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Abstract

Electricity is considered a new commodity, mainly since the start of the elec-
tricity markets liberalization. However it represents an increasingly important
sector of trading and as such a challenging area of research. Here we focus on
the role of electricity power exchanges for the creation of a single European
electricity market, on a different empirical perspective. We use daily power
exchange prices of 6 Furopean electricity markets resorting to a novel econo-
metric technique to study correlation at different time scales, known as wavelet
analysis, through coherence and phase analysis.

Results give limited support to the assumption of a single "European elec-
tricity market", especially at lower scales (high frequency data). Although some
European countries share a common trend, the hypothesis of strong integration
holds only for some geographically closer countries, but not the perfect integra-
tion among the markets considered in the sample. We also find that despite
the year 2005, coherence among the series has been high, whereas we also try
to infer some possible causes for this lack of perfect integration in the current
days.

Keywords — Electricity Prices; Continuous Wavelet Transform; Wavelet
Coherency; Wavelet phase; Comovements; European Regulation
EFM classification codes: 350; 630



1. Introduction

In Europe, the reorganization of the electricity industry has been driven by
the first and the second Electricity Directives of 1996 and 2003, respectively,
and more recently enhanced by the 2007 energy package. They have been fol-
lowed by a series of recommendations (such as new cross-border lines and a
common regulation of cross-border trade) to lead the creation of a truly com-
mon European electricity market. The main objective of this EU legislation has
been to reduce barriers to trade and to compel Member States to liberalize their
electricity industries, thereby increasing efficiency and reducing prices.

While the newly created national wholesale markets show several important
institutional similarities (same market design and homogeneous regulation of
cross-border trade) they still appear to be characterized by equally important
differences in the physical (number and size of generation units) and technolog-
ical structure (mainly the sources of electricity generation) of their generation
industries.

In this work we address the question of whether the similarities in the elec-
tricity market mechanism across European countries are able to lead the dynam-
ics of equilibrium electricity prices. Since price data show peculiar characteris-
tics (leptokurtosis, outliers, periodicity of various kinds, etc.), for this analysis
we have used a recently new technique to decompose the daily time series in the
time-scale domain.

It is important to search for common trends at different time scales since it
may support the view that the European electricity markets are well integrated;
for the design of cross-border hedging strategies; and due to different horizon
investment decisions. In contrast to methods employed in previous studies (coin-
tegration tests), wavelets allow us to decompose a time series into different time
scales (time horizons). Due to the different decision-making time scales among
traders, the true dynamic structure of the relationship among spot prices across
different European countries itself will vary over the different time scales associ-
ated with those different horizons. If integrated dynamics of electricity prices is
found this indicates that markets are evolving consistently with European Com-
mission projects. On the other hand, if poor or no integration is evident, this
would suggest that national structural differences are still dominant and that
they affect price behavior more heavily than the common regulation framework
desired. Yet, an analysis of this kind is important in order to evaluate the state
of the integration process of the European markets.

What are then these special characteristics? Electricity is not efficiently
directly storable, and as such prices are very volatile, where seasonal and price
spikes frequently occur. In fact, the design of electricity markets is complex due
to a series of electricity characteristics that affect supply and demand. These
physical characteristics complicate the design of electricity markets. Electricity
has to be consumed within a tenth of a second after its production by virtually all
consumers. The supply and demand of power must be kept in a near continuous
balance throughout the entire grid to avoid frequency and voltage fluctuations,
which can damage generation and transmission equipment. Extreme volatility,



mean-reversion, skewness and kurtosis of returns, jumps and spikes, and the
seasonal (daily, weekly, annual) behavior of electricity prices (due to cooling
and heating needs), differentiate the power market from all other commodity
markets (Huisman, Huurman and Mahieu, 2007).

Economists have attempted to explain and forecast the movements of elec-
tricity prices in Europe and other continental markets. Most of these analysis
techniques are based on the quantitative approach that is often implemented
with the classical data analysis technique that is ideal for stationary signals
(time invariant). However, the real data for electricity prices, due to its special
characteristics is not necessarily stationary.

Since the conventional statistical methods have proven to be inadequate to
describe the evolutionary nature of most of the real-world time series data,
the research community has provided us an alternative perspective of looking
into the data by using the signal processing approach. The present paper uses
wavelet transformation to study co-movement of European spot electricity mar-
kets that are highly non-linear and non-stationary dynamic processes. The joint
time-frequency nature of the wavelet analysis helps to separate the underlying
trends found in the spot data for identification of local patterns at various time
scales.

The process which followed the EU Directives should enhance the degree
of comovements among national European electricity markets. Such an effect
is expected to raise electricity markets comovements across countries. Most of
the empirical studies investigating the interdependence between European elec-
tricity markets have been based on the estimation of a correlation matrix of
electricity prices and/or on multivariate analysis techniques, such as cointegra-
tion theory and principal component analysis. These techniques, particularly
cointegration analysis, analyze the interactions between electricity markets by
examining either their short-run or long run relationships as the time series
methodologies employed may separate out just two time scales in economic time
series. The nature of the relationship between electricity prices may well vary
across time scales. Where both the time horizons of decisions and the strength
and direction of relationships between market prices may differ according to the
time scale of the analysis a useful analytical tool may be represented by wavelet
analysis.

Some authors have concentrated on the fuel market side. Siliverstovs et
al. (2005) investigate the degree of integration of natural gas markets in Eu-
rope, North America and Japan through principal component analysis. De
Vany and Walls (1993) use cointegration analysis in locational spot natural gas
markets. Panagiotidis and Rutledge (2007) found no evidence to show that oil
and gas prices "decoupled" after liberalization. Bencivenga and Sargenti (2009)
investigate the short and long run relationship between crude oil, natural gas
and electricity prices in US and in European commodity markets. They use
daily price data over the period 2001-1009 and perform a correlation analysis
to study the short term relationship, while the long run relationship is analyzed
using the Engle-Granger cointegration framework through the Error Correction
Model. Results show an erratic relationship in the short term while in the long



term an equilibrium relationship may be found.

Resorting to electricity markets, Woo, Lloyd-Zanetti and Horowitz (1997)
use cointegration techniques to study locational spot electricity markets. De
Vany and Walls (1999) estimate a vector error correction model for electric-
ity spot prices in 11 regional markets in the western United States. Results
show evidence of an efficient and stable wholesale power market. The studies
of Bower (2002), Boisseleau (2004) and Armstrong and Galli (2005) compare
electricity day ahead wholesale prices at various power exchanges in Europe.
Bower (2002) applies correlation and cointegration analysis to prices from the
Nordic Countries, Germany, Spain, England and Wales as well as the Nether-
lands in 2001. He concludes that some integration of European markets was
already present in 2001, especially between the Netherlands and its neighbors
and within the Nord Pool area. However, his use of unweighted daily averaged
data is a flaw given the strong differences of peak and off-peak price behavior on
the electricity market. Boisseleau (2004) focuses on regression and correlation
analysis determining that the level of integration of European markets is quite
low. Both Bower (2002) and Boisseleau (2004) describe the respective status
quo of electricity market integration. Armstrong and Galli (2005) analyze the
European price developments over time. They study the evolution of price dif-
ferentials between France, Germany, the Netherlands and Spain in the years
2002 to 2004 (Bosco et al., 2009, points out some critics to their study). Turvey
(2006) examined the use of interconnectors and the pricing of scarce transmis-
sion capacities. Based on the example of the Anglo-French Interconnector, he
provided empirical evidence for the insufficient correlation of flows and price
differentials.

Zachmann (2008) based on a Principal Component Analysis of wholesale
electricity prices in Austria, Germany, Netherlands, Denmark, Sweden, Poland,
Czech Republic, UK, Spain and France between 2002 and 2006 reject the as-
sumption of full market integration. He uses hourly data to examine intraday
developments and compare them across markets. More recently, Bosco et al.
(2009) results of a robust multivariate long-run dynamic analysis reveal the
presence of four highly integrated central European markets (France, Germany,
the Netherlands and Austria), not for Spain and the Nordic market. In order
to explore the long run dynamics and common features of time series they rely
on median filtering, robust parametric tests with unit roots or less cointegration
under the null hypothesis and robust semi-parametric tests with mean rever-
sion or more cointegration under the null. Their results point out for no overall
integration of electricity European markets. On a different perspective, Robin-
son (2008) considers the impact of EU directives on the evolution of electricity
prices using beta-convergence and cointegration. Although mixed, results sug-
gest that convergence did not occur for Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Portugal, Spain and the UK from 1978 to 2003. However,
they use electricity prices for households and industry quoted in US dollars per
kilowatt hour. As such, retail price rather than wholesale prices are used, being
the retail price the wholesale price plus a supply and transmission element.

Previous research findings indicate that the European electricity market as a



whole is far from being a true common market, and we explore here this hypoth-
esis resorting to wavelet analysis. As opposed to the previous literature, this
work employs wavelets in detecting relationships among the variables. Wavelet
transform is a multi-scale analysis method to detect the signal in different scales.
Wavelet analysis performs the estimation of the spectral characteristics of a time
series as a function of time revealing how the different periodic components of the
time series change over time. They can thus help us to interpret multi-frequency,
non-stationary time series data, revealing features we could not see otherwise.
Analysis in the frequency domain does not bring additional information, but
it is an alternative method to analyze the data. A measure of correlations in
the time domain is the coherence in the frequency domain. That’s why we use
wavelets as a distinct feature from previous works by analyzing European elec-
tricity markets comovements through time and scales by means of the Morlet
wavelet.

Results point out that although some European countries share a common
trend, the hypothesis of strong integration holds only for some geographically
closer countries, but not the perfect integration among the markets considered
in the sample (especially at higher frequencies). However, the existence of a
common long term dynamics among electricity spot prices may prove to be
important for hedging. Also, they have specific characteristics that prevent,
probably also in the near future, a complete integration into the direction of a
single European market.

The paper develops as follows. Section 2 presents the research method to
be employed in the empirical part of the work, and section 3 presents the data
and descriptive statistics. In section 4 we present the empirical results and
discussions. Section 5 concludes the work.

2. Research method: Wavelets

Wavelets are relatively new signal processing techniques/tools in economics
and finance, taking their roots from filtering methods? and Fourier analysis
(Percival and Mofjeld, 1997; Percival and Walden, 2000; and Gengay, Sel¢uk
and Witcher, 2002). However, they overcome most of the limitations of these
two methods. Their main advantages are the fact that they combine information
from both time-frequency domain, being very flexible, and with wavelets we do
not need to make strong assumptions concerning the data generating process
for the series under investigation.

What makes wavelets interesting and useful is the fact that its window can
be continuously resized. By looking at a signal with a small window only fine
features can be viewed whereas by looking at the same signal with a large
window the coarse features will be viewed. Thus, by using wavelets we could
see both fine details and approximations. The temporal analysis by wavelets
is performed with a contracted, high-frequency version of the wavelet, while

2Filters allow to capture specific components (trends, cycles, seasonalities) of the original
series.



frequency analysis is performed with a dilated, low-frequency version of the
same wavelet.

There are two classes of wavelet transforms; the continuous wavelets trans-
form (CWT) and its discrete counterpart (DWT). The DWT is a compact rep-
resentation of the data and is particularly useful for noise reduction and data
compression whereas the CW'T is better for feature extraction purposes. To ana-
lyze the relationship between European electricity prices the continuous wavelet
transform is used. In this part of the work we decompose the data series up to
level 9.

The term wavelet refers to a small wave: small because the wavelet function
is non-zero over a finite length of time (compactly supported) and wave because
the function oscillates. Wavelet functions are constructed on the basis of location
and scale parameters and a "mother wavelet" function. The mother wavelet
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(¢(t)) is defined on the real axis and must satisfy the conditions / p(t)dt =0

— 00
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and / |p(t)|>dt = 1. These conditions imply that at least some coefficients

—00
of the wavelet function must be different from zero and that these departures
from zero must cancel out.

The continuous wavelet transform, with respect to the wavelet ¢, is a
function W, (s, 7) defined as:

W,(s,7) = ﬁ(t)qus* (57 1)

— 00

where * denotes the complex conjugate form. Wavelet coefficients are given by
this transformation. The mother wavelet ¢(t) serves as a prototype for gener-
ating other window functions. The term translation, 7, refers to the location
of the window (indicates where the wavelet is centered). As the window shifts
through the signal, the time information in the transform domain is obtained.
The term scaling, s, refers to dilating (if |s| > 1) or compressing (if |s| < 1) the
wavelet (controls the length of the wavelet). To extract frequency information
from the time series in question, the mother wavelet is dilated or compressed
to correspond to cycles of different frequencies. If the wavelet function ¢(t) is
complex, the wavelet transform W, will also be complex. But this means that
the transform can be divided into the real part (R{W,}) and imaginary part

(I{W,}), or amplitude, |W,|, and phase®, tan~* (HI«?;/VVZD

3The phase of a given time series () is parameterized in radians, ranging from —7 to
m. Moreover, in order to separate the phase and amplitude information of a time series it
is important to make use of complex wavelets. Just like the Fourier transform, under some
regularity conditions, we can reconstruct x(t) from its continuous wavelet transform (Torrence



Wavelets constructed over short time scales will tend to isolate sharp, high
frequency volatility in the time series. Because of the short time scales, this
information will have good time resolution but poor scale (frequency) resolu-
tion. Relatively long-scale wavelets will tend to capture low frequency volatility
and will have relatively poor time resolution but good scale (frequency) resolu-
tion. This study uses the Morlet wavelet as the basis function used for wavelet
transform (Percival and Walden, 2000).

2.1. Morlet wavelet

The Morlet wavelet allows good identification and isolation of periodic sig-
nals, as it provides a balance between localization of time and frequency (Grin-
stead, Moore and Jevrejeva, 2004). This is a complex wavelet, as it yields a
complex transform, with information on both the amplitude and phase, essen-
tial for studying synchronisms between different time series. The Morlet wavelet
in its simplified version is defined as:

. 2

?,(t) = r it T (2)

An important property of the Morlet wavelet is its accuracy, being the center
+00 oo

of the wavelet ¢ defined by u, = /t|q§(t)|2 dt and its variance o? = /(t -

— 00 —0o0
e lo(6) dt.

The central frequency of a wavelet determines the waveforms, which are not
close to zero within the window of the wavelet. The two peaks next to the
central peak are half of its amplitude. The central frequency of the Morlet
wavelet was chosen to be equal to nine since it gives a good balance between
time and frequency localization. For this central frequency the Fourier frequency
period (1/f) is almost equal to scale.

The wavelet transform performs what is called time-frequency analysis of
signals. In other words, it can estimate the spectral characteristics of signals
as a function in time. The utility of wavelet analysis is that it can provide not
only the time-varying power spectrum, but also the phase spectrum needed for
computation of coherence.

2.2. Wavelet power spectrum, coherency and phase difference

The concept of coherence is fundamental and quite important in all fields
dealing with fluctuating quantities. It is often defined as the action or fact
of cleaving or sticking together (Oxford’s English Dictionary). Correlation is
defined as the relation of two or more time series, so we could say that those
series that are highly correlated are coherent. The degree of coherence is a
measure of how closely X and Y are related by a linear transformation. Thus,
X and Y are closely related by a linear transformation if and only if their degree
of coherence is close to its maximum value of unity. The two random variables
X and Y are said to be completely coherent if and only if |p| = 1 and completely
incoherent if and only if |p| = 0, where p is the correlation coefficient.

and Compo, 1998; Conraria, Azevedo and Soares, 2008).



Dealing with discrete time series {x,,n = 0,..., N — 1} of N observations
with a uniform time step dt, the integral in (1) has to be discretized, and the
CWT of the time series {z,} becomes

N-1
W,f(s)—jthznqﬁ* <(n—m) ?),m—O,l,..,N—l (3)
n=0

It is possible to calculate the wavelet transform using this formula for each
value of s and m but we can also identify the computation for all the values of m
simultaneously as a simple convolution of two sequences (Torrence and Compo
(1998) and Conraria, Azevedo and Soares (2008) provide more details on this).
As also evidenced by these authors, when applying the CWT to a finite length
time series we inevitably suffer from border distortions. This is due to the fact
that the values of the transform at the beginning and at the end of the series
are always incorrectly computed, involving missing values of the series which
are then artificially prescribed. The region in which the transform suffers from
these edge effects is called the cone of influence. In this area results must be
interpreted carefully. Similarly to Torrence and Compo (1998) and Conraria,
Azevedo and Soares (2008) the cone of influence will be defined here as the
e-folding time of the wavelet at scale s, that is, so that the wavelet power of a
Dirac § at the edges decreases by a factor of e~ 2. For the Morlet wavelet under
analysis this is given by v/2s.

The wavelet power spectrum is just |[WZ|". It characterizes the distribution
of the energy (spectral density) of a time series across the two-dimensional time-
scale plane, leading to a time-scale (or time-frequency) representation.

The cross wavelet transform (XWT) of two time series z,, and y,, is defined
as WY = WZWY", where * denotes complex conjugation and W?* and WY are
the wavelet transforms of z and y respectively. Let’s us define the cross wavelet
power as |[W*¥|. The complex argument arg(W<®¥) can be interpreted as the
local relative phase between x,, and y, in time frequency space.

Therefore, the wavelet power spectrum can be interpreted as depicting the
local variance of a time series and the cross-wavelet power of two times series
depicts the local covariance between these series at each scale or frequency.
For more general data generating processes one has to rely on Monte Carlo
simulations (see Conraria, Azevedo and Soares, 2008, for more details).

The phase for wavelets shows any lag or lead relationships between compo-
nents, and is defined as

| 2

Gpy = tan_lm (4)

d)x,y € [77‘-’ 7T]

where I and R are the imaginary and real parts, respectively, of the smooth
power spectrum.

Phase differences are useful to characterize phase relationships between two
time series. A phase difference of zero indicates that the time series move



together (analogous to positive covariance) at the specified frequency. If Guy €
(0,7/2) then the series move in-phase, with the time-series y leading . On the
other hand, if ¢, , € (—/2,0) then it is x that is leading. We have an anti-phase
relation (analogous to negative covariance) if we have a phase difference of 7 (or
-7) meaning ¢, , € (—7/2, 7| U (-7, 7/2]. If ¢, , € (7/2,7) then z is leading,
and the time series y is leading if ¢, , € (—m,—n/2) (for this see Conraria,
Azevedo and Soares, 2008). In other words, arrows at 0° (horizontal right)
indicate that both are in phase and arrows at 180° (horizontal left) indicate
that they are in anti-phase. It is important to point out that these two cases
imply a linear relation between the considered series. Non horizontal arrows
indicate an out of phase situation, meaning that the two series do not have a
linear relation but a more complex relationship.

Cross-wavelet power reveals areas with high common power. Another useful
measure is how coherent the cross wavelet transform is in the time frequency
space. Following Torrence and Compo (1998) we define the wavelet coherency
of two time series as

S (s7'Wrv(s)) ’2
S (st WE)F) s (s W)

where S is a smoothing operator in both time and scale. This definition closely
resembles that of a traditional correlation coefficient, and it is useful to think
of the wavelet coherence as a localized correlation coefficient in time frequency
space. Without smoothing coherency is identically 1 at all scales and times. For
the Morlet wavelet a suitable smoothing operator is given by

R (s) =

()

Stime (W) |s = (Wn(s)*cl_t /2 ) ‘s (6)

and

Sscale (W) ‘n = (Wn(s)*c2H(07 65)) |n (7)

where ¢; and ¢y are normalization constants and II is the rectangle function.
The factor of 0,6 is the empirically determined scale decorrelation length for the
Morlet wavelet (Torrence and Compo, 1998).

The cross-wavelet coherence gives an indication of the correlation between
rotary components that are rotating in the same direction as a function of time
and periodicity*. Coherences near one show a high similarity between the time
series, while coherences near zero show no relationship. It can be defined as the
ratio of the cross-spectrum to the product of the spectrum of each series, and
can be thought of as the local correlation between two CWTs.

Coherence is considered to be equivalent to correlation. Though, there are
important differences between them. In coherence’s calculation the signal is

4We use both cross-wavelet spectrums and coherence. In order to save space we only
present the coherency and phase plots. Results of cross-wavelet spectrums will be provided
upon request to the authors.
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squared, thus producing values from 0 to 1. The polarity information is lost.
By contrast, correlation is sensitive to polarity and its values range from —1 to
1. Coherence provides information about the stability of the true relationship
between the two signals with respect to power asymmetry and phase relationship
and not direct information about this relationship. Correlation, on the other
hand, may be calculated over a single epoch or over several epochs and affected
by phase, independently of amplitudes. The caveat is that this correlation may
not be contemporaneous, but may involve a lead or a lag. A measure of the
magnitude of this lead or lag is the phase lead.

The vectors plotted in the coherence pictures indicate the phase difference
between the two series. Those pointing to the right mean that the variables are
in phase. To the right and up with the first series lagging. To the right and
down with the first series leading. Arrows pointing to the left mean that the
variables are out of phase. To the left and up with the first series leading. To
the left and down with the first series lagging. For a complete interpretation
of the difference of phase between the analyzed series we suggest the reading of
Barbosa and Blitzkow (2008, pp. 28-29) who interpret the meaning of the phase
angels. However, we still need to know which of the time series is processed first
for the scheme to be valid. In the present work, all pictures show the cross-
coherency between two series. The name of the country presented first is our
first series, the other one being the second we consider.

3. Data and descriptive statistics

For the empirical analysis we employ hourly time series of electricity spot
prices registered in 6 European wholesale electricity markets. The time span for
the considered markets starts in January 2000 and ends in August 2009, with a
few exceptions at the start date (like France and Austria). The markets under
analysis include the Nord Pool system (NP onwards, composed by Denmark,
Finland, Norway and Sweden), Spain (OMEL), the Netherlands (Holand-APX),
Germany (EEX), France (FR) and Austria (EXAA).

The electricity price series used in our study were obtained directly from
the official websites. The data sets are composed by daily average hourly prices
(24 hours average) of the spot electricity market and they represent the cost to
obtain a certain quantity of electricity in a specific hour of the day. Price for
the Nord Pool system is in NOK/MWh. All other prices are denominated in
Euro per Megawatt hour.
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Table 1: Descriptive statistics for electricity prices in the considered European

countries
APX EEX EXAA FR NP OMEL
Mean -2825,67 32,31 36,12 37,92 138,62 29,23
Std. Dev. 4537,87 18,72 206,23 22,61 73,12 9,40
Skewness -0,95 3,91 -48.,16 3,25 0,53 1,42
Kurtosis 1,90 37,28 2343,85 26,96 3,07 8,22
JB 479,69 123336,70 5.48E+08 61485,05 112,42 3523,65
p-values (0,00) (0,00) (0,00) (0,00) (0,00) (0,00)

Note: The table reports means, standard deviation, skewness, kurtosis, and the
Jarque-Bera (JB) test for normality. The values in parentheses are the p-values. APX
— Netherlands; EEX — Germany; EXAA — Austria; FR — France; NP — Nord Pool;
OMEL - Spain.

12



The examination of values in table 1 indicate that mean prices for all electric-
ity spot markets are positive except for APX. The Jarque-Bera statistic indicates
that the distribution of prices, for all samples, has fat tails and sharper peaks
than the normal distribution. All price series exhibit excess kurtosis.

The high kurtosis values show that the available time series are in fact peaked
relative to a normal distribution. This may happen due to weather conditions,
outages, the fact that electricity cannot be stored and has to be consumed at
the same time as it is produced, the exploration of market power (due to the
fact that some sections in the market may become isolated from the rest of the
market - transportation constraints can also be implying this isolation), some
change in the surrounding environment (external factors like economic behavior
around the world or the change of market rules of their own electricity markets),
among other causes.

There are some markets with tremendous volatility like Austria and the
Netherlands, and significant differences are apparent between the average whole-
sale electricity prices among the six markets, mostly notables in Austria and
Nord Pool. The reason for this is attributed to agents learning by Simonsen
(2003) and Haldrup and Nielsen (2006).

The mix of generation technology has an impact on both the mean and
standard deviation of market prices (Wolak, 1998). He argues that prices in
the market dominated by fossil fuel or thermal plants technology tend to be
much more volatile than the prices in the markets dominated by hydroelectric
capacity (Nord Pool and EXAA). However, given the data we have available we
are not able to confirm this finding.

As can be observed by table 2, the electricity markets under analysis dif-
fer on their underlying production structure, and despite the recommendations
throughout “green markets” they show little evolution in time (considering 2000
and 2007) with respect to hydro. In fact, in all markets there is a decrease in
percentage terms of the electricity generated by hydro from 2000 to 2007. As
such, renewables are not the main production source in the majority of electric-
ity markets. With the sample analyzed here, Austria and Nord Pool markets
(represented in table 2 and 3 by Norway, Finland, Sweden and Denmark) are
the exception.

13



Table 2: Electricity generated by source (percentage of the total electricity

generated)
Source | GR. SP FR NT A F S N D
Hard Coal 2000 [ 25,05 32,37 4,92 2522 721 1219 1,12 0,03 4625
2007 | 20,76 22,66 4,29 24,13 988 17,19 044 0,04 50,82
Hydro 2000 | 4,54 14,13 13,39 0,16 70,71 20,95 54,00 99,47 0,08
2007 | 447 10,16 11,26 0,10 60,67 17,45 4447 9824 0,07
Natural Gas 2000 | 9,18 936 2,13 57,71 12,64 1440 032 0,15 2434
2007 | 11,51 30,50 3,86 57,18 1556 1298 0,52 0,53 17,65
Nuclear 2000 | 29,67 27,63 76,78 4,38 0,00 32,12 39,37 0,00 0,00
2007 | 22,06 18,17 77,17 4,07 0,00 28,83 44,99 0,00 0,00
Petroleum 2000 | 0,84 10,06 1,33 349 277 087 1,19 001 11,78
2007 | 1,77 6,00 1,08 2,15 202 058 0,72 0,02 2,82

Note: Values are in percentage. GR — Germany; SP — Spain; FR — France; NT
— Netherlands; A — Austria; F — Finland; S — Sweden; N — Norway; D — Denmark.
Source: Euronext and own computations.
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The shape of the system marginal cost function is also influenced by the
productive mix of the generation side of the market. Nord Pool’s production
mix relies mainly on hydro and nuclear, being gas and coal mostly used by
Denmark in this regional European market. Also the Austrian market bases his
production on hydro having 70,71% of his total electricity generated in 2000,
whose value decreased to 60,67% in 2007.

France, Spain and Germany have a large nuclear production, being followed
by coal in Germany and Spain, and by hydro in France. The Netherlands has a
small quota in hydro production, but a large one in coal and gas.

We also need to analyze the concentration in the industry since it was one
of the main objectives of the EU Directives: increasing competition to reduce
market power. Table 3 presents the percentage share of the largest generator in
each of the considered markets in 2000, 2004 and 2008. The Nord Pool market
is represented in table 3 by the last four listed countries.

15



Table 3: Percentage share of the largest generator

Country 2000 2004 2008

Germany 34,0 284 30,0
Spain 424 36,0 222
France 90,2 90,2 87,3
Austria 32,6 - -
Finland 23,3 26,0 24,0
Sweden 49,5 47,0 452
Norway 30,6 31,2 274
Denmark 36,0 36,0 56,0

Source: Euronext historical data
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As evidenced by the data, the French market is characterized by the high-
est level of concentration, while Spain, Finland and Norway by the lowest. In
general, all markets have a lower concentration in 2008 than they had in 2000
being the exceptions Germany and Denmark. As such, we may conclude that in
these considered markets, the level of concentration is still high which creates
the scope for market power and the consequent influence in spot prices. Uncer-
tainties about power markets, high costs associated with the distribution and
production plants for those who plan to start, and the prevalence of incumbent
operators, are the possible main causes behind this lack of full competition until
the present moment.

4. Empirical Results

With this work we want to illustrate how relationships between electricity
price series change over time and across different frequencies. In fact, wavelets
allowed us to detect transient effects which would be very difficult to detect using
classical econometric techniques. In order to sustain previous results regarding
the correlation analysis we extend in this section such analysis by means of the
Coherence Morlet wavelet analysis.

The correlation analysis developed in the previously mentioned works in-
dicates the possibility of a certain relation between two time series, however,
this is of global nature and does not furnish us precise information about when
such a relation occurs: the fact that two data series have similar periodicities
does not necessarily implies that one is the cause and other the effect; besides,
even if the correlation coefficient is very low, that does not means that there
is no relation. In fact, there is the possibility that such a relation could be of
non-linear nature, or that there is a strong phase shift.

A way to analyze two non-stationary time series, to discern whether there is a
linear or non linear relation is by means of the Coherence Wavelet method. This
furnishes valuable information about when and which periodicity do coincide in
time, and about its nature (linear or non linear relation). It is especially useful
in highlighting the time and frequency intervals where two phenomena have a
strong interaction. The coherence between two or more time series can be used
to measure the extent to which multiple time series move together.

Although not presented here we have started by computing the wavelet power
spectrum for each of the electricity price series under analysis®. By a first visual
inspection at the time scale decompositions of the series, we can observe that
most of the action in these occurred at high scales (low frequencies).

We should also mention why we do not pay so much attention to the wavelet
cross-spectrum. This describes the common power of two processes without
normalization to the single wavelet power spectrum. This can produce mis-
leading results, because we are essentially multiplying the continuous wavelet
transform of two time series. In this way, if one of the spectra is locally flat and
the other exhibits strong peaks, this can produce peaks in the cross spectrum,

5 Although not presented here due to space restrictions, results will be provided upon
request.
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while may have nothing to do with any relation of the two series. Since the
information able to be extracted from these pictures need to be analyzed with
caution, we concentrate the rest of the work to the analysis of wavelet coherency
(see Conraria, Azevedo and Soares, 2008, for more details).

In figures 1, 2 and 3 we can see two pictures. the one’s in the left present the
estimated wavelet coherency and the phase difference arrows between the six
markets under analysis. Contours denote wavelet-squared coherency, whereas
the thick black contour is the 5% significance level, where the values for the
significance were obtained from Monte Carlo simulations. Outside the thin line
is the boundary affected zone. The cone of influence, indicating the regions
affected by hedge effects, is shown with a dotted line. The phase difference
between pairs of series is indicated by arrows. Those pointing to the right mean
that the variables are in-phase. To the right and up with the first series (in the
order they appear in the bottom of the graph) lagging. To the right and down
with the first series leading. Arrows pointing to the left mean that the variables
are out-of-phase. To the left and up with the first series leading. To the left
and down with the first series lagging. Color code for power ranges from light
grey (low coherency, near zero) to dark grey (high coherency, near one).

Plots in the right of these figures show the coherence and phase of countries
which are compared pairwise. It’s simply a more detailed analysis of the left
plots. These pictures show values of coherence varying between zero and one
(vertical axis). Values of phase are calculated to each value of frequency and it
varies between -m and 7. In the horizontal axis we have the time period. On
the right the calculations are done for the 256-512 days frequency band, which
was showed to be the region with higher commovement among the series by the
plots on the left of the wavelet coherency.

Looking at figure 2 wavelet coherency plots, in the left, we see some sta-
tistically significant regions at high and medium frequencies (low and medium
scales) between Nord Pool and the other European electricity markets. In most
of these regions, arrows point straightforwardly to the right, meaning that both
series are in phase, and to the right and up meaning that the first series (NP)
is lagging. We see a significant changing behavior in arrows between NP and
Spain (OMEL) after Directives 2003/54/EC, for cross-border electricity trading
regulation, and 2003/87/EC for the Emissions trading scheme, have been imple-
mented. Until then arrows pointed to the left and up (NP leading), after they
point right and up and right and down (meaning that both series turned out
to be in phase, with NP leading). But this behavior between the two markets
is mostly notable at lower frequencies, with a highly significant region noticed
after the creation of the Iberian electricity market (MIBEL) in 2007. More-
over, NP and EEX series are showed to be mostly in phase, especially in the
4-8 days frequency band, having the same behavior been noticed between NP
and Powernext. However, the relation between NP and APX shows to be weak
independently of the time scale analyzed.

As for the other markets we see a significant behavior change among the
series after 2003. The exception is provided by the OMEL market (figure 3)
with relation to all the other European countries. In fact, we can observe
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highly statistically significant regions (islands of high coherency and statisti-
cally significant), especially at medium-high-scales between APX, EEX, EXAA
and Powernext (figure 1 and 3). APX price series show an in-phase behavior
with all the other markets, especially with France (meaning that they have a
linear relation, at least in the high coherency regions). We should not forget
the launch of the Central Western European market (France, Belgium and the
Netherlands) in 2006. Moreover, information on the phases show us that the
relationship has been homogeneous at medium and high scales, while not being
homogeneous at high frequencies with arrows pointing in different directions.
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Figure 1: Wavelet coherency plot between pairs of electricity price series in the
considered six European electricity markets
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From all the markets under observation, the Spanish market shows, by the
wavelet coherency, the lowest commovement with all the others, although most
of the higher coherency with those geographically closer. This is evident at
higher frequencies, even with some regions of high common power showed in
medium scales.

France installed 58 nuclear power plants between 1970 and 1993, while being
a huge exporter of electricity. This policy made of France a low-cost area for
electricity as compared to the Netherlands, for example, that relies mostly on
natural gas. With Spain, the situation is more variable and depends on the
rainfalls in the Iberian Peninsula. As such, only during rainy periods Spain is
able to export to France, importing much of the time from this country. We
should also emphasize the fact that the Iberian market is very distant from all
the other markets, having France as the most direct “client”. This may thus
explain the observed results presented by the cross wavelet coherency pictures
in figure 3.
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Figure 2: Wavelet coherency plot between pairs of electricity price series in the
considered six European electricity markets (continued)
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It should also be emphasized the relation between Germany and the Nether-
lands, Germany and France, and between France and the Netherlands. By the
wavelet coherency plots, and given that wavelet coherency is used to identify
both frequency bands and time intervals within which pairs of series are co-
varying, we see that these series show high statistically significant coherency
and an homogeneous behavior (they are all in-phase; a linear relationship is
found between the series) independently of the frequency-scale. There are how-
ever a few exceptions in the 8-16 days, 16-32 days and 32-64 days scale for
EEX-FR (figure 1) and FR-EXAA (figure 3). In these countries case, short and
long-run movements are highly correlated, meaning that country specific phe-
nomenons are rapidly transmitted to the other markets. These countries have
a very similar wavelet transform, which implies that these 3 countries share the
same high power regions between them, and also that their phases are aligned.
As such, the contribution at each frequency to the total variance is similar be-
tween them: it happens at the same time where ups and downs in electricity
spot price series occur simultaneously. So, we can say that a value very close to
zero between countries phase indicate that price series/markets are highly syn-
chronized, with the phase difference revealing a very stable and strong relation.
By the plots on the right we see specific periods where this has occurred.
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Figure 3: Wavelet coherency plot between pairs of electricity price series in the
considered six European electricity markets (continued)
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However, it is clear that the different series still have different characteris-
tics in the time-frequency domain in European electricity markets. This can be
summarized by looking at the phase and phase difference between series, point-
ing for the lack of full market integration (which agrees with Zachman, 2008,
results).

We observe that Nord Pool and Spain do not exhibit many regions of high
coherency with the other European countries, and that their phases are not very
stable when compared to those attained by Germany, France, Austria and the
Netherlands (in accordance to the results achieved by Bosco et al., 2009). The
fact that more regions of high coherency appeared after 2003 suggests that it
was from that moment onwards that they start approaching together, which
also means that the Directives were starting to produce their desired effects on
the European electricity markets. We may not also forget that these last four
countries are those geographically closer and with a great developed capacity
in terms of border connections. That’s why that for EEX-EXAA, EEX-FR and
FR-EXAA series we can argue that commovement and cointegration is a reality
now.

While the phase difference gives us information about the delay, or synchro-
nization, among oscillations of pairs of time series, the coherency cross-wavelet
transform will tell us if this correlation is strong or not. Regions of high co-
herency between two countries are synonym of strong local correlation.

With the analysis of the right plots we will focus on the details provided
by coherence and phase. In general phases are not very stable, and there are
countries which do not exhibit many regions of high coherency, especially before
2005. Results suggest that taking out the year 2005, coherences were in general
high among the series.

From the phase plots at the 252-512 days frequency, coherency fell to lower
values in the year 2005. During the year 2005 until the summer 2006, we had
a period of high natural gas prices (record natural gas demand for electric gen-
eration and continued because of damage done by hurricanes Katrina (August
2005) and Rita. According to the European Energy Markets Observatory 2005
report, this was a period of high energy prices, an overall decrease of peak gener-
ation margins, slow progress in interconnections and insufficient infrastructures
investments. They also state that "The recently established Emissions Rights
trading market experienced great volatility due mainly to a lack of EU coun-
tries’ coordination in publishing their 2005 results and in their comparison to
the National Allocation plans. This in turn has influenced wholesale electric-
ity prices." EXAA, APX, Finland and Denmark all rely on natural gas, Spain
and Denmark are the one’s that use more petroleum for electricity generation.
In accordance with the same report, high prices in the year 2005 were due to:
an higher demand from emerging countries, like India and China, and North
America; due to geopolitical crisis like the Iraq and Iran crisis; due to the civil
war in Nigeria; the lack of investment in exploration, production and refinery;
the Katrina and Rita hurricanes on Gulf of Mexico oil platforms; and financial
speculation.

The high summer temperatures in 2005 and low rainfall in Spain and France,
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and the cold weather during the winter of 2005/2006 have also contributed to
these high prices observed. Peak price spikes were seen in Germany and France,
given that when the cold wave hit Europe in November 2005, 5 nuclear plants
in France and 2 in Germany were unavailable, and also the hydro reservoirs in
France were at their lowest levels. In the Nordic countries hydrological levels
were very good during winter 2005 and NordPool was Europe’s sole exchange
provider of low wholesale hydro power. Countries such as Spain, with high de-
pendency on gas supply for power plants and limited substitution capacity to
other type of generation capacity faced significant instabilities in their power
markets during 2005. Others like Germany and the Netherlands have a bet-
ter balance between gas-fired and coal-fired plants and were able to switch to
coal. Countries such as France with a high portion of nuclear generation were
less impacted. The report of the European Energy Markets observatory also
states that during this period several markets are "naturally" converging like
the German and French power market, where prices were 99,69% correlated in
2005.

EEX, EXAA, France and Austria show more regions of high coherency in
the sample period suggesting that they are approaching each other. We see the
phase of EEX-FR and EEX-EXAA close to zero (figure 1), especially in the
period January 2005 - January 2008. Since a phase difference of zero indicates
that the series move together (analogous to positive covariance) we can say that
they started to move together from 2005 onwards although not being a perfect
move. Even so, at higher frequencies both phase and coherence showed a very
erratic behavior®.

In figure 1 (APX-EEX), looking at the phase difference in the 256-512 days
band we can see a negative relation between both series for most of the time. At
large scales the phase has been between 0 and -7/2, which means that the series
move in phase with EEX leading APX. In both pictures coherency has been
increasing with an evident trend. Only in the period January 2006 to January
2009 the phase of zero indicates that the time series SP-EEX move together
(figure 3).

Only in some countries coherence is near one, but the increase in coherence
after 2006 is evident in all of them. Nevertheless, there are groups of countries
that present high values of coherence (SP-FR; EEX-EXAA; APX-EXAA; FR-
EXAA) for specific periods of time, namely the last two to three years (2006-
2009). In these cases, phases are close to zero whereas the coherence is close to
one. This result indicates that probably there exists synchronization inside these
groups for specific time periods. Although we may not forget that these plots
are for high scales (lower frequencies). On the other side, couples of countries
formed by other combinations present lower of coherence and their phase is
generally different from zero.

From figure 1 we see that EEX leads EXAA, while France leads the German
market for the entire sample period. APX has been leaded by Germany and
the Netherlands from 2005 onwards. From figure 2 we can infer that NP has

6Results are not presented here but will be provided upon request.
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been leading all the other countries price series except France. Between 2003
and 2005 NP was leading SP but we have an out-of-phase relationship between
both in this time period. Finally, figure 3 results point out that France has been
leading the Netherlands market for the entire sample and that Spain only leads
the other 3 closest markets between 2007-2008 at the 256-512 days frequency
band.

It is interesting to note the variability presented in the phase plots and
that the number of cycles at each frequency has changed mainly from 2006
onwards. It is then fair to say that the phasing is not well synchronized. In
sum, coherence and phase at higher frequencies is less consistent, which impels
the synchronicity of the series”. However, coherence showed to be higher for
lower frequencies except during the year 2005.

The presented results may be due to the special features describing these
markets, but also to the remaining obstacles to the full implementation of EC
Directives. The generation mix that still persists among these markets (that
impact costs), the high market power that is still evident (as explored previ-
ously) and transmission capacities of electricity interconnection lines limited for
legal or technical reasons, and the cross-border trade costs associated, may be
the reason why the wavelet coherency among all pairs of countries do not show
a strong commovement among them independently of the scale/frequency. The
lack of lively cross-border trade is mainly due to the lack of sufficient capacity,
and frequent physical congestions (Zachman, 2008).

As pointed out by Zachman (2008) and Bosco et al. (2009), the cross-border
trade in electricity is still facing various impediments that slow down the process
of the creation of a single FEuropean electricity market.

In sum, there are still large wholesale price differences between countries in
Europe, being interconnection capacity scarce across Europe, and despite the
old 2003 Directives and third energy package published by the EC in January
2007, little progress has been made in this direction (see Dobbeni, 2007, for
more details). According to the objectives proposed by the European Council
in 2002, all Member States should be able to import at least 10% of their
installed generation capacity which is still not the case for Spain, among other
countries which were not included in the present study.

Since Germany shows a strong coherency behavior with France and the
Netherlands, maybe it should be the time to join the Central Western Euro-
pean market initiative. In fact, given that the European Commission realized
what was happening in some regions in terms of connections, they start pro-
moting a regional strategy for all regions as an intermediate step towards the
desired single electricity market in Europe. However, large differences persist
in terms of production mix, market power is still evident and interconnection
capacity operating fully and in a transparent manner is still lacking.

Despite, the desire of the “unique market” is still an illusion; very important

"Results for coherence and phase plots revealed to be very unstable at higher frequencies.
Moreover the highest comovement among the series was revealed for lower frequencies. As
such we only present the coherence and phase for the 256-512 days frequency band, which is
the most representative of the message we are trying to pass.
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steps have been given in the direction of harmonization and coordination of
market rules and operations. The most important steps are observed by the
regionally integrated markets: the Nordic, the Central Western European and
the Iberian market. Now, it is time to start integrating these regional segments
into a common one, although the ambitious target of a single common European
electricity market is far from being a reality at the moment, as evidenced by
the empirical results we have provided here.

We have also seen that differences still exist in the productivity structure of
the analyzed countries, reflecting different cost and prices volatility, generally
due to hydro and nuclear ratio production for each country. Moreover, energy
markets also show disparities in terms of total share of the largest producer
(Commission of the European Communities, 2009). The variability presented
in the phase plots and the number of cycles at each frequency has changed
mainly from 2006 onwards (the phasing is not well synchronized). Coherence
among the series was showed to be high for lower frequencies except during
the year 2005, mainly due to extreme weather conditions that hit Europe and
countries limited substitution capacity to deal with this problem.

As for now, and in accordance with previous author’s results (Zachman,
2008, and Bosco et al., 2009) we reject the assumption of full market integration.
Our results show that France, Germany, the Netherlands and Austria electricity
markets are highly integrated, but that Spain and Nord Pool do not share the
same commovement with the rest of the European electricity markets despite
the change of behavior in the most recent years (as evidenced by the statistical
significant regions of high common power in wavelet coherency plots and phase
analysis). As for now, these six markets work well as regionally integrated
markets, not as a common/single European group, since structural differences
are still persistent among them.

5. Conclusions

In this work we revisited the study of European electricity markets comove-
ments resorting to a simpler and less demanding, in terms of data treatments,
technique known as wavelet analysis. Using this, we were able to confirm previ-
ous empirical findings that the single desired European electricity market cre-
ation is still in a very infant stage, although there are some regions inside Europe
where we can now say they are converging (the Central Western European mar-
ket). This price divergence, which contradicts the initial idea of a single common
market, finds some reasonable explanations, namely, limited cross-border trans-
mission capacities and different market opening degrees.

The main focus of this research is on the time/frequency evolution of price
electricity series behavioral changes. In accordance to previous empirical find-
ings we reject the assumption of full market integration but we show that some
markets are working well as regionally integrated markets. France, Germany,
the Netherlands and Austria electricity markets are highly integrated, but Spain
and Nord Pool do not share the same commovement with the rest of the Euro-
pean electricity markets despite the change of behavior in the most recent years.
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As for now, we reject the assumption of full market integration, being this most
noticed at geographically closer countries and at lower frequencies. We were
also able to see some change in the behavior of the analyzed series from 2003
onwards in some countries, maybe due to the start of Directives implementation.

Moreover, we provide evidence for the changing behavior of electricity price
series through time and at different frequencies. Empirical results attained in
this work allow us to say that at the longest wavelet scales, the wavelet corre-
lation coefficients exceed substantially unconditional correlations. The shorter
the time scale (high frequencies) the smallest the number of significant comove-
ments of electricity spot prices in Europe. Moreover, the magnitude of the
comovements increases as the wavelet time scale increases.
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