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Abstract 

 

 

We derive a reservation purchase price for a call option under proportional transaction 

costs. The price is derived in discrete time for any number of periods and for a general 

distribution of the return of the underlying asset, following the stochastic dominance 

approach of Constantinides and Perrakis (CP, 2002, 2007). We then consider a lognormal 

diffusion model of this return, and we formulate a general discrete time trading version of 

the return that converges to diffusion as the time partition becomes progressively more 

dense. We show that the CP approach results in a lower bound for European call options 

that converges to a non-trivial and tight limit that is a function of the transaction cost 

parameter. This limit defines a reservation purchase price under realistic trading 

conditions for the call options and becomes equal to the exact Black-Scholes-Merton 

value if the transaction cost parameter is set equal to zero. We also develop a novel 

numerical algorithm that computes the CP lower bound for any discrete time partition 

and converges to the theoretical continuous time limit in a relatively small number of 

iterations. Last, we extend the lower bound results to American index and American 

index futures options.  
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I. Introduction 
 

This paper generalizes the Black-Scholes-Merton (BSM) option pricing model to 

incorporate proportional transaction costs. It derives a lower bound on the price of a call 

option in a discrete time setting that, if violated, will create superior returns for investors 

under realistic trading conditions. It then examines the behavior of this derived bound as 

the time partition tends to zero, given that the underlying asset’s price tends to a 

lognormal diffusion under such conditions. It is shown that the bound converges to a 

tight
2
 and non-trivial BSM-type expression as the partition of trading time tends to zero, 

even if the transaction cost parameter stays constant. To our knowledge, this is the only 

approach to the derivation of the BSM model that can accommodate the introduction of 

proportional transaction costs and produce non-trivial results.  

 

The derived results are part of the stochastic dominance bounds on European and 

American option prices in the presence of proportional transaction costs of 

Constantinides and Perrakis (CP, 2002, 2007). These bounds were derived for a general 

distribution of underlying stock returns in a discrete time context. Hence, their 

relationship to well-known continuous time models of option pricing is unknown. In this 

paper these bounds are redefined in a discrete time model of the underlying asset 

distribution that converges to a lognormal diffusion as the time partition tends to zero. 

The main result of this paper is that under such conditions the corresponding CP lower 

bound converges to the BSM model with the price of the underlying asset multiplied by 

the roundtrip transaction cost. A numerical algorithm is also presented that verifies this 

convergence and analyzes its properties. 

  

Option pricing models often abstract from both market incompleteness and from market 

imperfections such as bid-asked spreads, brokerage fees and execution costs, collectively 

referred to here as transaction costs. These abstractions are serious, insofar as their 

relaxation comes at significant theoretical and practical costs. With dynamic market 

incompleteness the concept of the no-arbitrage option price is undefined, and the 

                                                 
2
 A tight bound is a bound that lies within a distance from the theoretical option value without transaction 

costs that is comparable to observed bid/ask spreads. As it will be discussed further on, this is the case with 

the bound derived in this paper.  
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available option pricing models resort to market equilibrium arguments to derive a 

solution.
3
 It was shown recently that the stochastic dominance bounds generalize these 

equilibrium models and provide an alternative approach to the problem of market 

incompleteness.
4
 

 

The problem of market imperfections is more serious insofar as the concept of the no-

arbitrage option price is ill-defined, even if the market is dynamically complete.  For 

example, in the Black-Scholes (1973) and Merton (1973) setting, if the market price of an 

option differs from its theoretical value, the investor buys the underpriced option or 

writes the overpriced one. The investor perfectly hedges the position by dynamic trading, 

thereby realizing as arbitrage profit the difference between the market price and the 

theoretical value. As Merton (1989) first showed, such a dynamic trading policy incurs an 

infinite volume of trade over the lifetime of an option. Unless transaction costs are 

assumed away, as they are in the BSM model and in most empirical applications of 

option pricing, the dynamic trading strategy ends up with trivial prices for the option, 

equal to the underlying stock price for the long position and to the Merton (1973) lower 

bound for the short option.
5
 

 

The CP approach derived equilibrium (as opposed to no-arbitrage) restrictions on the 

range of the transaction prices of European and American options imposed by a class of 

traders that were referred to as utility-maximizing traders. These traders were assumed to 

have heterogeneous endowments and be risk-averse, with heterogeneous von Neuman-

Morgenstern preferences which are otherwise unspecified.  Furthermore it was assumed, 

as in most earlier studies, that trading costs in the underlying security are proportional to 

the value of the underlying security that is being traded.  These defining characteristics of 

utility-maximizing traders apply to a broad spectrum of institutional and individual 

investors. 

 

                                                 
3
 See, for instance, Bates (1991), Amin and Ng (1993) and Amin (1993). 

4
 See Oancea and Perrakis (2007). 

5
 See, for the continuous time, Soner et al (1995), and for the binomial model Boyle and Vorst (1992) and 

Bensaid et al (1992). 
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The CP bounds defined a range of prices, such that any utility-maximizing trader would 

be able to exploit a mispricing, net of transaction costs, if the price of the option were to 

fall outside this range; the frictionless no arbitrage option price lies within the range. The 

reservation purchase price of an option was defined as the maximum price gross of 

transaction costs below which a given trader in this class increases her expected utility by 

purchasing the option.  The reservation write price of an option is similarly defined as the 

minimum price net of transaction costs above which a given trader in this class increases 

her expected utility by writing the option. For the European call options CP (2002) 

defined a relatively tight reservation write price that was independent of the time 

partition, and a similarly partition-independent reservation purchase price that was, 

however, very loose and not particularly useful. For the American call options CP (2007) 

derived similarly a tight reservation write price and a very loose reservation purchase 

price.
6
 The relationship of these bounds to the Black-Scholes price remained unclear.  

 

CP (2002) derived also several partition-dependent call option prices, one reservation 

write and three reservation purchase ones. Neither the convergence properties of these 

prices, nor their discrete time values for any given time partition were provided, given the 

complexity of the resulting expressions. Although the discrete time distribution of the 

underlying stock price was assumed to have independent and identically distributed (iid) 

returns, the stochastic process under which the bounds were evaluated as risk neutral 

expectations was Markovian but with state-dependent returns that were not iid. This 

presented serious problems in the numerical work for their estimation. This paper 

presents a novel numerical approach to the estimation of expectations under such state-

dependent distributions that may be used in other applications beyond the CP bounds.  

 

In this paper we focus on one of the call option reservation purchase prices, the prices 

given by Proposition 5 in CP (2002).
7
 This price is basically a generalization in a trading 

model that includes proportional transaction costs of the call option lower bounds derived 

                                                 
6
 The European bounds were tested empirically on S&P 500 index options in Constantinides, Jackwerth 

and Perrakis (2009). The American bounds were tested on S&P 500 index futures options in 

Constantinides, Czerwonko, Jackwerth and Perrakis (2009).  
7
 It can be shown that the other partition-dependent prices are either inferior to the partition-independent 

ones, or tend to trivial values as the density of trading increases. 
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originally by Levy (1985) and Ritchken (1985), and extended to a multiperiod context by 

Perrakis (1988) and Ritchken and Kuo (1988). We reformulate the CP results, applying 

them to a case where the iid returns tend to a lognormal distribution as trading becomes 

progressively denser, as in Oancea-Perrakis (2009). We then show in our main result that 

the CP bound of Proposition 5 tends at the limit to a Black-Scholes type expression in 

which the current stock price has been multiplied by the roundtrip transaction costs, and 

becomes exactly equal to the BSM model when the transaction cost parameter is set to 

zero. We also show that the numerical algorithm that we develop converges to this limit 

in a reasonably small number of iterations, thus making the call option lower bound 

applicable to real life trading under realistic market conditions. Last, we extend the CP 

(2002) Proposition 5 to American index and index futures options, thus complementing 

the results of CP (2007). Given the tight and partition-independent upper bound already 

available from the original CP results, the results of this paper allow the extension of one 

of the most important models that have ever appeared in financial theory to a universe 

that recognizes realistic trading conditions and make it suitable for professional 

applications and empirical work.  

 

In the remainder of this section we complete the literature review of the option pricing 

models under proportional transaction costs when the underlying asset dynamics follow a 

diffusion process. Proportional transaction costs were first introduced in the BSM model 

by Leland (1985), in a continuous time setup. The Leland model was based on imperfect 

replication of the option in an arbitrarily chosen discretization of the time to option 

expiration. The accuracy of the approximation of the option payoff and the width of the 

resulting option bounds were both dependent on the time partition, implying the necessity 

of a tradeoff between accuracy and costs of replication. Several papers explored this 

tradeoff, including Grannan and Swindle (1996) and Toft (1996).  

 

The replication approach was also attempted in the binomial model by Merton (1989) and 

Boyle and Vorst (1992). Bensaid et al (1992) introduced the more general notion of super 

replication in the binomial model and examined the optimality of the exact replication 
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policy, which holds only for options with physical delivery of the underlying asset. Their 

results were extended by Perrakis and Lefoll (2000, 2004) to American options.  

 

Unfortunately both the continuous time discretization and the binomial approaches ended 

up with the same dilemma between accuracy and cost and for both option replication and 

super replication, insofar as the width of the option bounds increased with the time 

partition defining the size of the binomial tree. As shown in Boyle and Vorst (1992), the 

option lower bound for a sufficiently fine partition tends to a BSM expression in which 

the instantaneous variance 2σ of the underlying asset return is replaced by the expression 

2 2
1

k

t
σ

σ
 
− ∆ 

, where k  denotes the transaction cost parameter and t∆ is the length of 

the time partition. In Leland (1985) the variance adjustment is smaller by a factor of 

approximately 0.8 but equally dependent inversely on t∆ . It is easy to see that this 

expression becomes negative with probability 1 as t∆ decreases, ending up with an option 

bound equal to the Merton (1973) arbitrage bound for a call option. A similar trivial 

result holds also for the option upper bound.
8
  

 

An alternative to replication is the expected utility approach, pioneered by Hodges and 

Neuberger (1989). In this approach a given investor introduces an option to a portfolio of 

the riskless bond and the underlying asset and derives a reservation price as the price of 

the option that makes the investor indifferent between as to including or not the option in 

her portfolio. This approach was developed rigorously by Davis et al (1993), who solved 

numerically the problem for an investor with an exponential utility and a given risk 

aversion coefficient. Related contributions to this approach were made by Davis and 

Panas (1994), Constantinides and Zariphopoulou (1999, 2001), Martellini and Priaulet 

(2002), and Zakamouline (2006). Most studies assume that the investor’s portfolio 

horizon equals the time to option expiration, an assumption that is both restrictive and 

unrealistic, given the short maturity of most options. The major drawback of this 

approach, however, is the dependence of the derived reservation option prices on the 

                                                 
8
 The impossibility of the arbitrage method to produce useful results under proportional transaction costs 

was shown theoretically by Soner et al (1996) in continuous time.  
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investor risk aversion coefficient. Given the uncertainty prevailing as to the size of that 

coefficient for the “average” investor,
9
 the reservation prices derived by the expected 

utility approach cannot be generalized to the entire market.  

 

 

II. The General Model 
 
We adopt the same general setup as in CP (2002, 2007), in which there is a market with 

several assets with a group of investors who hold portfolios composed of only two of 

them, a riskless bond and a stock. The stock has the natural interpretation of a stock 

index.
10

 We refer to these investors as utility-maximizing traders or simply as “traders”.  

Into this setup we introduce derivative assets in the following sections: a long European 

call option, a long American call option, and a short European call option.   

 

We assume that each trader makes sequential investment decisions in the primary assets 

at the discrete trading dates 0,1,..., 't T= , where 'T is the terminal date and is finite.
11

  A 

trader may hold long or short positions in these assets.  A bond with price one at the 

initial date has price R, R > 1 at the end of the first trading period, where R is a constant.  

The bond trades do not incur transaction costs. 

 

At date t, the cum dividend stock price is ( )1 t tSγ+ , the cash dividend is t tSγ , and the ex 

dividend stock price is tS , where the dividend yield parameters { } '1,...,t t T
γ

=
 are assumed to 

satisfy the condition 0 1tγ≤ <  and be deterministic and known to the trader at time zero.  

We assume that 0 0S >  and that the support of the ex-dividend rate of return 1t

t

S
z

S

+ ≡ on 

the stock is the compact subset min max[ , ]z z  of the positive real line.
12

  To simplify the 

                                                 
9
 See Kotcherlakota (1996).  

10
 There is ample evidence that many US investors follow such an indexing strategy. See Bogle (2005). 

11
 The assumption that the time interval t∆  between trading dates is one is innocuous: the unit of time is 

chosen to be such that the time interval between trading dates is one. The continuous time case will be 

derived as the limit of the discrete time as 0t∆ → . 
12

 In CP (2002, 2007) the support is the entire positive real line. The limits on the support here are 

necessary because of technical conditions in considering the convergence to continuous time.  
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notation we also assume that tγ γ= , constant for all t. We also assume that the rates of 

return are independently distributed with conditional mean return ( )1z E zγ ≡ +  , 

known to the trader at time zero. We also assume that 

 

[ ]z E z R> > .      (2.1) 

 

Stock trades incur proportional transaction costs charged to the bond account.  At each 

date t, the trader pays ( )11 tk S+  out of the bond account to purchase one ex dividend 

share of stock and is credited ( )21 tk S− in the bond account to sell (or, sell short) one 

share of stock.  We assume that 10 1k≤ < and 20 1k≤ < , and we also assume for 

simplicity that 1 2k k k= ≡ .  

 

We consider a trader who enters the market at date t with dollar holdings tv  in the bond 

account and /t tw S  ex dividend shares of stock.  The endowments are stated net of any 

dividend payable on the stock at time t.
13

  The trader increases (or, decreases) the dollar 

holdings in the stock account from tw  to 't t tw w υ= +  by decreasing (or, increasing) the 

bond account from tv to 't t t tv v kυ υ= − − .  The decision variable tυ  is constrained to be 

measurable with respect to the information up to date t.  The bond account dynamics is 

 

{ } ( )1 , ' 1t t t t t tv v k R w z t Tυ υ υ γ+ = − − + + ≤ −    (2.2) 

 

and the stock account dynamics is 

 

( )1 , ' 1.t t tw w z t Tυ+ = + ≤ −     (2.3) 

 

                                                 
13

 We elaborate on the precise sequence of events.  The trader enters the market at date t with dollar 

holdings 
t t t

v wγ− in the bond account and /
t t

w S  cum dividend shares of stock.  Then the stock pays cash 

dividend 
t t
wγ and the dollar holdings in the bond account become

t
v .  Thus, the trader has dollar holdings 

t
v in the bond account and /

t t
w S  ex dividend shares of stock. 
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At the terminal date, the stock account is liquidated, ' 'T Twυ = − , and the net worth is 

' ' 'T T Tv w k w+ − .  At each date t, the trader chooses investment tυ  to maximize the 

expected utility of net worth, ( )' ' ' |T T T tE u v w k w S + −  .
14

  We make the plausible 

assumption that the utility function, ( ).u , is increasing and concave, and is defined for 

both positive and negative terminal net worth.
15

 

 

We define the value function recursively as 

 

( )

{ } ( ) ( )( )
, ,

max , , 1

t t

t t t t t t t

V v w t

E V v k R w z w z tυ υ υ υ γ υ = − − + + + + 
  (2.4) 

 

for ' 1t T≤ −  and 

 

( ) ( )' ' ' ' ', , 'T T T T TV v w T u v w k w= + − .    (2.5) 

 

We assume that the parameters satisfy appropriate technical conditions such that the 

value function exists and is once differentiable.  We denote by *

tυ  the optimal investment 

decision at date t corresponding to the portfolio ( , )t tv w .  For future reference, we state 

that the value function ( ), ,V v w t  is increasing and concave in ( ),v w , properties inherited 

from the monotonicity and concavity of the utility function ( ).u , given that the 

transaction costs are quasi-linear.
16

 

 

Also for future reference, we define 'tv  and 'tw as 

                                                 
14

 The results extend routinely to the case that consumption occurs at each trading date and utility is defined 

over consumption at each of the trading dates and over the net worth at the terminal date.  See, 

Constantinides (1979) for details. 
15

 If utility is defined only for non-negative net worth, then the decision variable is constrained to be a 

member of a convex set that ensures the non-negativity of the net worth.  See, Constantinides (1979) for 

details.  This case is studied in Constantinides and Zariphopoulou (1999, 2001).  The CP (2002, 2007) 

bounds apply to this case as well. 
16

 See, Constantinides (1979) for details. 
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* *'t t t tv v kυ υ= − −      (2.6) 

and 

*'t t tw w υ= + .     (2.7) 

 

Portfolio ( ', ')t tv w  represents the new holdings at t following optimal restructuring of the 

portfolio ( , )t tv w .  Equations (2.5), (2.7) and (2.8) and the definition of *

tυ  imply 

 

( ) ( ), , ', ',t t t tV v w t V v w t=     (2.8) 

 

Relations (2.1)-(2.9) are sufficient for the CP (2002, 2007) derivations of the bounds. 

These derivations are done by considering the decision of the investor to open a long 

(short) option position. The corresponding reservation purchase (write) price of the 

option is the maximum (minimum) price above (below) which the investor with the open 

position will have a higher value function than the investor who did not open the option 

position. Both Proposition 1 of the following section, proven in the appendix, as well as 

Propositions 3 and 4 for the lower bounds of the American index and index futures call of 

Section VII, are established by this methodology.  

 

We illustrate the methodology for the derivation of the results of the following section in 

the case where the transaction cost parameter is set equal to 0 in relations (2.2)-(2.8). In 

such a case the value function ( ), ,t tV v w t becomes a function of t tv w+ , say 

' '( , ) [ ( , 1)]t t t tv w t E v R w z tΩ + = Ω + + . Let ( ), 1tC S z t + denote the value after one period of 

a call option expiring at ,  1 'T t T T+ ≤ ≤ , and assume that the investor may open a long 

position in the option at a price of C . The investor purchases the option by the zero-net-

cost policy of shorting an amount ,  1tSδ δ <  of stock and investing the remainder in the 

riskless asset. The value of C should be sufficiently high, so that the investor would not 

be able to improve her position for anyδ . The value function of the investor with the 

open position is ( , )C t t t tv S C w S tδ δΩ + − + − . We have  
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( , ) [ ( ' ( ) ( ' ) , 1)]

[ ( ' ( ) ( ' ) ( , 1), 1)]

C t t t t C t t t t

t t t t t

v S C w S t E v R S C R w S z t

E v R S C R w S z C S z t t

δ δ δ δ

δ δ

Ω + − + − ≥ Ω + − + − + ≥

Ω + − + − + + +
.      (2.9) 

 

In (2.9) the first inequality holds because the optimal restructuring portfolio policy for the 

investor without the open option position is not necessarily optimal for the option-holding 

investor and the second inequality because it may not necessarily be optimal for the 

investor to close her position in the next period. We define 

( , ) ( , )t C t t t t t tv S C w S t x y tδ δ∆ ≡ Ω + − + − −Ω + , and we seek a lower bound on C so 

that 0t∆ ≥ for any call prices below the bound. Replacing the definitions of Ω and CΩ and 

using (2.9) and the concavity property of the value functions we get the relation 

1[ ( ) ( , , ) ]t tE z H C z Sδ∆ ≥ Ω , where 1Ω is the derivative of Ω  with respect to its argument 

and we have used the concavity of Ω , with  

 

                        ( , , ) ( ) ( , 1)t t tH C z S C R S z C S z tδ δ δ= − − + + .   (2.10) 

This last function is convex in z , is positive at minz z= and has at most two zeroes, at 

z x= and ˆz z= , while its expectation has a unique maximum inδ  for any C . Using the 

fact that 1Ω is a decreasing function of z we have  

 

                           1
ˆ ˆPr ( ) ( ) [ ( , , ) , ]t tob z z x E H C z S z zδ∆ ≥ ≤ Ω ≤ .   (2.11) 

 

This is, however, positive unless the expectation in the right-hand-side is negative. 

Replacing and maximizing with respect toδ , we get the lower bound 

1
ˆ ˆ[ ( , 1) ],   [ ]tC E C S z t z z E z z z R

R
≥ + ≤ ≤ = , which is the lower bound originally derived 

by Levy (1985) and Ritchken (1985) with different approaches. In the next section and in 

Appendix A the method presented here is extended to incorporate transaction costs.    

  

 

III. The Call Option Lower Bound in Discrete Time 
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Proposition 5 was published without its proof in CP (2002). Given its importance, we 

restate it in this section, express it in a format suitable for a limiting process in continuous 

time, and provide its proof in Appendix A. We assume here that the dividend yield 0γ = . 

To simplify the notation, we define the following constants:  

 

                             ( ) ( ) ( )1 1k k kϕ ≡ − +  and ( ) ( )2 1k k kβ ≡ + .     (3.1) 

 

We also define the following function: 

 

                                             
1/(1 ),  0

( )
1/(1 ),  0

k z
I z

k z

+ ≤
≡ 

− >
.                                                     (3.2) 

 

With these definitions we have the following result, which is a slightly modified version 

of Proposition 5 in CP (2002). 

 

Proposition 1: Under the assumptions of the multiperiod economy stated in section 2, the 

tightest lower bound ( ),tC S t  on the reservation purchase price of a call option at any 

time t prior to option expiration is derived recursively from the expressions
17

 

 

( ) ( ) ( )1 1 1 1 1
ˆ, 1 | , ,T T T T T

K
C S T Max E S z K S z z R k S

R
ϕ

+
+

− − − − −

   − = − ≤ −       
  (3.3) 

 

where 1
ˆ

Tz −  is implied by the equation 

 

                                                [ ] ( )1
ˆ| TE z z z k Rϕ−≤ =         (3.4)  

                                                 
17

 In expression (3.3) the first term in the RHS exceeds the second one by Jensen’s inequality. The second 

term is the Merton (1973) lower bound under transaction costs. In the diffusion case that we examine in the 

following sections the first term tends to the second as 0t∆ → . In the numerical work we use only the 

second term in the algorithm.  
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If it is the first term within the maximum that is larger in the RHS of (3.4) then the 

number of shorted shares ( )1 1T Tg S− − is equal to 

 

                                   ( ) ( ) ( )
( )( )

1 1 1

1 1

1 1

ˆ , 1

ˆ

T T T

T T

T T

S z K RC S T
g S

z k R Sϕ

+

− − −
− − +

− −

− − −
=

−
     (3.5) 

 

Otherwise, if in (3.3) the bound is given by the second term, then we have, depending on 

whether the term is positive or zero, that ( ) ( )1 1 1 11 or 0T T T Tg S g S− − − −= = .  

 

At any time 1t T< − we have   

                     

( )
( ) ( ) ( ) ( ) ( )

( )
1

ˆ ˆ, 1 | , | ,
,

ˆ| ,

t t t t t t t t t t t

t

t t t

E C S z t I z x S z z k S E G S z I z x S z S z z
C S t

RE I z x S z z

β +   + − ≤ + − ≤   =
 − ≤ 

  (3.6) 

where ˆ
tz  is implied by the equation: 

 

                  
[ ]

( ) ( )
ˆ|

ˆ1 |

t

t t

E z z z
R

k E I z x z z

≤
=

 − − ≤ 
,      (3.7)                                 

 

and ( )t tg S  is given by 

 

                                            ( ) ( ) ( )
( )( )

ˆ , 1 ,

ˆ

t t t

t t

tt t

C S z t RC S t
g S

k z R Sϕ
+ −

=
−

,     (3.8) 

 

and with ( ) ( ){ }1 1 1   ,0   t t t t t tG S z g S z for z x for z x+ + +≡ ≤ > .  xt  is implied by the equation: 

 

         ( ) ( ) ( ) ( ) ( ) ( )1, , 1t t t t t t t t t t tR k g S S C S t k g S x S x C S x tϕ ϕ + − = − +  .          (3.9) 
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Proposition 1 is based on the general model of an investor who holds a portfolio of the 

stock and the riskless bond of the previous section. The investor improves her utility if at 

any time t prior to option expiration she can purchase a call option at a price equal to or 

lower than ( ),tC S t . The purchase is from the riskless bond account, but the proof of the 

proposition assumes that the investor also shorts an amount equal to ( ) /(1 )t tg S k+ shares 

and invests the proceeds in the bond account, as in relations (2.9)-(2.11). The recursive 

equation (3.6) that yields the bound requires the simultaneous solution of the system 

(3.6)-(3.9), that determines the variables ˆ ,  ,  ( ) and ( , )t t t t tz x g S C S t at all times [ , 1]t Tτ ∈ −  

and for all stock prices Sτ . Since all unknown quantities in the system (3.6)-(3.9) are 

dependent either on tx  or on quantities known at time t, this system may be solved by a 

search over admissible values for tx . This search is specific to the distribution ( )f z of the 

return. Equations (3.10)-(3.11) below demonstrate the link between tx and ˆ
tz under 

general conditions, which is made specific in Section V for a uniform distribution. The 

numerical algorithm that solves the recursive equations (3.3)-(3.9) is presented in Section 

V and Appendix D.    

 

Equations (3.2) and (3.6)-(3.8) may also be formulated in integral form, which facilitates 

the numerical work. For any type of process we can rewrite equation (3.7) as follows 

 

                                     
( ) ( )

( ) ( ) ( )
min

min min

ˆ

ˆ

1

1 2

t

t t

z

z

z x

z z

k zf z dz
R

k f z dz k f z dz

+
=

+ −

∫

∫ ∫
   (3.10) 

 

where ( )f z is the density of the one-period stock return distribution.  By differentiating 

(3.10) with respect to x, we have: 

 

                                                    
( )
( )

2
ˆ '

ˆ ˆ1

t

t

t t

f xk R
z

k f z z R
= −

+ −
.                                        (3.11) 
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Note that the sign of the derivative in (3.11) is strictly negative, since ˆ
tz R> . We now 

have the following result, proven in Appendix C. 

 

Lemma 1:  Equation (3.9) denotes the first order condition (FOC) for the constrained 

maximization of (3.6) with respect to tx , taking into account (3.10).  

 

Next we examine a version of the discrete time returns z that converge to continuous 

time as trading becomes progressively more dense and 0t∆ → . We set 1T T t− = −∆  and 

we also set everywhere 1t t t+ = + ∆ . The stock returns become 

 

                                            1t t

t

S
z t t

S
µ σε+∆ ≡ = + ∆ + ∆     (3.12) 

 

where (0,1) and  is a general distributionF Fε : with bounded and compact support 

min max[ , ]ε ε ε∈ , the counterpart of  min max[ , ]z z ,with density (.)f . It can be shown
18

 that 

as 0t∆ →  (3.12) tends to a lognormal diffusion of the form 

 

                                                    t

t

dS
dt dW

S
µ σ= + ,      (3.13) 

where dW denotes an elementary Wiener process.  

 

While the returns (3.12) are clearly iid, the stochastic process for the lower 

bound ( ),tC S t  described in Proposition 1 is Markovian but non-iid. We seek to show that 

in spite of this it does converge to a diffusion process whose parameters we shall 

determine. The weak convergence property that we use stipulates that the limit of the 

expectation of any bounded continuous function is equal to the expectation of the 

function with the distribution given by the limiting diffusion process. The criterion for 

                                                 
18

 See Lemma 1 in Oancea and Perrakis (2007). In fact the convergence result is stronger than the version 

used here, insofar as the process can be multidimensional and the parameters µ and σ can be functions of 

the state variable St.  
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weak convergence that we use is the Lindeberg condition, which was also used by 

Merton (1982) to develop criteria for the convergence of multinomial processes.  

 

The Lindeberg condition stipulates that, if tX   denotes a discrete time stochastic process 

then a necessary and sufficient condition that  tX   converges weakly to a diffusion, is 

that for any fixed  0δ >   we must have 

 

    ( )
|| ||0

1
lim , 0t

Y Xt
Q X dY

t δ ∆− ≥∆ →
=

∆ ∫ ,      (3.14) 

 

where  ( , )tQ X dY∆   is the transition probability from  tX X=   to  t tX Y+∆ =   during the 

time interval  t∆  . Intuitively, it requires that  tX   does not change very much when the 

time interval  t∆   goes to zero. When the Lindeberg condition is satisfied the following 

limits define the instantaneous means and covariances of the limiting process 

 

                               ( ) ( ) ( )
|| ||0

1
lim ,t

Y Xt
Y X Q X dY X

t δ
µ∆− <∆ →

− =
∆ ∫                                  (3.15) 

 

                               ( ) ( ) ( )2 2

|| ||0

1
lim ,t

Y Xt
Y X Q X dY X

t δ
σ∆− <∆ →

− =
∆ ∫                            (3.16) 

 

In our case we have 1,    t t
t t t

t

S
X X z

S

+∆
+∆= = = , where z is given by the process (3.12) in 

the absence of transaction costs. In the next section we apply the Lindeberg condition to 

the Markovian process described by (3.1)-(3.9) in the presence of transaction costs, given 

that the stock price evolves according to the process (3.12) that is known to converge to 

(3.13) when there are no transaction costs. 



 18 

 

IV. The Limit of the Lower Bound in Continuous Time 

 

Equation (3.6) shows that the call lower bound ( , )tC S t  is a discounted recursive 

expectation of its payoff under a transformed process.  Define the density 

 

                                  
( ) ( )

( )
[ ( )]

t
x

t

I z x f z
f z

E I z x

−
≡

−
,          (4.1) 

 

This is the transaction cost adjusted distribution of the return, with z truncated at the 

value ˆ
tz in taking expectations in (3.6)-(3.7). In the specialized version of the stock return 

given by (3.12) ( )xf z becomes ( )xf ε , the distribution of ε  is truncated at a value 

maxε ε≤  with support [ ]min ,  ε ε , and tx is replaced by [ ]min ,  xε ε ε∈ . Hereafter the 

subscript x in expectations denotes an expectation taken with respect to this transaction 

cost adjusted and truncated distribution. To simplify the notation define the following 

expression, which enters in (3-6)-(3.7)   

 

            ( ) ( ) ( ) ( )( )
( )

1 1 1
( )

1 1
x x tE I F F F E I z x

k k F
ε ε ε ε ε

ε
 ≡ + − =  − ≤   + − 

.      (4.2) 

 

Setting again 1,    t t
t t t

t

S
X X z

S

+∆
+∆= = = , we observe that in the recursive expressions (3.6) 

the stock return is replaced by the following process t tX +∆  

 

( ) ( )
1 2

1
t t t t t t

z
X X X

k E I

ε ε
+∆ +∆ +∆

≤
≡ + =

−
      (4.3a) 

 

( ) ( ) ( ) ( )
1

  for ,  =  for ,
1 1

t t x x

z z
X

k E I k E I

ε ε ε ε
ε ε ε ε ε+∆

≤ ≤
= ≤ ≤ ≤

+ −
  (4.3b) 
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( ) ( )
2

( )   for ,   0 for 
1

t t x x

z
X k

k E I

ε ε
β ε ε ε ε+∆

≤
= ≤ >

−
    (4.3c) 

 

From (3.6) and Lemma A.2 in the appendix it can be easily seen that the call lower bound 

( , )tC S t  given by Proposition 1 is greater than or equal to the following recursive 

expression for   -1t T<  

 

     
( ) ( )1 1

, 1 , 1 1
2

( , )
1

x
t t t tx t x t

t

E C S X t E C S X t
k

C S t
R k R

ε εε ε ε ε+∆ +∆ ≤
   + ≤ + ≤      ≥ +

−
, (4.4) 

 

where the indicator function 1
xε ε≤ denotes a quantity that is equal to 0 when xε ε> . Now 

by applying (4.3abc) to the RHS of (4.4) it may be easily shown that 

 

       
( ) ( ) ( ), 1

, 11
( , )

t
t tt

t

z
E C S t

E C S X tk E I
C S t

R R

ε ε
ε ε+∆

  
+ ≤    + ≤−     ≥ =           (4.5)

     

for any 2t T≤ − . Furthermore, equation (3.7) now becomes, neglecting the term ( )o t∆   

 

                    
( ) ( ) ( ) ( )

1
1

1 1

E t E t
R r t

k E I k E I

ε ε ε µ σ ε ε ε ≤  + ∆ +  ≤  ∆   = = = + ∆
− −

   (4.6) 

 

The key issue in applying the Lindeberg condition to evaluate the limiting distribution of 

the stochastic process t tX +∆ as 0t∆ → . A major role in this convergence is played by the 

variable ( )x tε ∆ , whose limiting behavior determines in turn the limit of the key variable 
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ε . It can be easily seen that (4.6) defines an implicit relation ( )xε ε as xε varies within its 

support [ ]min ,  ε ε . For minxε ε= in equation (4.6) the value *( )xε ε ε≡ is given by  

 

                  * *( ) 1 ( ) 1 ( )E z t E t r t o tε ε µ σ ε ε ε≤ = + ∆ + ≤ ∆ = + ∆ + ∆    (4.7) 

 

This equation is the martingale probability corresponding to the multiperiod version of 

the Levy-Ritchken lower bound with stock returns given by (3.12) as the density of 

trading increases in the absence of transaction costs. In Oancea-Perrakis (2009) it was 

shown that the recursive discounted expectation of the option payoff under (4.7) tends at 

the continuous time limit to the Black-Scholes option value. On the other hand, for 

xε ε= equation (4.6) becomes as in (4.7) but with the RHS multiplied by ( )kϕ . An 

application of the Lindeberg condition (3.16) shows that in such a case the limiting 

process for t tX +∆  is a diffusion whose volatility tends to zero and defines the trivial 

Merton (1973) lower bound for the option. Fortunately this does not turn out to be the 

limiting case, and the convergence of the RHS of (4.5) under the process defined by (4.3) 

and (4.6) is given by the following proposition, that forms the main result of this paper 

and is proven in Appendix B. 

 

Proposition 2: The lower bound of the call option under proportional transaction costs 

given by Proposition 1 for the discrete stock returns defined by (3.12) tends to the Black-

Scholes-Merton option value ( )( )tBSM k Sϕ , where the stock price has been multiplied 

by the roundtrip transaction costs and all the other parameters remain unchanged.      

 

This remarkable result is also the main justification for the title of this paper. The discrete 

time option bound given by Proposition 2 is a stochastic dominance bound, insofar as any 

risk averse investor holding a portfolio of the stock and the riskless bond would improve 

her utility if she can purchase an option at a price at or lower than the Proposition 2 
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bound. The utility improvement would take place under realistic market conditions that 

recognize the existence of proportional transaction costs in trading the stock. Unlike 

similar call option lower bounds derived from arbitrage models that collapse very quickly 

as the density of trading increases, this bound tends to a relatively tight limit. Last, the 

bound becomes at the limit equal to the Black-Scholes-Merton expression when the 

transaction cost parameter is set equal to zero. 

The following auxiliary result, applicable to returns that tend to diffusion and given by 

(3.12), is also of interest and will serve as a verification of the numerical work. It is 

proven in Appendix C. 

 

Lemma 2: The function ( )t tg S tends to ( )*

1N d , the option delta of the Black-Scholes-

Merton expression, with the stock price multiplied by the roundtrip transaction cost term 

( )kϕ .  

 

Figure 1 display the limiting values of the Proposition 1 lower bound for the following 

parameters: 100K = , 20%σ = , 8%µ = , 4%r = , 30T = , 0.5%k =  and 0.2%, stock 

price range 90-110. As expected, the lower bound is considerably tighter under this 

reduced transaction cost, while the upper bound is relatively unaffected. Combined with 

the partition-independent upper bound shown in Proposition 1 of CP (2002),
19

 these 

figure present as tight a spread as it may be feasible to achieve. With our parameter 

values the two bounds define intervals of [1.95, 2.65] and [2.24, 2.63] for k=0.5% and 

0.2% respectively, for an at-the-money BSM value of 2.45, corresponding to spreads of 

29% and 16% of the BSM values; for S = 94 the BSM value is 0.44 and the intervals 

become [0.35, 0.50] and [0.43, 0.5], with spreads of 34% and 15%. For comparison 

purposes, the observed bid-ask spread in October 2, 2008 around noon on the S&P 500 

November options was approximately 10% at the money and 20% at the value S/K = 

0.94. In the following section we present the numerical estimation of the discrete time 

                                                 
19

 This upper bound is derived by taking expectations of the terminal payoff under the physical measure, 

discounting them by the expected return of the stock and dividing the result by the factor ( )kϕ .      
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model of Proposition 1, which will be used to explore the convergence properties of the 

bound to its continuous-time limit. 

 

 

[Fig. 1 about here] 

 

 

 

V. The Convergence of the Bound to its Continuous Time Limit 
 

 

To apply Proposition 1 we use as distribution f of the iid random terms ε  in (3.12) the 

uniform distribution with zero mean and unit variance.  These last two conditions imply 

the following error density: 

 

                                       
1/ 2 3,  3, 3

( )
0 otherwise

f
ε

ε
  ∈ −  = 


,                                             (5.1) 

 

which implies the following density for the one-period return of the underlying: 

 

                        
[ ]min max1/ 2 3 ,  ,  

( )
0 otherwise

t z z z
f z

σ ∆ ∈
= 


,                       (5.2)                    

 

where ( ) ( )min max,  1 3z z t tµ σ= + ∆ − + ∆ . 

 

For the uniformly distributed disturbances, there exists a closed-form solution for ˆ
tz  in 

the equation (3.10) for a given x.  Integrating (3.10) under the uniform density and 

rearranging yields the following second-order polynomial in ˆ
tz :  

 

                                                 ( )2ˆ ˆ2 0t t tz Rz c x− + = ,                                                    (5.3) 
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where  ( ) ( ) ( )( ) 2

min min2t tc x R k z k x zϕ β= + − .  The solution for ˆ
tz is given by the higher 

of the two roots of (5.3): 

 

                                                 2ˆ ( )t tz R R c x= + − .                                                     (5.4) 

 

The relation between ˆ
tz and tx  is shown in Figure 2, which plots relation (5.4) for 

t∆ equal to 1/10 and 1/20 days.  To have the two graphs comparable, we scale both 

independent and independent variable by dividing them by R.  Note a lower range of both 

tx  and ˆ
tz  in terms of R for the coarser time partition. 

 

[Fig. 2 about here] 

 

In our numerical approach we apply recursive numerical integration, which provides 

input quantities to the system (3.6)-(3.9) at each time t, 2t T≤ − .
20

  We solve this system 

by directly searching for the value of tx  for which (3.6) attains its maximum value, since 

we know from Lemma 1 that (3.9) is the FOC for the maximization of (3.6).  The 

function ( )t tg S follows directly from (3.8) for this maximized value of ( , )tC S t  in (3.6).  

We detail our numerical approach in Appendix D.   

 

 

VI. Numerical Convergence Results for Proposition 2 
 
 

We apply the numerical algorithm described in the previous section to our base case, 

which uses 0.5%k = and 100K = , 20%σ = , 8%µ = , 4%r =  and 30T = days. Figure 3 

shows the convergence behavior for three different stock prices 98, 100 and 102, with the 

time partition ranging from 10 to 150.  The figure shows clearly that the numerically 

derived bounds approach the known limit price given by Proposition 2.  

 

                                                 
20

 At t = T-1 we use the Merton bound in (3.3) with the corresponding value of ( )1 1T Tg S− − . 
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[Fig. 3 about here] 

 

Given that continuous trading may in fact be infeasible in practice, it is of interest how 

close to its limit the lower bound becomes for a ‘realistic’ time partition.  For instance, 

for daily trading, i.e. 30 subdivisions for the stock prices 98, 100 and 102 the numerical 

algorithm yields the respective lower bounds of 1.127, 1.909 and 2.967.  The 

corresponding Proposition 2 continuous-time limits are 1.169, 1.954 and 3.011, with 

differences from the discrete-time values approximately equal to five cents. Note that 

even for such a coarse subdivision the Proposition 1 discrete time lower bounds are much 

higher than the corresponding Leland (1985) and Boyle-Vorst (1992) lower bounds. For 

instance, for a stock price of 100 the call lower bound is 1.28 for Leland and 0.665 for 

Boyle-Vorst; for half-day trading (60 subdivisions) both bounds collapse to zero.   

 

We also derive relative errors of the convergence to the limit, defined as 

( )( )1 ,.C BSM k Sϕ− .  In Figure 4, we display these errors for the stock price range 

from 90 to 110 and for time partitions of 30, 70, 110 and 150.  It is clear from Figure 4 

that the relative errors tend to zero as the time partition increases, but at a decreasing 

speed.  It is also clear that the convergence speed in terms of relative errors is increasing 

in the degree of moneyness S K .   

 

[Fig. 4 about here] 

 

Although systematic results on dollar errors are not shown, we note that the dollar errors 

decrease, as expected, as the density of time partition increases. These errors peak 

approximately for at-the-money options.  For instance, for the time partition 150 and S = 

90, 100 and 110, we find respective errors of 0.002, 0.012 and 0.003, with the respective 

limiting results for the bound of 0.052, 1.954 and 9.391.  The respective Black-Scholes-

Merton prices for 0k = are: 0.081, 2.451 and 10.433.  

 

We also verify the convergence of our numerical algorithm to the Proposition 2 lower 

bound as a function of the time to maturity of the option for a fixed number time 
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intervals, which implies that the computational time stays approximately constant. It also 

implies that the size of the time partition t∆ increases with maturity. Since this 

convergence takes place as 0t∆ → , it is expected that accuracy will decrease as time to 

maturity increases. Table 1 displays the results for the time to maturity in a range 30-240 

days for three different ratios of moneyness, 0.9, 1 and 1.1, and with the number of time 

intervals used in the computations kept constant at 150 in all cases. The size of the 

absolute errors increases for all options, but the increase is small. In the case of OTM 

options the absolute increase in errors is dominated by the increase in the value of the 

option because of the longer maturity, so that the percentage error decreases. For ATM 

and ITM options the percentage error increases, but the increase is very small. The last 

column shows the distance of the limit from the BSM value, which as expected decreases 

as time to maturity increases because of the properties of the BSM function.   

 

 

[Table 1 about here] 

 

 

Last, we verify our numerical results by examining the behavior of the g-function, which 

should converge to ( )*

1N d  by Lemma 3, where ( )( )*

1 1 ,.d d k Sϕ= .  Recall that the bound 

is derived by arguing that whenever the call price is below the lower limit, the investor 

sells ( ) 1t tg S <  shares, purchases the call option and invests the remainder of the 

proceeds in the riskless asset, which leads to an increase in his expected utility.  Figure 5 

displays ( )*

1N d  and the g-function for the stock price range from 90 to 110 for the time 

partitions 30 and 150.  It is clear that the g-function approaches its theoretical limit from 

above as the time partition increases.  To show the convergence of the g-function more 

systematically, we present relative errors from the limit, ( )*

11 g N d−  for the time 

partitions of 30, 70, 110 and 150 in Figure 6.  These errors clearly decrease at the 

partition increases, with the convergence speed increasing in the S K  ratio.  

 

[Fig. 5 about here] 
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[Fig. 6 about here] 

 

 

VII. Extensions to American Call Index and Index Futures Options 

 

We provide here the extension of the Proposition 1 call lower bound result to American 

call index and index futures options, along the lines of the CP (2007) results for the call 

upper bounds for these same options. The proof for Proposition 4 is presented in abridged 

form in Appendix E, while the proof for Proposition 5 is similar to Propositions 1 and 4 

and to the proofs presented in CP (2007), and is omitted.   

 

As in CP (2007), we consider a trader who does not hold the option, with utility function 

( ), ,t tV v w t  given in Section 2. By purchasing the American call index option the trader’s 

utility with a long open position in the option becomes
21

 

 

( )
( )

( ){ }
( )

, , ,

(1 ) , , ,

max ,
max |

, , 1

t t t

t t t

t t

j t

t t

J v w S t

V v S K w t

v j k j w j z R
E J S

w j z S z t

γ

γ

 + + −
 

   = − − + +
   
  + +    

    (7.1) 

 

for 1t T≤ − , and 

                                  ( ) [ ]( ), , , , , .T T T T T TJ v w S T V v S K w T
+

= + −    (7.2) 

 

This formulation recognizes the possibility of early exercise.  

 

As in earlier work, we define the reservation purchase price of the American call as the 

maximum price below which any trader increases his/her expected utility by purchasing 

                                                 
21

 Here we assume 0γ > , since otherwise there is no early exercise.  
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the call. For a given trader this reservation purchase price is defined as 

( ) ( ){ }, , , , ,t t t t tMax C J v C w S t V v w t− ≥ . It is a price that depends on the utility function 

of the trader, as well as on her portfolio holdings ( , )t tv w . By definition, a trader who 

observes a market price lower than her reservation purchase price should establish a long 

position in the call option. As with Proposition 1, the following results provide a lower 

bound, ( ),tC S t , to the reservation purchase prices of all traders, which is independent of 

the form of the utility function and the trader portfolio. Consequently, any trader who 

observes at time t a market price ( , )tC C S t≤  should establish a long position in the 

option. 

 

Proposition 3: Under the assumptions of the multiperiod economy stated in Section 2, the 

tightest lower bound ( ),tC S t  on the reservation purchase price of an American call 

index option at any time t prior to option expiration is derived recursively from the 

expressions: 

 

For any 1t T≤ −  

 

                                 ( ) { }, max (1 ) , ( , )t t tC S t S K N S tγ= + −     (7.3) 

 

where the function ( , )tN S t is defined as follows 

 

 

( )
( ) ( ){ }

1 1

1

1
( , 1) ,  1

1

ˆmax 1 ( ) , , 1 ( )| ,
,

ˆ[ ( )| , ]

ˆ[ ( ) ( )| , ]
                 ( ) ,  1

ˆ[ ( )| , ]

T T

t t t t t

t

t t t

t t t t t t

t t t

k K
N S T S t T

k R

E k S z K N S z t I z x S z z
N S t

RE I z x S z z

E S zG S z I z x S z z
k t T

RE I z x S z z

γ ϕ

β

+

− −

+

− − = − = − + 

 + − + − ≤ = +
− ≤

− ≤
< −

− ≤

,   (7.4) 
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the function (.)I is defined in (3.2), the variables ˆ
tz and 

t
x and the function ( )t tg S  are 

defined implicitly by  

 

                                         
( ) [ ]

ˆ1 | ,
1

ˆ1 ( ) | ,

t t

t t t

E z S z z
k

R
k E I z x S z z

γ  + ≤  −   =
− − ≤

,       (7.5) 

 

ˆ ˆ{ ( ) (1 ) , ( , 1)} ( , )
( )

ˆ( )( )

t t t t t
t t

tt t

Max k S z K N S z t RN S t
g S

k z R S

ϕ γ
ϕ

+ − + −
=

−
   (7.6) 

 

1[ ( ) ( ) ( , )] ( ) ( ) { ( ) (1 ) , ( , 1)}t t t t t t t t t t t t tR k S g S N S t k S x g S x Max k S x K N S x tϕ ϕ ϕ γ+− = − + − +  

                                                                                                                                        (7.7) 

 and with { }1 1( ) ( ),  z ,  0   zt t t t t t tG S x g S z x for x+ += ≤ > . 

 

Note that in the above expressions the function ( , )tN S t has the natural interpretation of 

the continuation value of the option. The Proposition 3 lower bound is formulated in 

general terms and converges to the obvious limit of the American option with a 

transaction cost-adjusted price of the underlying asset as in Proposition 2 if we set the 

dividend yield per period equal to tγ∆ and replace the instantaneous mean of the ex-

dividend stock return z in (3.12) by ( ) tµ γ− ∆ . 

 

Next we develop a lower bound on American call futures options, in which it is assumed 

for simplicity that the option and the futures contract mature at the same time. As in CP 

(2007), we assume that the futures prices are linked to the index by the relation 

 

                                  ,t t t tF S t Tα η= + ≤ ,      (7.8) 
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where the random variables { }tη  have zero mean and variance reflecting the basis risk. 

The call option bound is presented as a function of tα  and the parameter η , defined an as 

the lower bound to the random variables { }tη , assumed observable from past data. The 

value function of the investor who holds the option is similar to (7.1)-(7.2). We may 

prove the following result. 

 

Proposition 4: Under the assumptions of the multiperiod economy stated in Section 2, the 

tightest lower bound ( ), ,t tC F S t  on the reservation purchase price of an American call 

index futures option at any time t prior to option expiration is derived recursively from 

the expressions: 

 

For any 1t T≤ −  

 

( ), , { , ( , )}t t t tC F S t Max F K M S t= −       (7.9) 

 

where the function ( , )tM S t is defined as follows 
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   (7.10) 

 

the function (.)I is defined in (3.2), the variables ˆ
tz and 

t
x and the function ( )t tg S  are 

defined implicitly by  
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ˆ[ , z ]

ˆ(1- ) [ ( - ) ,  ]
   

t t

t t t

E z S z

k E I z x S z z
R

≤

≤
=      (7.11) 

 

1
ˆ ˆ{ ( ) , ( , 1)} ( , )

( )
ˆ( )( )

t t t t t t

t t

t t

Max k S z K N S z t RN S t
g S

k z R S

ϕ α η

ϕ
+ + − + −

=
−

,  (7.12) 

                 

                

1 1

[ ( ) ( ) ( , )]

( ) ( ) { ( ) , ( , 1)}

t t t t

t t t t t t t t t t

R k S g S N S t

k S x g S x Max k S x K N S x t

ϕ

ϕ ϕ α η+ +

− =

= − + − +

,                 (7.13) 

 

and with  { }1 1( ) ( ),  z ,  0   zt t t t t t tG S x g S z x for x+ += ≤ > . 

 

This lower bound may be used in empirical work on American futures options along the 

lines of Constantinides et al (2008).  

 

 

VIII. The Upper Bound for European Calls  

 

 

The upper bound on European calls was established in Proposition 1 of CP (2002). It is 

an expression that is independent of the time partition and for this reason extends without 

reformulation to continuous time. Nonetheless, it is not an expectation of the option 

payoff under a martingale probability and for this reason it does not tend to the Black-

Scholes price when the transaction cost parameter is set equal to 0. We show in this 

section that with a suitable redefinition it can also be made equal to the Black-Scholes 

price as the transaction costs disappear. 

  

The following result from Proposition 1 of CP (2002) establishes the partition-

independent upper bound for the call option, assuming again no dividends prior to option 

expiration 
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                                  1

(1 ) [( ) ]
( , )

(1 )

T t

t

k E S K S
C S t

k z

++ −
=

−
,    (8.1) 

 

where ( )z E z= . In the absence of transaction costs it was shown in Perrakis (1986) and 

Ritchken and Kuo (1988) that the following recursive result, a payoff expectation under a 

martingale probability, is the tightest upper bound for a call option 

 

                              
[ ( , ) ]

( , ) ( ) ,  ( , )

U

t t

T T t

E C S z t S
C S T S K C S t

R

+= − = ,      (8.2) 

 

with the superscript denoting an expectation under a martingale probability U(z) defined 

as follows, with P(z) denoting the physical probability distribution of the return. Clearly, 

E
U
(z) = R.  

 

                         

min

min

min min

( ) with probability  
( )

1 with probability

R z

z z

z R
z z z

P z
U z

−

−

−
−


= 


    (8.3) 

 

 

Under transaction costs this martingale probability can be easily shown to take the 

following form, provided the following inequality holds:
 22

 
1

1

k
z R

k

+
≥

−
 

 

                            

min

min

min min

1

1

1

1

( ) with probability  
( )

1 with probability

k
R z

k

z z

k
z R

k
z z z

P z
U z

+
−

−
−

+
−

−
−




= 



.      (8.4) 

 

We then have the following bound 

 

                                                 
22

 The proof is available from the authors on request. The result can be shown either with an adaptation of 

the linear programming approach as in Ritchken (1985) or with the CP (2002) approach of a reservation 

write price.   
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                    2

[ ( , ) ]
( , ) ( ) ,  ( , )

U

t t

T T t

E C S z t S
C S T S K C S t

R

+= − = .   (8.5) 

 

Note that 
1

( )
1

U k
E z R

k

+
=

−
. 

 

It can be shown that 2 1

1
( , ) ( , )

1
t t

k
C S t C S t z R

k

+
≤ ⇔ ≥

−
. This latter inequality is violated 

with probability 1 as 0t∆ → if the return is given by (3.12), tending to diffusion at the 

limit. On the other hand, for k=0 the bound 2 ( , )tC S t becomes equal to the bound (8.2). In 

Oancea and Perrakis (2009) that bound was shown to tend to the Black-Scholes price for 

0t∆ → . The following obvious result establishes the convergence of the upper bound to 

the Black-Scholes value as 0t∆ →  and 0k → : 

 

Proposition 5: Under proportional transaction costs the European call option is 

bounded from above by the following upper bound 

 

                                   1 2( , ) Min{ ( , ), ( , )}t t tC S t C S t C S t= ,    (8.6) 

  

where the quantities within braces are given by (8.1) and (8.5). For returns given by 

(3.12) and tending to a lognormal diffusion as 0t∆ →  and for k>0 at the limit (8.5) tends 

to a Black-Scholes-Merton expression with the rate of interest replaced by the 

instantaneous mean µ of the stock. For 0k → as well at the limit (8.6) tends to the 

Black-Scholes option price.  

 

IX. Conclusions 

 
In this paper we showed that the CP (2002, 2007) stochastic dominance bounds on call 

option prices are “natural” generalizations of the BSM price in the presence of 

proportional transaction costs. Although these bounds were derived in discrete time and 

with an approach that differed from the dominant arbitrage methodology, they converge 
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to the single arbitrage-derived BSM price whenever the discrete time process tends to 

diffusion and the transaction cost parameter tends to zero. In this paper we focus on the 

call option lower bound when proportional transaction costs are present. This bound 

converges to a reasonably tight BSM expression for realistic values of the transaction 

cost parameter. The convergence was verified empirically through a novel numerical 

algorithm. This convergence to a useful bound under realistic trading conditions solves a 

serious problem in one of the most important models in financial theory, a problem 

originally identified by Merton (1989) that has not had a satisfactory solution till now.  

 

The derived bounds have obvious applications to competitive market-making situations, 

since they define limits on quoted bid and ask prices under hypothesized underlying asset 

dynamics. These can be either diffusion as in Proposition 2, or general empirically-

derived distributions as in Proposition 1. Other forms of asset dynamics such as jump 

diffusion or stochastic volatility present important theoretical and computational 

challenges. It is relatively easy to formulate discrete time versions of the asset dynamics 

that converge to the desired continuous time distributions, but Proposition 2 does not hold 

for jump diffusion and Proposition 1 may not hold for stochastic volatility without major 

modifications. These cases represent major extensions of the results of this paper. 

 

On the empirical side, the bound derived under general conditions in Proposition 1 may 

be used in non-parametric stochastic dominance tests of option pricing, as in 

Constantinides, Jackwerth and Perrakis (2008), or Constantinides et al. (2009). In these 

approaches the underlying asset distributions are extracted from past data, and the 

numerical algorithm described in Section 4 and Appendix D can be easily adapted for the 

estimation of the Proposition 1 bound. On the other hand, the width both of the 

theoretically derived bounds and of the observed bid/ask spreads raises serious questions 

about the widespread empirical practice of estimating the underlying asset’s implied risk 

neutral distribution from a cross section of observed options market prices. Such 

questions are amplified by the documented mispricing of both the S&P 500 index options 

and the S&P 500 index futures options in the aforementioned stochastic dominance tests, 

and warrant a second look at existing econometric methodology.      
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Appendix 

 

 

A. Proof of Proposition 1  
 

The proof follows the general approach of CP (2002), that compares the value function 

( ), ,t tV v w t of a trader who does not hold the option with that of an otherwise identical 

trader with an open long position in a European call option. Let ( ), , ,t t tJ v w S t denote this 

latter value function, defined as follows 

 

( )

{ } ( ) ( )( )
, , ,

max , , , 1

t t t

j t t t t t

J v w S t

E J v j k j R v z w j S z t Sυ γ = − − + + + + 
   (A.1) 

for 1t T≤ −  and 

 

( ) ( ), , , ( ) , ,T

T T T T T TJ v w S T V v S K w T= + − .       (A.2) 

 

Note that the optimal investment decision tj at time t is in general different from the 

equivalent decision tυ of the trader who does not hold the option. Since ( ), , ,t t tJ v w S t is 

an increasing function in the portfolio holdings, a lower bound on the reservation 

purchase price for the call option is a lower bound on the call price C such that  

 

( ) ( ), , , , , 0t t t t t tJ v C w S t V v w t∆ ≡ − − ≥ .     (A.3) 

 

It is clear that the following relation is a sufficient condition for (A.3) to hold 

 

( )( ) , , , , , 0
1

t t
t t t t t t t t

S
J v k S C w S t V v w t

k

δ
ϕ δ ∆ ≥ + − − − ≥ + 

.   (A.4) 
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As noted, we assume that the dividend yield 0γ = . In (A.4) 
1

t

k

δ
+

, with 1tδ ≤ ,denotes a 

number of shares such that ( ) 0t tk S Cϕ δ − ≥ , that were shorted out of the trader’s 

stockholdings and transferred to the bond account. It will be shown that the tightest lower 

bound on C satisfying (A.3) is found by setting ( , )tC C S t= and ( )t t tg Sδ = . The 

following auxiliary results are needed for the proof. 

 

Lemma A.1: Let ( , 1)tS z tΦ + denote any monotone increasing function. Then the function 

ˆ( , , ) [ ( , 1) , ]t t x t t tS x t E S z t S z zφ ≡ Φ + ≤ , with the subscript x denoting an expectation over 

the distribution given by (4.1) and with ˆ
tz given by (3.7), is maximized in tx whenever 

tx solves the equation ˆ( , 1) [ ( , 1) , ]t t x t t tS x t E S z t S z zΦ + = Φ + ≤ . 

 

Proof: Differentiating ( , , )t tS x tφ with respect to tx and taking into account (3.7) we find 

that the derivative is proportional to the quantity ˆ[ ( , 1) , ] ( , 1)x t t t t tE S z t S z z S x tΦ + ≤ −Φ + . 

For mintx z= this quantity is obviously positive, while for ˆ
t tx z= it becomes negative. 

Hence, there exists a unique value of tx  solving the equation 

ˆ( , 1) [ ( , 1) , ]t t x t t tS x t E S z t S z zΦ + = Φ + ≤ , and to the left (right) of this value ( , , )t tS x tφ is 

increasing (decreasing), implying that the solution of the equation defines the unique 

maximum of ( , , )t tS x tφ , QED.      

 

Lemma A.2: Define the function ( , ) ( ) ( ) ( , )t t t t tH S t k g S S C S tϕ≡ − . Then we have: 

 

a) 1
ˆ( , ) { [ ( ) ( ) ( , 1) , ]} ( , )

tt x x t t t t t t tH S t Max E k g S z S z C S z t S z z H S tϕ +≡ − + ≤ = . 

 

b) ( , )tH S t is an increasing function of tS . 
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Proof: We start from (b), using induction. (b) can be easily seen to hold at 1T − , since for 

both values of ( )1, 1TC S T− − in the RHS of (3.3) 1( , 1)TH S T− − is either equal to 0 or is 

increasing. Suppose now that (b) holds at 1t + . Then ( , 1)tH S z t + is increasing in tS z and 

for any given ˆ( , )t tx z  satisfying (3.7) the function 

1
ˆ( , , ) [ ( ) ( ) ( , 1) , ]t t x t t t t t tH S x t E k g S z S z C S z t S z zϕ +≡ − + ≤  is increasing in tS . Similarly, 

( , )tH S t  is also increasing as the maximum of a set of increasing functions ( , , )t tH S x t . 

By Lemma A.1 and equation (3.9), however, both ( , )tH S t and ( , )tH S t are equal 

to ( , 1)t tH S x t + for all tS , thus proving (a) and completing the proof of (b), QED.  

 

Define now the following function 

 

                                  

^

1 1

^

^

^ ^

( , 1) ( , 1),   

ˆ( , 1)
(1 ) ( )

( , , ) ,
(1 ) ( )

( , ) { ( , , )},  

ˆ( , ) given by (3.7). 

t

T T

t t

t t

t x t t

t t

C S T C S T

z
E C S t z z

k E I
C S x t

k RE I

C S t Max C S x t

x z

− −
−

−

−

− −

− = −

 
+ ≤ − =

−

≡

               (A.5) 

We can now prove the following result on the form of the call lower bound 

function ( , )tC S t  given by (3.3)-(3.9). 

 

Lemma A.3: The call option lower bound (3.3)-(3.9) has the following properties: 

 

a) ( , )tC S t is an increasing function of tS . 

b) 
^

( , ) ( , )t tC S t C S t
−

≥ for all ,tS t . 

c) 
^

( , )tC S t
−

is convex. 
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d) 
^

lim ( , ) lim ( , ) ( )
t tS t S t t T t

K
C S t C S t k S

R
ϕ→∞ →∞ −−

= = −  

 

Proof: (a) can be easily shown to be true by induction. It obviously holds at T-1. By 

Lemma A.2, Lemma 1 and the induction hypothesis it is clear from (3.6) that ( , )tC S t is 

equal to the maximum of the sum of the expectations of two increasing functions, 

implying that it also holds at t. Similarly, (c) can also be shown easily to be true by 

induction. It holds at T-1, while at t 
^

( , , )t tC S x t
−

is obviously convex by (A.5) and the 

induction hypothesis. (c) then holds at t since
^

( , )tC S t
−

is the maximum of a set of convex 

functions. To prove (b) we use again induction and we observe from Lemma A.2 that 

( ) ( ) ( , )t t t tk g S S C S tϕ ≥ . This, however, implies that 
( ) ( ) ( ) ( , )

1 1

t t t tk g S S k C S t

k k

β β
≥

+ −
. We 

now use this last relation and the induction hypothesis to replace in the integrals in the 

RHS of (3.6) ( , 1)tC S z t + by 
^

( , 1)tC S z t
−

+  and 
( )1 1

1

t t tg S z S z

k

+ +

+
 by 

^

( , 1)

1

tC S z t

k

−
+

−
, both 

smaller quantities by the induction hypothesis and Lemma A.2. We then have 

^

( , ) ( , , )t t tC S t C S x t
−

≥ for all tx , and by Lemma 1 (b) holds at t as well. Last, part (d) 

follows directly by induction from (3.3)-(3.9) and (A.5), QED. 

 

We may now proceed with the main body of the proof of Proposition 1. We use induction 

to prove the joint hypothesis that (3.3)-(3.9) define a lower bound on the reservation 

purchase price C and that (A.4) holds at t for ( )t t tg Sδ = and for ( , )tC C S t= . At T-1 it 

can be easily seen that both parts of the hypothesis hold. Suppose now that they hold at 

t+1 and consider (A.3)-(A.4) at t. We have, from (A.1) 
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{ } ( )

{ } ( )

max ( ) , , , 1 , ,
1

max ( ) , , , 1 , , 0
1

t t
t j t t t t t t t t

t t
j t t t t t t t t t t t

S
E J v j k j k S C R w j z S z t S V v w t

k

S
E J v k k S C R w z S z t S V v w t

k

δ
ϕ δ

δ
υ υ ϕ δ υ

   ∆ ≥ − − + − + − + − ≥   +   

   ≥ − − + − + − + − ≥   +   
 (A.6) 

 

In (A.6) we have used the fact that the optimal portfolio revision for the trader who does 

not hold the option may be suboptimal for the option holder. Since by the induction 

hypothesis we know that (A.3)-(A.4) hold at t+1, we may write 

 

( )
1 1

1 1

' ( ( ) ) ( ) ( , 1),

[ ] , , 0
' , 1

1 1

t t t t t t

t t t tt t t t
t

v R k S C R k g S z C S z t

E V S V v w tg S z S z
w z t

k k

ϕ δ ϕ

δ
+ +

+ +

+ − − + + 
 ∆ ≥ − ≥  + − +  + +  

.  

(A.7) 

 

Consider now the term 

 

 1 1( , , , ) ( ( ) ) ( ) ( , 1)t t t t t t tN C S z k S C R k g S z C S z tδ ϕ δ ϕ + +≡ − − + +   (A.8) 

 

in the RHS of (A.7). By Lemma A.2 this term is decreasing in the return z as it varies 

within the interval min max[ , ]z z . Accordingly, for appropriate choices of the parameters 

( , )t Cδ  there exists a value min max' ( , )z z z∈ such that ( , , , ') 0t tN C S zδ = and 

( , , , ) ( )0t tN C S zδ > < for ( ) 'z z< > . We then form the function  

 

1

1

( , , , )
( , , , )

1 1 1

( ( ) ) ( ) ( , 1)
,  '

1 1 1 1

t t t t t t
t t

t t t t t t t

N C S z g S z S z
O C S z

k k k

k S C R k g S z C S z t S z
z z

k k k k

δ δ
δ

ϕ δ β δ

+

+

= + − =
+ + +

− +
= + + − ≤

+ + + +

,   

 (A.9) 
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1( , , , )
( , , , )

1 1 1

( ( ) ) ( , 1)
,  '

1 1 1

t t t t t t
t t

t t t t t

N C S z g S z S z
O C S z

k k k

k S C R C S z t S z
z z

k k k

δ δ
δ

ϕ δ δ

+= + − =
− + +

− +
= + − >

− − +

           

  

 

The function ( , , , )t tO C S zδ represents the efficient transfer of amounts from the bond to 

the stock account in the middle part of (A.7), which is greater than or equal to the middle 

part of (A.10) below. It then suffices to show the following result 

 

            ( ) ( )[ ' , ' ( , , , ), 1 ] , , 0t t t t t t t tE V v R w z O C S z t S V v w tδ∆ ≥ + + − ≥ .  (A.10) 

 

Replacing now ( ), , [ ( ' , ' , 1) ]t t t t tV v w t E V v R w z t S= + into (A.10) we note that by the 

concavity of ( ), ,t tV v w t it suffices to show that 

 

[ ( , , , ) ] 0t w t t tE V O C S z Sδ∆ ≥ ≥ .      (A.11) 

 

In (A.11) w

V
V

w

∂
≡
∂

, evaluated at the points ( )' , ' ( , , , )t t t tv R w z O C S zδ+ .The 

function ( , , , )t tO C S zδ , in addition to the zero that it has at 'z z= , also has potentially 

another zero at some value " 'z z z= > for suitable values of the parameters ( , )t Cδ . To see 

this note that ( , , , )t tO C S zδ is negative in an open neighborhood to the right of 'z z= and 

by Lemma A.3 decreases if ( , 1)tC S z t + is replaced by 
^

( , 1)tC S z t
−

+ in that neighborhood. 

This latter function is, however, convex in z , implying that it becomes increasing for 

sufficiently small values of tδ and ( ) t tk S Cϕ δ − . This value "z , if it exists within the 

support max( ', ]z z z∈ , solves the equation  
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( ( ) ) ( , 1)

0
1 1 1

t t t t tk S C R C S z t S z

k k k

ϕ δ δ− +
+ − =

− − +
.   (A.12) 

 

Let max* { ", }z Min z z≡ and observe that by concavity wV is a decreasing function
23

 of z . 

Similarly, min( , , , ) 0 for [ , ']t tO C S z z z zδ > ∈ and ( , , , ) 0 for ( ', *]t tO C S z z z zδ < ∈ . We thus 

have, for ( ')wV z denoting the marginal value function evaluated at 'z , 

 

           *[ ( , , , ) ] ( ') [ ( , , , ) , ] 0t w t t t w t t tE V O C S z S V z E O C S z S z zδ δ∆ ≥ ≥ ≤ ≥ .  (A.13) 

 

From (A.8)-(A.9) we see that *[ ( , , , ) , ] 0t t tE O C S z S z zδ ≤ ≥  is equivalent to the 

following lower bound on the option price C  

 

                     

( )
( ) ( )

( )

( ) ( ) ( )
( )

( )

1

, 1 ' | , *
, ,

' | , *

' | , *
                    

' | , *

[ *]
                   (1 )

' | , *

t t

t t

t

t t t t t

t

t t

t

E C S z t I z z S z z
C S t

RE I z z S z z

k S E G S z I z z S z S z z

RE I z z S z z

E z z z
S k

RE I z z S z z

δ

β

δ

+

 + − ≤ = +
 − ≤ 

 − ≤  +
 − ≤ 

 ≤
− − 

 − ≤   

.               (A.14) 

 

In (A.14) the two key values 'z , "z are found from the equations (A.12) and 

( , , , ') 0t tN C S zδ = for given ( , )t Cδ . Maximizing now the RHS of (A.14) with respect 

to tδ we find that the maximum occurs when (3.7) is satisfied. The optimal tδ is equal to 

( )t tg S as given by (3.8) and the resulting maximum lower bound on C is equal to (3.6). 

                                                 
23

 This property was termed the monotonicity condition in CP (2002, 2007). It requires a relatively “small” 

investment in the option relative to the stockholdings tw . For a fuller discussion of monotonicity see CP 

(2007, pp. 80-84). 
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We have thus shown that (3.6)-(3.9) hold at t as well, and that the optimal values satisfy 

(A.4). This completes the proof, QED.  

 

B.  Proof of Proposition 2 

 

We prove Proposition 2 in two steps. First we prove that (3.14) holds for the process 

t tX +∆ , which thus tends to a diffusion. Then we show that in (3.16) the limit is equal to 

2σ . Since by (4.4) and (4.5) the option value is the recursive discounted expectation, 

under a process that is by construction risk neutral, of a terminal payoff given by (3.3) 

and equal for 0t∆ → to ( ( ) 1( )Tk S Kϕ +
− − , by the definition of weak convergence the 

limit is the Black-Scholes value for a stock price multiplied by the roundtrip transaction 

cost as in Proposition 2. 

From (4.3) it is clear that to prove that t tX +∆ satisfies (3.14) it is sufficient to show that 

1

t tX +∆  satisfies it. We use the approach introduced by Merton (1982) and adapted by 

Oancea and Perrakis (2009). The transition probability is equal to  

 

( )
( ) ( )

( )( ) ( )
; ,

( )

x x
x

f I f
dF

F E I F

ε ε ε ε
ε ε

ε ε
−

= ≡      (B.1) 

 

and let ( )tQ δ  the conditional probability that | |t t tX X δ+∆ − > , given the information 

available at time t , with 1tX = . Since ε  is bounded, define 

minmax | | max(| |, | |)ε ε ε ε= =
)

. For any 0δ > , define ( )h δ  as the solution of the 

equation 

                                                      .h hδ µ σε= +
)

                                                       (B.2) 

 

This equation admits a positive solution 
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2 2 4

.h
σε σ ε µδ

µ
− + +

=
) )

                                           (B.3) 

  

For any ( )t h δ∆ <  and for any possible t tX +∆  , 

 

                                  | | | |t t tX X t t h hµ σε µ σε δ+∆ − = ∆ + ∆ < + =
)

                         (B.4) 

 

so that for any ( , )x tS tε  we have  

  

                           ( )( ) Pr | | 0t t t tQ X Xδ δ+∆= − > ≡  whenever t h∆ <    (B.5)  

 

and hence
0

1
lim ( ) 0t

t
Q

t
δ

∆ →
=

∆
, implying that (3.14) holds.  Hence, the limit of the stock 

return process forε  distributed according to (B.1) is a diffusion of the form  

 

                                             ( , , ) ( , , )t
t t

t

dS
S k x dt S k x dW

S
µ σ= + .   (B.6) 

Next we seek to find the parameters ( , , )tS k xµ , ( , , )tS k xσ of this diffusion by applying 

(3.14) and (3.16). From (4.6) we get  

              
0

11
lim 1

(1 ) ( )t t tX X
t

t E t
r

t k E I
δ

µ σ ε ε ε
+∆ − <

∆ →

 + ∆ +  ≤  ∆  − = 
∆ −  

,  (B.7) 

implying that the process t tX +∆ as given by (4.3a) is by construction risk neutral, and 

( , , )tS k x rµ = . It remains, therefore, to evaluate 2 ( , )tS k xσ in (B.6) by applying (3.16). 
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We first rewrite (4.6) as follows 

 

[ ] 1
( ) ,  where ( ) 1

(1 ) ( ) (1 ) ( ) (1 ) ( )

E t
A t r t A t

k E I k E I k E I

σ ε ε ε µ≤ ∆  
∆ + = − ∆ ∆ ≡ − − − − 

 (B.8) 

 

We also rewrite (3.16), if ( )t tE X +∆ denotes the expectation given by (4.6) and neglecting 

the terms ( )o t∆ , 

 

2 2

2 2

2|| ||0 0
|| ||

[ ] ( [ ])1
lim ( ( ) ( ) ) ( , ) lim

[(1 ) ( )]
t t t t t

y xt t
y x

E E
Y E X E X X Q x dy

t k E Iδ
δ

ε ε ε ε ε ε
σ+∆ +∆ ∆− <∆ → ∆ →

− <

≤ − ≤
− + − =

∆ −∫
 (B.9) 

 

To evaluate the limit in the RHS of (B.9) we first prove the following result. 

 

Lemma B.1: We have 

 

  *

0 0

[ ]
lim [ lim [ ( )]

(1 ) ( )t t t t t tX X X X
t t

E
E t

k E I
δ δ

σ ε ε ε
σ ε ε ε

+∆ +∆− < − <
∆ → ∆ →

≤
= ≤ ∆

−
,  (B.10) 

 

where *( )tε ∆ was defined in (4.7) 

 

Proof: Since (B.8) shows that ( )A t∆ is at most ( )O t∆ , we have, using the definition of  

( )A t∆  

 

0 0

( )1 2
lim ( ) lim 0

(1 ) ( ) 1 ( )t t t t t t

x

X X X X
t t

Gk
A t

k E I k G
δ δ

ε
ε+∆ +∆− < − <

∆ → ∆ →

∆ = =
− +

.  (B.11) 
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Since 
_

( )xε ε is a decreasing function (B.11) implies that 
0

( )
lim 0

( ( ))t t t

x

X X
t x

G

G
δ

ε
ε ε+∆ − <

∆ →

= , which 

is possible only if  

 

 min

0

lim ( )
t t t

xX X
t

δ ε ε
+∆ − <

∆ →

= and *

0 0

lim ( ) lim ( )
t t t t t t

xX X X X
t t

tδ δε ε ε
+∆ +∆− < − <

∆ → ∆ →

= ∆ . (B.12) 

  

Dividing now both sides of (B.8) by t∆  and passing to the limit, we observe that  

 

0

[ ]( )
lim 0

(1 ) ( )t t tX X
t

EA t

k E It
δ

σ ε ε ε
+∆ − <

∆ →

 ≤ ∆
+ = −∆ 

. Since the second term within the limit is 

bounded the first must be bounded as well, and the limit of the sum is equal to the sum of 

the limits, implying that 
0

( )
lim 0

t t tX X
t

A t

t
δ+∆ − <

∆ →

∆ 
= Λ ≥ ∆ 

 and by (4.6) that the limit of the 

second term satisfies (B.10), QED. 

To find the limit in the RHS of (B.9) we consider the definition of *( )tε ∆ in (4.7). The 

following result, whose proof is an alternative to the one of Proposition 2 in Oancea and 

Perrakis (2009), establishes clearly that the RHS of (B.9) tends to 2σ  and, thus, completes 

the proof of Proposition 2. 

 

Lemma B.2: We have  

 

*

max

0

lim ( )
t t tX X

t

tδ ε ε
+∆ − <

∆ →

∆ =  and, thus, *

0

lim [ ( )] [ ] 0
t t tX X

t

E t Eδ ε ε ε ε
+∆ − <

∆ →

≤ ∆ = = . (B.13) 

 

Proof: From (4.7) we have * ( )
[ ( )]

r
E t t

µ
ε ε ε

σ
−

≤ ∆ = − ∆ , implying that for any 

0t∆ > we have 

 

 

* * *

*

( [ ( )]) ( [ ( )]) ( ( ))
0

( ) ( ( )) ( )

d E t d E t d t

d t d t d t

ε ε ε ε ε ε ε
ε

≤ ∆ ≤ ∆ ∆
= <

∆ ∆ ∆
.     (B.14) 
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The first derivative in the RHS of (B.14) is clearly positive, which implies that the second 

one must be negative, thus proving the first part of (B.13). The first part of Lemma B.2 

also implies that  

 

2 *

0

lim [ ( )] 1
t t tX X

t

E tδ ε ε ε
+∆ − <

∆ →

≤ ∆ =  ,      (B.15) 

 

The second part of the Lemma follows automatically from the first. Together, they imply 

that the RHS of (B.9) tends to 2σ and ( , , )tS k xσ σ= , QED.  

 

C.  Proof of Lemmas 1 and 2 

 

By applying the definition of the I-function (3.1) to (3.6), taking expectations in the 

integral form and simplifying we get:   

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
min min min

min min

ˆ

1

ˆ

1 2 2 ( )
,

1 2

t t t

t t

z x x

t t t t t
z z z

t z x

z z

k C S z f z dz k C S z f z dz k k S g S z zf z dz
C S t

R k f z dz k f z dz

ϕ ++ − +
=

 + −  

∫ ∫ ∫

∫ ∫
          (C.1)  

 

With the use of (3.10), the denominator of (C.1) may be simplified to 

( ) ( )
min

ˆ

1
tz

z
k zf z dz+ ∫ .  By denoting by N and D respectively the numerator and 

denominator of (C.1), it follows: 

 

                                 
( ) ( )

2

, , '' ' 't tdC S t C S t DN D ND N

dx D D D

−
= = − .                            (C.2) 

 

By equating (C.2) to zero and rearranging, we have the FOC as ( ), ' 'tC S t N D= .  From 

(C.1) we get: 
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              ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ' 1 ' 2 2t t t t t t t t t tk z C S z f z kC S x f x k k S xg x f xN ϕ= + − + ,    

(C.3) 

 

and 

 

                                                      ( ) ( )ˆ ˆ ˆ' 1 't t tk z z f zD = + .                                            (C.4) 

 

By substituting for ˆ 'tz  from (3.11) and simplifying, we arrive at the following FOC:  

 

                        ( ) ( ) ( ) ( ) ( )1

ˆ 1 1
,

ˆ ˆ

t t

t t t t t t t t

t t

C S z
C S t k g S x S x C S x

z R z
ϕ +

 
 = − − −   

 
.           (C.5) 

 

The same condition as (B.5) may be derived by substituting for ( )t tg S  from (3.8) into 

(3.9) and rearranging, which demonstrates that (3.9) is the FOC for maximizing (3.6) or 

(C.1), QED.  

 

For the proof of Lemma 2, we apply directly the definition (3.8), replacing the returns 

from (3.12) and the associated expression ε  from (4.6). 

 

     ( )
( )( ) [ ] ( )

( ) ( )0 0

1 , 1 ( ) ,
lim lim

( )

t t

t t
t t

t

C S t t t t r t o t C S t
g S

k r t t o t S

µ σε

ϕ µ σε∆ → ∆ →

+ ∆ + ∆ + ∆ − + ∆ + ∆
=

 − ∆ + ∆ + ∆ 

 (C.6) 

 

Since both numerator and denominator tend to 0, we take their derivative with respect 

to t∆ . By Proposition 2 the first term in the numerator of (C.6) tends to the Black-

Scholes-Merton expression with the stock price multiplied by ( )kϕ . Hence, the derivative 

of the numerator of (C.6) becomes equal to the denominator times ( )*

1N d , where 

( )( )*

1 1 ,.td d k Sϕ= , QED.  
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D.  Numerical Approach 

 

The numerical procedure described below was designed for a general setup implied by 

the compact-support process for the underlying return in a discrete-time continuous-state 

framework. The time variable t denotes the epoch counter, 0,1... 1,t T T= − , with the 

corresponding physical time equal to t t∆ with t T N∆ = , where N is the time partition 

and the symbol T is used here to denote the physical time to maturity. In this general 

setup the underlying return tz spans min max[ ,  ]t tz z  at the epoch t.  A natural method to work 

our computations backward in time is to use recursive numerical integration
24

.  To apply 

this approach we first need to discretize the problem along the state-variable dimension, 

by equally spacing tz in each epoch since recursive numerical integration by the Newton-

Cotes rules that we use requires equidistant abscissas.  A caveat in this step is that the 

transition to an earlier epoch with the same equidistant spacing as in the present epoch is 

not easily achieved.  We solve this problem by a log-transformation of the state variable, 

on which we elaborate further on in this section. 

 

The recursive numerical integration is analogous to lattice methods used in the discrete-

time discrete-state framework where the expectations are one-step forward realizations of 

a function of the random variable weighted by the probabilities.  In the present setup 

weights are defined instead as the densities evaluated at equidistant points multiplied by 

the integration weights, times the integration step.  We denote this approach by a 

‘generalized lattice’ or simply ‘lattice’.   Denote by ( )( )0 1tI h y+  the time-t integral of the 

1t +  function h of a random variable y, given by: 

 

         ( )( ) ( ) ( ) ( )0 1 min 1 min 1 min

0 0

L L

t j t j t

j j

I h y w yf y j y h y j y w h y j y+ + +
= =

≅ ∆ + ∆ + ∆ ≡ + ∆∑ ∑% ,    (D.1) 

 

                                                 
24

 For instance, Andricopoulos at al (2003) used recursive numerical integration to price path-dependent 

derivatives for the lognormal distribution.   
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where jw% is the weight for a given integration rule, y∆  is the integration step, ( ).f  is the 

density function, L is a positive integer satisfying min maxL y y y∆ + ≤ , and jw  is the 

redefined weight.  It is clear that functions similar to ( )( )0 1tI h y+  will approximate the 

truncated expectations we need to derive in (3.6) or its equivalent, relation (C.1).  Notice 

that for L such that min maxL y y y∆ + =  in (D.1) we approximate expectations over the full 

support of y, which makes clear the analogy between the recursive numerical integration 

and discrete-time discrete-state lattice methods with points miny j y+ ∆  replacing the 

nodes. 

 

The discretized (in log-scale) process of the return of the underlying may be thought of as 

a recombining lattice method.  We space the one-period log-return of the underlying 

( y≡ ) by y∆  into m increments, where m is an odd number
25

, with the lowest (highest) 

increment miny  ( maxy ) satisfying ( )min minlogy z=  ( ( )max maxlogy z= ).  It follows that at 

the epoch t the log-return is spaced by y∆  over a segment min max[ ,  ]ty ty  with ( )1 1t m − +  

increments; conversely, every state tY  we consider belongs to the discretized set in this 

segment.  From every tY , which, in our notation plays the role of a node
26

 in the lattice, m 

states (nodes) spaced by y∆  over min max[ ,  ]t tY y Y y+ +  may be reached in the subsequent 

epoch, while going backward in the lattice we may evaluate integrals as in (D.1). 

 

The numerical work for the derivation of the bounds is crucially dependent on the 

accuracy of the estimation of the key variables ẑ  and x.
27

 Even if we limit ourselves to 

maximizing (B.1) over a set of values of x whose logarithms fall exactly on the 

increments of y, the corresponding set of ẑ ’s will in general fall between the nodes.  

                                                 
25

 With the exception of the binomial model, an odd number of nodes for the one-period return process of 

the underlying is necessary for the lattice to recombine. 
26

 In principle, we should index 
t

Y  since we use this symbol to also denote the log-transformed 

(continuous) state variable at time t.  However, to simplify the notation we skip this indexing while, in what 

follows, making clear to the reader whenever 
t

Y  is used to denote a typical node for the discretized state 

variable.      
27

 In what follows in this section we suppress the time subscripts on ẑ  and x to simplify the notation. 



 49 

Approximating ẑ  by the closest node in the grid to its true value would not yield 

satisfactory results.   To circumvent this problem, we use a non-linear interpolating 

function, the piece-wise Hermite polynomials.
28

  This function, as opposed to the perhaps 

more widely used splines, has the desirable property of preserving the monotonicity of 

the data. In our numerical work we use a Matlab function pchip, which applies the Fritsch 

and Carlson (1980) algorithm.    

 

To delineate the search domain for the inversely varying ẑ  and x we let maxx denote the 

maximum feasible x, i.e. the one corresponding to ẑ R= in (3.10) and let maxẑ denote the 

maximum feasible ẑ , i.e. the one corresponding to minx z= in (3.10). We then define two 

numerical integrals for a given node characterized by the log-return tY :       

 

       

( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ1 min

0

2 min min min

0

,  1...

and

exp ,  1...

i

i

L

i j i z

j

L

i j t i x

j

I L w C y j y L L

I L w k Y y j y g y j y C y j y L Lϕ

=

=

= + ∆ =

= + + ∆ + ∆ − + ∆ =  

∑

∑

,   

(D.2) 

 

where the weights jw  are as in (D.1), the time-t state argument tY  were suppressed in 

( ).C  and ( ).g  to simplify the notation,  ( )min maxˆ
ˆlog

z
L y y z∆ + >  and 

( )min maxlogxL y y x∆ + > .  These two last conditions ensure that the integrals are computed 

over sufficiently wide range to interpolate them later on for the variables of interest x or 

ẑ .  It is also apparent that since the minimum value of ˆ
tz  is greater than or equal to the 

maximum value of x, we need to use 
ˆ

1
z

L +  weights jw  in our numerical work.       

 

The following steps describe our numerical algorithm: 

                                                 
28

 See Fritsch and Carlson (1980). Details of the application of their algorithm to our case are available 

from the authors on request. 
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1) Fix a set of pairs ( )ˆ,  s sx z , 1...s n=  linked by (3.10) and spanning the feasible 

region for x, which is [ ]min max,  z x .  For practical reasons, we consider equal 

increments for x in the log scale in this set ( ( )log x≡ ∆ ) and to gain on precision 

we ensure ( )log x y∆ < ∆ .  It is apparent that, in general the corresponding points 

ˆ
sz  will not be equally spaced even in the log-scale.  

2) Derive the denominator ( sD≡ ) of (C.1) for every pair ( )ˆ,  s sx z .  

3) For a given node at time t characterized by the log-return tY  derive the ( )1 iI L  and 

( )2 iI L  from (D.2) for every applicable iL .  Use these values as the inputs for the 

interpolating function.  Interpolate for every pair ( )ˆ,  s sx z ; denote the interpolated 

results by 1,sI  and 2,sI , 1...s n= .  Now, for a given node we have candidate 

solutions ( sC≡ ) that we write as: ( ) 1, 2,1 2 ,  1...s s s sC k I kI D s n = + + =  . 

4) The maximal sC  ( *sC≡ ) becomes the lower bound for a given node.  The 

estimation of the g-function follows from (3.8) with ( )ˆ, 1tC S z t +  interpolated in 

log-scale as ( )( )*
ˆlog , 1t sC Y z t+ + .  

5) Repeat 3 and 4 for every node at time t.   

6) Proceed to the previous epoch till 0t =  is reached. 

 

We use the above algorithm for any epoch 2t T≤ −  while we use the lower bound (3.3) 

on  ( )1, 1TC Y T− −  at 1t T= −  with the corresponding result (3.5) at this time epoch for 

the g-function, i.e. we set 1 1Tg − =  for the nodes with ( )1, 1 0TC Y T− − > , 0 otherwise.  

 

As noted earlier, for our generalized lattice we need to perform a log-transformation of 

the state variable, which necessitates adjusting the form of the density function. 

For log( )y z≡ , with z distributed uniformly as in (5.1), we have the following density 

function:  
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( ) ( )min maxexp( ) / 2 3 ,  log , log

( )  
0 otherwise

y t y z z
f y

σ  ∆ ∈  = 


.             (D.3) 

 

Under the log-transformation, we have an additive process for the logarithmic return for 

which a grid with equal increments suitable for the Newton-Cotes numerical integration 

can be easily constructed.  Now the weights we use to approximate truncated 

expectations in our lattice become: 

 

                                    ( ) ˆminexp / 2 3 ,  0...j j zw w y y j y t j Lσ= ∆ + ∆ ∆ =% .                    (D.4) 

 

In our numerical work we use the tree size 251m =  with 250n =  candidate values for x 

located in [ ]min max,  z x .  Observe, however, that for a time partition N of, say, 100 it will 

be a formidable task to deal with the resulting number of nodes, given also the fact that 

for each node we need to compute 2n  integrals.  A numerical technique suitable for the 

task at hand is the (discrete) Fast Fourier Transform (FFT).  We illustrate the technique 

by presenting a formula which yields integrals of the type 1I  for all nodes at the epoch t 

for a given iL : 

 

                                ( ) ( )( ) ( )1 IFFT FFT 1 FFT
i

M M M

i LI L C t MW = + e ,                      (D.5) 

 

where M denotes the number of nodes at the epoch 1t + , ( )( )1 1 1M t m= + − + ,  FFT 

denotes a Fast Fourier Transform, IFFT denotes the inverse of FFT, ( )1

M

iI L and 

( )1MC t + are vectors of length M with the latter vector representing the lower bound 

values at all nodes at the epoch t + 1,  e  denotes Hadamard product,
29

 
i

M

LW  is a vector 

0[ ... ] '
iLw w  padded down with zeros to the length M.  The first and last ( )1 / 2m −  entries 

                                                 
29

 For two nx1 vectors a and b, a e b is an nx1 vector containing elementwise products aibi.  
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to the vector ( )1

M

iI L  should be discarded since FFT (IFFT) applied to a vector yields a 

vector of the same length.  ( )2

M

iI L  easily follows by an appropriate substitution in (D.5).   

To derive the integration weights jw%, we apply the Newton-Cotes composite rules,
30

 as in 

equation (D.1).  As the base, we use the five-point rule; however, whenever an integer iL  

may not fit to this rule, we pad the shortest possible lower-point rule to our base. 

 

 

E. Proof of Proposition 4 
 

We first show that (7.3) is a lower bound ( )1, 1TC S T− − on ( )1, 1TC S T− − . Suppose first 

that 1(1 )TS Kγ− + − is the largest term within braces in the RHS of (7.3). Then replacing in 

(7.1) we can easily see that  

( ) ( )
( )

1 1 1 1 1 1

1 1

, , , 1 (1 ) , , 1

, , 1

T T T T T T

T T

J x C y S T V x S K C y T

V x y T

γ− − − − − −

− −

− − ≥ + + − − −

≥ −
. 

 

Suppose now that it is the second term that is the largest in (7.3), with 

1

1
( )
1

T

k K
S C

k R

+
−

−
− =

+
. Let ( )1 1 1, , , 1E

T T TJ x y S T− − − − denote the value function of an 

investor with a long open position in a European call option with the same characteristics 

as the one-period American. Clearly, 

( ) ( )1 1 1 1 1 1, , , 1 , , , 1E

T T T T T TJ x C y S T J x C y S T− − − − − −− − ≥ − −  for any C . Since 

1

1
( )
1

T

k K
S

k R

+
−

−
−

+
is a lower bound on a European option, we have 

( ) ( )1 1 1 1 1, , , 1 , , 1T T T T TJ x C y S T V x y T− − − − −− − ≥ −  in this case as well. 

 

We use now induction to prove that ( ),tC S t in (7.3) is a lower bound on the value of the 

call option for 1t T≤ − . It was already shown that ( )1, 1TC S T− − is a lower bound on the 

                                                 
30

 For Newton-Cotes integration see, for instance, Davis and Rabinowitz (1966), or any other textbook on 

numerical integration. 



 53 

call option. Assume now that ( )1, 1tC S t+ + is a lower bound, and consider the case at t. If 

in (7.3) ( ),tC S t  is equal to the first term in braces in the RHS then from (7.1) we 

have ( ) ( ) ( ), , , (1 ) , , , ,t t t t t t t tJ x C y S t V x C S K y t V x y tγ− ≥ − + + − ≥ , and ( ),tC S t is a 

lower bound on the price of a call option. Assume, therefore, that ( ), ( , )t tC S t N S t= . We 

have, for any (0,1]tδ ∈ such that
31

 ( ) ( , )t t tk S N S tϕ δ >  
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+
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  
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  
  − + +  + −  

 (E.1) 

 

We show that the RHS of the above relation is greater than or equal than ( ), ,t tV x y t , in 

which case we have shown that ( ),tC S t is a lower bound on the call option. We have for 

the RHS of (E.1), using the definition of the lower bound in (7.3) and the induction 

hypothesis 

 

                                                 
31

 It can be shown from the definition of ( , )tN S t that such a value exists.  
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and then from the RHS of (E.2) we have 
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By the concavity of the indirect utility function we now have that the RHS of (E.4) is 

greater than or equal to 
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By the monotonicity condition the RHS of (E.5) is greater than or equal to
32
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(E.6) is nonnegative unless the expectation in brackets is less than or equal to zero. Re-

arranging and defining 
t

x from the equation ( ) 0t tH S x =  and ˆ
tz  as in the proof of 

Proposition 1, we have   
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Maximizing the RHS of (E.7) with respect to tδ and taking into account the definitions of 

tx and ˆ
tz we get (7.4)-(7.7). From (E.7) the lower bound ( ),tC S t as given by (7.3) 

follows immediately if we add the early exercise condition, QED.  
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 We need here to prove the equivalent of Lemma A.2 and Lemma A.3 in the proof of Proposition 1 to 

verify the existence of tx and ˆ
tz . The proofs are identical to those of the lemmas and are omitted.   
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Figure 1: Continuous-time Limit Results for Proposition 1.  

 
The figure displays the continuous-time limit of the Proposition 1 call lower bound as derived in 

Proposition 2 for various degrees of moneyness.  These results are compared to the CP (2002) call upper 

bound and to the Black-Scholes-Merton price.  The CP (2002) call upper bound for the transaction costs 

rate 0.2%k =  is not displayed since in the applied scale it would not be distinguishable from the presented 

bound for 0.5%k = . The parameters are as follows: 100K = , 20%σ = , 8%µ = , 4%r = , 

30T = days.  

 
Figure 2: Behavior of x and ẑ  in Time Partition  

 
The figure displays the time-partition behavior of the quantities x and ẑ  as defined by equation (3.10) and 

derived by equation (5.4) for the uniformly distributed disturbances in (5.1).  The displayed quantities were 
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normalized by the riskless return respective to each time partition.  The parameters are as follows: 

20%σ = , 8%µ = , 4%r = , 0.5%k = . 

 
Figure 3: Convergence of the Proposition 1 Lower Bound to its Continuous-time Limit  

 
The figure displays the convergence behavior of the Proposition 1 lower bound (3.6) to its continuous-time 

limit given by Proposition 2 and derived for the uniform distribution of the stock returns (5.1).  The 

parameters are as follows: 100K = , 20%σ = , 8%µ = , 4%r = , 30T = , 0.5%k = .   

 

Figure 4: Relative Convergence Errors of the Proposition 1 Lower Bound from its Continuous-time Limit   
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The figure displays the relative convergence errors ( )( )
5

1 , .C BSM k Sϕ−  of the Proposition 1 lower 

bound (3.6) from its continuous-time limit given by Proposition 2 and derived for the uniform distribution 

of the stock returns (5.1).  The parameters are as follows: 100K = , 20%σ = , 8%µ = , 4%r = , 

30T = , 0.5%k = . 
 

 

 

 

Table 1: Convergence of the Proposition 1 Call Lower Bound for a Fixed Number of Time Intervals as a 

Function of Time to Maturity 

 

S/K ( )
t

C S  

 

( ( ) )
t

BSM k Sϕ
 

( ( ) ) ( )
t t

BSM k S C Sϕ −

 

( )
1

( ( ) )

t

t

C S

BSM k Sϕ
−

(%) 

( ( ) )
1

( )

t

t

BSM k S

BSM S

ϕ
−

(%) 

A: T = 30 days 

0.9 0.050 0.052 0.002 4.25 36.46 

1 1.942 1.954 0.012 0.62 20.28 

1.1 9.388 9.391 0.003 0.03 9.98 

B: T = 60 days 

0.9 0.309 0.318 0.009 2.84 23.31 

1 3.020 3.040 0.020 0.67 14.64 

1.1 10.093 10.102 0.010 0.10 8.81 

C: T = 120 days 

0.9 1.072 1.096 0.024 2.19 14.92 

1 4.643 4.677 0.034 0.73 10.49 

1.1 11.476 11.498 0.022 0.19 7.33 

D: T = 240 days 

0.9 2.708 2.761 0.053 1.90 9.70 

1 7.119 7.179 0.060 0.83 7.49 

1.1 13.886 13.931 0.046 0.33 5.83 

 

In this table we fixed the number of time intervals at 150 and varied the time to maturity T.  Other 

parameters are as follows: 100,K = 20%σ = , 8%µ = , 4%r = , 0.5%k = . 



 63 

Figure 5: Convergence of the g-function to its Continuous-time Limit   

 

The figure displays the convergence behaviour of the g-function (3.8) to its continuous-time limit ( )*

1
N d , 

where ( )( )*

1 1
, .d d k Sϕ=  derived for the uniform distribution of the stock returns (5.1).  The parameters 

are as follows: 100K = , 20%σ = , 8%µ = , 4%r = , 30T = , 0.5%k = . 

 

Figure 6: Relative Convergence Errors of the g-function from Continuous-time Limit   

 
The figure displays the relative convergence errors of the g-function (3.8) from its continuous-time limit 

( )*

1
N d , where ( )( )*

1 1
, .d d k Sϕ=  derived for the uniform distribution of the stock returns (5.1).  The 

parameters are as follows: 100K = , 20%σ = , 8%µ = , 4%r = , 30T = , 0.5%k = .  


