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1 Introduction

Volatility is one of the main determinants of option prices, and much emphasis is placed

on improving the dynamic volatility models used to value options. Interestingly, most

of these models do not include observables and let volatility mean-revert to a constant

level regardless of the current business conditions. However, stock market volatility is ro-

bustly found to be highly counter-cyclical, and so the data suggest that a model’s volatility

process should mean-revert to different levels depending on macroeconomic conditions.

Recent work by Engle, Ghysels, and Sohn (2008) builds on this insight and lets volatility

vary around a time-varying mean-reversion level that evolves along with the economic

fundamentals.1 These authors find that this fundamental volatility process is significantly

related to such factors as inflation and industrial production growth.2 This study extends

their results and investigates the extent to which the impact of business conditions on stock

market volatility is reflected in option prices.

Central to this analysis is the new business conditions index recently introduced by

Aruoba, Diebold, and Scotti (ADS 2009). Using this index within a mixed data sampling

(MIDAS) model,3 we suggest a model in which volatility varies around a fundamental

volatility process that accounts for recent volatility levels and for changes in business con-

ditions. We refer to this model as the MacroHV-MIDAS model, where HV stands for his-

torical volatility. Our model nests Duan’s (1995) GARCH model and significantly outper-

forms it in fitting asset returns and stock market volatility. These results are consistent

with the growing consensus that two-factor volatility processes better capture the time-

series properties of volatility by accounting separately for transient and high-persistence

volatility shocks.4

However, two-factor models mostly rely on two latent, autoregressive volatility fac-

tors. Whereas the actual drivers of these processes are usually left unidentified, our fun-

damental volatility process acknowledges that macroeconomic determinants do impact

1Regime-switching models, à la Hamilton and Susmel (1994), would provide another approach to allowing

for different mean-reversion levels. However, using economic fundamentals has the advantage of identifying

the determinants of gradual changes in conditional expectations.
2Engle, Ghysels, and Sohn (2008) refer to this fundamental volatility process as the secular volatility pro-

cess.
3On MIDAS models, see, for instance, Ghysels, Santa-Clara, and Valkanov (2005); Forsberg and Ghysels

(2007); Ghysels, Sinko, and Valkanov (2007); and Engle, Ghysels, and Sohn (2008).
4On two-factor models, see, amongst others, Engle and Lee (1999); Andersen, Bollerslev, Diebold, and

Ebens (2001); Alizadeh, Brandt, and Diebold (2002); and Engle and Rangel (2008).
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conditional volatility expectations. Our results demonstrate that changes in business con-

ditions are an important determinant of the fundamental volatility process. Considering

a restricted version of the model in which the business conditions are constrained not to

contribute, we find that the constrained model still offers a significantly better fit to asset

returns than that of Duan’s benchmark model, but offers a significantly worse fit than that

of the MacroHV-MIDAS model. Thus, changes in business conditions have an impact on

conditional volatility expectations that extends beyond that of recent volatility levels.

These results strengthen those of Engle and Rangel (2008) and Engle, Ghysels, and

Sohn (2008) who extensively study physical volatility processes and find them to be counter-

cyclical. However, neither study directly discusses the implications for financial deriva-

tives. With the MacroHV-MIDAS model, we propose a risk neutralization that accounts

for the correlation between financial returns and changes in business conditions. This risk-

neutralized form of the model warrants an analysis of option-pricing errors on twenty

years of weekly option data, spanning from June 1988 to December 2007, for a total of

1020 weeks of observations. This is one of the most extensive data sets analyzed in the op-

tion pricing literature. We find that our MacroHV-MIDAS model consistently outperforms

Duan’s (1995) benchmark model in pricing options.5

By explicitly accounting for changes in business conditions, our model furthers under-

standing of the impact of business conditions on option prices. Notably, the analysis of

option-pricing errors from a time-series perspective reveals that much of the MacroHV-

MIDAS model’s improvement over its benchmark arises from its ability to better capture

the spot volatility and its dynamics around the 1990-1991 and 2001 recessions. Duan’s

benchmark model exhibits counter-cyclical biases on options of all maturities and all mon-

eyness levels. By allowing the conditional expected level of volatility to evolve with busi-

ness conditions, our model is able to remove this cyclicality in the bias, across all maturities

and moneyness levels.

The MacroHV-MIDAS model also allows us to measure the contribution of macroe-

conomic risk to the model-implied volatility premium, defined as the difference between

the volatility processes under the risk-adjusted and physical measures. We estimate the

price of risk parameter of the MacroHV-MIDAS model using VIX data and then extract

the volatility premium implied by the model. The contribution of macroeconomic risk to

5Our results are thus consistent with those of, for instance, Christoffersen, Jacobs, Ornthanalai, and Wang

(2008), and Christoffersen, Dorion, Jacobs, and Wang (2010). In these articles, however, the long-run volatility

component is driven only by innovations to the return process, and thus the model offers no insight regarding

the fundamental drivers of expected stock market volatility levels.
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the premium is economically significant. While short-term volatility is found to be the

main driver of the volatility premium, explaining up to 79% of its variation through time,

the volatility impact of changes in business conditions is found to account for a sizeable

13% of the premium’s fluctuations.6

In summary, this paper shows that a simple dynamic volatility model is able to draw on

the informational content of the ADS Business Conditions Index to better capture and un-

derstand properties of stock market volatility and of option prices. This ability could prove

highly relevant in better understanding the risk inherent to option portfolios throughout

the business cycle. In cross sections of option returns, Aramonte (2009) finds macroeco-

nomic uncertainty to be a priced factor, and his results are robust to controlling for a vari-

ety of relevant factors such as market and liquidity factors, higher moments of intra-daily

returns, and the SMB and HML factors. Our paper suggests that these results are a con-

sequence of an intuitive reality: the expected level of stock market volatility varies along

with business conditions.

This article is organized as follows. Section 2 presents the MacroHV-MIDAS model.

Section 3 briefly discusses the ADS Business Conditions Index, and compares it to other

macroeconomic series of interest before discussing the estimation of the MacroHV-MIDAS

model using maximum likelihood. Section 4 uses the maximum likelihood estimates to

price twenty years of option data and analyzes the impact of business conditions on the

model’s implied volatilities. Using option data and nonlinear least-squares estimation,

Section 5 refines the results of Section 4 and studies the time-series dynamics of the volatil-

ity premium implied by the MacroHV-MIDAS model. Finally, Section 6 concludes.

2 The MacroHV-MIDAS Model

2.1 The Model’s Foundations

Dynamic volatility models can be divided into two broad categories: GARCH models and

stochastic volatility models. In a stochastic volatility model, the volatility process is driven

by unobservable shocks that are imperfectly correlated with shocks to the return process.

6In related work, Corradi, Distaso, and Mele (2009) also analyze the volatility risk premium and obtain

similar results in a no-arbitrage framework in which the asset price process endogenously determines volatil-

ity dynamics that are linked with macroeconomic factors. These authors focus on time-varying risk premia,

while the focus of this paper is time-varying conditional expectations; both papers are thus somewhat com-

plementary.
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In a GARCH model, the shocks to the volatility process are assumed to result from a de-

terministic transformation of the return innovations.

On the market, one observes returns and can estimate volatility, but never observes

it. In this way, stochastic volatility models are somewhat more realistic. However, by

assuming a single source of randomness, GARCH models offer a framework where, given

the observable return process Rt = log (St/St−1), where St is the stock price, the filtration

of the return shocks is trivial. In stochastic volatility models, inferring two unobservable

shocks using a single observable is a more difficult task. For this reason, we choose to cast

our study in a GARCH framework. The return process is given by

Rt+1 = µt+1 +
√

ht+1εt+1 , εt+1
P
∼ N(0, 1) , (2.1)

ht+1 = f ( · | Θ, Ft ) , (2.2)

where µt+1, the conditional expected return, and ht+1, the conditional variance of returns,

are Ft−measurable, and where Θ is a (deterministic) vector of parameters.

Most dynamic volatility models, ergo most GARCH models, eventually mean revert

to a constant volatility level, a somewhat undesirable property. The newly introduced

GARCH-MIDAS model of Engle, Ghysels, and Sohn (EGS 2008) was introduced to capture

a simple intuition: the stock market volatility process should mean revert to different levels

depending on macroeconomic conditions. Consider the following multiplicative variance

specification, suggested by Engle and Rangel (2008) and EGS:

ht+1 = 1t+1τt+1 , (2.3)

1t+1 = (1 − α − β) + α1tε
2
t + β1t , (2.4)

where τt, which refers to the fundamental volatility process, can be interpreted as a time-

varying conditional expectation for the level of stock market volatility. The 1t process,

which has an unconditional mean of one, accounts for transient shocks to the volatility

process by allowing short-run volatility to diverge from fundamental volatility.

Historical volatility, defined as the sum of squared returns over a given horizon,

HVt =

N−1∑
n=0

R2
t−n , (2.5)
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provides a statistically consistent estimate of stock market volatility.7 EGS thus suggest the

following specification for the fundamental volatility process:

log (τt+1) = m + θhv

K−1∑
k=0

φk (whv) HVt−k , (2.6)

where historical volatilities are computed on a daily basis using the N last daily returns

observed on the market.8 Rather than focusing solely on the last historical volatility mea-

sure, this specification smoothly loads on recent observations in the MIDAS spirit. Here,

φk is a Beta weighting scheme,

φk(w) =
(1 − k/K)w−1∑K−1

j=0 (1 − j/K)w−1
,

which discards past observations at a rate controlled by w; the larger the w, the faster past

historical volatility levels are discarded.9 While w can be estimated through maximum

likelihood, the number of observations used, N in Equation (2.5), just as the number of

lags considered, K in Equation (2.6), are selected using the Bayesian information criterion

(hereafter referred to as the BIC, Schwarz 1978). In their analysis, EGS find quarterly his-

torical volatilities (N = 63 trading days) computed on each day of the past four years

(K = 1008) to be the best BIC-performing time spans. As our data set largely overlaps

theirs, we use these time spans in our analysis.

7EGS refer to the estimate of Equation (2.5) as a realized volatility (RV) estimate. Strictly speaking, the esti-

mator is indeed a RV estimate, but some readers may associate RV with the intraday, high-frequency version

of the estimator in Equation (2.5). We use the historical volatility (HV) terminology to highlight the low-

frequency nature of the RV estimator used here. For more on realized volatility, see, amongst many others,

Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Christoffersen, and Diebold (2006), Liu

and Maheu (2008), and Andersen and Benzoni (2008).
8Equation (2.6) is based on distributed lags of historical volatility measures that are positive by construc-

tion. Hence, there is no need to model the logarithm of the fundamental variance. However, EGS show that

there is little impact from doing so, and this specification has the advantage of allowing for negative values to

enter the smoothing function, which proves handy when it comes to using macroeconomic series.
9Beta weights are usually parameterized by two parameters; we omitted the one allowing for hump-shaped

weightings for the sake of parsimony as preliminary experiments showed it came at little cost. Engle, Ghysels,

and Sohn (2008) do the same in their analysis of historical volatility.
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2.2 MacroHV-MIDAS: Recent Volatility Levels and Business Conditions

This paper studies the following model:

Rt+1 = r + λ
√

ht+1 −
1
2

ht+1 +
√

ht+1εt+1 , (2.7)

ht+1 = 1t+1τt+1 , (2.8)

1t+1 = (1 − α(1 + γ2) − β) + α1t(εt − γ)2 + β1t , (2.9)

log (τt+1) = m + θhv

K−1∑
k=0

φk (whv) HVt−k + θm

K−1∑
k=0

φk (wm)∆xt−k , (2.10)

where xt is a daily indicator of the quality of business conditions, and where ∆xt = xt−xt−N

denotes a measure of the improvement (or deterioration) of business conditions over the

last N business days. As we will see in Section 3, the ADS Business Conditions Index

provides an appropriate measure of xt. While the MIDAS framework is, first and foremost,

useful for dealing with data sampled at mixed frequencies, it still proves relevant here

even though HVt and ∆xt are both available on a daily basis. Indeed, the functional form

of Equation (2.10) allows for a rich lag structure that enables the model to combine past

observations of historical volatilities and business conditions in a non-trivial way.

EGS estimate the GARCH-MIDAS model of Equations (2.3)–(2.6) replacing historical

volatilities by measures of inflation or of industrial production growth. In the 1953–2004

period, they find the level of these variables to explain 35% and 17% of the expected volatil-

ity, respectively. We suggest that changes in business conditions constitute a source of risk

that contributes to expected volatility levels beyond what is measured by recent historical

volatility levels. In this way, we are essentially pairing the informational content of histor-

ical volatilities and business conditions. In order to evaluate the relevance of accounting

jointly for both observables, we also consider two restricted versions of the MacroHV-

MIDAS model: (i) the HV-MIDAS model, in which we constrain θm to be zero, and (ii) the

Macro-MIDAS model, in which we constrain θhv to be zero.

Besides, note that we introduce a γ parameter in the short-run variance specification

of Equation (2.9) to allow for the well documented leverage effect (Black 1976), which is

particularly important when considering the option-valuation properties of a model for

index options.10 Now, by fixing τt to the constant value em= ω/(1 − α(1 + γ2) − β), one

retrieves the nested non-affine GARCH model of Duan (1995) in which ht simply varies

10See, for instance, Nandi (1998), Heston and Nandi (2000), Chernov and Ghysels (2000), Christoffersen and

Jacobs (2004), and Christoffersen, Heston, and Jacobs (2006).
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around a constant expected variance level parameterized by ω,

ht+1 = ω + αht(εt − γ)2 + βht . (2.11)

In fact, our model could have been designed so as to nest the affine GARCH model

of Heston and Nandi (2000). This latter model offers the advantage of admitting a quasi-

closed form solution for the value of European calls, and thus relieves the computational

burden inherent to a GARCH option-pricing exercise involving Monte Carlo simulations.

However, Hsieh and Ritchken (2005) find that the non-affine GARCH specification (here-

after, NGARCH) is superior at removing biases from pricing residuals for all moneyness

and maturity categories. These results are supported by Christoffersen, Dorion, Jacobs,

and Wang (CDJW 2010) and extended to models allowing for two (additive) variance com-

ponents and for non-normal innovations. CDJW also show that the NGARCH specifica-

tion outperforms its affine counterpart from an asset-returns perspective. In results not

reported here, we confirm that the superiority of the NGARCH model over its affine coun-

terpart holds in our data sets, both from the asset returns and option valuation standpoints.

We, thus, choose the non-affine specification as a more stringent benchmark.

3 Estimating the Model using the ADS Business Conditions In-

dex

The fundamental variance process of the MacroHV-MIDAS model, defined in Equation (2.10),

requires a daily measure of business conditions. Before discussing the estimation of the

model, this section presents the ADS Business Conditions Index and argues that it is well

suited to fulfill the role implied by our characterization of the fundamental variance pro-

cess.

3.1 The ADS Business Conditions Index

On January 9, 2009, the Federal Reserve Bank of Philadelphia introduced the ADS Business

Conditions Index, an index that is built on the work of Aruoba, Diebold, and Scotti (ADS

2009). In their paper, ADS develop a sophisticated model that infers latent business con-

ditions from daily term spread observations, weekly initial jobless claims, monthly (non-

agricultural) payroll employment, and quarterly real GDP.11

11The term spread is defined here as the difference between ten-year and three-month Treasury yields. The

index published by the Federal Reserve Bank of Philadelphia is based on the ADS paper, but includes some
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The ADS procedure cleverly handles missing data, temporal aggregation, complex lag

structures and time trends so that they ultimately obtain a linear state-space representa-

tion. The authors are thus able to filter out a daily autoregressive process

xt = ϕxt−1 + vt , vt
P
∼ N(0, 1) , (3.1)

that is referred to as the business conditions index. The average value of the ADS index,

E [xt], is zero, and progressively larger positive values indicate progressively better-than-

average conditions. The converse is true for negative values. The vt innovations are as-

sumed to have unit variance. The first column of Table 1 reports summary statistics on the

index, and the lower right panel of Figure 1 plots its value through time, with shaded re-

gions highlighting the NBER recessions. All deep troughs of the index coincide with NBER

recessions. In that sense, the index clearly seems to adequately captures the business con-

ditions’ relative quality level through time.Note that while the NBER typically announces

that the economy reached a peak or a trough several months after it actually occurred, the

ADS index value can be updated each time one of its input series is updated. For instance,

the ADS Index captured the U.S. economy’s December 2007 downturn in real time, while

the NBER officially announced it 12 months later, on December 1, 2008.

ADS have to rely on the very simple dynamics of Equation (3.1) for the xt business

conditions index; in particular, the homoskedasticity assumption is necessary for identifi-

cation. The second column of Table 1, however, makes clear that vt innovations are all but

standard normal. The third and fourth columns of the same table are obtained by fitting a

simple GARCH(1,1) to the vt innovations of Equation (3.1),

vt =
√

hx
t ut , ut

P
∼ N(0, 1) , (3.2)

hx
t = ωx + αxv2

t−1 + βxhx
t−1 . (3.3)

That is, given the filtered index values, we relax the homoskedasticity assumption and

allow innovations to the business conditions index to have a time-varying variance hx
t .

While the ut are still far from normally distributed, as indicated by the value of the Jarque-

Bera statistic, their likelihood and moments are nonetheless more reasonable. The model

of Equations (3.1)–(3.3) is, thus, preferable for forecasting purposes.

modifications. However, we use the data as kindly provided by Aruoba, Diebold, and Scotti; the series was

computed on April 7th, 2008.
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3.2 Business Conditions and Other Macroeconomic Series

To justify the use of the ADS Business Conditions Index in our model, this subsection

demonstrates that this index conveys some of the informational content usually attributed

to indicators such as inflation and industrial production growth. Figure 1 reports some

key macroeconomic series throughout the time period considered in this paper.

The lower left panel of Figure 1 plots Ang and Piazzesi’s (2003) Inflation factor. This

factor is computed from the principal component of three inflation measures based on the

consumer price index (CPI), the production price index for finished goods (PPI), and spot

market commodity prices as given by the CRB Spot Index (PCOM). For these three indices,

we follow Ang and Piazzesi in computing a growth measure, log
(

Pt
Pt−12

)
, where Pt is the

index level. The resulting series, which are used to compute the principal component, are

displayed above the Inflation factor in Figure 1. Analogously, the central panels plot the

series that are used to compute Ang and Piazzesi’s Real Activity factor. These series are the

growth rate—log
(

It
It−12

)
, where It is the level—of employment (EMPLOY) and of industrial

production (IP), and the unemployment rate (UE). We refer the reader to Ang and Piazzesi

(2003) for more details on how the series are processed.12

Table 2 reports the correlations between the business conditions index, the rate on the

three-month treasury bill, the term spread, the growth rate of employment, the unemploy-

ment rate, the (detrended) real GDP, 13 and Ang and Piazzesi’s factors. Daily series are

sampled monthly for monthly correlations; daily and monthly series are sampled quar-

terly for quarterly correlations.

The index is strongly and positively correlated with the growth rate of employment

(72.4%), with the Real Activity factor (79.4%), and, to a lesser extent, with real GDP (14.6%).

As the term spread is the sole daily driver of the index, it is not surprising that it has a rel-

atively strong correlation with the index at the daily level (−27%); interestingly, this corre-

lation remains mainly unchanged by sampling the series monthly (−27.6%). As expected,

the index has a strong negative correlation with the unemployment rate (−47.5%). Finally,

12The series were obtained from Federal Reserve and the Commodity Research Bureau websites. This paper

does not account for the Index of Help Wanted Advertising in Newspapers in its replication of Ang and

Piazzesi’s Real Activity factor. At first glance, this omission does not yield any notable qualitative difference.
13We are interested in the index’s correlation with these four series (TS, EMPLOY, UE and GDP) since they

are closely related to the index’s inputs. Yet, note that the EMPLOY, UE, and GDP series are, here, processed

as in Ang and Piazzesi (2003) while Aruoba, Diebold, and Scotti (2009) use levels directly in a much more

sophisticated approach.
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the index’s correlation with the Inflation factor is negative (−7.3%) but, surprisingly, in-

significant.

In sum, the business conditions index seems to covary intuitively with many macroe-

conomic series of interest, while offering the great advantage of accounting for daily inno-

vations.

3.3 Model Estimation: Asset Returns and Stock Market Volatility

Equipped with the ADS Index as a measure of business conditions, we can now estimate

the MacroHV-MIDAS model given by Equations (2.7)–(2.10). Table 3 reports the maximum

likelihood estimates obtained using S&P 500 returns between January 1968 and December

2007 for the MacroHV-MIDAS model, for the nested HV- and Macro-MIDAS constrained

versions, as well as for the NGARCH benchmark from Duan (1995).14

All MIDAS models significantly outperform the nested NGARCH model. That the

variance is decomposed into two components allows each component to take on one of the

two fundamentally different roles that must unduly be assumed by the single component

in the NGARCH model. The fundamental variance process captures the long-memory-like

properties of stock market volatility. The MacroHV-MIDAS model’s fundamental variance

process, for instance, has a persistence of only 0.70 basis points (0.70 × 10−4) below unity.

The θhv and θm loadings on historical volatilities and business conditions are positive and

negative, respectively. The former captures the persistence of variance following financial

turmoils; fundamental variance strongly and positively loads on recent historical variance

levels. Fundamental variance loads negatively on recent changes in business conditions

thus capturing the counter-cyclical nature of volatility; when business conditions deterio-

rate, the expected variance level rises.

Note that the θ parameters are smaller (in absolute terms) in the MacroHV-MIDAS

model than in the HV- and Macro-MIDAS models. This highlights that the historical

volatility levels are not independent from changes in business conditions; when the latter

deteriorate, the historical volatility levels tend to rise. Along the same line, both w parame-

ters rise when recent volatilities and changes in business conditions are paired. That is, the

MacroHV-MIDAS model weights the recent values of both signals more than the nested

14 This study uses S&P 500 data (SPX) because of its availability over a long horizon and because options on

the SPX have been actively traded for a long time. Returns on major indexes and their volatility are usually

highly correlated, and volatility tends to be higher in recessions regardless of the index being considered. We

are thus confident that the results obtained in this paper would also obtain using data for other stock indexes.
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models that discard the older values slower. Yet, while not orthogonal, the informational

content of both signals is clearly not the same; tests based on the likelihoods reported in

Table 3 strongly reject the HV- and Macro-MIDAS nested models in favor of the MacroHV-

MIDAS model—the likelihood ratio statistics and their p-values are not reported, but the

latter are below 1e-6. The MacroHV-MIDAS model would also be selected according to

the Bayesian information criterion.

Figure 2 illustrates how the MacroHV-MIDAS model blends both fundamental volatil-

ity processes implied by the nested HV- and Macro-MIDAS models. As a reference, we

plot a horizontal line at 16.31%, the NGARCH model’s expected variance level implied

by
√

252E [ht] =
(
252ω/(1 − α(1 + γ2) + β)

) 1
2 . The MacroHV-MIDAS model’s fundamental

volatility process ranges from 11.3% to 25%, at times driven by the contribution of histori-

cal volatilities, at times by the contribution of changes in business conditions. The contri-

bution of the ADS Index is remarkably dominant around recessions. The contribution of

historical volatilities is most important around the October 1987 crash. Besides, historical

volatilities have a surprisingly modest impact in the late 90s, given the relatively high level

of volatility observed during the Russian/LTCM crisis.

Including a fundamental variance component gives the short-run variance component

the flexibility to allow for greater volatility of variance and to better capture the leverage

effect. Indeed, the value of β, the autoregressive variance coefficient, is lower for MIDAS

models than for the NGARCH, and lower for the MacroHV-MIDAS than for the two nested

ones. In the same line, values of α and γ are higher for the three MIDAS models than for the

GARCH(1,1) benchmark, and even more so in the MacroHV-MIDAS case. Altogether, our

MacroHV-MIDAS model allows for an 18% higher volatility of variance than that of the

NGARCH model (1.862 vs. 1.576) and yields a correlation of -74.3% between the returns

and variance processes, about 4.6% greater in magnitude than that of the NGARCH model.

By way of comparison, between January 1990 and December 2007, the correlation between

excess returns on the S&P 500 and changes in the VIX is -74.1%; considering changes in

variance terms, i.e., ∆VIX2, the correlation is -73.0%.

Table 3 also reports, for both models accounting for business conditions, the correlation

between total market innovations and innovations to the business conditions index. This

correlation, Corrt(εt+1,ut+1), is about 5% under both the Macro-MIDAS and the MacroHV-

MIDAS models. That the observed correlation is positive is somewhat consistent with

the preliminary analysis of Section 3.2, which shows that the business conditions index is

negatively correlated with Ang and Piazzesi’s (2003) Inflation factor, but positively with
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their Real Activity factor.15 Five percent may seem low but is consistent with the fact

that the business condition index evolves relatively smoothly through time and does not

distinguish between expected and unexpected movements of the underlying business con-

ditions. As Cenesizoglu (2005) highlights, the literature agrees that returns mainly react to

the surprise content of news and tend to react negatively to positive unanticipated news.

Obtaining a low, positive correlation here suggests that increases in the business condi-

tions index reflect heightened expectations about the state of the economy rather than the

arrival of unexpected positive news.

4 Option-Valuation Empirics: An Assessment of the Model’s Fore-

casting Abilities

Accounting for business conditions in modeling the physical volatility process does im-

prove a model’s capacity to capture the distribution of the volatility of observed returns.

Now, we address the extent to which business conditions impact option prices, of which

spot volatility is a major determinant. The first step entails analyzing the option-valuation

properties of our MacroHV-MIDAS model. We consider twenty years of call option prices

from 1988 to 2007, one of the most extensive data sets in the option pricing literature. Even

so, our data set covers only two recessions, the early 1990 and 2001 ones.

4.1 Risk Neutralization

In order to analyze the option-pricing properties of the MacroHV-MIDAS model, a risk-

neutral form of the model is needed. Typically, GARCH volatility models include a sin-

gle source of randomness, the εt+1 innovation of Equation (2.1). However, accounting

for time-varying business conditions introduces a second source of randomness in the

MacroHV-MIDAS model, that is the macroeconomic ut+1 innovation of Equation (3.2).

Moreover, as observed in Section 3.3, the correlation between the two innovation pro-

15Bodie (1976) finds that stock returns covary negatively with both anticipated and unanticipated inflation.

Fama (1981) suggests that this negative relationship is driven by real variables covarying positively with stock

returns, but negatively with inflation. Yet, the impact of real macro variables on equity returns has found

mitigated support for many years. Flannery and Protopapadakis (2002) note that Chen, Roll, and Ross (1986)

express their “embarrassment” with the situation and that Chan, Karceski, and Lakonishok (1998) “are at a loss

to explain” the poor performance of macroeconomic factors in explaining stock returns. However, in their own

work, Flannery and Protopapadakis, estimating a GARCH model of equity returns, find that these returns are

affected by announcements of nominal and real macroeconomic factors.
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cesses, Corrt(εt+1,ut+1), is non-zero: market returns are correlated with macroeconomic

news. This correlation is however imperfect, i.e., there is a “pure-market” innovation pro-

cess zt+1
P
∼ N(0, 1), independent from ut+1, such that

εt+1 = ρut+1 +

√
1 − ρ2zt+1 , (4.1)

where ρ = Corrt(εt+1,ut+1) by construction.16

Our risk neutralization, building on Christoffersen, Elkamhi, Feunou, and Jacobs (2009),

relies on the assumption that the equity risk premium on the macroeconomic source of risk

is subsumed by the premium on volatility risk and by the contribution of macroeconomic

conditions to the volatility process. This assumption was carried over to the model by

maintaining the Ft-measurable λht+1 as sole determinant of the equity risk premium in the

expected return specification of Equation (2.7). We show in the appendix that, under this

assumption, the correlation structure of Equation (4.1) leads to the following risk neutral-

ization of the macroeconomic and pure-market innovation processes:

u∗t = ut + ρλ (4.2)

z∗t = zt +

√
1 − ρ2λ . (4.3)

So, the mean shift on each process is proportional to the conditional correlation of that

process with total market innovations. Interestingly, if ρ=0, that is, if market shocks and

macroeconomic shocks were uncorrelated, the latter would be unaffected by the risk neu-

tralization.

Given Equations (4.2) and (4.3), the risk-adjusted returns of the MacroHV-MIDAS model

are given by

Rt+1 = r −
1
2
√
τt+11t+1 +

√
τt+11t+1

(
ρu∗t+1 +

√
1 − ρ2z∗t+1

)
(4.4)

1t+1 = (1 − α(1 + γ2) − β) + α1t

(
ρu∗t +

√
1 − ρ2z∗t − γ − λ

)2
+ β1t (4.5)

log (τt+1) = m + θ
K−1∑
k=0

φk(whv) HVt−k + θm

K−1∑
k=0

φk(wm) xt−k (4.6)

xt = ϕxt−1 +
√

hx
t

(
u∗t − ρλ

)
(4.7)

hx
t = ωx + αxhx

t−1

(
u∗t−1 − ρλ

)2
+ βxhx

t−1 , (4.8)

16This correlation structure implies that market movements do not feed back into the real economy; this

implicit assumption is most likely violated in practice (see, for instance, Bernanke, Gertler, and Gilchrist (1999)

on the financial accelerator hypothesis), but is necessary here for the sake of simplicity. Corradi, Distaso, and

Mele (2009) rely on a similar assumption in a continuous-time setting.
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where u∗t and z∗t are independent and serially uncorrelated standard normal innovations

under the risk-adjusted measure Q.

4.2 Option Valuation Results

Using parameter estimates of Table 3 and the above risk neutralization, it is easy to eval-

uate call option prices through simulations. We consider cross sections of call options on

the S&P 500 index from June 1988 to December 2007. This data set is assembled from three

different segments: (i) from June 1988 to December 1989, we use the data from Bakshi,

Cao, and Chen (1997); (ii) from January 1990 to December 1995, we use data from Christof-

fersen, Dorion, Jacobs, and Wang (2010); and (iii) from January 1996 to December 2007,

we use OptionMetrics data. For OptionMetrics data, the midpoint between bid and ask

prices is used as the option price, and the dividend yield provided by OptionMetrics is

used to infer an ex-dividend index level to be used in the option pricing. We also filter

zero-volume quotes, and we apply the filtering rules suggested in Bakshi, Cao, and Chen

(1997).

Then, for each model, on each Wednesday tw, we perform Monte Carlo simulations us-

ing 2000 paths of {z∗tw+τ,k
} and, when needed, of {u∗tw+τ,k

} in order to price options quoted on

week tw. The shocks are generated using Sobol sequences and we perform Duan and Si-

monato’s (1998) empirical martingale adjustment.17 Simulations are performed using only

the information set up to time tw, Ftw , with the notable exception that we use parameter es-

timates from Section 3.3. As these parameters were estimated using physical data spanning

from 1968 to 2007, and as they are used to price options within that time frame, this is not

strictly an out-of-sample exercise. Yet, as the models were estimated without using option

data, this exercise is still a stringent exercise in terms of analyzing a model’s capacity to

properly describe the likely future behavior of volatility.

Aggregate option-valuation metrics are reported in Table 4. The MacroHV-MIDAS

model performs, overall, better than all other models. On short- and medium-term op-

tions, MIDAS models better capture the volatility smirk than does the benchmark NGARCH

model. On long-term options, however, the MacroHV-MIDAS model is outperformed by

its benchmark; we will return to this result shortly. Figure 3 sheds some light on these re-

sults by casting them in a time-series perspective. The upper panel reports yearly IVRMSE

17Christoffersen, Dorion, Jacobs, and Wang (2010) illustrate the accuracy of these simulation settings by

comparing the quasi-Monte Carlo results with the exact results computed using the quasi-analytical solutions

for the affine model of Heston and Nandi (2000).
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values. First, the MacroHV-MIDAS model outperforms the NGARCH in 1988 and slightly

less so in 1989. Looking at the performance of the nested HV-MIDAS and Macro-MIDAS

models in these two years, we see that the performance of the MacroHV-MIDAS model is

driven by the persistent contribution of past historical volatilities; in the single component

model, the volatility impact of the Black Monday wears off too quickly.

In 1990 and 1991, the MacroHV-MIDAS model again offers a better fit to option prices,

but this time draws on the informational content of the business conditions index. The

same observation holds around the second recession in our sample, while the MacroHV-

MIDAS model experiences bad performances during the “irrational exuberance” period

and throughout the Russian/LTCM crisis. Figures 4 and 5 further illustrate how these

results unfold through time and break up the results along the maturity and money-

ness dimensions. Figure 4 reports, throughout the sample, 13-week moving averages

of the forecast improvement in IVRMSE terms of the MacroHV-MIDAS model over the

NGARCH model; Figure 5 similarly reports the MacroHV-MIDAS model’s bias at fore-

casting implied volatilities.18 In short, while the benchmark NGARCH model exhibits

strongly counter-cyclical biases, the MacroHV-MIDAS model removes this cyclicality, es-

pecially (i) for longer maturity options and (ii) as we go from ITM to OTM calls.

As previously noted, in IVRMSE terms, it is only on long-term options that the MacroHV-

MIDAS model shows a worse fit to implied volatilities than its benchmark does. However,

the MacroHV-MIDAS model actually fits the implied volatilities of long-term options dra-

matically better than its benchmark around recessions. On the other hand, as evidenced

in the lower-left panel of Figure 4, the model shows a significant bias on long-term op-

tions in the late 90s and, for this subset of options, this cancels the improvements realized

around recessions. In fact, the counter-performance of the MacroHV-MIDAS model over

the late 90s, evidenced in Figure 3, is shown in Figure 5 to be due to large negative bias at

all maturities and over all moneyness levels during this period.

A second look at Figure 2 can provide us with an intuition why this is so. Indeed,

while the VIX reaches all-time highs during the Russian/LTCM crisis, the time-varying

volatility expectations captured by the fundamental volatility process are rising at a very

slow pace. It is likely that the fundamental volatility process, as specified, is too smooth

to account for drastic changes in the market’s expectations about future volatility. Besides,

18We plot 13-week moving averages solely for the sake of clarity; the weekly measures are very noisy,

especially for short-term options and for ITM options. The averages reported above each subplot are, however,

based on these weekly measures.
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while stock market volatility is relatively high during this period, business conditions are

better than average. As defined here, the fundamental volatility process simply sums, in

the log-volatility domain, the impact of both historical volatilities and recent changes in

business conditions. It is possible that, during the late 90s, this naive blend puts too much

emphasis on the better-than-average business conditions and too little on recent volatility

levels.

Nonetheless, on average, the MacroHV-MIDAS model exhibits an implied-volatility

bias of smaller magnitude than that of its benchmark, for any maturity or moneyness, as

evidenced by the averages reported along with Figure 5. However, the MIDAS model still

underprices all options on average, and this is even more obvious on short-term and in-

the-money calls. This underpricing is likely to be a consequence of the conditional normal-

ity assumption, but could also be due to the choice of a linear pricing kernel; see Christof-

fersen, Elkamhi, Feunou, and Jacobs (2009) for further discussion on these issues.

4.3 The Impact of Business Conditions

Along with Figure 4, we report average improvements of the MacroHV-MIDAS model

over its benchmark, conditioned on whether a given week falls within an expansion or a

recession period. Average improvements over recessions, reproduced in the Panel A of

Table 5, are highly statistically significant. However, of the 1020 weeks in our data set of

options, only 72 (approximately 7.1%) fall within a recession. To further study the extent

of the MacroHV-MIDAS model’s improvements over the benchmark and detail the role of

business conditions in these improvements, Panel A of Table 5 also reports statistics condi-

tional on the contemporary level of the ADS Index. That is, instead of relying on a NBER

recession dummy to determine that a week falls within a period of bad business condi-

tions, we compute centered quarterly moving averages of the ADS on each Wednesday

t,

x(63)
t =

1
63

t+31∑
s=t−31

xs . (4.9)

As the index average is theoretically zero, we will say that a week is in the middle of a

quarter with “bad” business conditions when x(63)
t < 0, “severe” business conditions when

x(63)
t < −1, “extreme” business conditions when x(63)

t < −1.5. In our sample, 380 weeks

(37.3% of the 1020 weeks) are exposed to bad business conditions, 178 (17.5%) to severe

ones, and 45 (4.4%) to extreme ones. Across all maturities and moneyness levels, Panel A
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of Table 5 reports that the improvement brought by the MacroHV-MIDAS model increases

as business conditions deteriorate.

Besides, even if we don’t have option data prior to 1988, we can use the models to

price a synthetic at-the-money option through time. On each day from January 1968 to

December 2007, we use the NGARCH and MacroHV-MIDAS models to price a 30-day

option with its strike equal the the index value on that day. The time series of NGARCH

implied volatilities for such an option is reported in the upper-left panel of Figure 6, and

statistics for this time series are reported in the first row of Table 5’s Panel B. Statistics on

the difference between the MacroHV-MIDAS model’s implied volatilities and those of the

NGARCH are reported on the second row of Panel B and are broken down in the mid- and

lower-left panels of Figure 6. The right-column panels of Figure 6 and the remainder of

Table 5’s Panel B report the same results but in the price domain.19

As we have seen in Figure 5, both models consistently underprice options. Thus, to im-

prove on the NGARCH model, the MacroHV-MIDAS model should predict higher implied

volatilities than those of NGARCH, and Table 5’s Panel B reports that it does so on aver-

age. Interestingly, this implied-volatility difference is increasing as business conditions

deteriorate. For example, under extreme business conditions, the 30-day, at-the-money

implied volatility of the MacroHV-MIDAS model is 1.6% higher than that implied by the

NGARCH model. In terms of option prices, this translate in a 9.1% higher option price on

average, a difference of sizable economic importance. In sum, Table 5 shows that business

conditions indeed play a key role the ability of MacroHV-MIDAS model to outperform its

benchmark.

Table 6 sheds further light on the role played by business conditions in the MacroHV-

MIDAS model’s option-valuation performance. In this table, the MacroHV-MIDAS model

is compared to the HV-MIDAS, rather than the NGARCH, in order to better grasp the

marginal impact of accounting for changes in business conditions. Moreover, the expan-

sion results are unfolded in three parts: “good”, “very good” and “exceptional” business

conditions when x(63)
t respectively is above 0, 1, and 1.5. Overall, the MacroHV-MIDAS

model improves on the HV-MIDAS when business conditions are bad; in relative terms,

the former model cuts the benchmark’s IVRMSE by 7.1% more than the latter model. When

business conditions are good, however, the HV model outperforms the MacroHV by 1.2%.

19The average NGARCH IV reported in Panel B is higher in recessions than in expansion, as expected.

Interestingly, the average call price is higher in expansion. While this might seem contradictory, it is actually

due to the fact that the underlying, the S&P 500 index is, on average, higher in expansion than in recessions.
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Interestingly, when business conditions are very good or exceptional, this figure is once

more reversed and the MacroHV does better than the HV by 3.7% and 7.2% respectively.

Panel A of Table 6 illustrates that this pattern is rather robust to maturities and moneyness

levels.

As highlighted by Panel B of Table 6, the MacroHV model predicts higher implied

volatilities than the nested HV model when business conditions are bad, and lower ones

when business conditions are good. This difference between the two models evolves

monotonically as business conditions improve from extreme to exceptional, which is con-

sistent with the smooth, log-linear fashion in which the MIDAS specification accounts for

changes in the index in the MacroHV model. The results in Panel A, in particular the

under-performance of the MacroHV model when business conditions are good but not

very good, are thus probably highlighting, once more, that the log-linear mix of recent

historical volatility levels and changes in business conditions is suboptimal. A possible

explanation of the above pattern could be that fundamental volatility does not decrease

when business conditions are only mildly good since economic agents might still perceive

some macroeconomic risk, a phenomenon that the current fundamental volatility specifi-

cation cannot accommodate.

5 Model-Implied Volatility Premium

Under certain assumptions, the volatility premium, defined as the difference between ex-

pected future volatility under the risk-neutral and the objective measure, can be directly

related to the risk aversion of a representative agent.20 As the risk neutralization of the

MacroHV-MIDAS model is set under Christoffersen, Elkamhi, Feunou, and Jacobs’ (2009)

framework, no assumption is made with respect to the representative agent or its utility

function. It is nonetheless important to assess whether the volatility premium generated

by the MacroHV-MIDAS model has coherent properties. For instance, this premium was

consistently found to increase when the stock market volatility rises, and some found it to

be even more counter-cyclical than volatility itself.21 Besides, the MacroHV-MIDAS model

splits volatility between its time-varying mean-reversion level and the short-run excess

volatility and, moreover, allows to easily isolate the contribution of macroeconomic risk to

20See, amongst others, Heston (1993), Eraker (2007), and Bollerslev, Gibson, and Zhou (2010).
21See, for instance, Bollerslev, Gibson, and Zhou (2010), Corradi, Distaso, and Mele (2009), and Bollerslev,

Tauchen, and Zhou (2009).
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the volatility level. These abilities prove interesting when it comes to better understanding

the drivers of the premium.

Since the residual implied-volatility bias of the MacroHV-MIDAS model reported in

Figure 4 is likely to be partly due to an underestimation of the volatility premium, we refine

the model’s estimation before analysing the premium. To do so, we perform nonlinear

least squares to minimize the tracking error between the model’s volatility forecasts under

the risk-adjusted measure and the VIX. See Appendix B for details. The resulting daily

volatility premium series is displayed in the lower panel of Figure 7.

A simple glance at the figure confirms that the MacroHV-MIDAS model-implied volatil-

ity premium is very strongly correlated with the current volatility level and that it is

counter-cyclical. The average value of the extracted volatility premium is 3.10%, with a

standard deviation of 1.19%. On actual data, over the June 1988 to December 2007 period,

the average value of the VIX was 19.70% and the standard deviation of excess returns of

15.61%, for an average premium of 4.09%; over the 1990-2007 period, the average value of

the VIX was 18.97% and the standard deviation of excess returns of 15.80%, for an average

premium of 3.17%. The model seems to slightly underestimate the premium on average.

Much of this underestimation seems to be due to the negative bias observed during the

late 90s, in line with our analysis in Section 4.2.

Panel C of Table 7 reports the results of nine linear regressions with, as regressand,

our model-implied volatility premium. Regressors are demeaned and, in order to account

for the likely strong autocorrelation of the residuals, t-stats are computed using Newey-

West standard errors with a lag of 63, corresponding to one quarter of trading days.22

First, we control for the annualized and demeaned fundamental volatility level under the

objective measure. By itself, the current fundamental volatility level accounts for 31.8% of

the variation in the premium through time. All else equal, a one-percent increase in the

annualized fundamental volatility level causes a statistically significant 24.5 bps increase

in the volatility premium. Relative to the 3.10% mean of the extracted volatility premium

process, this is an 8% increase (24.5 / 310) and is thus economically significant.

In our framework, macroeconomic risk impacts stock market volatility through the

contribution of changes in business conditions to the time-varying volatility mean-reversion

level. This contribution is easily extracted by setting θhv to zero in our model, which effec-

tively nullifies the contribution of recent historical volatilities to the fundamental volatil-

22The choice of a quarter-long lag is arbitrary and intended to be very conservative; in our case, T = 4936,

so that
⌊
4(T/100)0.25⌋ = 10 would be the lag suggested by Newey and West (1994).
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ity level. A one-percent increase in this measure of macroeconomic risk translates into a

45.2 bps increase in the volatility premium, which is a 14.6% change relative to the 3.10%

mean, and macroeconomic risk explains 12.9% of the time variation in the volatility pre-

mium process. On the other hand, when we focus our attention on how recent historical

volatilities contribute to the fundamental volatility level, that same one-percent increase

translates into a 26.3 bps increase in the premium, a 8.5% change relatively to the 3.10%

mean. That the volatility premium is more sensitive to each of the restricted signals than

to the overall fundamental volatility level suggests, once again, that there might be more

efficient ways to combine the informational content of historical volatilities and that of

business conditions than simply summing them in the log-volatility domain.

In addition, we regress the premium on the standardized value of
√
1t. Remember

that when this control is above its mean, the current level of physical volatility is above

its fundamental, expected level. By itself, this excess volatility explains 79.3% percent of

the variation in the premium. A one-standard deviation increase in
√
1t causes a dramatic

105.9 bps increase in the volatility premium, a 33.9% move relative to the mean of the

premium process. Note though that
√
1t is within one-standard deviation of its mean on

close to 87% of the trading days under consideration. Nonetheless, short-run volatility is

undeniably the main driver of our model’s volatility premium.

Finally, to assess the cyclicality of the premium process, we consider a dummy variable

that has value one when a day falls within an NBER recession and zero otherwise. As can

be seen from the first column of Panel C, the average volatility premium on a typical NBER

recession day is 44.7% greater than the overall average value, an increase of 138.5 bps

over the 310 bps mean. The MacroHV-MIDAS model-implied premium is thus strongly

counter-cyclical. In a regression of the premium on the fundamental volatility level and on

the NBER dummy, the coefficient on the dummy implies that even when controlling for

time-varying volatility expectations, the premium is higher on a recession day by a sizeable

54.3 bps (17.5% relative to the mean). Although the magnitude of the effect could be seen

as economically significant, the NBER coefficient is scarcely statistically significant at the

10% level. On the other hand, when controlling for both fundamental and time-varying

volatility levels, the coefficient on the NBER dummy is statistically significant at the 5%

level, but economically more modest at 14 bps, 4.5% of the 310 bps mean. Nonetheless,

the loading on the NBER dummy tells us that, all else equal, the volatility premium is still

higher on a typical recession day than what can be explained by the physical volatility

components.
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In sum, the MacroHV-MIDAS model-implied volatility premium (i) is mainly driven

by short-run volatility effects; (ii) is strongly counter-cyclical and a sizeable portion of

this counter-cyclicality is driven by changes in expectations with respect to the long-run

volatility level (as modeled by the fundamental variance process); and (iii) the premium is

slightly more counter-cyclical than what is explained by short-run and long-run volatility

effects.

6 Conclusion

This paper introduces the MacroHV-MIDAS model, a dynamic volatility model accounting

for both financial and macroeconomic sources of fundamental volatility. This model is

shown to outperform the NGARCH benchmark in fitting asset returns and pricing options,

especially around the 1990-1991 and 2001 recessions. In particular, the MacroHV-MIDAS

model improves on the benchmark’s option-valuation abilities by mitigating the counter-

cyclicality of its implied-volatility bias, across all maturity and moneyness levels. The

MacroHV-MIDAS model also allows us to isolate the contribution of macroeconomic risk

to the volatility premium, and this contribution is found to account for a sizeable 13% of

the variation in the premium through time.

This work offers several avenues for further research. For instance, conducting our

analysis in a stochastic volatility framework would allow us to assess the extent of the re-

lationship between the macroeconomic shocks entering our fundamental volatility process

and the unobservable volatility shocks inherent to stochastic volatility models. Apart from

that, incorporating analyst forecasts or survey results in the business conditions’ forecast-

ing model could further improve the abilities of the MacroHV-MIDAS model to explain

observed option prices. Buraschi, Trojani, and Vedolin (2009) also suggest that dispersion

in analyst forecasts is strongly related to implied volatility levels. Otherwise, once it is

established that business conditions impact option prices, option data could eventually be

used to infer market expectations of future business conditions.

Another line of investigation would be to refine how the informational content of his-

torical volatilities and business conditions are combined to model the fundamental volatil-

ity process. Our work uses historical volatilities based on daily returns; when intraday

data are available, intraday realized volatilities could prove more reactive to current mar-

ket conditions. Moreover, the MacroHV-MIDAS model simply sums the impact of histor-

ical volatilities and business conditions in the log-volatility domain. However, given that
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responses to macroeconomic news differ depending on the current state of the economy,

and as our results suggest that worsening business conditions increase option prices more

than improving business conditions lower them, it is likely that an approach allowing for

further nonlinearities would prove fruitful. Finally, in our opinion, a study of how higher

moments of the stock returns’ distribution evolve with changing business conditions could

further our understanding of the volatility premium and of its time-series properties. The

Lévy GARCH framework of Ornthanalai (2009) or the mixed normal heteroskedasticity

framework of Rombouts and Stentoft (2009) could prove to be usuful in that regards.
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Applications. Working Paper.

Pan, J. (2002). The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-

Series Study. Journal of Financial Economics 63, 3–50.

Pollard, M. C. (2009). Luck and the US Equity Premium. Working Paper.

Rombouts, J. V. and L. Stentoft (2009, May). Bayesian Option Pricing Using Mixed Normal Het-

eroskedasticity Models. Working Paper.

Rosenberg, J. V. and R. F. Engle (2002). Empirical Pricing Kernels. Journal of Financial Economics 64,

341–372.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics 6, 461–464.

26



APPENDIX

A Risk Neutralization

We consider a GARCH model of the form

Rt+1 = r + λt+1

√
ht+1 −

1
2 ht+1 +

√
ht+1

(
ρut+1 +

√
1 − ρ2zt+1

)
(A.1)

ht+1 = f ( · | Θ, Ft ) , (A.2)

where λt+1 and ht+1 are Ft-measurable, and where { ut } and { zt } are independent and seri-

ally uncorrelated innovation processes. To formally demonstrate the risk neutralization of

ut and zt as introduced in Equations (4.2) and (4.3), we here draw on Christoffersen, Elka-

mhi, Feunou, and Jacobs (CEFJ 2009) treatment of two-shocks stochastic volatility models

(see CEFJ’s Section 7). Note that our model is, however, fundamentally different from a

stochastic volatility model in that, here, the “second” shock, ut+1, does not contempora-

neously impact the variance but the mean of the return process. We will return to the

implications of this fundamental difference shortly.

First, we write the risk neutralization of our return process in terms of the risk neu-

tralization of the bivariate, uncorrelated normal innovations { ut, zt } using the following

Radon-Nikodym derivative:

ξτ ≡
dQ
dP

∣∣∣∣∣Fτ = exp

− τ∑
t=1

(
ηu,tut + ηz,tzt +Ψ

u,z
t

(
ηu,t, ηz,t

)) , (A.3)

where Ψu,z
t is natural logarithm of the moment-generating function of the { ut, zt } pairs,

that is,

Ψu,z
t

(
ηu, ηz

)
= 1

2

(
η2

u + η
2
z

)
. (A.4)

For the probability measure Q defined by Radon-Nikodym derivative of Equation (A.3) to

be an equivalent martingale measure (EMM), it must be the case that

1 = EQt-1

[ St

St−1

/ Bt

Bt−1

]
= EPt-1

[
ξt

ξt−1

St

St−1

/ Bt

Bt−1

]
= EPt-1

[
exp

{
−ηu,tut − ηz,tzt −Ψ

u,z
t

(
ηu,t, ηz,t

)}
exp

{
λt

√
ht −

1
2 ht +

√
ht
(
ρut +

√
1 − ρ2zt

)}]
(A.5)

or, equivalently,

0 = Ψu,z
t

(
ηu,t − ρ

√
ht , ηz,t −

√
(1 − ρ2)ht

)
−Ψu,z

t
(
ηu,t, ηz,t

)
+ λt

√
ht −

1
2 ht , (A.6)

which boils down to

ρηu,t +

√
1 − ρ2ηz,t = λt . (A.7)
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Equation (A.7) admits an infinity of solutions. Yet, as highlighted above, our model has

the specificity that both shocks affect the mean of the return process. Thus, the bivariate

normal shocks can be seen as blending into a single stream of standard normal innovations

{ εt } and Equation (A.1) is equivalent to

Rt+1 = r + λt+1

√
ht+1 −

1
2 ht+1 +

√
ht+1εt+1 . (A.8)

This last equation is that of Duan’s (1995), which is a special case of CEFJ for which the

(linear) Radon-Nikodym derivative can be written as

ξτ ≡
dQ
dP

∣∣∣∣∣Fτ = exp

− τ∑
t=1

(
ηtεt +Ψ

ε
t
(
ηt

)) , (A.9)

whereΨεt is natural logarithm of the moment-generating function of the { εt } innovations,

that is,Ψεt
(
η
)
= 1

2η
2 . Again, for theQmeasure defined by Equation (A.9) to be an EMM, it

must be that

1 = EQt-1

[ St

St−1

/ Bt

Bt−1

]
= EPt-1

[
ξt

ξt−1

St

St−1

/ Bt

Bt−1

]
= EPt-1

[
exp

{
−ηtεt −Ψ

ε
t
(
ηt

)}
exp

{
λt

√
ht −

1
2 ht +

√
htεt

}]
(A.10)

⇔ 0 = Ψεt
(
ηt −

√
ht
)
−Ψεt

(
ηt

)
+ λt

√
ht −

1
2 ht , (A.11)

which implies that ηt = λt,∀t . Now, for Equations (A.3) and (A.9) to describe the same

Radon-Nikodym derivative, it must be that

ξτ = exp

− τ∑
t=1

(
λtεt +

1
2λ

2
t

) Using Equation (A.7)

= exp
{
−

τ∑
t=1

(
λtρut + λt

√
1 − ρ2zt +

1
2

︷                                                ︸︸                                                ︷(
ρ2η2

u,t + 2ρ
√

1 − ρ2ηu,tηz,t + (1 − ρ2)η2
z,t

) )}

= exp

− τ∑
t=1

(
ηu,tut + ηz,tzt +Ψ

u,z
t

(
ηu,t, ηz,t

))
where the last equality holds if, and only if, for all t,

ηu,t = ρλt and ηz,t =

√
1 − ρ2λt . (A.12)

We thus have that u∗t = ut + ρλt, z∗t = zt +
√

1 − ρ2λt, and

ε∗t = εt + λt = ρu∗t +
√

1 − ρ2z∗t . (A.13)

28



B Refining Model Estimation Using the VIX

The VIX levels reflect the market’s one-month-ahead expectation of the (risk-neutral) im-

plied volatility process. For the MacroHV-MIDAS model, this implied-volatility expecta-

tion is EQt
[√

ht+21

]
and can be easily computed using Monte-Carlo integration. In order to

study the properties of the volatility premium, EQt
[√

ht+21

]
− EPt

[√
ht+21

]
, implied by our

model, we must first ensure that the bias of its implied volatility process is minimized;

that is, EQt
[√

ht+21

]
should track the VIX level as closely as possible. However, as can be

observed in Figure 4, using the ML parameter estimates the model systematically under-

prices short-maturity options.

The only difference between the objective and risk-neutral volatility processes of con-

ditionally normal GARCH model lies in the presence of the price of risk parameter, λ, in

the risk-neutral specification. The ML estimate of λ is identified by the model’s equity risk

premium

logEPt
[
e−r St+1

St

]
= logEPt

[
exp

{
λ
√

ht+1 −
1
2

ht+1 +
√

ht+1εt+1

}]
= λ

√
ht+1. (B.1)

Unfortunately, it is notoriously difficult to pin down the magnitude of the equity risk

premium, and economists have not even reached a consensus about its very existence.23

Hence, an interesting alternative that has been pursued by many authors is to estimate a

forward-looking price of risk parameter λ from option data.24 Following this path, we opt

for a simple estimation criterion: minimizing, with respect to λ, the tracking error between

the model’s implied volatility and the VIX level, that is,

min
λ

∑
t∈T

(
EQt

[√
ht+21

]
− VIXt

)2
. (B.2)

A nonlinear least squares (NLS) estimation of λ is performed using the implied-volatility

sum of squared errors criterion in Equation (B.2). This estimation procedure is most similar

to that used by Gibson and Schwartz (1990) who use a mean squared error criterion on

futures prices to estimate the market price of convenience yield risk in the NYMEX crude

oil futures market. Similarly, Rosenberg and Engle (2002) extract empirical risk aversion

levels on a monthly basis from options written on the S&P 500 between 1991 and 1995.

23The literature on the subject is overwhelmingly vast, starting with Mehra and Prescott (1985). Some au-

thors, notably Brown, Goetzmann, and Ross (1995), argue that the equity risk premium could be solely due

to a survival bias, a hypothesis undermined by others like, for instance, Li and Xu (2002). Pollard (2009) even

attributes the premium to luck. DeLong and Magin (2009) offer a long review on the subject, concluding that

the equity premium is still a puzzle.
24See, for instance, Chernov and Ghysels (2000), Pan (2002), Eraker (2007), and Ornthanalai (2009).
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Our estimation procedure involves, for each candidate value of λ suggested by the

optimizer, the computation of a Monte-Carlo integral for each date t entering the sum in

Equation (B.2). To ease the computational burden inherent to this estimation procedure,

only the VIX values that are observed on Wednesdays from June 1988 to December 2007

are used in the estimation.25 Given the so-obtained NLS-optimal value of λ, we compare

the model’s implied volatility values with non-Wednesday observations of the VIX as an

“out-of-sample” validation of the estimated value of λ. Finally, the same Monte-Carlo

integration procedure is performed under the physical measure to obtain the MacroHV-

MIDAS model’s one-month-ahead, objective expectation EPt
[√

ht+21

]
; the model-implied

volatility premium, then, obtains by subtracting this objective expectation from the fore-

going risk-neutral one. To provide a benchmark, the whole procedure is also applied to

the NGARCH model.

In Table 7, Panel A summarizes VIX observations retained for our NLS estimation ex-

ercise, while Panel B reports the results obtained by minimizing Equation (B.2). Note that

these latter results are reported in implied volatility root mean squared error (IVRMSE)

terms, that is, using

IVRMSE =

√
1

NT

∑
t∈T

(
EQt

[√
ht+21

]
− VIXt

)2
. (B.3)

The IVRMSE is strictly monotone in the objective function of Equation (B.2) but easier

to interpret because it is on the same scale as the VIX. Using the λ values obtained from

maximum likelihood on asset returns (Table 3), we compute benchmark IVRMSE values

and report them along with the relative improvement achieved by using the NLS estimate

of λ. The NLS estimates of λ for both the NGARCH (0.191) and MacroHV-MIDAS (0.199)

model are more than twelve times higher than the estimates obtained under ML. Using the

value of λ obtained under ML estimation, the IVRMSE of the NGARCH model’s is 5.24%

and the NLS estimate reduces this error to 2.92%, a 44.3% improvement. For the MacroHV-

25When no data are available on a given Wednesday, we use the next trading day’s data. Note that this is

the same twenty-year period that is analyzed in Section 4.2. However, the (new) VIX values are only available

from January 1990. From June 1988 to December 1989, we therefore use VXO values (often referred to as the

“old” VIX) that are based on OEX options rather than SPX ones and that are not model free. While the VXO is

most likely a biased proxy of the value that the VIX would have taken over this early period, we are confident

that this bias has little impact on the estimation of a single parameter using twenty years of weekly data.
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MIDAS model, the benchmark IVRMSE is lower at 5.09% and yet the improvement is

greater at 47.6%.26

As seen in Figure 4, using the values of λ obtained under ML on asset returns, both

models’ implied volatility errors are consistently negative through time. Once the price

of risk parameter is estimated using VIX data, the magnitude of the NGARCH bias falls

by 94.5% to -23 basis points (bps), while that of the MacroHV-MIDAS model falls even

further at -6 bps, a 98.5% improvement. It thus appears that the time-series properties

of the MacroHV-MIDAS model’s volatility process are closer to those of the VIX than are

those of the NGARCH model.

As we use only Wednesday observations of the VIX in our NLS estimation of λ, a le-

gitimate concern is whether the time-series properties of the MacroHV-MIDAS model’s

implied volatility process are consistent with those of the VIX on a daily basis.By way of

validation, we also compute the IVRMSEs and implied volatility biases of both models

on the non-Wednesday observations left aside for the estimation. Out-of-sample improve-

ments, both in terms of IVRMSE and IV biases, are very close to the ones obtained in sam-

ple. So, we can be confident that the MacroHV-MIDAS model’s implied volatility process,

EQt

[√
ht+21

]
, is close to bias-free throughout the twenty years of data we consider.

26Just like Gibson and Schwartz (1990) in their footnote 17, we acknowledge that NLS relies on the assump-

tion that our implied volatility errors have a normal, independent, and identical distribution. This assumption

is most likely violated, as can be seen from the residuals in the middle panel of Figure 7. However, just as in

Gibson and Schwartz (1990), our focus is not on the statistical significance of the parameter, and this is why

we forgo developing a more involved procedure. In our subsequent analysis of the time-series properties of

the extracted volatility premium process, in order to account for the strong autocorrelation of the residuals,

we use Newey-West standard errors with a conservative lag of 63, corresponding to one quarter of trading

days.
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Figure 2: Fundamental Variance Processes
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NGARCH HV−MIDAS Macro−MIDAS MacroHV−MIDAS

In both panels, we plot, as a solid black line, the annualized fundamental volatility level of the MacroHV-MIDAS
model along with a dashed horizontal line at 16.31%, which corresponds to the NGARCH model’s expected volatil-
ity,

√
252ω/(1 − α(1 + γ2) − β). In the upper panel, we superimpose the fundamental volatility level obtained for the

HV-MIDAS model; in the lower panel, we superimpose the volatility level obtained for the Macro-MIDAS model.
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Figure 4: MacroHV-MIDAS Model’s IVRMSE Improvement Over the NGARCH Model
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Using parameter estimates in Table 3, we price options and compute weekly IVRMSE measures for the NGARCH model,
IVRMSENG

w , and for the MacroHV-MIDAS model, IVRMSEHV,∆x
w . This figure reports the relative improvement of using

the latter model over the former, that is, (IVRMSENG
w − IVRMSEHV,∆x

w )/IVRMSENG
w . On the left-hand side, results are

divided along the options’ maturity: 45 days to maturity (DTM) or less, between 46 and 90 DTM, or more than 90
DTM. On the right-hand side, results are divided along options’ moneyness: K/S ≤ 0.975, 0.975 < K/S < 1.025, and
K/S ≥ 1.025. Above each subplot, we report the overall average improvement (Avg), as well as the average through
expansion and recession periods (Exp/Rec).
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Figure 5: Implied-Volatility-Forecasting Bias of the MacroHV-MIDAS Model
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This figure reports the time series of implied-volatility biases for the MacroHV-MIDAS model. On the left-hand side, re-
sults are divided along the options’ maturity: 45 days to maturity (DTM) or less, between 46 and 90 DTM, or more than
90 DTM. On the right-hand side, results are divided along options’ moneyness: K/S ≤ 0.975, 0.975 < K/S < 1.025,
and K/S ≥ 1.025. Above each subplot, we report the overall average bias (Avg), as well as the average through expansion
and recession periods (Exp/Rec); by way of comparison, the same averages are reported for the NGARCH model (vs).
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Figure 6: Synthetic Options
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The upper-left panel of this figure reports the time series of implied volatilities obtained using the NGARCH model to price
synthetic, at-the-money options with 30 days to maturity, daily from January 1968 to December 2007. These options are
created assuming that their strike is equal to the index value on each given day. The mid-left panel reports the difference
between the HV-MIDAS model’s implied volatilities for these synthetic options and the NGARCH implied volatilities.
Similarly, the lower-left panel reports difference in implied volatilities when comparing the MacroHV-MIDAS and HV-
MIDAS models. The right-column panels report the data of the left column but in the price domain. Note that price
differences are in relative terms, e.g.

(
CHV

t − CNGARCH
t

) /
CNGARCH

t .
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Figure 7: The Volatility Premium
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In the upper panel, we plot the VIX through time and report its overall average level as well as that through expansion
and recession periods (Exp/Avg/Rec). For comparison sakes, we also plot the MacroHV-MIDAS model’s fundamental
volatility process; note that the latter is the long-run mean-reversion level for the physical volatility of the model, while
the VIX is the expectation of one-month-ahead volatility under the risk-adjusted measure. The middle panel plots the
model’s NLS-optimal, risk-neutral volatility process and its difference with the VIX. The lower panel reports the volatility
premium obtained by substracting the model’s expected, one-month-ahead volatility process under the physical measures
from the foregoing risk-neutral volatility process.
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Table 1: Descriptive Statistics on the Business Conditions Index

GARCH
Index: xt Residuals: vt Residuals: ut Variances: ht × 1e4

Min -4.36 -0.36 -9.16 0.13
Mean 0.02 0.00 0.02 4.91
Max 1.83 0.21 6.52 171.50
Std. Dev. 1.04 0.02 1.06 9.31
Skewness -1.21 -0.92 -0.26 6.95
Kurtosis 4.84 23.51 7.88 76.91
Log-Likelihood -9254.3 27298.5
Jarque-Bera 177850.0 10099.2

This table reports summary statistics on the processes of Equation (3.1), (3.2) and (3.3) :

xt = ϕxt−1 + vt , vt =
√

hx
t ut , hx

t = ωx + αxv2
t−1 + βxhx

t−1 .

Maximum likelihood parameter estimates are ϕ = 0.999999, ωx = 1.4117e−06, αx = 0.1183 and βx = 0.8817, implying
a variance persistence of 0.9999.

Table 2: Correlations between Macroeconomic Series
ADS TBill TS UE EMPLOY Inflation RA

Monthly TBill -0.026∗

Term Spread -0.276 -0.436
UE -0.475 0.304 0.532
EMPLOY 0.724 0.142 -0.204 -0.282
Inflation -0.073∗ 0.556 -0.456 0.0904.8% 0.141
Real Activity 0.794 -0.059∗ -0.286 -0.585 0.903 -0.023

Quarterly Real GDP 0.1703.1% -0.502 -0.350 -0.733 0.012∗ -0.074∗ 0.264
This table reports the correlations between eight of the series displayed in Figure 1. For the first six rows, the three daily
series are sampled monthly; daily correlations between these are similar to the ones reported here. The last row reports
the correlations of the first seven series, sampled quarterly, with the detrended real GDP; again, unreported quarterly
correlations are very similar to the monthly ones. Correlations marked with an asterisk are not statistically significant
at the 90% level; the exponent, whenever there is one, is the correlation’s p-value; all other correlations are significant at
least to the 99% level.
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Table 3: Maximum Likelihood Estimates

MIDAS
NGARCH HV Macro MacroHV

λ 0.0151 0.0156 0.0149 0.0155
(2.31E-08) (2.48E-08) (2.23E-09) (1.24E-08)

ω,m 1.03E-06 -9.714 -9.255 -9.730
(1.30E-12) (9.78E-07) (3.26E-07) (2.17E-07)

α 0.0567 0.0624 0.0589 0.0629
(1.29E-09) (4.09E-08) (3.66E-09) (8.30E-09)

β 0.9067 0.8846 0.8951 0.8725
(4.77E-08) (1.72E-08) (2.16E-08) (5.23E-08)

γ 0.6873 0.7283 0.7278 0.7850
(4.33E-07) (1.10E-06) (2.29E-07) (4.44E-07)

θhv 68.234 63.825
(5.27E-05) (3.21E-06)

whv 2.931 3.203
(2.68E-06) (1.38E-06)

θm -1.238 -1.009
(1.54E-06) (5.53E-07)

wm 3.370 3.722
(7.31E-07) (1.82E-06)

SR Persistence 0.9902 0.9801 0.9852 0.9741
1.0 − LR (×104) 0.6616 0.7376 0.7036
SR VoV (×104) 1.576 1.786 1.677 1.862
LR VoV (×104) 0.0338 0.0483 0.0533
Corr(Rt+1,ht+2) -69.70% -71.75% -71.72% -74.30%
Corr(εt+1,ut+1) 5.04% 5.03%

Log-Likelihood 33791.3 33806.7 33803.0 33822.0
BIC -6.7080 -6.7093 -6.7085 -6.7105

This table reports maximum likelihood estimates for the NGARCH model as well as those of MIDAS models for three
different specifications: (i) HV-MIDAS: quarterly historical volatilities computed from daily returns; (ii) Macro-MIDAS:
quarterly differences of the Business Conditions Index values; and (iii) MacroHV-MIDAS: a combination of both (i)
and (ii). Below each parameter estimate, we report its Bollerslev-Wooldridge standard error. The Bayesian information
criterion (BIC) values account for the number of parameters in each model and for the length of the time series of S&P 500
returns between January 1968 and December 2007.

Short-run (SR) persistence and annualized volatility of variance (VoV) are α(1 + γ2) + β and the average of√
252 α2(2 + 4γ2)h2

t+1, respectively. For the long-run (LR) component, we approximate the persistence and volatility
of variance by fitting an AR(1) to the fundamental volatility process, i.e.,

τt = φ0 + φ1τt−1 +
√
νet ,

where et is white noise. The volatility of variance is approximated by
√

252ν, while the long-run persistence is approxi-
mated by φ1 and is very close to one for all MIDAS models; we here report 104

× (1 − φ1).
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Table 4: Option-Pricing Results

MIDAS
Moneyness N Avg. NGARCH HV Macro MacroHV

Log-Likehood 33791.3 33806.7 33803 33822
IVRMSE 68923 18.41 5.23 5.14 5.21 5.10
DTM ≤ 45 (0.33, 0.95) 5478 29.83 12.61 12.52 12.49 12.39

[0.95,1.00) 7464 17.81 4.29 4.19 4.18 4.08
[1.00, 1.05) 8431 15.03 2.67 2.55 2.62 2.47
[1.05, 1.87] 3147 18.28 3.81 3.57 3.72 3.41

45 < DTM ≤ 91 (0.33, 0.95) 3295 23.02 7.08 6.98 6.82 6.77
[0.95,1.00) 3854 17.27 3.84 3.79 3.72 3.67
[1.00, 1.05) 5282 15.13 3.01 2.96 3.02 2.93
[1.05, 1.87] 4112 16.01 2.96 2.72 2.98 2.72

91 < DTM ≤ 182 (0.33, 0.95) 3221 21.54 5.36 5.43 5.23 5.34
[0.95,1.00) 2519 17.88 3.68 3.72 3.61 3.63
[1.00, 1.05) 2924 16.49 3.36 3.32 3.40 3.31
[1.05, 1.87] 4018 16.02 3.37 3.11 3.43 3.07

DTM > 182 (0.33, 0.95) 2950 20.90 4.95 5.21 5.21 5.41
[0.95,1.00) 2572 18.40 4.06 4.11 4.30 4.27
[1.00, 1.05) 3105 17.89 4.08 4.00 4.35 4.18
[1.05, 1.87] 6551 16.60 3.73 3.31 3.96 3.43

RMSE 68923 $40.44 39.34 32.35 38.23 30.55

For each model, we first recall its log-likehood as estimated in Section 3.3. Then, we report overall IVRMSE values,
followed by IVRMSE values obtained over maturity/moneyness buckets of options. For completeness, we also report the
overall RMSE values; IVRMSEs and RMSEs are computed as follows:

IVRMSE =

√
1
N

∑
t,k

(
IV

(
Ct,k

)
− IV

(
CMODEL

t,k

))2
and RMSE =

√√√
1
N

∑
t,k

Ct,k − CMODEL
t,k

Ct,k

2

.

Apart from the average call price (40.44£), all entries are percentage points. In each row, the entry for the best performing
model for that row is in bold font.
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Table 5: The MacroHV-MIDAS Model and Business Conditions

Panel A: MacroHV-MIDAS IVRMSE Improvement Over the NGARCH Model

Expansion Overall Recession x(63)
t < 0 x(63)

t < −1 x(63)
t < −1.5

# Weeks 948 1020 72 380 178 45
All Calls 3.35 4.50 19.73 12.88 22.18 29.75

(0.69) (0.68) (2.58) (1.02) (1.60) (2.64)

Short-Term 5.65 5.85 8.42 9.84 10.63 23.45
(1.28) (1.24) (4.93) (1.81) (3.61) (3.45)

Medium-Term 4.21 5.88 31.38 16.22 21.35 39.06
(1.17) (1.14) (3.79) (1.88) (3.68) (3.20)

Long-Term -8.71 -6.12 28.01 11.95 30.07 42.92
(1.27) (1.25) (3.61) (1.60) (1.87) (3.09)

ITM Calls 0.77 1.89 16.65 9.85 16.65 24.21
(0.67) (0.66) (2.46) (0.95) (1.64) (2.68)

ATM Calls -1.66 0.39 27.38 16.86 29.45 42.71
(1.28) (1.23) (3.33) (1.57) (2.01) (2.54)

OTM Calls 6.60 8.42 32.24 15.24 34.23 45.16
(2.26) (2.12) (3.51) (4.80) (2.43) (3.58)

Panel B: Synthetic 30-DTM, ATM Options

Expansion Overall Recession x(63)
t < 0 x(63)

t < −1 x(63)
t < −1.5

# Days 8684 10068 1384 3833 1640 819
NGARCH IV 14.12 14.68 18.19 15.57 17.86 17.01

(0.06) (0.06) (0.13) (0.08) (0.12) (0.13)

IV Difference 0.06 0.13 0.56 0.57 1.02 1.60
(0.01) (0.01) (0.04) (0.02) (0.04) (0.05)

NGARCH Price ($) 9.90 9.44 6.56 8.88 11.41 6.73
(0.11) (0.10) (0.25) (0.16) (0.27) (0.29)

Relative Price 0.77 1.12 3.31 4.00 6.26 9.05
Difference (%) (0.07) (0.07) (0.19) (0.11) (0.20) (0.30)

In Panel A, using parameter estimates in Table 3, we price options and compute weekly IVRMSE measures for
the NGARCH model, IVRMSENG

w , and for the MacroHV-MIDAS model, IVRMSEHV,∆x
w . Panel A reports aver-

ages of the relative improvement resulting from using the latter model over the former, that is, (IVRMSENG
w −

IVRMSEHV,∆x
w )/IVRMSENG

w . The average over all 1020 weeks in the option data set is reported under the Overall
column. The first and third columns report averages when restricting to weeks falling in periods of expansion or reces-
sion. The last three columns report the average when restricting to Wednesdays for which the centered quarterly moving
average of the ADS Index

(
x(63)

t = 1
63

∑t+31
s=t−31 xs

)
is below 0, -1 or -1.5. All entries are in percentage points, and standard

errors are parenthesized below each average. Similarly, Panel B reports the average NGARCH implied volatility of a
synthetic 30-DTM, at-the-money call (obtained by setting the call’s strike at the index level on each day in our sample),
from January 1968 to December 2007 (the time series is reported in the upper-left panel of Figure 6). The difference
between the MacroHV-MIDAS model’s implied volatility and that of the NGARCH is then reported. For comparison,
the NGARCH average price is reported for the different subsamples (the only entries in dollar terms), along with the
MacroHV-MIDAS – NGARCH price difference in relative terms, i.e. based on

(
CHV,∆x

t − CNG
t

) /
CNG

t .
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Table 6: The MacroHV-MIDAS Model and the Marginal Impact of Business Conditions

Panel A: MacroHV-MIDAS IVRMSE Improvement Over the HV-MIDAS Model

x(63)
t > 1.5 x(63)

t > 1 x(63)
t > 0 x(63)

t < 0 x(63)
t < −1 x(63)

t < −1.5
# Weeks 22 52 640 380 178 45
All Calls 7.24 3.70 -1.16 7.09 10.94 19.82

(2.87) (1.29) (0.34) (0.84) (1.27) (2.27)

Short-Term 8.00 3.98 2.08 5.43 5.45 18.10
(7.82) (3.32) (0.45) (1.48) (2.84) (2.61)

Medium-Term 1.85 -0.96 -0.44 9.20 12.63 31.06
(3.13) (1.93) (0.69) (1.67) (2.95) (3.39)

Long-Term 20.92 9.36 -8.54 9.51 14.99 27.17
(3.16) (2.14) (0.74) (1.29) (1.83) (3.40)

ITM Calls 7.13 5.06 -1.45 6.67 10.05 17.97
(2.79) (1.29) (0.36) (0.82) (1.37) (2.60)

ATM Calls 6.04 0.78 -4.92 14.80 18.42 33.51
(3.35) (1.78) (0.68) (1.70) (1.89) (3.07)

OTM Calls 14.50 4.56 -3.33 18.10 16.76 28.50
(4.34) (2.29) (0.83) (7.67) (2.10) (3.45)

Panel B: Synthetic 30-DTM, ATM Options

x(63)
t > 1.5 x(63)

t > 1 x(63)
t > 0 x(63)

t < 0 x(63)
t < −1 x(63)

t < −1.5
# Days 375 1131 6235 3833 1640 819

NGARCH IV 17.61 16.54 14.14 15.57 17.86 17.01
(0.76) (0.30) (0.07) (0.08) (0.12) (0.13)

IV Difference -0.57 -0.50 -0.16 0.62 1.13 1.83
(0.05) (0.02) (0.01) (0.02) (0.03) (0.04)

NGARCH Price ($) 4.41 4.46 9.79 8.88 11.41 6.73
(0.24) (0.10) (0.13) (0.16) (0.27) (0.29)

Relative Price -2.31 -2.18 -0.78 3.66 6.34 9.87
Difference (%) (0.08) (0.07) (0.03) (0.09) (0.17) (0.25)

This tables adds to the results reported in Table 5. Panel A reports averages of the relative improvement resulting from
using the MacroHV-MIDAS model over the HV-MIDAS, that is, (IVRMSEHV

w − IVRMSEHV,∆x
w )/IVRMSENG

w ; the
IVRMSE of the NGARCH is kept at the denominator to ease comparison with Table 5. The columns report the average
when restricting to Wednesdays for which x(63)

t is above 1.5, 1 or 0, or below 0, -1 or -1.5. Similarly, Panel B reports,
for a synthetic 30-DTM, at-the-money call, the difference between the MacroHV-MIDAS model’s implied volatility and
that of the HV-MIDAS, that is

(
IVHV,∆x

t − IVHV
t

)
. The comparison is also performed in the price domain, i.e. based on(

CHV,∆x
t − CHV

t

) /
CNG

t .
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Table 7: Model-Implied Volatility Premium

Panel A: VIX Observations

# Average Min Median Max
Daily 4936 19.03% 9.31% 17.90% 45.74%
Wednesdays 1020 19.00% 9.31% 17.95% 43.51%
Out-of-Sample 3916 19.03% 9.48% 17.89% 45.74%

Panel B: NLS Estimation from VIX Observations

NGARCH MacroHV-MIDAS
λ 0.191 0.199

Wednesday (%) Out of Sample (%) Wednesday (%) Out of Sample (%)
IVRMSE

NLS 2.92 2.90 2.66 2.67
Benchmark 5.24 5.24 5.09 5.11
Improvement 44.34 44.59 47.63 47.71

IV Bias
NLS -0.23 -0.22 -0.06 -0.05
Benchmark -4.26 -4.25 -4.05 -4.05
Improvement 94.50 94.81 98.45 98.72

Panel C: MacroHV-MIDAS Model-Implied Volatility Premium√
τt(HV)

√
τt(∆x)

√
τt

cst 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0
(27.86) (32.05) (28.91) (34.82) (35.08) (52.44) (57.08) (197.63) (201.55)

√
τt 26.3 45.1 24.5 22.7 18.9 18.4

(5.06) (4.56) (7.56) (6.33) (28.58) (26.93)
√
1t 105.9 102.9 97.7 97.4

(17.50) (16.99) (32.16) (31.05)

NBER 138.5 54.3 79.4 14.3
(4.59) (1.63) (4.48) (2.01)

R2 8.9% 24.2% 12.9% 31.8% 33.0% 79.3% 82.2% 97.7% 97.8%

Panel A summarizes VIX observations between June 1988 and December 2007; for our NLS exercise, we retain one
observation a week, on Wednesdays. Panel B reports the results obtained by minimizing, with respect to the price of
risk parameter λ, squared differences between the VIX level and the expected one-month-ahead volatility implied by the
NGARCH and MacroHV-MIDAS models under the risk-neutral measure. The benchmark measures are those obtained
when using the λ value obtained by ML on asset returns (Table 3) and improvement measures are obtained by compar-
ing the magnitude of IVRMSEs and biases to these benchmarks. The minimization is performed using only Wednesday
observations; all measures of fit are also reported for non-Wednesday observations (out of sample) by way of validation.
Panel C reports the results of nine linear regressions with, as regressand, the model-implied volatility premium of Fig-
ure 7, EQt

[√
ht+21

]
− EPt

[√
ht+21

]
, obtained by simulating daily physical and risk-adjusted volatility processes using the

price of risk parameter reported in Panel B. The
√
τt regressor is the annualized fundamental volatility, in percentage

points, under the physical measure; in the second and third columns, we restrict this process to the impact of historical
volatilities (θm=0) and to that of changes in business conditions (θhv=0), respectively. The NBER regressor is a dummy
variable that has value one when a day falls within an NBER recession, and zero otherwise. All regressors are demeaned,
√
1t is further standardized, and all loadings can be interpreted in basis points terms. The t-stats are computed using

Newey-West standard errors with a lag of 63, corresponding to one quarter of trading days, and are bold whenever their
magnitude is larger than 1.96.
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