave the question open.

Third, we find that for the indicators of sales and earnings, last year growth works

better than the long-term average. In the model reported in Table 5 of Appendix B we

replaced the last-year historical measures of growth by five-year averages and recorded

a decrease in the magnitude and significance of the premia. This finding is consistent

with the idea that the information related to distant years is already conveyed in the
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market prices, while this is not necessarily true for the recent growth.

Our observations help to understand why the two indicators, retained in the three-

factor model literature, are BtP and MCAP and not, for example, IG and gSPS, though

in terms of the generated expected premia they are quite similar. Probably the answer

lies in the specification of the model, in which factors are constructed as historical returns

sensitivities to HML and SMB portfolios. Under particular conditions measuring styles

directly by characteristics and by sensitivity to artificially constructed portfolio returns

might give similar results. This is the case when, for instance, the returns on the low BtP

stocks are highly correlated with the HML portfolio (in other words, stocks with high BtP

and high betas to HML are the same stocks). This situation can arise if characteristics do

not change too rapidly (because covariances in HML betas are estimated from historical

data), and if the returns of the high BtP stocks had other common factors in the past,

e.g. related to the same economic sector. If these conditions are verified, one can expect

that the HML portfolio will be a good substitute to represent the impact of the BtP

characteristic. The HML portfolio can go up and down relative to the market and mirror

the periods when the characteristic has positive and negative impact.

The logic above would not work for characteristics that change rather rapidly (e.g.

last year’s growth of sales). If we construct portfolios, mimicking the returns of securities,

classified according to such characteristics, and compute the returns differentials à la

Fama and French, betas to this factor will either have no meaning at all, of will have a

completely different meaning from that of the characteristics’. So, in the example with

sales’ growth, estimating beta over four or five years means picking up the stocks, which

in the past had returns profiles, similar to those of companies with currently growing

sales, but not companies with growing sales themselves. At best, we will pick the stocks

whose sales were growing over past years, but we found that only the last year’s growth

matters. Henceforth, computing “betas” to such factors does not make sense. They

do not fit in the Fama and French framework. This observation also suggests that the

nature of the premia on “value” and “growth” factors may not be the same: in the case

of BtP ratio and MCAP we can a priori exclude the hypothesis of positive information,

not yet incorporated in prices.

We can now turn to the discussion of the results reported in Table 3. Columns

(1)-(3) are included for illustrative purposes and contain the percentage of time periods

when each factor is significant and among those periods, the percentage of positive and

negative premia. Columns (4)-(6) contain the average, minimum and maximum premia

with standard deviations and p-values of the tests H1-H3 respectively. In column (7) we

report the volatility of premia in time, its standard deviation and the p-value of test H4.

Finally, column (8) reports the autocorrelation of the variations in premia, its standard

deviation and p-value of the significance test H5.
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Table 3: Return Premia on Company Fundamentals⋆

(1) (2) (3) (4) (5) (6) (7) (8)

M 47 49 51 0.0020 0.1821 -0.1160 0.0439 -0.2016

(0.0040) (0.0314) (0.0201) (0.0044) (0.0981)

0.285 0 0 0 0.039

BtP 46 72 28 0.0329 0.2703 -0.1808 0.0759 0.0826

(0.0088) (0.0444) (0.0361) (0.0062) (0.0979)

0 0 0 0 0.2700

MCAP 44 70 30 0.0183 0.2084 -0.1312 0.0700 0.209

(0.0090) (0.0376) (0.0314) (0.0058) (0.0946)

0.019 0 0 0 0.055

gSpS 23 72 28 0.0140 0.1214 -0.2265 0.0508 -0.0056

(0.0060) (0.0310) (0.0555) (0.0060) (0.0990)

0.008 0 0 0 0.4430

IG 32 83 17 0.0300 0.1964 -0.1637 0.0628 0.007

(0.0076) (0.0345) (0.0408) (0.0056) (0.0960)

0 0 0 0 0.517

Const 34 43 57 -0.0121 0.1362 -0.2253 0.0681 -0.1381

(0.0068) (0.0391) (0.0479) (0.0054) (0.0974)

0.046 0 0 0 0.150
p1=0, p2=0.009, R2=0.0973;

T1=68, N1=220 (Q1-82:Q4-98) / T2=40, N2=529 (Q1-99:Q4-08)

⋆ (1) periods when variable is significant, % of all periods; (2),(3) positive and negative impact, % of

periods when variable is significant; (4) average premium in quarterly log-return, its standard

deviation and the p-value of the significance test H1; (5),(6) maximum and minimum premium over

time, its standard deviation and p-values of the H2 and H3 tests; (7) volatility (standard deviation) of

the premium in time, its standard deviation and the p-value of the H4 test; (8) first-order

autocorrelation in variations of the premium, its standard deviation an the p-value of the H5 test. p1

and p2 are p-values of two likelihood ratio tests, described in Section 3. R2 is the percentage of

variance, explained by the model. T and N are reported separately for two subsamples before and

after 1999.

Notice that high market beta is not associated with higher expected return, contrarily

to what could be expected from the CAPM perspectives. However, it is still helpful to

explain the cross-section of stock returns in almost half of the periods. The BtP ratio

generates the most important average premium of 3.3% quarterly, which is significant

at 0.9 confidence level in almost half of the observation periods. The premium for being

small is more modest at only 1.8% quarterly. Growth characteristics gSpS and IG on

average yield 1.4% and 3.0% respectively.

The results of the tests H2 and H3 indicate that whatever the factor, there are periods

when stocks with characteristics, corresponding to positive average premia, systemati-

cally downperform. The worst negative premia is of the same magnitude for all factors

(between -18 and -23%), except for the MCAP whee the loss is limited to -13.1%. On
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the other side, the BtP has the highest maximum premium of 27.0% whilet the gSpS

has the lowest at 12.1%. We reject the hypothesis of the constancy of the premia (H4)

at 0.99 confidence level for all independent variables.

The dynamics of quarterly premia on all four factors are illustrated on Figure 1 in

comparison with the market total return (capital gain and dividend yield on a wide

Russel 3000 stock index) for the same time periods. Grey lines on the figure correspond

to confidence intervals at 0.95 level, obtained from the first-step cross-sectional OLS

regressions. We notice high variability of all premia in time and absence of evident

time patterns. During the periods of particularly stressed market (1982, 1987, 1991,

1998, 2000-2002 and 2008) the confidence intervals for all premia estimates widen, but

there is no common behavior neither from one crisis to another nor across different

fundamentals. Thus, in the most recent crisis small companies tend to outperform,

while other factors generate negative excess returns. In 2001 value and growth factors

outperform spectacularly, while small stocks downperform.

Figure 2 plots the premia against market returns. Notice that for value and small

premia the relation to the market return is almost inexistent, while growth indicators

do better in good times, especially for the IG, the premium on which shows a significant

correlation of 0.3 with the market total return. The two plots at the bottom of the figure

correspond to the premium on market beta and the time effect (shock to the average

return, unexplained by the market beta and other fundamentals). By construction, these

variables are strongly correlated with the market (0.6 for the premium on beta).

The premia are further explored on Figure 3, where they are plotted against each

other. We find that that there is no clear relationship between value and small premia.

The latter seems also to be unrelated to the growth indicators. The two growth indicators

tend to perform well simultaneously. The IG performance is also correlated to the value

premium.

What can be the intuition underpinning the relationships between the growth premia

and other variables? Companies with high internal growth and fast growing sales are

those that have investment opportunities and use them. In good times (when market

does well), investment projects are more often successful, hence the positive correlation

with the market. It turns out that value stocks, whose growth prospects are possibly

undervalued by the market, tend do better at the same time, which is less intuitive.

As regards the momentum in the premia, associated to the company fundamentals,

it can be seen in column (8) of Table 3 that the autocorrelations are not significantly

different from zero (test H5) for all factors except the company size, so that equation

(6) can be simplified to:

γ
j
t = γ̄j + ε

j
t . (7)
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Figure 1: Dynamics of Premia on Company Fundamentals
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The upper four plots on the figure repesent the estimates of the time-varying premia γ̂
j
t on the company

fundamentals retained in the model reported in Table 3, j =BtP, MCAP, IG, gSpS. Grey lines represent

0.95 level confidence intervals. The plot in the bottom of the figure represents the total return on the

Russel 3000 Index used as a proxy for the market portfolio yield.
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Figure 2: Premia on Company Fundamentals vs Market Total Return
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The scatter plots illustrate the dependence in time between the premia γ̂
j
t (Y-axis) and the total return

on the Russel 3000 Index used as a proxy for the market portfolio yield (X-axis). The solid line

represents the OLS estimate of the linear regression of the premia on the market return, reported in

the right bottom corner of each plot.
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Figure 3: Interdependences between Premia on Company Fundamentals
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The scatter plots illustrate the dependence in time between different pairs of premia {γ̂i
t , γ̂

j
t }. The solid

line represents the OLS estimate of the corresponding linear regression, reported in the right bottom

corner of each plot.
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For MCAP we find an autocorrelation value of 0.20, which is significant at 0.9 but

not at 0.95 confidence level. This result is of special importance because it demonstrates

the absence of auto-predictability in the variations of excess returns, associated to most

company fundamentals, which is sometimes called “style momentum”. This contradicts

the evidence in Lucas et al. (2002), Chen and De Bondt (2004), Aarts and Lehnert

(2005) and other voluminous literature stock-picking that describes the benefits of style

rotation. Note that our results are in accordance with the conclusion in Chen and

De Bondt (2004) that the style premia are time-varying, but we find that previously

observed higher (lower) than average premia do not significantly increase the expected

premia at the subsequent quarter.

What can be at the origin of this discrepancy in conclusions? Previous literature

defines style premia through the return differentials on style-based portfolios, thus not

controlling for the market betas and the other fundamentals. We define style premia in

the multivariate setting. We also estimated BtP and MCAP premia excluding betas to

the market portfolio (see Table 7 in Appendix B) and managed to reproduce the style

momentum on the value premium, associated to the BtP indicator (autocorrelation of

0.17 significant at 0.9 confidence level). This indicates that value momentum returns

probably come at the expense of higher systematic risk. This is not true for the size

momentum, which is robust to the controlling for market betas. The question of why

the value momentum vanishes when betas are controlled and it is not so for the size

momentum can be added to the list of puzzles, related to the nature of style premia.

Given that in our model the value factor (BtP) is a ratio with the market price

in the denominator and that the size factor (MCAP) is directly related to the stock

price, it is interesting to check if the premia on them are affected by including the price

momentum variables in the regression. Though momentum factors cannot be seen as

company fundamentals, its is common since Carhart (1997) to include these variables

in the models explaining stock returns along with the Fama and French factors. For

the premia on momentum factors we find the results consistent with Jegadeesh and

Titman (1993), i.e. significant negative impact of the returns over the past quarter (mean

reversion), and positive but less significant impact of the returns over the previous year

(see Table 8 in Appendix B). Contrary to what one could expect, adding momentum

to the model does not reduce the premia on BtP, MCAP and the growth variables. All

the main findings related to the magnitude and dynamics of the return premia remain

unchanged.
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6 Conclusion

Breaking with the tradition of the style analysis literature, where value and growth

premia are defined as return differentials on factor-based portfolios, we redefine the

premia on company fundamentals in a multivariate framework on the individual stock

level. This framework allowed us to look at various factors simultaneously and to study

each of them other things equal. We develop a random coefficient panel data framework

that allows for the time-varying returns premia on company fundamentals.

After testing alternative model specifications, we chose to model the impact of the

fundamentals on returns directly rather than through the past returns sensitivities to

the artificially constructed risk factors, as in the Fama and French model. Our results

show that the HML and SMB factors probably have no particular economic meaning

other than being proxies for the impact of the book-to-price and size characteristics, as

it was earlier suggested by Daniel and Titman (1997).

The main findings can be summarized in two categories. The first group of results

relates to the choice of fundamentals that are relevant for predicting the cross-section

of the individual stock returns. The practical importance of such studies is self-evident,

given the direct link with the stock-picking investment strategies. We confirm the im-

portance of the traditional variable used in academic literature on style analysis and

in the business practice (book-to-price ratio, market capitalization, sales growth and

internal growth), while rejecting others often used by market practitioners (like earnings

forecasts).

The second group of results concerns the dynamics of the premia. We confirm the

commonly accepted view that the latter are time-varying but find little evidence for style

momentum when the systematic risk is controlled for, at least for the value premium.

Nevertheless, we cannot claim that the variations in style premia are serially indepen-

dent: the underlying dynamic structure could be more complicated and not linear than

our methodology could be able to detect. We also identify several dependency patterns

between the premia on fundamentals and market returns and between different style

premia. While value and size premia variations seem to be unrelated, the premia on the

growth variables (internal growth and growth of sales) tend to vary simultaneously and

are related to the market. Controlling for the price momentum does not significantly im-

pact the estimates of the premia on the company fundamentals, though the momentum

variables come out significant.

While focusing on the modeling and estimation methodology and providing empirical

evidence, in this paper we do not attempt to solve the fundamental questions of the

economic nature of the premia associated with the economic factors. In particular, we

do not try to test whether the excess returns are related to additional systematic risk

not captured by the market bets. This analysis is an area of further research.
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A Estimation of a Random Coefficient Panel Data

Model

For simplicity, we illustrate the estimation procedure on an example of a model with three

factors: market betas and two company fundamenetals, BtP and MCAP. It can readily

be extended to arbitrary number of factors. The system of equations (4) and (6) forms a

model for the panel of stock returns. Let us rewrite it in matrix terms, which are easier

to manipulate when the estimation procedure is described. Let Yt be an N × 1 vector of

returns at each date and Xt the k × N vector of regressors, including the constant. In

our case k = 4 and Xt = [I, βM
t BtPt, MCAPt]

T . Also denote Bt a k× 1 diagonal matrix

of random dynamic coefficients, measuring the premia, Bt = [γI
t , γ

M
t , γBtP

t , γMCAP
t ]T and

υt the N × 1 vector of errors. Equation (4) can be written:

Yt = XT
t Bt + υt. (8)

If |φj| < 1, equation (6) for the coefficients dynamics can be written as:

γ
j
t − γ̄j = (γj

t−1 − γ̄j)φj + ε
j
t (9)

with γ̄j = cj

1−φj the mean value of the return premium on characteristic j. To cast our

model in a state-space form, we define γ̄t ≡ γ̄, the k × 1 vector of mean premia for

all characteristics; δt = γt − γ̄, a k × 1 vector of deviations from these mean values;

Φ = diag[φI , φBtP, φMCAP], the k × k diagonal matrix of coefficients; and εt, a k × 1

vector of innovations to the premia. This gives:

[
γ̄t

δt

]
=

[
Ik 0

0 Φ

][
γ̄t−1

δt−1

]
+

[
0

Ik

]
εt, (10)

or with a parsimonious notation:

αt = S αt−1 + R εt, (11)

The associated measurement equation can be obtained from (8) by introducing a new

N × 2k vector of independent variables Zt ≡ [XT
t , XT

t ]. This yields:

Yt = Zt αt + υt. (12)

In order to make statistical inference, based on this model, we will need to make

further assumptions on the stochastic innovations to the style premia (εt) and the mea-

surement equation (υt). We suppose that εt is a k-dimensional iid Gaussian process
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with independent components, εt ∼ N(0, Q) with:

Q = E [εt εT
t ] =




q1 0 0

0 q2 0

0 0 q3


 . (13)

The measurement error is supposed be normal and identically distributed over time and

space, that is for all t, υt ∼ N(0, H) with

H = E [υt υT
t ] = σ2

υIN . (14)

We also assume that the measurement error and innovations to the state equations are

independent.

When S, R, Q and H are all known, we can design a Kalman filter to obtain a

GLS estimator of γ̄t. Let α̂t denote the minimum mean square (MMSE) estimator of

αt, conditionally to the observations Y1, . . . , Yt up to period t and α̂t/t−1 the estimate,

conditional on the observations up to period t − 1. Denote Pt and Pt/t−1 the k × k

covariance matrices of the errors of these estimates. The one-step forward estimate and

its error can be obtained from prediction equations:

α̂t/t−1 = Sα̂t−1 (15)

Pt/t−1 = S Pt−1 ST + R QRT . (16)

Denote νt the N × 1 vector of errors, obtained from this prediction:

νt = Yt − Zt α̂t/t−1. (17)

It can be shown that this error is normally distributed, νt ∼ N(0, Ft) with

Ft = H + Zt Pt/t−1 ZT
t . (18)

When observation of time t arrives, the new estimates α̂t and Pt are obtained by the

updating (or filtering) equations:

α̂t = α̂t/t−1 + Pt/t−1 ZT
t F−1

t (Yt − Ztα̂t/t−1) (19)

Pt = Pt/t−1 − Pt/t−1 ZT
t F−1

t Zt Pt/t−1. (20)

The proof of these classical results for the Kalman filter is based on the properties of the

joint normal distribution and can be found, for example, in Hsiao (2003, p. 158-161).

To obtain the GLS estimate of γ̄t with this filter, we need to give a prior distribution

of α1, α1 ∼ N(α̂1, P1). We set δ̂1 = 0 and infer γ̄1 by OLS from the cross-sectional data
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of the first period, so the estimate of the initial state vector becomes:

α̂1 =

[
(X1 XT

1 )−1 X1 Y1

0

]
. (21)

Denote Γ the covariance matrix of δt:

Γ =




q1

1−(φI)2
0 0

0 q2

1−(φBtP)2
0

0 0 q3

1−(φMCAP)2


 . (22)

The error of the estimate α̂1 can be decomposed in the measurement error and the error

of the identification of the system state:

P1 =

[
E {(̂̄γ1 − γ̄)(̂̄γ1 − γ̄)T} E {(̂̄γ1 − γ̄)(δ̂1 − δ1))

T}

E {(δ̂1 − δ1)(̂̄γ1 − γ̄)T} E {(δ̂1 − δ1)(δ̂1 − δ1)
T}

]
=

[
E {(̂̄γ1 − γ1 + δ1)(̂̄γ1 − γ1 + δ1)

T} −E {(̂̄γ1 − γ1 + δ1) δT
1 }

−E {δ1 (̂̄γ1 − γ1 + δ1)
T} E {δ1 δT

1 }

]
.

(23)

Notice that ̂̄γ1 is OLS estimator of γ1, so its covariance matrix reads:

E {(̂̄γ1 − γ1)(̂̄γ1 − γ1)
T} = (X1H

−1XT
1 )−1 = (X1 XT

1 )−1σ2
υ. (24)

The independence of the state equation innovations and the measurement error gives:

E {(̂̄γ1 − γ1) δT
1 } = 0. (25)

P1 thus simplifies to:

P1 =

[
(X1 XT

1 )−1σ2
υ + Γ −Γ

−Γ Γ

]
. (26)

Now the estimate ̂̄γ can be obtained as the upper block of α̂T by recursively applying

equations (15) -(20) for t = 1, . . . , T .

The estimate ̂̄γ known, we can define a new zero-mean observation process Ỹt:

Ỹt = Yt − XT
t
̂̄γ, (27)

We can now re-run the Kalman filter to get new predictions and prediction errors,

conditional to γ̄ = ̂̄γ. The new measurement equation reads:

Ỹt = XT
t δ̃t + υ̃t (28)
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with δ̃ = γt − ̂̄γ. The state equation becomes:

δ̃t = Φ δ̃t−1 + ε̃t. (29)

The Kalman filter prediction equations can be written:

̂̃
δt/t−1 = Φ δ̃t−1, (30)

P̃t/t−1 = Φ P̃t−1 ΦT + Q. (31)

The prediction errors are:

ν̃t = Ỹt − XT
t

̂̃
δt/t−1 (32)

and their covariance matrix:

F̃t = H + XT
t P̃t/t−1 Xt. (33)

Finally, the filtering equations become:

̂̃
δt =

̂̃
δt/t−1 + P̃t/t−1 Xt F̃−1

t (Ỹt − XT
t
̂̃
δt/t−1) (34)

P̃t = P̃t/t−1 − P̃t/t−1 Xt F̃−1
t XT

t P̃t/t−1. (35)

The filter can be initialized by an OLS estimate
̂̃
δ1 from the first-period cross-sectional

data:
̂̃
δ1 = (X1X

T
1 )−1 X1 Ỹ1. (36)

The initial prediction error is:

P̃1 = E {(
̂̃
δ1 − δ̃1)(

̂̃
δ1 − δ̃1)

T} = (X1 XT
1 )−1σ2

υ. (37)

Up to now we supposed that Φ, Q and σ2
υ are known. In practice we need to estimate

them from the N×T matrix of observations Y . For this end, we implement the maximum

likelihood method. The likelihood function of Y can be represented in terms of the

N T × 1 vector of prediction errors ν̃ = [ν̃T
1 , . . . , ν̃T

T ]. It is normally distributed with

N T × N T covariance matrix Ṽ . The log-likelihood function reads:

L(Y ; γ̄, Φ, Q, σ2
υ) = const−

1

2
log |Ṽ | −

1

2
υ̃ Ṽ −1 υ̃T (38)

Notice that Ṽ is block-diagonal since elements of the prediction error vectors at different

periods υ̃i and υ̃j are uncorrelated, i 6= j. So the log-likelihood can be decomposed

“period by period”. For each t, the two Kalman filter recursions yield GLS estimates

of γ̄ and the prediction error covariance matrix, F̃t, conditional to Φ, Q, σ2
υ. These
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estimates can be used to form a concentrated log-likelihood function:

Lc(Y ; Φ, Q, σ2
υ) =

const−
1

2

T∑

t=1

log |F̃t| −
1

2
(Y1 − XT

1
̂̃
δ1) H−1 (Y1 − XT

1
̂̃
δ1)

T −
1

2

T∑

t=2

υ̃T
t F̃−1

t υ̃t

(39)

In our case the stocks for which data is available are not the same for each date. Due

to the absence of individual effects, we can without any consequences substitute stocks in

the sample. The number of of stocks with available data increases dramatically in 1999

(from about 500 to about 1000, the exact number depending on model specification), so

we choose to define two subsamples: before Q1-99 and after Q1-99 with a fixed number

of stocks in each of them. As the maximum likelihood function is additive in time, we

simply decompose it into two terms, corresponding to each subsample. The outcome

of the Kalman filter for the first subsample are used as initial values for the second

subsample to ensure consistency.

In each subsample, we ensure random rotation of stocks. The procedure is as follows.

We start with all stocks available at the first date, at the next period we replace the

stock for which some data is missing by randomly picked stocks for which data at this

date are present, and so on. If we are not able to replace all stocks, we restart the

procedure with a smaller number of stocks at the first period. Thus we constitute the

samples with maximum possible number of stocks. Since generally the number of stocks

tends to increase in time, the number of stocks retained is close to the number of stocks

at the initial date of each subsample.

The minimization of the negative log-likelihood is carried out numerically around

the initial estimates, obtained by a two-step OLS procedure. First, for each date we run

cross-sectional regressions to obtain B̂OLS
t and then estimate AR(1) models for each of

its components to get Φ̂OLS,Q̂OLS,σ̂OLS
ν .

The errors in coefficient estimates are estimated by a two-step bootstrap algorithm.

At the first stage, the time varying premia are simulated using (6) by bootstrapping

from the distribution of errors ε̂
j
t , estimated from the Kalman filter with the parameters

Φ̂ML, Q̂ML,σ̂ML
ν . At the second stage, we simulate equation (8) by bootstrapping from

the distribution of υ̃t at each date.
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B Additional Tables

Table 4: A Model Including BtP and EtP Simultaneously⋆

(1) (2) (3) (4) (5) (6) (7) (8)

AM 44 50 50 0.0005 0.1861 -0.107 0.044 -0.2028

(0.0039) (0.0336) (0.0172) (0.0042) (0.0925)

0.403 0 0 0 0.028

PtB 37 83 17 0.0396 0.3182 -0.191 0.08 0.1287

(0.0095) (0.0502) (0.0449) (0.0072) (0.0978)

0 0 0 0 0.188

EtP 35 45 55 -0.0112 0.1826 -0.2233 0.0725 0.1865

(0.0095) (0.0381) (0.0430) (0.0062) (0.0954)

0.135 0 0 0 0.117

MCAP 44 67 33 0.018 0.1959 -0.142 0.0683 0.1846

(0.0088) (0.0383) (0.0336) (0.0053) (0.1012)

0.017 0 0 0 0.082

gSpS 26 79 21 0.0132 0.1229 -0.1883 0.0509 0.0123

(0.0063) (0.0341) (0.0423) (0.0050) (0.0977)

0.014 0 0 0.001 0.484

IG 32 83 17 0.0352 0.2551 -0.2064 0.0704 0.0375

(0.0080) (0.0416) (0.0491) (0.0064) (0.0984)

0 0 0 0 0.438

Const 28 43 57 -0.0113 0.1594 -0.2141 0.0693 -0.1293

(0.0071) (0.0395) (0.0453) (0.0059) (0.0942)

0.064 0 0 0 0.142

p1=0,p2=0.002, R2=0.1010;

T1=68, N1=216 (Q1-82:Q4-98) / T2=40, N2=503 (Q1-99:Q4-2008)

⋆ (1) periods when variable is significant, % of all periods; (2),(3) positive and negative impact, % of

periods when variable is significant; (4) average premium in quarterly log-return, its standard

deviation and the p-value of the significance test H1; (5),(6) maximum and minimum premium over

time, its standard deviation and p-values of the H2 and H3 tests; (7) volatility (standard deviation) of

the premium in time, its standard deviation and the p-value of the H4 test; (8) first-order

autocorrelation in variations of the premium, its standard deviation an the p-value of the H5 test. p1

and p2 are p-values of two likelihood ratio tests, described in section 3. R2 is the percentage of

variance, explained by the model. T and N are reported separately for two subsamples before and

after 1999.
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Table 5: A Model Including Earnings Forecasts⋆

(1) (2) (3) (4) (5) (6) (7) (8)

AM 40 51 49 0.0052 0.1289 -0.0837 0.0375 -0.1846

(0.0033) (0.0185) (0.0160) (0.0037) (0.0946)

0.044 0 0 0 0.044

BtP 32 71 29 0.0133 0.2281 -0.2033 0.0706 -0.0227

(0.0076) (0.0391) (0.0398) (0.0064) (0.0945)

0.035 0 0 0 0.393

MCAP 36 66 34 0.0128 0.1384 -0.1775 0.0624 0.1618

(0.0081) (0.0278) (0.0350) (0.0050) (0.0956)

0.052 0 0 0 0.127

LTG 40 49 51 -0.0007 0.2545 -0.2288 0.0772 -0.2415

(0.0071) (0.0492) (0.0451) (0.0068) (0.0956)

0.463 0 0 0 0.02

fgEPS 22 58 42 0.0015 0.1291 -0.1298 0.0479 0.1528

(0.0063) (0.0291) (0.0312) (0.0043) (0.0974)

0.444 0 0 0.003 0.205

Const 36 68 32 0.0155 0.1941 -0.1693 0.0726 0.1188

(0.0088) (0.0400) (0.0376) (0.0062) (0.0993)

0.044 0 0 0 0.251

p1=0.002,p2=0.013, R2=0.0787;

T1=68, N1=337 (Q1-82:Q4-98) / T2=40, N2=735 (Q1-99:Q4-2008)

⋆ see comments to Table 4.
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Table 6: A Model Using Long-Term Historical Growth Measures⋆

(1) (2) (3) (4) (5) (6) (7) (8)

AM 38 64 36 0.0034 0.1593 -0.122 0.0409 -0.2532

(0.0037) (0.0236) (0.0202) (0.0039) (0.0992)

0.164 0 0 0 0.012

BtP 44 69 31 0.0204 0.2456 -0.3065 0.0760 0.1774

(0.0103) (0.0481) (0.0724) (0.0079) (0.1023)

0.017 0 0 0 0.096

MCAP 39 59 41 0.007 0.1698 -0.1492 0.0646 0.0428

(0.0079) (0.0319) (0.0294) (0.0053) (0.1043)

0.187 0 0 0 0.435

gSpS5 20 58 42 0.001 0.119 -0.2183 0.0550 0.0185

(0.0067) (0.0306) (0.0474) (0.0061) (0.1009)

0.394 0 0 0 0.493

IG5 29 64 36 0.0143 0.2523 -0.2026 0.0741 0.2072

(0.0105) (0.0450) (0.0404) (0.0074) (0.1048)

0.072 0 0 0 0.094

Const 32 60 40 0.0084 0.1627 -0.1185 0.0621 0.1275

(0.0085) (0.0350) (0.0345) (0.0052) (0.0983)

0.158 0 0 0 0.232

p1=0, p2=0.011, R2=0.0869;

T1=60, N1=224 (Q1-84:Q4-98) / T2=40, N2=603 (Q1-99:Q4-2008)

⋆ see comments to Table 4.

Table 7: Return Premia on Company Fundamentals⋆

(1) (2) (3) (4) (5) (6) (7) (8)

PtB 54 71 29 0.0267 0.4656 -0.2771 0.0912 0.1742

(0.0104) (0.1677) (0.1566) (0.0153) (0.0868)

0.002 0 0 0.033 0.091

MCAP 48 65 35 0.034 0.6307 -0.1753 0.104 0.1867

(0.0115) (0.1952) (0.1791) (0.0177) (0.0818)

0 0 0 0.016 0.065

Const 68 62 38 0.0146 0.3007 -0.2871 0.0975 -0.0208

(0.0092) (0.0974) (0.0564) (0.0087) (0.0921)

0.051 0 0 0.001 0.384
p1=0.010, p2=0.037, R2=0.0371;

T1=68, N1=521 (Q1-82:Q4-98) / T2=40, N2=1302 (Q1-99:Q4-2008)

⋆ see comments to Table 4.
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Table 8: Return Premia on Company Fundamentals and Price Momentum⋆

(1) (2) (3) (4) (5) (6) (7) (8)

AM 38 54 46 -0.0001 0.1769 -0.1208 0.0405 -0.0060

(0.0042) (0.0358) (0.0228) (0.0045) (0.0983)

0.4970 0 0 0 0.4470

PtB 46 80 20 0.0355 0.2988 -0.1652 0.0729 0.0873

(0.0084) (0.0543) (0.0364) (0.0066) (0.0969)

0.0000 0 0 0 0.2800

MCAP 44 66 34 0.0176 0.2010 -0.1356 0.0687 0.2605

(0.0087) (0.0400) (0.0335) (0.0054) (0.0939)

0.0210 0 0 0 0.0210

gSpS 29 74 26 0.0160 0.1390 -0.1345 0.0488 0.0983

(0.0061) (0.0305) (0.0329) (0.0048) (0.0994)

0.0070 0 0 0 0.2860

IG 31 88 12 0.0308 0.2055 -0.1173 0.0622 0.0093

(0.0076) (0.0365) (0.0369) (0.0056) (0.0977)

0.0000 0 0 0 0.4970

Pmom1q 37 18 82 -0.0217 0.2251 -0.1914 0.0693 0.0597

(0.0078) (0.0482) (0.0358) (0.0058) (0.1022)

0.0030 0 0 0 0.3880

Pmom1y 31 52 48 0.0087 0.3253 -0.1434 0.0785 -0.2532

(0.0074) (0.0494) (0.0414) (0.0080) (0.0949)

0.1040 0 0 0 0.0230

Const 39 52 48 -0.0063 0.2492 -0.2197 0.0834 -0.1831

(0.0078) (0.0512) (0.0490) (0.0068) (0.0996)

0.2540 0 0 0 0.0930

p1=0,p2=0.0097, R2=0.0973;

T1=68, N1=220 (Q3-84:Q4-98) / T2=40, N2=529 (Q1-99:Q4-2008)

⋆ see comments to Table 4.
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