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1 Introduction

The constant maturity swap (CMS) rate is quoted by the majority of brokers in the

pricing of interest rate swaps, and this rate’s reliable closing quotes are routinely reported

in major financial quotation systems, such as Reuters or Bloomberg. The CMS rate has

thus become one of the most widely used interest rate indexes in financial markets; based

on this index, many exotic CMS rate derivatives have been developed to allow investors

to meet hedging or investment objectives. In this article, we focus on the valuation of

CMS spread options with nonzero strike rates.

CMS spread options are options on the difference between two CMS rates (e.g., 10-year

CMS rate minus 2-year CMS rate). CMS spread options can help market practitioners

to hedge against risks that are dependent on whether the spread between two interest

rates is above or below a specified level, or within or outside a specific range on a specific

future date. In addition, CMS spread options can be used to enhance profits from a

relative change in the various ranges of the yield curve. For example, in December 2000,

the spread between the 10-year and 2-year US dollar CMS rates was about 20 basis

points, which was significantly narrower and increased dramatically to 200 basis points

by December 2001 (see Figure 1). Investors would be able to generate considerable returns

if they could take an accurate view in advance of the steepness of the yield curve during

such a period.

As indicated in Sawyer (2005), trading volume of CMS spread options reached $30

billion in 2005 and has increased ever since. The most widely-traded CMS spread options

are CMS range accruals and CMS steepeners. Range accruals pay a high fixed rate coupon

if the CMS spread is above or below a particular barrier or remains within a pre-specified

range for every day of the coupon period. Steepeners pay a high coupon in the first few

years, after which investors are subsequently paid with a coupon based on the spread

between two CMS rates, multiplied by a specified leverage ratio. Thus, the steeper the

yield curve the greater the payoff for investors in CMS steepeners.

In the past two decades, several articles have examined interest rate spread options.

Based on an extended Cox, Ingersoll and Ross (CIR, 1985) model, Longstaff (1990) derives
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Figure 1: The spread between the 10-year and 2-year CMS rates.
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Figure 1 depicts the time series data of the spread in basis points between

the 10-year and 2-year CMS rates from 1989/7/3 to 2008/10/31.

a closed-form pricing model for European yield spread options and examines the empirical

implications of the model using market data. Fu (1996) observes that to price yield spread

options, one should employ a multivariate model to capture imperfect correlations for

underlying interest rates of differing maturities, thus pricing interest rate spread options

within a two-factor Heath, Jarrow and Moton (HJM, 1992) model. Wu and Chen (2009)

adopt a multifactor LIBOR market model to examine three types of interest rate spread

options with zero strike rates: LIBOR vs. LIBOR; LIBOR vs. CMS; and CMS vs. CMS,

all of which are widely traded in the marketplace or embedded in structured notes, such as

range accruals and steepeners. However, the setting of a zero strike rate in Wu and Chen

(2009) restricts the capability to price the (more frequent) case with a nonzero strike rate.

Therefore, the main purpose of this article is to provide a more general pricing formula

for CMS spread options that can handle the case of nonzero strike rates.

In this paper, we adopt a multifactor LIBOR market model (LMM) as the central

model to specify the behavior of forward CMS rates.1 As indicated in Wu and Chen

1The LMM and the swap market model, presented by Jamshidian (1997), are not compatible in that

a swap rate and a LIBOR rate cannot be lognormally distributed under the same measure. Thus, it is

problematic to choose either of the two models as a pricing foundation. Brace, Dun and Barton (1998)
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(2009), the forward swap rate, the sum of forward LIBOR rates with lognormal distribu-

tions, can be well approximated by a lognormal distribution. In this way, the difficulty

in pricing CMS spread options is similar to finding the probability distribution of the

difference between two lognormal random variables. However, the difference between two

lognormal random variables cannot be approximated directly by a lognormal random vari-

able, due to its potentially negative value and negative skewness. Therefore, we employ a

generalized family of lognormal distributions to approximate the probability distribution

of the difference.2 The resulting pricing formulas are shown to be significantly accurate

as compared with Monte Carlo simulation.

In practice, the prices of CMS spread options, such as CMS range accruals and steep-

eners, are computed based on Monte Carlo simulation, which is time-consuming and

inefficient. For example, financial institutions issuing hundreds of CMS range accruals

might find it difficult, based on Monte Carlo simulation, to provide daily price quota-

tions for customers. Our pricing formulas provide close prices to those computed from

Monte Carlo simulation while taking much less time, and thus provide market practition-

ers with a new, efficient and time-saving approach to offering almost instantly quoted

prices to clients, the daily mark-to-market of trading books and managing risks of trading

positions.

This paper proceeds as follows: Section 2 reviews the LMM and its several implementa-

tion techniques; then uses a generalized family of lognormal distributions to approximate

the distribution of the difference between two lognormal random variables. Section 3

provides approximate pricing formulas for CMS spread options. Section 4 provides a cal-

ibration procedure and examines the accuracy of the approximate formulas via Monte

Carlo simulation. Section 5 presents the results and conclusion.

suggest adoption of the LMM as the central model, due to its mathematical tractability; we follow this

suggestion.
2For the details regarding the generalized family of lognormal distributions, please refer to Johnson,

Kotz and Balakrishnan (1994).
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2 The Model

In Section 2, we review the LMM and its several implemention techniques for the model.

We also introduce a lognormalization approach for swap rates under the LMM. Finally,

we use the generalized family of lognormal distributions to approximate the distribution

of the spread between two swap rates.

2.1 The LIBOR Market Model

The LMM is developed by Brace, Gatarek and Musiela (BGM, 1997), Musiela and

Rutkowski (1997), and Miltersen, Sandmann and Sondermann (1997), and has been ex-

tensively employed in practice to price interest rate derivatives due to its many merits.

For example, the LMM specifies the dynamics of market-observable forward LIBOR rates

rather than the abstract rate specified in the traditional interest rate model. The cap

and floor pricing formulas derived within the LMM framework are the Black formula,

which has been widely used in practice. The above two advantages make the parameter

calibration of the LMM easier. In addition, most interest rate products can be priced

within the LMM framework such that interest rate risks can be managed consistently and

efficiently. In this subsection, we briefly review the LMM and introduce techniques for its

practical implementation.

Consider that trading takes place continuously over an interval [0,T ], 0 < T <∞. Un-

certainty is described by a filtered spot martingale probability space
(
Ω, F,Q, {Ft}t∈[0,T ]

)
and a d-dimensional independent standard Brownian motion Z(t) = (Z1(t), Z2(t), ..., Zd(t))

is defined on the probability space. The flow of information accruing to all agents in the

economy is represented by the filtration {Ft}t∈[0,T ], which satisfies the usual hypotheses.3

Note that Q denotes the spot martingale probability measure. We define the notations

as follows:

3The filtration {Ft}t∈[0,T ] is right continuous, and F0 contains all the Q-null sets of F .
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B(t, T ) = the time t price of a zero-coupon bond paying one dollar at time T .

L(t, T ) = the forward LIBOR rate contracted at time t and applied to the period

[T , T + δ] with 0 ≤ t ≤ T ≤ T + δ ≤ T .

QT = the forward martingale measure with respect to the numéraire B(·, T ).

The relationship between L(t, T ) and B(t, T ) can be expressed as follows:

L(t, T ) =
(
B(t, T )−B(t, T + δ)

)
/δB(t, T + δ). (1)

By following the approach of BGM (1997), the LMM is constructed based on the

arbitrage-free conditions in HJM (1992). We briefly specify their results as follows.

Proposition 1. The LIBOR Rate Dynamics under Measure Q

Under the spot martingale measure Q, the forward LIBOR rate L(t, T ) follows the

following stochastic process:

dL(t, T ) = L(t, T )γ(t, T ) · σB(t, T + δ)dt+ L(t, T )γ(t, T ) · dZ(t), (2)

where 0 ≤ t ≤ T ≤ T , σB(t, ·) is defined as follows:

σB(t, T ) =



bδ−1(T−t)c∑
j=1

δL(t, T − jδ)
1 + δL(t, T − jδ)γ(t, T − jδ) t ∈ [0, T − δ]

& T − δ > 0,

0 otherwise,

(3)

where δ is some designated length of time,4 bδ−1(T − t)c denotes the greatest integer that

is less than δ−1(T − t) and the deterministic function γ : R2
+ → Rm is bounded and

piecewise continuous.

Note that {σB(t, T )}t∈[0,T ] stands for the volatility process of the bond price B(t, T )

according to the derivation process in BGM (1997). Moreover, equation (2) is a stochastic

process of a forward LIBOR rate under the spot martingale measure Q. As to pricing

interest rate derivatives, it is useful to know the stochastic processes of forward LIBOR

rates under a forward martingale measure. The following proposition provides a general

4For the ease of computing equation (3), we may fix δ (for example, δ = 0.5).
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rule under which the dynamics of forward LIBOR rates are changed following a change

in the underlying measure:

Proposition 2. The Drift Adjustment Technique in Different Measures

The dynamics of a forward LIBOR rate L(t, T ) under an arbitrary forward martingale

measure QS is given as follows:

dL(t, T ) = L(t, T )γ(t, T ) ·
(
σB(t, T + δ)− σB(t, S)

)
dt+ L(t, T )γ(t, T ) · dZ(t) (4)

where 0 ≤ t ≤ min(S, T ).5

According to the definition of the bond volatility process in (3), {σB(t, ·)}t∈[0,·] in (2)

and (4) are stochastic rather than deterministic. Therefore, the stochastic differential

equations (2) and (4) are not solvable, and the distribution of L(T, T ) is unknown. To

solve this problem, we present a technique that freezes the calendar time of the process

{L(t, T − jδ)}t∈[0,T−jδ] in (3) at its initial time 0, and the resulting process is defined as

follows:

σ̄0
B(t, T ) =



bδ−1(T−t)c∑
j=1

δL(0, T − jδ)
1 + δL(0, T − jδ)γ(t, T − jδ), t ∈ [0, T − δ]

& T − δ > 0,

0 otherwise,

(5)

where 0 ≤ t ≤ T ≤ T . It is worth noting that the process {σ̄0
B(t, T )}t∈[0,T ] is deterministic.

By substituting σ̄0
B(t, T + δ) for σB(t, T + δ), the drift and volatility terms in (2) and (4)

will be deterministic, so we can solve (2) and (4) and find the approximate distribution

of L(T, T ) to be lognormally distributed.

This technique was first employed by BGM (1997) for pricing interest rate swaptions,

developed further in Brace, Dun and Barton (1998), and formalized by Brace and Wom-

ersley (2000). This approximation has been shown to be significantly accurate and is

widely used in practice. We present the result in the following proposition.

5We employ Z(t) to denote an independent d-dimensional standard Brownian motion under an arbi-

trary measure.
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Proposition 3. The Lognormalized LIBOR Market Model

The dynamics of a lognormalized forward LIBOR rate L(t, T ) under an arbitrary

forward martingale measure QS is given by:

dL(t, T ) = L(t, T )∆0(t, T ;S)dt+ L(t, T )γ(t, T ) · dZ(t), (6)

where

∆0(t, T ;S) = γ(t, T ) ·
(
σ̄0
P (t, T + δ)− σ̄0

P (t, S)
)

(7)

and 0 ≤ t ≤ min(S, T ).

2.2 An Approximate Distribution of a Swap Rate

This subsection defines a forward swap rate in terms of forward LIBOR rates and presents

an approach toward finding an approximate distribution of the swap rate under the LMM

framework. Define an n-year forward swap rate at time t with reset dates
{
T0, T1, ..., TN−1

}
and payment dates

{
T1, T2, ..., TN

}
as follows:

Sn(t, T ) =
N−1∑
i=0

wn,i(t)L(t, Ti), 0 ≤ t ≤ T = T0, (8)

where the year fraction δ is a constant and the number of payment dates N = n/δ with

δ = Ti − Ti−1, i = 1, 2, ..., N , and

wn,i(t) =
P (t, Ti+1)∑N−1
j=0 P (t, Tj+1)

. (9)

Equations (8) and (9) indicate that a swap rate is roughly a weighted average of LIBOR

rates. Moreover, LIBOR rates under the LMM framework are approximately lognormally

distributed. Therefore, the distribution of a swap rate is roughly a weighted average of

lognormal distributions.

Brigo and Mercurio (2001) indicate that empirical studies have shown the variability

of wn,i to be small compared to the variability of forward LIBOR rates.6 Therefore, we

can freeze the value of the processes wn,i(t) to its initial values wn,i(0) and obtain

Sn(t, T ) ∼=
N−1∑
i=0

wn,i(0)L(t, Ti). (10)

6See also Brace and Womersley (2000) for the proof of low variability.
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Note that Sn(T, T ) is a weighted average of lognormally distributed variables and that

its distribution is unknown. Although Sn(T, T ) is not a lognormal distribution, it can be

well approximated by a lognormal distribution with the correct first two moments.7 The

accuracy of this technique is examined in Mitchell (1968). Furthermore, many areas of

science verify the high degree of accuracy of the lognormal approximation for the sum

of lognormal random variables (see e.g., Aitchison and Brown (1957), Crow and Shimizu

(1988), Levy (1992), and Limpert Stahel and Abbt (2001)). In addition, we provide

detailed empirical results in Section 4 to show the robust accuracy of our pricing formulas

derived based on moment matching approximation.

Based on the studies cited above, we assume that lnSn(T, T ) follows a normal distri-

bution with mean α and variance β2. The moment generating function for lnSn(T, T ) is

given by

GlnS(h) = E[Sn(T, T )h] = exp

(
αh+

1

2
β2h2

)
. (11)

Taking h = 1 and h = 2 in (11), we obtain the following two conditions to solve for α and

β2:8

α =2lnE[Sn(T, T )]− 1

2
lnE[Sn(T, T )2], (12)

β2 =lnE[Sn(T, T )2]− 2lnE[Sn(T, T )]. (13)

2.3 The Approximation Distribution of the Difference between

Two Lognormal Distributions

This subsection presents a generalized family of lognormal distributions and uses these

distributions to price CMS spread options with nonzero strike rates. Assume that CMSm

and CMSn denote, respectively, an m-year and an n-year CMS rates following lognormal

distributions, and K is a nonnegative constant. The problem is how to compute the

7As indicated by the empirical studies in Brigo and Mercurio (2001), forward swap rates obtained

from lognormal forward LIBOR rates are not far from being lognormal under the relevant measure.
8E[Sn(t, T )] and E[Sn(t, T )2] are computable.
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expectation given as follows:

E
[
(X −K)+

]
, (14)

where X = CMSm − CMSn and (a)+ = Max(a, 0).

As set forth in Subsection 2.2, the sum of lognormal random variables can be well

approximated by a suitable lognormal random variable. However, the difference between

two lognormal random variables, X, cannot be approximated directly by a lognormal

random variable due to its potentially negative value and negative skewness. Therefore,

we employ a generalized family of lognormal distributions to approximate the distribution

of the difference.

The generalized family of lognormal distributions includes four types: regular, shifted,

negative and negative-shifted. Their probability density functions are given as follows:

(a) Regular Lognormal Distribution:

f(y) =
1

ξy
√

2π
exp

(
− 1

2ξ2

(
log(y)− µ

)2
)
, y > 0, (15)

(b) Shifted Lognormal Distribution:

f(y) =
1

ξ(y − τ)
√

2π
exp

(
− 1

2ξ2

(
log(y − τ)− µ

)2
)
, y > τ, (16)

(c) Negative Lognormal Distribution:

f(y) =
−1

ξy
√

2π
exp

(
− 1

2ξ2

(
log(−y)− µ

)2
)
, y < 0, (17)

(d) Negative-Shifted Lognormal Distribution:

f(y) =
1

ξ(−y − τ)
√

2π
exp

(
− 1

2ξ2

(
log(−y − τ)− µ

)2
)
, y < −τ, (18)

where τ , µ and ξ denote, respectively, the location, scale and shape parameters. By

observing these four distributions, the relation among them is that if a random variable

U has a regular lognormal distribution, the random variable U+τ has a shifted lognormal

distribution; −U has a negative lognormal distribution; −(U + τ) has a negative-shifted

lognormal distribution.
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Denote, respectively, the first three moments of the general lognormal random variables

Y by M1(τ, µ, ξ), M2(τ, µ, ξ) and M3(τ, µ, ξ), which are functions of τ , µ and ξ, and can

be computed by the following proposition for each type.

Proposition 4. (1) If Y has a regular lognormal distribution, then its first three moments

in terms of the parameters τ , µ and ξ can be computed as follows:

M1(τ, µ, ξ) = exp{µ+
1

2
ξ2}

M2(τ, µ, ξ) = exp{2µ+ 2ξ2}

M3(τ, µ, ξ) = exp{3µ+
9

2
ξ2}.

(2) If Y has a shifted lognormal distribution, then its first three moments can be computed

as follows:

M1(τ, µ, ξ) = τ + exp{µ+
1

2
ξ2}

M2(τ, µ, ξ) = τ 2 + 2τ exp{µ+
1

2
ξ2}+ exp{2µ+ 2ξ2}

M3(τ, µ, ξ) = τ 3 + 3τ 2 exp{µ+
1

2
ξ2}+ 3τ exp{2µ+ 2ξ2}+ exp{3µ+

9

2
ξ2}.

(3) If Y has a negative lognormal distribution, then its first three moments are computed

as follows:

M1(τ, µ, ξ) = − exp{µ+
1

2
ξ2}

M2(τ, µ, ξ) = exp{2µ+ 2ξ2}

M3(τ, µ, ξ) = − exp{3µ+
9

2
ξ2}.

(4) If Y has a negative-shifted lognormal distribution, then its first three moments are

computed as follows:

M1(τ, µ, ξ) = −τ − exp{µ+
1

2
ξ2}

M2(τ, µ, ξ) = τ 2 + 2τ exp{µ+
1

2
ξ2}+ exp{2µ+ 2ξ2}

M3(τ, µ, ξ) = −τ 3 − 3τ 2 exp{µ+
1

2
ξ2} − 3τ exp{2µ+ 2ξ2} − exp{3µ+

9

2
ξ2}.
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Figure 2: The Determinant Procedure of the Generalized Lognormal Distribution

In addition, despite the fact that the distribution of X is unknown, the first three

moments of X, namely EX, EX2 and EX3, are computable. The parameters of the

general lognormal random variable Y (which is used to approximate X) are obtained by

the moment matching method, namely, solving the following system of equations:

M1(τ, µ, ξ) = EX

M2(τ, µ, ξ) = EX2 ⇒ τ̂ , µ̂, ξ̂. (19)

M3(τ, µ, ξ) = EX3

The remaining question is how to choose an appropriate distribution from the gener-

alized family of lognormal distributions. The determinant criterion of the approximating

distribution Ŷ for X depends on τ̂ , computed from (19), and the skewness of X, which

is defined as follows:

ηX =
E
[
X − EX

]3(
E
[
X − EX

]2)1.5 . (20)

The determinant procedure is specified as follows. If X has a positive skewness, namely

ηX > 0, then we use the shifted lognormal random variable Y to compute (19) and obtain

τ̂ . Next, if τ̂ ≥ 0, then Ŷ follows the regular lognormal distribution; otherwise, Ŷ follows

the shifted distribution. Otherwise, if X has a negative skewness, namely ηX < 0, we use

the negative-shifted Y to compute (19) and obtain τ̂ . Next, if τ̂ ≥ 0, then Ŷ follows the

negative lognormal distribution; otherwise, Ŷ follows the negative-shifted distribution.

The procedure is depicted in Figure 2.
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After determining the approximating distribution Ŷ (one of the four types: (15) ∼

(18)) and its parameters (computed from (19)), equation (14) can be approximated by

E
[
(X −K)+

]
≈ E

[
(Ŷ −K)+

]
. (21)

Equation (21) can be computed analytically since the probability distribution of Ŷ is

known. We use this technique to price CMS spread options in the next section.

3 Valuation of CMS Spread Options

CMS spread options with nonzero strike rates within the LMM framework are priced in

this section. The resulting pricing formula is capable of pricing the other three popular

interest rate spread options: the difference between a CMS rate and a LIBOR rate; a

LIBOR rate and a CMS rate; and a LIBOR rate and another LIBOR rate.

Consider a generalized CMS spread option on the difference between an m-year CMS

rate and an n-year CMS rate, whose final payoff is specifically given as follows:

C1(T ) =
(
Sm(T, T )− Sn(T, T )−K

)+
,

where K is a nonnegative strike rate and the definition of the swap rates is presented in

(8).

CMS spread options are usually embedded in the CMS range accruals and the CMS

steepeners, which are very popular in the structured notes market. CMS spread options

are traded by investors who wish to take a position on future relative changes in various

ranges of the yield curve; they can be tailored to hedge risk that depends upon whether

the difference between two interest rates is above or below a specified level, or within or

outside a specified range on a specific future date. In addition, CMS spread options can

also be used as ancillary instruments for a two-way constant maturity swap. For example,

an end-user can employ a two-way constant maturity swap to capitalize on anticipated

yield curve movements while purchasing CMS spread options to eliminate downside risk.

Based on the martingale pricing method, the price of a CMS spread option can be

computed under the forward martingale probability measure QT as follows:

C1(0) = B(0, T )EQ
T
[(
Sm(T, T )− Sn(T, T )−K

)+
]
, (22)
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which cannot be analytically dervied since the probability distribution of the difference,

Sm(T, T )−Sn(T, T ), is unknown. However, the approximate pricing formula of the CMS

spread option can be computed based on the method introduced in Section 2. Let X =

Sm(T, T )− Sn(T, T ), then compute EQ
T
[X], EQ

T
[X2] and EQ

T
[X3], which are presented

in Appendix A. Via the determinant criterion of the approximating distribution, we can

find an appropriate approximating distribution, Ŷ , for X, then the pricing formula of the

CMS spread option can be computed under the approximating distribution. The pricing

formula within each type of the approximating distributions is derived in the following

theorem. The proof is given in Appendix B.

Theorem 1. The pricing formulas of CMS spread options within each type of the approx-

imating distributions are given as follows.

(i) If Ŷ follows a regular lognormal distribution,

C1(0) = B(0, T )

EQT [X]N


ln

(
EQ

T
[X]

K

)
+ 1

2
ξ2

ξ



−K ×N


ln

(
EQ

T
[X]

K

)
− 1

2
ξ2

ξ


 , (23)

where ξ =

√√√√ln

(
EQT [X2](
EQT [X]

)2

)
.

(ii) If Ŷ follows a shifted-regular lognormal distribution,

14



C1(0) = B(0, T )

(EQT [X]− τ
)
N


ln

(
EQ

T
[X]− τ

K − τ

)
+ 1

2
ξ2

ξ



−(K − τ)N


ln

(
EQ

T
[X]− τ

K − τ

)
− 1

2
ξ2

ξ


 , (24)

where ξ =

√√√√ln

(
EQT [(X − τ)2](
EQT [X]− τ

)2

)
.

(iii) If Ŷ follows a negative lognormal distribution,

C1(0) = B(0, T )

EQT [X]N

−
ln

(
EQ

T
[X]

K

)
+ 1

2
ξ2

ξ



−K ×N

−
ln

(
EQ

T
[X]

K

)
− 1

2
ξ2

ξ


 , (25)

where ξ =

√√√√ln

(
EQT [X2](
EQT [X]

)2

)
.

(iv) If Ŷ follows a negative-shifted lognormal distribution,

15



C1(0) =B(0, T )

(EQT [X] + τ
)
N

−
ln

(
EQ

T
[X] + τ

K + τ

)
+ 1

2
ξ2

ξ



−(K + τ)N

−
ln

(
EQ

T
[X] + τ

K + τ

)
− 1

2
ξ2

ξ


 ,

(26)

where ξ =

√√√√ln

(
EQT [(X + τ)2](
EQT [X] + τ

)2

)
.

EQ
T
[X], EQ

T
[X2] and EQ

T
[X3], in (23) ∼ (26), are computed in Appendix A.

The resulting pricing formulas for CMS spread options, (23) ∼ (26), somewhat resem-

ble the Black formula and thus provide familiarity to end-users in their employment. In

addition, all the parameters needed in the pricing formulas can be easily extracted from

market data, which makes the pricing formulas more tractable and feasible for practition-

ers. The parameter calibration procedure is presented in Subsection 4.1.

Occasionally, interest rate spread options embedded in structured notes are options

on the difference between CMS rates and LIBOR rates. These options are special cases

of (22) since a LIBOR rate is a one-period swap rate. For example, an interest rate

spread option on the difference between an m-year CMS rate and a 6-month LIBOR rate,

denoted by L6m(T, T ), can be specified as follows:

C2(T ) = (Sm(T )− L6m(T, T )−K)+

= (Sm(T )− S0.5(T )−K)+,

which is a CMS spread option on the difference between an m-year CMS rate and a 0.5-

year CMS rate. This option can also be priced by using the pricing formulas in Theorem
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1. Moreover, the following interest rate spread options can be priced via Theorem 1 as

well:

C3(T ) = (L6m(T, T ))− Sn(T )−K)+

= (S0.5(T )− Sn(T )−K)+,

and

C4(T ) = (L6m(T, T ))− L3m(T, T )−K)+

= (S0.5(T )− S0.25(T )−K)+.

Therefore, the pricing formulas in Theorem 1 are capable of pricing many popular interest

rate spread options.

We derive the pricing formulas for CMS spread options under various approximation

techniques. Without these formulas, CMS spread options must be computed based on

Monte Carlo simulation, which is well-known to be time-consuming and inefficient. As

shown in the next section, our pricing formulas provide prices close to those computed from

Monte Carlo simulation, while consuming much less time. This feature is a vital advantage

and provides market practitioners with a new, efficient and time-saving approach to offer

almost instantly quoted prices to clients, the daily mark-to-market of trading books, and

managing risks of trading positions.

4 Parameter Calibration and Numerical Examples

This section first introduces a calibration method for the parameters in the LMM and then

presents numerical examples to demonstrate the implementation of the pricing formulas

derived in Section 3. Finally, we examine their accuracy by comparing them with Monte

Carlo simulation.

4.1 Parameter Calibration

The Black formulas of caps and floors are extensively employed for price quotations in

market practice. Since the cap and floor pricing formulas within the LMM framework
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are, in fact, the Black formulas, model volatilities can be extracted directly from quoted

implied volatilities for cap (floor) prices. However, the correlation matrix of forward

LIBOR rates cannot be extracted from quotations of cap prices since the standard pricing

formula of caplets involves only a single forward LIBOR rate. In practice, two approaches

can be employed to calibrate correlations between LIBOR rates. The first is presented

by Rebonato (1999), who applies a historical correlation matrix to engage in calibration

and the second is based on price quotations of swaptions.9 Both approaches are tractable

and widely-used in the marketplace.

In this paper, we adopt the Rebonato (1999) approach to engage in a simultaneous

calibration of the LMM to the volatilities and correlation matrix of forward LIBOR rates.10

We assume that there are n forward LIBOR rates in the m-factor framework. The steps

to calibrate the parameters are given as follows.

First, we assume that each forward LIBOR rate, L(·, ti), has a constant instantaneous

volatility, namely for i = 1, ..., n, γ(·, ti) = vi. This setting is presented in Table 1.11 Thus,

if the market-quoted volatility for t1-year cap is ζ1, then v1 = ζ1. Next, for i = 2, ..., n, if

the ti-year cap is ζi, then vi = ζ2
i t

2
i − ζ2

i−1t
2
i−1.

Table 1: Instantaneous Volatilities of L(t, ·)

Instant. Total Vol. Time t ∈ (t0, t1] (t1, t2] (t2, t3] · · · (tn−2, tn−1]

Fwd Rate: L(t, t1) v1 Dead Dead · · · Dead

L(t, t2) v2 v2 Dead · · · Dead
... · · · · · · · · · · · · · · ·

L(t, tn) vn vn vn · · · vn

Second, we use the historical data of forward LIBOR rates to derive a market corre-

lation matrix Σ. Σ is an n-rank (n ≥ d), positive-definite and symmetric matrix and can

9For this approach, please refer to Brigo and Mercurio (2001) for details.
10Since caps and swaptions are actively traded financial instruments, price inconsistency between the

two products is almost impossible. Thus, a calibration based only on cap data is not unreasonable. In

addition, even if end-users adopt the other calibration approach, our pricing formulas remain workable.
11For other assumptions of volatility structures, please refer to Brigo and Mercurio (2001).
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be written as

Σ = HΓH,

where H is a real orthogonal matrix and Γ is a diagonal matrix. Let A ≡ HΓ1/2 and thus,

Σ = AA′. In this way, we can find an d-rank (d ≤ n) matrix B such that ΣB = BB′ is an

approximate correlation matrix for Σ.

The advantage of finding B is that we may replace the n-dimensional original Brownian

motion dZ(t) with BdW (t) where dW (t) is a d-dimensional Brownian motion. In other

words, we change the market correlation structure

dZ(t)dZ(t)′ = Σdt

to an approximate correlation structure

BdW (t)(BdW (t))′ = BdW (t)dW (t)′B′ = BB′dt = ΣBdt.

The remaining problem is how to find a suitable matrix B. Rebonato (1999) proposes

a method — assume that the ik-th element of B for i = 1, 2, ..., n is specified as follows:

bi,k =

 cosθi,k Πk−1
j=1 sinθi,j if k = 1, 2, ..., d− 1,

Πk−1
j=1 sinθi,j if k = d.

Thus, ΣB = BB′ is a function of Θ =
{
θi,k
}
i=1,...,n;k=1,...,d−1

. We obtain optimal solution

Θ̂ by solving the following optimization problem

min
Θ

n∑
i,j=1

|ΣB
i,j − Σi,j|2, (27)

where Σi,j is the ij-th element of Σ and ΣB
i,j is the ij-th element of ΣB, specifically defined

as follows:

ΣB
i,j =

d∑
k=1

bi,kbj,k.

By substituting Θ̂ into B, we obtain optimal matrix B̂ such that Σ̂B(= B̂B̂′) is an

approximate correlation matrix for Σ.

Third, we use B̂ to distribute the instantaneous total volatility, vi, to each Brownian

motion without changing the amount of the instantaneous total volatility.1 That is,

vi(b̂i−k+1,1, b̂i−k+1,2, . . . , b̂i−k+1,d) = (γ1(t, ti), γ2(t, ti), . . . , γd(t, ti))
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where tk−1 ≤ t < tk, k = 1, ..., i and i = 1, 2, ..., n.

The above procedure is a general calibration method with no constraint on choosing

the number of factors, d. The number of random shocks, d, may depend on the maturity

range of interest rates involved in the financial products considered.12 For example, we

may use a three-factor model, i.e., d = 3, to capture the shift and twist of the entire yield

curve. The first two random shocks can be interpreted, respectively, as the short-term

and long-term factors causing a shift in various maturity ranges on the yield curve. The

correlation between the short-term and long-term interest rates is specified by the third

random shock. In accordance with this feature, the numerical examples in the following

section are based on a three-factor model.

4.2 Numerical Examples

This subsection provides numerical examples to examine the accuracy of derived pricing

formulas of CMS spread options via comparison with Monte Carlo simulation. We price

three types of CMS spread options, 30-year CMS rate vs. 2-year CMS rate; 30-year CMS

rate vs. 10-year CMS rate; and 10-year CMS rate vs. 2-year CMS rate. In each case, we

consider three times to maturity, 1, 3 and 5 years, and three strike rates, 20, 40 and 60

basis points. In addition, the notional principal is assumed to be $1 and the simulations

are based on 10,000 paths.

These CMS spread options are priced quarterly on the dates for the recent three years,

namely, 2009/09/01, 2009/06/01, 2009/03/02, 2008/12/01, 2008/09/01, 2008/06/02, 2008/03/03,

2007/12/03, 2007/09/03, 2007/06/01, 2007/03/01, 2006/12/01 and 06/09/01. Market

data for these dates are obtained from the Datastream database and are omitted to con-

serve space.

Results from these numerical examples are presented in Table 2. Prices expressed in

basis points are shown in the form (A, B), where A denotes the value computed from

Theorem 1 and B the value from Monte Carlo simulation. The standard error of Monte

Carlo simulation for each case is about 0.5 basis points, which is omitted to save space.

12For more details regarding the performance of one- and multi-factor models, please refer to Driessen,

Klaassen and Melenberg (2003) and Rebonato (1999).
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The CMS-spread-option price, A, for each case listed in Table 2 is computed via one of

the four formulas presented in Theorem 1. The determinant procedure, based on the

parameters τ̂ and ηX , is shown in Figure 2 and, empirically, it depends on the shape

of the term structure of interest rates. As the term structure is significantly upward-

sloping, a formula with a shifted lognormal distribution is chosen to price CMS spread

options; otherwise, a negative-shifted formula is employed. For example, the negative-

shifted formula is used on date 2008/06/02, while the shifted formula is adopted on date

2006/09/01.

By observing these numerical examples, the pricing bias is not greater than one basis

point, which shows that the approximate formulas are sufficiently and robustly accurate.

Therefore, the derived pricing formulas yield prices close to Monte Carlo simulation but

taking much less time. With this efficiency advantage, the pricing formulas are recom-

mended for practical implementation.

5 Conclusion

This article uses the generalized lognormal distribution to approximate the distribution

of the difference between two CMS rates, then derives the pricing formulas for the CMS

spread options within the multifactor LMM. As compared with traditional interest rate

models, the LIBOR rate specified in the LMM is market-observable and the model pa-

rameters can be easily extracted from market data. Therefore, the pricing models are

feasible and tractable for implementation in practice. We employ Monte Carlo simulation

to examine the accuracy of the pricing formulas by using past three-year market data.

The results show that our pricing formulas are sufficiently and robustly accurate.
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Table 2: Numerical Examples of CMS spread Options

Date Type TM/K 20 bps 40 bps 60 bps

2009/09/01 30y -2y 1 (190.9, 190.4) (172.5, 172.2) (154.3, 154.3)

3 (128.7, 128.7) (112.9, 112.2) ( 97.5, 97.4)

5 (103.6, 104.4) ( 89.1, 89.8) ( 75.0, 75.4)

30y -10y 1 ( 27.0, 27.0) ( 13.3, 13.4) ( 3.6, 3.7)

3 ( 26.3, 26.0) ( 13.5, 13.4) ( 4.0, 4.1)

5 ( 30.1, 30.3) ( 16.5, 16.5) ( 5.4, 5.9)

10y -2y 1 (152.2, 151.7) (133.8, 133.8) (115.7, 114.9)

3 ( 91.4, 90.7) ( 75.8, 75.1) ( 60.7, 59.9)

5 ( 62.1, 62.4) ( 48.4, 48.8) ( 35.5, 36.0)

2009/06/01 30y -2y 1 (192.0, 192.4) (173.1, 173.2) (154.4, 154.4)

3 ( 90.5, 90.5) ( 76.1, 76.1) ( 62.3, 62.2)

5 ( 56.4, 56.7) ( 44.2, 44.2) ( 33.0, 33.1)

30y -10y 1 ( 13.7, 13.7) ( 4.1, 4.1) ( 0.3, 0.3)

3 ( 8.5, 8.4) ( 1.8, 1.8) ( 0.0, 0.1)

5 ( 7.0, 6.9) ( 0.8, 0.8) ( 0.0, 0.1)

10y -2y 1 (171.0, 171.0) (151.8, 151.7) (133.0, 132.9)

3 ( 77.4, 77.7) ( 62.3, 61.9) ( 48.0, 47.8)

5 ( 42.3, 42.2) ( 30.2, 30.1) ( 19.4, 19.7)

* TM, K and bps denote the time to maturity, the strike rate and basis points, respectively.

“30y-2y” means the CMS spread options on the difference between a 30-year CMS and a 2-

year CMS, others are defined accordingly. The prices expressed in basis points are presented

in the form (A, B), where A denotes the value computed from Theorem 1 and B the value

from Monte Carlo simulation. The standard error of Monte Carlo simulation in each case is

about 0.5 basis points, which is omitted to save space.
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Table 2: Numerical Examples of CMS spread Options (Continued)

Date Type TM/K 20 bps 40 bps 60 bps

2009/03/02 30y -2y 1 (122.9, 123.0) (104.4, 104.4) (86.5, 86.5)

3 (63.5, 63.5) (49.4, 49.4) (36.3, 36.3)

5 (45.9, 46.7) (33.4, 34.2) (22.2, 23.1)

30y -10y 1 (4.4, 4.4) (0.2, 0.2) (0.0, 0.0)

3 (3.7, 3.7) (0.0, 0.0) (0.0, 0.0)

5 (3.6, 3.9) (0.0, 0.0) (0.0, 0.0)

10y -2y 1 (115.0, 115.0) (95.8, 95.8) (77.4, 77.4)

3 (56.7, 56.3) (42.0, 41.9) (28.5, 28.0)

5 (35.6, 35.6) (23.3, 23.1) (12.8, 13.7)

2008/12/01 30y -2y 1 (69.8, 69.8) (54.2, 54.1) (39.8, 39.8)

3 (51.8, 51.8) (38.9, 38.6) (27.0, 27.3)

5 (48.8, 49.7) (36.1, 36.9) (24.3, 24.9)

30y -10y 1 (1.5, 1.5) (0.0, 0.0) (0.0, 0.0)

3 (6.0, 6.1) (0.2, 0.2) (0.0, 0.0)

5 (16.2, 16.9) (4.1, 4.9) (0.0, 0.1)

10y -2y 1 (73.7, 73.5) (57.8, 54.7) (43.2, 42.4)

3 (38.5, 38.3) (25.6, 25.9) (14.3, 15.0)

5 (23.1, 23.9) (12.4, 13.1) (4.1, 4.9)

2008/09/01 30y -2y 1 (85.4, 85.4) (68.1, 68.1) (52.0, 52.1)

3 (66.2, 66.2) (52.4, 52.4) (39.6, 39.5)

5 (58.8, 58.8) (46.1, 46.0) (40.2, 39.3)

30y -10y 1 (12.4, 12.4) (2.8, 2.8) (0.1, 0.1)

3 (13.1, 13.1) (3.7, 3.7) (0.1, 0.1)

5 (12.9, 13.1) (3.2, 3.3) (0.6, 0.5)

10y -2y 1 (59.8, 59.9) (43.5, 43.5) (29.4, 29.0)

3 (42.9, 42.9) (30.3, 29.9) (19.5, 19.0)

5 (35.9, 35.5) (24.8, 23.9) (19.9, 20.3)
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Table 2: The Numerical Examples of CMS spread Options (Continued)

Date Type TM/K 20 bps 40 bps 60 bps

2008/06/02 30y -2y 1 (105.4, 105.6) (87.6, 88.0) (70.6, 70.6)

3 (78.8, 78.8) (64.3, 64.3) (50.7, 50.7)

5 (65.5, 65.7) (52.5, 52.5) (46.3, 45.4)

30y -10y 1 (20.2, 20.2) (7.3, 7.4) (1.0, 1.1)

3 (17.5, 17.5) (6.5, 6.6) (0.7, 0.7)

5 (14.4, 14.5) (4.2, 4.3) (1.2, 1.1)

10y -2y 1 (69.7, 69.7) (52.8, 52.6) (37.6, 37.6)

3 (49.7, 48.9) (36.3, 36.4) (24.5, 24.3)

5 (40.6, 40.1) (28.8, 28.2) (23.5, 22.7)

2008/03/03 30y -2y 1 (203.7, 204.1) (184.4, 184.6) (165.2, 165.2)

3 (134.9, 135.2) (118.8, 118.8) (103.1, 103.1)

5 (100.1, 100.7) (85.9, 86.2) (79.1, 78.9)

30y -10y 1 (35.8, 36.1) (19.8, 19.9) (7.4, 7.4)

3 (26.5, 26.2) (13.7, 13.7) (4.4, 4.4)

5 (20.6, 20.9) (9.2, 9.2) (4.7, 4.3)

10y -2y 1 (151.4, 151.4) (132.0, 132.0) (112.8, 112.8)

3 (97.5, 96.9) (81.6, 81.1) (66.4, 66.1)

5 (69.2, 69.0) (55.5, 55.1) (48.9, 48.1)

2007/12/03 30y -2y 1 (116.8, 116.8) (97.8, 97.8) (79.3, 79.3)

3 (83.0, 83.2) (68.1, 68.0) (54.0, 53.9)

5 (63.8, 63.8) (50.9, 50.8) (44.8, 44.3)

30y -10y 1 (18.4, 18.4) (5.7, 5.7) (0.5, 0.5)

3 (15.5, 15.5) (5.0, 5.0) (0.3, 0.3)

5 (12.8, 12.9) (3.1, 3.3) (0.6, 0.5)

10y -2y 1 (81.9, 81.9) (63.5, 63.5) (46.4, 46.4)

3 (55.8, 55.7) (41.9, 41.5) (29.6, 29.3)

5 (40.6, 40.5) (29.1, 28.9) (23.9, 23.3)
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Table 2: Numerical Examples of CMS spread Options (Continued)

Date Type TM/K 20 bps 40 bps 60 bps

2007/09/03 30y -2y 1 (64.9, 64.9) (48.3, 48.3) (33.6, 33.6)

3 (57.0, 57.0) (43.4, 43.4) (31.4, 31.3)

5 (47.0, 46.7) (35.4, 35.5) (30.0, 29.4)

30y -10y 1 (10.0, 10.0) (1.6, 1.6) (0.0, 0.0)

3 (10.5, 10.5) (2.2, 2.2) (0.0, 0.1)

5 (9.5, 9.5) (1.5, 1.5) (0.2, 0.2)

10y -2y 1 (40.9, 40.9) (26.3, 26.2) (15.1, 15.3)

3 (35.5, 35.3) (23.6, 23.2) (14.2, 14.3)

5 (27.7, 27.4) (18.1, 18.0) (14.1, 14.3)

2007/06/01 30y -2y 1 (25.0, 24.9) (13.7, 13.7) (6.5, 6.5)

3 (27.4, 27.4) (17.0, 16.8) (9.7, 9.6)

5 (27.4, 27.3) (17.7, 17.6) (10.6, 10.4)

30y -10y 1 (2.9, 2.8) (0.1, 0.1) (0.0, 0.0)

3 (4.0, 3.9) (0.4, 0.3) (0.0, 0.0)

5 (3.4, 3.3) (0.2, 0.2) (0.0, 0.0)

10y -2y 1 (12.9, 12.9) (5.4, 5.4) (1.9, 1.8)

3 (15.0, 14.9) (7.5, 7.4) (3.3, 3.3)

5 (15.8, 15.6) (8.5, 8.3) (4.2, 4.1)

2007/03/01 30y -2y 1 (31.9, 31.9) (18.8, 18.8) (9.8, 9.7)

3 (34.5, 34.5) (22.9, 22.6) (14.1, 13.9)

5 (32.2, 32.2) (21.9, 21.8) (13.9, 13.8)

30y -10y 1 (3.8, 3.7) (0.2, 0.2) (0.0, 0.0)

3 (5.3, 5.3) (0.6, 0.6) (0.0, 0.0)

5 (4.9, 4.9) (0.4, 0.4) (0.0, 0.0)

10y -2y 1 (17.9, 17.8) (8.5, 8.4) (3.4, 3.4)

3 (19.9, 19.7) (11.0, 10.8) (5.4, 5.3)

5 (18.6, 18.5) (10.7, 10.6) (5.5, 5.4)
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Table 2: Numerical Examples of CMS spread Options (Continued)

Date Type TM/K 20 bps 40 bps 60 bps

2006/12/01 30y -2y 1 (35.0, 34.9) (21.9, 21.5) (12.4, 12.4)

3 (38.3, 38.3) (27.0, 26.6) (16.7, 16.7)

5 (39.7, 39.7) (28.8, 28.3) (19.9, 19.8)

30y -10y 1 (5.4, 5.3) (0.5, 0.5) (0.0, 0.0)

3 (7.8, 7.7) (1.5, 1.4) (0.1, 0.1)

5 (8.4, 8.4) (1.6, 1.6) (0.1, 0.1)

10y -2y 1 (19.2, 19.2) (9.9, 9.9) (4.5, 4.5)

3 (21.5, 21.5) (12.7, 12.5) (6.9, 6.8)

5 (22.1, 22.0) (13.9, 13.8) (8.2, 8.3)

2006/09/01 30y -2y 1 (33.1, 33.1) (20.5, 20.5) (11.6, 11.1)

3 (32.1, 32.0) (21.7, 21.6) (13.8, 13.6)

5 (34.8, 34.8) (24.8, 24.6) (16.8, 16.8)

30y -10y 1 (3.9, 3.9) (0.3, 0.3) (0.0, 0.0)

3 (6.2, 6.1) (1.1, 1.0) (0.1, 0.1)

5 (7.1, 7.0) (1.3, 1.3) (0.1, 0.1)

10y -2y 1 (19.5, 19.5) (10.0, 9.9) (4.5, 4.5)

3 (17.7, 17.5) (10.0, 10.0) (5.3, 5.2)

5 (19.2, 19.1) (11.8, 11.7) (6.8, 6.7)

Appendix A: EQ
T
[X ], EQ

T
[X2] and EQ

T
[X3]

By applying Proposition 3, the dynamics of {L(t, Ti)} under probability measure QT is

given as follows:

dL(t, Ti)

L(t, Ti)
= ∆0(t, Ti;T )dt+ γ(t, Ti) · dZ(t). (B.1)
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Therefore, the solution of the stochastic differential equation (B.1) is computed as follows:

L(T, Ti) =L(0, Ti)exp

(∫ T

0

(
∆0(u, Ti;T )− 1

2
‖γ(u, Ti)‖2

)
du+

∫ T

0

γ(u, Ti) · dZ(u)

)
.

(B.2)

Based on the martingale pricing method, the price of the CMS spread options specified

in (26) can be computed under the forward probability measure QT as follows:

C(0) = EQ
T
[
(X −K)+

]
, (B.3)

where X = Sm(T )− Sn(T ), and Sm(T ) and Sn(T ) are defined in (8).

EQ
T

[X] = EQ
T

[Sm(T )]− EQ
T

[Sn(T )]

=
M−1∑
i=0

wm,i(0)EQ
T [
Li(T )

]
−

N−1∑
j=0

wn,j(0)EQ
T [
Lj(T )

]
=

M−1∑
i=0

wm,i(0)Li(0)exp

(∫ T

0

∆0(u, Ti;T )du

)

−
N−1∑
j=0

wn,j(0)Lj(0)exp

(∫ T

0

∆0(u, Tj;T )du

)
.

EQ
T

[X2] = EQ
T

[Sm(T )2] + EQ
T

[Sn(T )2]− 2EQ
T

[Sm(T )Sn(T )]

= EQ
T

(M−1∑
i=0

wm,i(0)Li(T )

)2
+ EQ

T

(N−1∑
j=0

wn,j(0)Lj(T )

)2


− 2EQ
T

[(
M−1∑
i=0

wm,i(0)Li(T )

)(
N−1∑
j=0

wn,j(0)Li(T )

)]

=
M−1∑
i=0

M−1∑
k=0

wm,iwm,kE
QT [Li(T )Lk(T )] +

N−1∑
j=0

N−1∑
k=0

wn,jwn,kE
QT [Lj(T )Lk(T )]

− 2
M−1∑
i=0

N−1∑
j=0

wm,iwn,jE
QT [Li(T )Lj(T )] ,
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where

EQ
T

[Li(T )Lj(T )] =Li(0)Lj(0)exp

(∫ T

0

Φ0(u, Ti, Tj;T )du

)
,

Φ0(u, Ti, Tj;T ) =∆0(u, Ti;T ) + ∆0(u, Tj;T ) + γ(u, Ti) · γ(u, Tj).

EQ
T

[X3] =EQ
T

[Sm(T )3]− 3EQ
T

[Sm(T )2Sn(T )] + 3EQ
T

[Sm(T )Sn(T )2]− EQ
T

[Sn(T )3]

=
M−1∑
i=0

M−1∑
k=0

M−1∑
l=0

wm,iwm,kwm,lE
QT [Li(T )Lk(T )Ll(T )]

− 3
M−1∑
i=0

M−1∑
k=0

N−1∑
j=0

wm,iwm,kwn,jE
QT [Li(T )Lk(T )Lj(T )]

+ 3
M−1∑
i=0

N−1∑
j=0

N−1∑
k=0

wm,iwn,jwn,kE
QT [Li(T )Lj(T )Lk(T )]

−
N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

wn,jwn,kwn,lE
QT [Lj(T )Lk(T )Ll(T )] ,

where

EQ
T

[Li(T )Lj(T )Lk(T )] =Li(0)Lj(0)Lk(0)exp

(∫ T

0

Ψ0(u, Ti, Tj, Tk;T )du

)
,

Ψ0(u, Ti, Tj, Tk;T ) =∆0(u, Ti;T ) + ∆0(u, Tj;T ) + ∆0(u, Tk;T )

+ γ(u, Ti) · γ(u, Tj) + γ(u, Ti) · γ(u, Tk) + γ(u, Tj) · γ(u, Tk).

Appendix B: Proof of Theorem 1

Let X denote the difference between two CMS rates, namely, X = Sm(T, T )− Sn(T, T ).

The CMS spread option can be computed as follows:

C(0) = B(0, T )EQ
T
[(
X −K

)+
]
, (B.1)

= B(0, T )
(

EQ
T
[
XI{X≥K}

]
−KEQ

T
[
I{X≥K}

])
, (B.2)

where I{·} is an indicator function and X follows one of the four types of generalized

lognormal distributions. We first consider that X follows a regular lognormal distribution.
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Assume that X has a regular lognormal distribution, namely ln(X) ∼ N(µ, ξ2), where

µ and ξ can be computed in terms of EQ
T
[X] and EQ

T
[X2] as follows:

µ =2 ln
(
EQ

T

[X]
)
− 1

2
ln
(
EQ

T

[X2]
)
,

ξ2 = ln
(
EQ

T

[X2]
)
− 2 ln

(
EQ

T

[X]
)
.

The second expectation of (B.2) is computed as follows:

EQ
T
[
I{X≥K}

]
= P

(
ln(X) ≥ ln(K)

)
= N

 ln
(

EQ
T
[X]/K

)
− 1

2
ξ2

ξ

 . (B.3)

The first expectation of (B.2) is computed as follows:

EQ
T
[
XI{X≥K}

]
= EQ

T
[
eln(X)I{ln(X)≥ln(K)}

]
= EQ

T
[
eξΦ+µI{ξΦ+µ≥ln(K)}

]
(where Φ ∼ N(0, 1)),

= eµ
∫ ∞

ln(K)−µ
ξ

eξφ
1√
2π

e
−1
2
φ2dφ

= eµ+ 1
2
ξ2
∫ ∞

ln(K)−µ
ξ

1√
2π

e
−1
2

(φ−ξ)2dφ

= eµ+ 1
2
ξ2
∫ ∞

ln(K)−µ−ξ2
ξ

1√
2π

e
−1
2
w2

dw (let W = Φ− ξ)

= eµ+ 1
2
ξ2N

(
µ+ ξ2 − ln(K)

ξ

)

= EQ
T

[X]N

 ln
(
EQ

T
[X]/K

)
+ 1

2
ξ2

ξ

 . (B.4)

Equations (B.2), (B.3) and (B.4) lead to (23).

Second, let X = U + τ , which has a shifted lognormal distribution, where τ is a

constant and U is a regular lognormal distribution with ln(U) ∼ N(µ, ξ2). (B.1) can be

rewritten as follows:

C(0) = B(0, T )EQ
T
[(
X −K

)+
]
,

= B(0, T )EQ
T
[(
U − (K − τ)

)+
]
, (B.5)
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By replacing K in (B.1) by K + τ , the CMS spread option can be derived and is given in

(24).

Third, let X have a negative lognormal distribution, namely X = −U , where U is a

regular lognormal distribution. (B.1) can be rewritten as follows:

C(0) = B(0, T )EQ
T
[(
− U −K

)+
]
, (B.6)

= B(0, T )
(
− EQ

T
[
UI{U≤−K}

]
−KEQ

T
[
I{U≤−K}

])
, (B.7)

(B.7) can be computed similarly to the first and second expectation of (B.2), which

leads to (25).

Fourth, let X have a negative-shifted lognormal distribution, namely X = −(U + τ),

where U is a regular lognormal distribution and τ is a constant. (B.1) can be rewritten

as follows:

C(0) = B(0, T )EQ
T
[(
− U − (K + τ)

)+
]
, (B.8)

By replacing K in (B.6) by K + τ , the CMS spread option can be derived and is given in

(26).
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