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ABSTRACT

Using several recently proposed portfolio policies, we study the effects of a partial lock-up,

or transaction costs, on portfolio performance and the weight of the illiquid asset in both in-

and out-of-the-sample tests.  We use REITs as a proxy for a low liquidity asset.  Our first

approach follows that of Brandt and Santa-Clara (2006) and de Roon, Guo and ter Horst

(2009).  In an unconditional setting, we find that the weight for our illiquid asset is in

general lower that in prior studies, and is reduced to values close to empirically observed

weights for real estate, once a lock-up is introduced, producing a potential answer to an

earlier puzzle.  Our results also indicate that the Brandt and Santa-Clara (2006)

methodology and the Kan and Zhou (2007) shrinkage strategy, suggested as more stable

than many traditional asset allocation approaches, still result in extreme and unstable

weights and reduced out-of-the-sample performance.  The Brandt, Santa-Clara and

Valkanov (2009) model with rebalancing costs, which we apply to an asset allocation

problem, substantially reduces the noise from conditional signals, and improves

performance.
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The Effects of Illiquidity and Lock-Ups on Portfolio Weights

1. Introduction

Many assets are relatively illiquid at least in the short run.  The recent financial crisis has

efficiently demonstrated how e.g. hedge funds and real estate funds can be forced to

introduce lock-ups, or extend them, during severe market conditions.  Venture capital is

another example of a relatively illiquid asset.  Institutional portfolios typically hold many

types of such illiquid or temporarily locked-up assets.  Whereas there are some theoretical

studies of the effect of illiquidity on portfolio choice, see e.g. Longstaff (2001), Schwartz and

Tebaldi (2006), and Vath, Mnif and Pham (2007), there is a rather limited amount of studies

of how the ex-ante knowledge of a potential illiquidity problem or a lock-up affects the

weights of the illiquid asset and the other assets in the portfolio.  Typically the studies of the

effects of illiquidity on portfolio choice rely on adjusting the moments (return, and/or

variance)  of  the  return  distribution  for  the  illiquid  asset1, such as in the Bond, Hwang and

Richards (2006) analysis of U.K. commercial real estate in a multi-asset portfolio.2

We study empirically the effect of a relatively illiquid asset on optimal portfolio weights and

Sharpe ratios in a multi-asset portfolio using two rather novel, alternative methods.  These

are the multi-period optimization method by Brandt and Santa-Clara (2006), complemented

by a lock-up for the illiquid asset in line with de Roon, Guo and ter Horst (2009) for hedge

funds, and secondly, by introducing rebalancing costs in a multi-period framework, following

1 See e.g. Cao and Teiletche (2007) for ways to deal with estimation problems for illiquid assets.
2 Exceptions are studies such as by Ghysels and Pereira (2008), who directly model the relationship between
illiquidity and the conditional distribution of returns for a sample of NYSE stocks, and González and Rubio
(2007), who build in a reference for liquidity in the utility function, as well as impose constraints on illiquidity
in the mean-variance portfolio optimization problem using Spanish stocks.  In the market microstructure
literature, illiquidity is also analyzed through its effects on bid-ask spreads, as well as returns, as in Amihud and
Mendelson (1986), who show that expected stock returns are an increasing function of illiquidity costs.
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Brandt, Santa-Clara and Valkanov (2009).  Based on the results of e.g. Glascock, Lu and So

(2000), and Oikarinen, Hoesli and Serrano (2009), who present evidence for the linkages

between securitized and direct real estate3,  we  use  a  U.S.  monthly  series  for  Real  Estate

Investment Trusts (REITs) as a proxy for the relatively illiquid asset class of real estate.4  We

start by investigating the effect of a complete rebalancing lock-up (for a number of periods)

in the illiquid asset in a portfolio also including stocks, bonds, and money market

investments, both in an unconditional as well as conditional setting, in and out of the sample,

and with or without short sales constraints for the illiquid asset.  Next, we consider optimal

trading strategies under proportional transaction costs.  As shown by our results in the paper,

these can effectively be modeled as partial lock-ups as it clearly becomes sub-optimal to

rebalance an asset in the presence of high transaction costs.

We contribute to the prior literature on portfolio optimization, especially with low liquidity

assets, in several ways.  First, since REIT data are available from the early 1970s, we

produce empirical results of asset allocation with low liquidity assets using one of the longest

possible time series available for a relatively illiquid asset class.  Second, we produce the first

tests  of  the  multi-period  portfolio  policies  of  Brandt  and  Santa  Clara  (2006)  in  an  out-of-

sample context including empirically implemented short sales constraints, hence producing

evidence with respect to performance stability issues.  Third, we contribute to the literature

3 Bond and Hwang (2003) also show that direct and securitized real estate have a similar volatility process,
while Pagliari, Scherer and Monopoli (2005) report that the return and volatility of REITs and direct real estate
are undistinguishable from a statistical perspective once leverage and property mix are accounted for.
4 The relative liquidity of REITs is much lower than that of stocks, motivating our use of them as a proxy for a
relatively illiquid asset.  Brounen, Eichholtz and Ling (2009), for instance, calculate a liquidity ratio defined as
the inverse of Amihud’s (2002) illiquidity measure, and report dramatically lower values for REITs as
compared to stocks.  By using securitized real estate data, we also avoid many of the measurement problems
associated with direct real estate.  The reliability of the estimated correlation and of volatility patterns for direct
real estate have been questioned due to problems with data quality (appraisal smoothing and time aggregation
creating artificial autocorrelation). Therefore direct real estate data typically requires rather ad hoc de-
smoothing to ensure comparability with stock and bond return dynamics.  Direct real estate data are also
available only at the quarterly frequency, thus posing practical problems in accurate portfolio parameter
estimation due to lack of data for long enough time periods.
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on the optimal weight for real  estate in a multi-asset  portfolio.   Prior studies have typically

been unable to solve the contradiction (pointed out e.g. by Chun and Shilling, 1998, and

Geltner et al., 2007) between the high theoretical weights5 for  real  estate  in  portfolio

optimization studies, and the low empirical weight observed in institutional asset portfolios.6

We report evidence on the extent to which the ex-ante knowledge of a lock-up in real estate

reduces the weight for that asset, as well as creates a hedging demand in the other assets, and

show that the optimal weights may come close to the empirically observed weights for real

estate in institutional portfolios.7

Our setup also provides an extended out-of-sample study of an estimation error corrected

portfolio policy recently proposed in the literature.  In general, it has been shown that

portfolio policies shrinking weights toward equal weights (1/N) or the short-sales-constrained

minimum variance portfolio (despite the fact that the investor may have low risk aversion) is

beneficial because estimation errors, especially in historical means but also in co-variances,

tend to be quite serious in practice (DeMiguel, Garlazzi and Uppal, 2009).  Much of the

previous literature has focused on historical frontier portfolios, which are known to be quite

5 Typically, optimization studies have reported weights between 15% to 30% for real estate in a multi-asset
portfolio, see e.g. Ennis and Burik (1991), Ziobrowski and Ziobrowski (1997), Hoesli, Lekander and
Witkiewicz (2004) and Fisher, Geltner and Pollakowski (2007).
6 See e.g. Bond, Hwang and Richards (2006), who despite efforts to adjust for illiquidity, report suggested
weights of 20% for real estate, while the average empirical weight in U.K. pension fund portfolios in 2003 was
6%.  Partially successful efforts to explain the discrepancy also include Chun, Ciochetti and Shilling (2000) and
Craft (2001), who argue that the weight which should be allocated to real estate is much more in line with the
actual institutional weight when an asset-liability framework is used rather than an asset only framework, and
Kallberg, Liu and Greig (1996), who consider the effects of real estate market imperfections, such as indivisible
assets and no short sales.
7 If portfolio rebalancing for the real estate part of the portfolio is not possible, its relative weight (and the
weight difference between the actual and the desired weight) in a portfolio with at least some stocks and bonds
as well, is likely to increase during a bear market (given that real estate falls by less than stocks).  If
furthermore, as reported by Hung, Onayev and Tu (2008), REITs in a time-varying setting add value to the
portfolio only in up markets (due to their lower correlation with other assets then), being partially locked-up in
real estate during periods when it is less useful can hurt the portfolio. Rational investors aware of a potential
lock-up should anticipate it, and initially invest less in such an asset, which may explain the empirically
observed lower weight for real estate as compared to theoretical weights estimated under a perfect rebalancing
assumption.



4

unstable out-of-sample.  Tu and Zhou (2008) and DeMiguel, Garlazzi and Uppal (2009)

further develop estimation error corrected shrinkage and find that it is possible to improve

upon out-of-sample portfolio performance by combining minimum variance and equally

weighted portfolios.  We study the merits of implementing such shrinkage estimators with

the Brandt and Santa-Clara (2006) model.  Moreover, our study contributes to the literature

on asset allocation by applying the Brandt, Santa-Clara and Valkanov (2009) stock selection

model with rebalancing costs into an asset allocation framework, including illiquid assets.

Finally,  we  also  contribute  by  testing  multi-asset  strategies  for  a  data  set  including  at  least

part of the recent financial crisis.

In our in-sample tests for the time period from 1982 to 2008, we find that the weight for the

illiquid  asset  (REITs)  is  in  general  lower  that  in  prior  studies  of  real  estate  weights,  and  is

reduced to values below 10% once a lock-up for REITs is introduced.  These values come

close to empirically observed values for real estate.  The in-sample results are rather similar

in our unconditional and conditional tests.  An analysis of the certainty equivalents for the

unlocked versus locked strategies indicate an annualized lock-up cost of around 1.5% to 2%

for the illiquid asset.

The strategies we study include strategies based on the Brandt and Santa-Clara (2006)

methodology, and the Kan and Zhou (2007) shrinkage strategy.  In Brandt and Santa-Clara

(2006), the authors report that their strategy results in more stable (in-sample) weights than

the traditional approach to asset allocation.  The Kan and Zhou (2007) shrinkage strategy in

turn is suggested to improve performance under parameter uncertainty.  When applied to

asset classes in an out-of-the-sample framework, both strategies produce quite extreme and

unstable weighs, and substantially reduced performance in terms of Sharpe ratios.  The
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weight for REITs in these analyses is driven by its relatively more positive performance

during the beginning of our time period (i.e., the estimation period for the conditional

analysis), and the imposition of a short-sales constraint only for the illiquid asset magnifies

the effect.

In  the  second part  of  our  empirical  study,  we  report  results  from an  asset  allocation  model

with rebalancing costs for the low liquidity asset.  This asset allocation version of the Brandt,

Santa-Clara and Valkanov (2009) model proves successful in reducing the weight changes

suggested by noisy conditioning instruments, and produces superior Sharpe ratios.

The structure of this paper is as follows.  First, in section 2, the methodologies used in our

analyses  are  presented.   In  section  3,  we  present  the  data.   Results  from different  portfolio

strategies are reported in section 4, and final conclusions are given in section 5.

2. Methods to Capture the Illiquidity of an Asset

2.1. General

In this paper, we will use two different approaches to analyze optimal portfolio strategies

(both static and dynamic, implemented both in in-sample as well as out-of-the sample

frameworks).  These are the methodology of Brandt and Santa-Clara (2006) complemented

with a lock-up in line with de Roon, Guo and ter Horst (2009) (in their case, applied to hedge
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funds)8, and the parametric portfolio policies of Brandt, Santa-Clara and Valkanov, hereafter

BSV (2009), where rebalancing costs can easily be taken into account.  We will describe

these approaches in the following sub-sections.

2.2. Multi-Period Asset Allocation with a Lock-Up

2.2.1. The Unconditional Case

If the first and second moments of asset returns exhibit predictability, a dynamic trading

strategy is called for.  If, due to illiquidity, one asset class is temporarily “locked-up” (i.e. the

amount invested in it cannot be changed, at least not downwards), a dynamic trading strategy

may also be called for, since the lock-up can generate a systematic hedging demand,

affecting the demand for other asset classes during the subsequent time periods.  However,

computing optimal dynamic trading strategies has proven to be problematic, since closed-

form solutions are seldom available.  Different numerical solution methods such as solving

partial differential equations, Monte-Carlo simulations, and discretizing the state-space have

been used in the literature, while practitioners still mainly rely on the static Markowitz

approach.

Brandt and Santa-Clara (2006) develop a novel approach to dynamic portfolio selection

which is easy to implement, and allows the use of most of the refinements developed for the

Markowitz model, such as portfolio constraints, shrinkage estimation, and the combination of

prior beliefs with the information contained in historical return data (i.e. the estimation of

8 De Roon, Guo and Ter Horst (2009) study the effect of a lock-up for hedge funds in a portfolio.  Using U.S.
data from December 1989 to December 2007 for stocks, bonds, and hedge funds in both an unconditional
framework, and in a conditional framework with the market dividend-price ratio as the state variable, they find
that a three-month lock-up for hedge funds costs the investor 4.2% per annum.  Investors compensate the lock-
up by making adjustments to their equity and bond holdings.
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dynamic  trading  strategies).   Their  method  solves  the  portfolio  problem  in  one  step  as  the

optimal choice (which maximizes the investor’s utility) is determined among simple multi-

period trading strategies.  In a single-period setting with i.i.d. returns, their solution leads to

the well-known Markowitz solution. With some return predictability, their approach is

related to that of Ferson and Siegel (2001), who model conditional means and covariances as

known functions of the state variables, and then derive optimal portfolio weights by

maximizing a mean-variance utility function.  The resulting portfolio weights can then be

shown to be functions of the state variables.  Brandt and Santa-Clara (2006) instead model

the portfolio weights directly as functions of the state variables, and find the coefficients that

maximize the investor’s utility.

The key idea in the methodology of Brandt and Santa-Clara (2006) is to consider all the paths

through which, in a multi-period setting, an initial unit of money can “travel” through the

investment period.  Assume two risky asset classes A and B, and two time periods.

Following the notation of Brandt and Santa-Clara (2006), denote by Rt
f and Rt+1

f the invested

amount (one) plus the risk-free rate at the time points t (at the beginning of the first period,

ranging from t to t+1) and t+1 (at the beginning of the second period, ranging from t+1 to

t+2).  Let rt+1
A and rt+1

B stand for the end-of-period excess returns when investing in the asset

classes A and B over the first time period (from t to t+1).  Then a two-period excess return

rp
t+2 for  a  portfolio  investing  in  the  risk-free  rate,  and  the  asset  class  A  (with  some

beginning-of-period weights w A
 t and w A

 t+1 for investments in the risky asset A) is

rp
t+2  = (Rt

f + w A
 t rt+1

A) (Rt+1
f + w A

 t+1 rt+2
A) - Rt

f Rt+1
f

= w A
 t (rt+1

A Rt+1
f ) + w A

 t+1 (Rt
f rt+2

A)  + (w A
 t rt+1

A)(w A
 t+1 rt+2

A)

 w A
 t (rt+1

A Rt+1
f ) + w A

 t+1 (Rt
f rt+2

A) (1)
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i.e. in the last step above, the cross-product of the two excess returns and the two weights is

assumed to be approximately equal to zero due to the excess returns being expected to be

small over short time horizons.  Brandt and Santa-Clara (2006) argue that the magnitude of

the cross-product (the compounding term) is typically of the order of 1/100th of a percent per

year.  They also study the impact of ignoring the compounding terms in a model for monthly

excess stock and bond returns, with rebalancing frequencies from monthly to annual, and

investment  horizons  ranging  from 1  to  20  years.   They  conclude  that,  consistent  with  their

intuition, the compounding terms are relatively unimportant for short horizons.9

A generalization of equation (1) for multiple risky assets is straightforward.  For two risky

assets, the two-period portfolio return will be

 rp
t+2    w A

 t (rt+1
A Rt+1

f ) + w B
 t (rt+1

B Rt+1
f ) + w A

 t+1 (Rt
f rt+2

A) + w B
 t+1 (Rt

f rt+2
B)

     w´
t (Rt+1

f rt+1
´) + w´

t+1(Rt
f rt+2

´) (2)

where w´
t+1 and  w´

t+1 are  weight  vectors  and  rt+1
´ and rt+2

´ are  return  vectors.   The  portfolio

problem boils down to solving for the risky asset weights which maximize the investor’s

utility function, i.e. to e.g. solve a two-period quadratic utility optimization problem of the

following form for an investor:

max Et [rp
t+2  –  / 2 (rp

t+2 )2] (3)

9 However, for horizons beyond five years, the quality of their approximation deteriorates substantially.
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where  is  the  coefficient  of  relative  risk  aversion.   Given  a  time  series  from  t  to  T,  the

optimal weight matrix w´´ for a two-period dynamic strategy is given by:

T-2 T-2

w´´ = 1/  [ rp
t+2

´ rp
t+2

']-1 [  rp
t+2

´] (4)
t=1 t=1

where the first set of elements of w´´ represents the fraction of wealth invested in the risky

assets  in  the  first  period,  and  the  second  set  of  elements  represents  the  fraction  of  wealth

invested in the risky assets in the second period.

Next, following de Roon et al (2009), assume that a portfolio includes one liquid asset, and

one illiquid asset, i.e. assume that asset A is liquid whereas whatever amount is invested in

asset B in the first period, remains fixed for the next period (a two-period lock-up).  In that

case, the two-period portfolio excess return takes the following form:

         rp
t+2  = (Rt

f + w A
 t rt+1

A) (Rt+1
f + w A

 t+1 rt+2
A) - Rt

f Rt+1
f + w B

 t rB
t+2

 w A
 t (rt+1

A Rt+1
f ) + w A

 t+1 (Rt
f rt+2

A) + w B
 t rB

t+2 (5)

where rB
t+2  is the two-period return for the illiquid (locked-up) asset B.

3.2.2. The Conditional Case

Conditional portfolio policies can be implemented in a straight-forward fashion by allowing

portfolio weights to be determined (typically linearly) by observable state variables z t.  For

the liquid asset A and the illiquid asset B, this implies that:
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wA
t =  A1 z t

 ,      wA
t+1 =  A2 z t+1 and  w B

t  = B z t . (6).

Although zt could be an S-dimensional vector of state variables at time t, in this paper, we are

using one state variable at a time due to data limitations.  The two-period return for the

conditional strategy with one liquid and one illiquid asset will then be:

rp
t+2   A1z t (rt+1

A Rt+1
f ) + A2 z t+1 (Rt

f rt+2
A) + B z t rB

t+2 , (7)

where the s can be viewed as the unconditional weights in a portfolio problem with scaled

returns (returns scaled by the state variable).  The investment problem is then to find the set

of parameters  that maximize a multi-period quadratic utility as in equation (3).  The

unconditional weights that maximize the conditional expected utility at all dates should also

maximize the unconditional expected utility.

The unconditional and conditional methods above can be generalized from the two-period

asset allocation problem to a L-period problem with lock-up constraints for some risky

assets.  While a straightforward optimization can give negative unconditional weights, non-

negativity constraints can easily be implemented in the unconditional case.  Also, in the

conditional case, negative weights can be ruled out by empirically restricting the size of the

parameters   to  values  which,  together  with  in-sample  values  of  the  state  variable,  do  not

result in negative amounts being invested in the underlying assets. Also, shrinkage estimation

e.g. can be implemented.  For more details concerning the methods, see Brandt and Santa-

Clara (2006) and de Roon, Guo and ter Horst (2009).
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2.4. Asset Allocation with Rebalancing Costs

Another way to capture asset illiquidity is to include costly rebalancing into an asset

allocation model.  It has theoretically been shown that transaction costs have two main

effects on portfolio policies: 1) portfolio rebalancing consumes portfolio return (related to

proportional transaction costs per trade and the amount/frequency of rebalancing) and 2) the

optimal amount of rebalancing itself is affected.  Magill and Constantinides (1976) and

others show that the total utility of a portfolio strategy net of transaction costs is maximized

when the investor only rebalances partially towards upcoming target weights in a “trading

range”.

Our rebalancing strategy will build on the approach by Brandt, Santa-Clara and Valkanov

(2009).  There, the authors propose a new method for optimization of portfolios with a large

number of assets.  They model the portfolio weight of each asset as a function of the asset’s

characteristics cross-sectionally.  The method is related to that of Brandt and Santa-Clara

(2006), where the optimal weights are modeled as functions of the state variables over time.

However, here the weight invested in each asset is modeled as the same function (with

common coefficients) of asset-specific variables, i.e. the portfolio problem can be formulated

as a statistical estimation problem.  The optimal portfolio weights are obtained by

maximizing the conditional expected utility of an investor with CRRA (constant relative risk

aversion) preferences.  In practice, this can be obtained e.g. through a method of moments

estimator, i.e. the advantage of their method is that, given the low dimensionality of the

parameter  vector,  it  is  computationally  easy  to  optimize  the  portfolio  with  nonlinear

optimization methods.  The method also easily allows for e.g. shrinkage estimation or short

sales constraints.
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While the methods of BSV (2009) are developed for a multiple asset case, they can also be

used, in a conditional setting, for a smaller set of asset classes.  We use this method since it

allows for the inclusion of periodic transaction (rebalancing) costs.  With transaction costs,

the return of a portfolio net of such costs is:

N

rp
t+1= wi ri, t+1 – c i, t [w i, t – w i, t-1] (8)

i=1

where c i,  t is the periodic rebalancing cost, modeled as being proportional to the weight

change for the asset i in the portfolio, between periods t and t+1.  Following BSV, we define

a no trade region of a certain distance (parameter k) such that only large enough weight

updates trigger a trade and incur transaction costs.  The k=0 case coincides with the no

transaction cost case where full update from last period’s realized weights (taking into

account technical update of weights due to realized interim return) is always optimal,

whereas for sufficiently high k no update will take place.  Thus, higher values of k effectively

reduces portfolio turnover.  We set this parameter to value k=0.2 and consider separately the

sensitivity of our results to this choice.  The portfolio optimization is carried out on portfolio

returns net of optimized transaction costs. We implement these tests both in-sample and out-

of-sample  by  utilizing  past  transaction  cost  optimized  weights  over  10  years  estimation

window keeping the last weights for one month ahead, in a rolling fashion.

2.5. Application Details

In the first part of this paper, we will estimate optimal portfolio weights both in the

unconditional as well as the conditional case, using real estate as the asset with a lock-up, and

stocks and bonds as the two other asset classes (in excess of the risk-free rate).  As state
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variables, we will in line with de Roon, Guo and ter Horst (2009) only use one state variable

at a time out of the following set: the dividend yield, the default spread, and the term

premium.10  Our basic return interval is the monthly one, and the multi-period asset

allocation problem is that of 3 periods, i.e. 3 months.11  In  strategies  with  a  lock-up,  real

estate is assumed to have a 3-period lock-up, while investments in stocks and bonds can

freely be rebalanced in the beginning of each month.  Both unconstrained as well as short

sales constrained strategies (short sales constraints only for the real estate asset)12 will be

estimated for an investor having quadratic utility as in Brandt and Santa-Clara (2006).  More

specifically, we estimate the following portfolio strategies (in an unconditional and

conditional framework, with or without short sales constraints):

1.  The  Brandt  and  Santa-Clara  (2006)  model  with   =5  (base  case),  with  initial  weights

scaled to sum to 1 (i.e. the tangency portfolio).  We use excess returns in estimations, so

during sub-periods other than the initial one in a multi-period strategy, the weights do not

need to sum up to one, meaning that the remaining portion is borrowed/lent in the risk-free

rate.

2. An optimally combined Kan and Zhou (2007) portfolio strategy (the intuitive

interpretation of which is a shrinkage towards 1/N), using the global minimum variance

portfolio and a  =5.

10 De Roon, Guo and Ter Horst (2009) also test the short-term interest rate as a state variable.
11 The three-month interval seems to be a reasonable proxy for the actual lock-up often present in real estate
funds.  The choice of the length of the horizon for the asset allocation problem is also related to data
availability.  In our case, having about 30 years of data at the monthly frequency, a 3-month horizon leaves us
with a reasonable number of observations: an overall number of N units of 3-month intervals, and for the ten-
year estimation periods, a number of 120 observations per period.
12 We impose a short sales constraint only on real estate, since stock market and government bond weights are
easily altered in practice through trading in corresponding futures contracts, which enable even large positive
and negative investment weights with minimal trading costs.
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The second part of the paper utilizes monthly one-step ahead returns only, but imposes

transaction costs on real estate.  The modeling of transaction costs and portfolio weight

optimal rebalancing follows BSV (2009).

We will not only estimate in-sample optimal weights, as in Brandt and Santa-Clara (2006)

and de Roon, Guo and ter Horst (2009), but also extend the analysis to rolling out-of-sample

strategy outcomes.13  Our out-of-sample strategy is largely in line with BSV (2009), i.e. we

estimate optimal weights using data for an estimation period (in our case, the first ten years,

i.e. 1972.01 1981.12), and then apply the weights to the first out-of-sample quarter.  To

facilitate comparison, the in-sample strategies are also estimated using data only from 1982

forwards.  In both the unconditional and conditional strategies, we study non-overlapping

quarters, i.e. the conditional strategy moves forward in steps of 3 months.  When moving

forward  in  the  conditional  strategies,  contrary  to  BSV  (2009),  we  do  not  enlarge  the

estimation period, but keep it constant (equal to the last 10 years) by dropping the oldest

quarter.

The  set  of  resulting  monthly  out-of-sample  outcomes  will  be  analyzed  using  Sharpe  ratios,

the certainty equivalent, and, naturally, we will focus on the resulting weights for the real

estate assets as compared to a setting without a lock-up for it.  The significance between the

Sharpe ratios for a strategy without a lock-up, and its locked-up pair, will be compared and

significance tested in line with the serial correlation preserving bootstrapping methods by

Ledoit and Wolf (2008).

13 Only BSV (2009) report results from a method like the one above (but also including rebalancing costs) for
out-of-sample strategies.  They also extend their analysis to portfolios with weight constraints (long-only).
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The second part of the paper utilizes monthly one-step ahead returns only, but imposes

transaction costs on real estate. The modeling of transaction costs and portfolio weight

optimal rebalancing follows BSV (2009). Since our purpose is to study the impact of the

relatively higher illiquidity of real estate as compared to the other assets, it is above all the

relative difference in transaction costs which will be of importance.  We use an assumption

of a rebalancing cost of 0.5% for real estate, and 0% for the other assets.

3. Data

Our  data  set  consist  of  stock,  bond,  and  REIT  data  for  the  U.S.  from  January  1972  to

December 2008.  For stocks, we use the value-weighted CRSP index.  For bonds, we use the

Fama Bond Portfolio (Treasuries), with maturities greater than 10 years, also obtainable from

CRSP.  Returns for real estate are computed from the FTSE NAREIT U.S. Real Estate Index

(All  REITs).   The  1-month  Treasury  bill  is  used  as  a  proxy  for  the  risk-free  rate.   As

instruments in the conditional analyses, we use the term spread (10 year Federal government

bond yield, downloaded from www.federalreserve.gov, in excess of the 3 month T-Bill rate),

the dividend yield (measured as the 1-month return difference between the returns on the

CRSP value-weighted index in its total return and price index forms), and the default spread

(the difference between Moody’s yield on seasoned corporate all-industries AAA- and BAA-

rated bonds, also from www.federalreserve.gov).

Descriptive statistics for our data are reported in Table 1, and a correlation matrix of the state

variables and asset returns is reported in Table 2.  Table 1 shows that during our time period,

REITs have offered higher returns and risks as compared to stocks during two sub-periods:

from 1972 to 1981, and from 2002 to 2008. During 1992 to 2001, in turn, the assets have

http://www.federalreserve.gov/
http://www.federalreserve.gov/
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offered returns more in line with what is typically expected, with stock returns being highest

both in terms of risk and return (a return of roughly 1% per month, and a monthly volatility

of 1.5%), REITs offering a return of 0.9% and a volatility of 1.1%, and bonds a return of

0.7% and a volatility of 0.7%.  Table 2 in turn shows that the correlations between stocks,

bonds, and REITs have been rather low, with the bond-REIT correlation being the highest

(0.5984), but also that the alternative instruments used in our conditional analyses have rather

low simultaneous correlations with the assets.

4. Results from Different Portfolio Strategies

We start by analyzing results from multi-period portfolio strategies with and without a lock-

up for real estate in section 4.1. These strategies follow the approaches in Brandt and Santa-

Clara (2006), and de Roon, Guo and ter Horst (2009) for hedge funds, with the addition that

we focus on out-of-sample results, and include short-selling restrictions for real estate.  In

section 4.2., we instead model the illiquidity of real estate with rebalancing costs in line with

BSV (2009).

4.1. Multi-Period Portfolio Strategies with a Lock-Up for Real Estate

First, as a basis for comparison, we estimate unconditional, unconstrained multi-period (3-

month) in-sample strategies for the assets classes of stocks, bond, and REITs, using data for

the time period of 1982-2008.  We leave the time period of 1972-1981 outside at this point,

so that we later can compare these strategy outcomes to out-of-sample strategy outcomes for

the same period, when using the first 10 years as an estimation period.  The results are

reported in Panel A of Table 3 for strategies without and with a 3-month lock-up for REITs.
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Table 3, Panel A shows that when short sales are allowed for, the change in Sharpe ratios14 is

significant (falling from 0.5855 to 0.4153) when a 3-month lock-up is introduced for REITs.

The average REIT weight is above 16.7% in the strategy for the  = 5 investor (Column 1) in

the base case, and falls to 8.3% when a lock-up is introduced for REITs (Column 2).  The

Kan and Zhou (2007) shrinkage strategy produces lower Sharpe ratios, and the change in

them is not significant when introducing a lock-up for REITs.  Here the REIT weights are

even smaller, falling from 13% to a negative one of -8.5% in the strategy with a lock-up.

When a short-sales constraint is introduced for REITs (Panel B of Table 3, only for the  = 5

strategy), the change in Sharpe ratios is not significant, but the fall in weights is even larger

for REITs, from 23.6% to 8.3%. The results for the locked-up case are rather similar with and

without  short  sales  constraints,  indicating  that  the  short  sales  constraint  is  typically  not

binding for the illiquid asset weights during the first of the three months in the multi-period

strategies.

Interestingly, whereas our results when there is no lock-up for the illiquid asset (i.e., real

estate) are very similar to those from earlier studies (i.e. a real estate weight of between 15%

to 25%), our results from locked-up strategies, especially with short sales constraints,

resemble empirically observed weights, i.e. weights which typically are below 10%.

Next, we study conditional in-sample strategies using the dividend yield as the conditioning

instrument.15  Table 4 reports results for our two strategies without and with a lock-up for our

14 The change in Sharpe ratios is tested using the serial correlation preserving bootstrapping method by Ledoit
and Wolf (2008), with B=1,000 bootstrap re-samples, and expected block size b=5.
15  The results, not reported here, are rather similar also using the other instruments.
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illiquid asset, without and with a short-sales constraint for the illiquid asset in Panels A and

B, respectively.  Again, the reduction in Sharpe ratios brought by the lock-up is significant

for  the  first  strategy,  but  not  the  second  one.   The  weights  for  the  illiquid  asset  falls  even

more dramatically, to negative values in both cases in Panel A, and to 8.3%, i.e. as in the

unconditional case, when a short sales constraint is imposed for the illiquid asset.

In Brandt and Santa-Clara (2006), their method is demonstrated using in-sample conditional

multi-period strategies with stocks and bonds (and the T-bill) as assets.  Their method results

in more stable weights than the traditional approach to asset allocation, where conditional

expected returns are obtained from an in-sample regression of returns on state variables, and

the Markowitz method is applied to these conditional expected returns together with an

unconditional covariance matrix.  We want to test the stability of the Brandt and Santa-Clara

(2006) approach on our problem in a full out-of-sample setting.  We therefore estimate

portfolio  weights  using  a  ten-year  rolling  estimation  period,  and  apply  the  weights  for  the

subsequent 3-month horizons.  We do this for all the strategy alternatives in Tables 3 and 4.

Table 5 reports the out-of-sample performance of unconditional portfolio policies with and

without a lock-up for the illiquid asset, and without and with short sales constraint for it in

Panels A and B, respectively.  Sharpe ratios for the  = 5 strategy are now much lower than

their in-sample values in Table 3 were, indicating a much poorer out-of-sample performance.

The Kan-Zhou strategy is less affected by the switch to an out-of-sample framework, as

might be expected for a shrinkage strategy similar to the Bayes-Stein correction in the

Markowitz framework.  Both strategies also result in substantial fluctuation in sub-period

portfolio weights, as well as extreme weights, as evidenced by the high weight turnover

statistics in Table 5.
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The introduction of a lock-up for the illiquid asset actually increases the average weight for it

in  the  strategy  with  the  on  average  higher  weight  turnover,  i.e.  the  =  5  strategy,  but

substantially reduces the Sharpe ratio, so that the strategy now looses to the Kan-Zhou

strategy  in  the  lock-up  case.   A  closer  inspection  of  the  time-varying  portfolio  weights  in

these strategies (not reported here) reveal that the high average weight for real estate is

largely due to its good performance and hence superior weight in the 1970’s (a period used

here, but not in the in-sample tests, since an estimation period is required for the out-of-the-

sample weights).  Especially in the less risk averse and more parameter sensitive  =  5

strategies, this effect is magnified.  The results for the Kan-Zhou strategy are very similar to

those in Table 3 both in terms of Sharpe ratios as well as average weights and weight falls for

the illiquid asset.

Table 6 finally reports the out-of-sample performance of our conditional strategies using, as

before, the dividend yield as the state variable.  The pattern is the same as for the

unconditional ones, but now with even a higher weight turnover.  Here the introduction of a

lock-up leads to a significant reduction in Sharpe ratios for strategy one, and increases in the

weight of the illiquid asset when short sales are possible, but a reduction when they are

restricted for.  The weight for the illiquid asset is again, as in Table 5, much higher than in

the in-sample cases.

Analyzing the changes in the certainty equivalents (CEVs) give some indication of the costs

of illiquidity for the strategies.  In the in-sample cases, the differences between the CEV for

the unconstrained vs. the locked-up cases in Tables 3 and 4 are around 2%-1.5% for the first

strategy, and around 2%-1% for the Kan-Zhou one.  In the out-of-the-sample tests, these
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differences increase to values around 3% to 3.5% for our first strategy, indicating a higher

cost for the lock-up in out-of-sample tests.

4.2. Strategies with Varying Transaction Costs for the Illiquid Asset

In section 4.1, we studied the effects of introducing a lock-up for the illiquid asset, and the

corresponding reduction in Sharpe ratios and CEVs due to obstacles for efficient portfolio

rebalancing.  We found evidence of significant reductions in Sharpe ratios especially for the

=5 strategy, and a radical drop in the portfolio weights for the illiquid asset in the in-sample

strategies.  Our out-of-the-sample strategies in turn produced extreme volatility in portfolio

weights, and a worse out-of-sample behavior.

A lock-up  of  the  illiquid  asset  can  be  seen  as  an  infinite  transaction  cost  for  it.   A perfect

lock-up may also indirectly enhance portfolio volatility by creating an (in our previous

analysis  unbounded)  hedging  demand  in  the  liquid  assets.   Also  the  mechanical  use  of

conditional information may lead to excess volatility.  Boundaries given by transaction costs

may enhance behavior by permitting weight changes in the illiquid asset when motivated by

strong enough conditioning information, but limiting the extent of weight changes.  A

transaction costs approach is also a more empirically valid approach to most portfolio

rebalancing  problems  given  illiquid  assets.   Next,  we  thus  study  the  effects  of  varying

transaction costs in a setting with conditioning information.

We apply the method of BSV (2009), which allows for predictability over time as well as in

the cross-section, to our three asset classes.  We estimate both strategies with only cross-

sectional predictability, as well as conditional strategies with time series predictability as
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well.  As the conditioning instrument, we use dividend yield, and as the cross-sectional

instrument, the past 12-month return for the asset classes in question, proxying for a potential

momentum factor.

As described earlier in equation (8), the BSV (2009) methodology estimates the optimal

weights as deviations from a benchmark portfolio, given rebalancing costs.  We take as the

starting point two alternative sets of weights from in-sample results in section 4.1.  These are:

60%-20%-20% for bonds, stocks, and REITs, respectively (set 1), and 70%-20%-10% (set

2).   These  weights  are  close  to  the  average  weights  in  Tables  3  and  4  for  our  risky  asset

classes.  As monthly transaction costs, we use different alternatives in the 0% to 2% region

for the illiquid asset only, since we aim at studying how differences in rebalancing costs

influence the development of optimal portfolio weighs.

Table 7 reports the results of our analyses using a cross-sectional instrument only (measured

based on the past  12 months,  data not used in the execution of the strategy),  while Table 8

reports the results from using both the cross-sectional and the time-series instrument (which

in itself only requires lagged data for one period).

The  results  indicate  that  while  higher  transaction  costs  hurt  the  strategies  in  terms  of

somewhat lower average returns, they actually improve Sharpe ratios due to relatively higher

benefits from a lower portfolio volatility.  It is also notable that these ratios are higher than

the ones in part 4.1 of this paper.  The highest Sharpe ratio (a ratio of 0.8027) in Table 7 is

produced by the portfolio with a lower REIT weight (10%) in the benchmark, leading to an

average actual weight (average over time) of 13.4% for the illiquid asset.
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The conditional strategies further improve performance, and again strategies with higher

costs of adjusting the weights dominate.  The highest Sharpe ratio in table 8 is produced by a

strategy in Panel B, i.e. a strategy with a lower weight for the illiquid asset in the benchmark

(10% in the benchmark), and the highest rebalancing costs (5%), leading to a smaller

standard deviation for the portfolio return.  This strategy has a Sharpe ratio of 0.8110 and an

average  weight  of  13.9%  for  REITs  in  the  actual  strategy).   However,  the  differences

between the strategies are generally small and insignificant.

In this section, we have studied the effect of actual transaction costs.  Our results indicate that

conditional strategies such as the ones in this paper perform better when portfolio rebalancing

is costly, since they put boundaries for extreme weight changes.

5. Summary and Conclusions

Assets with a low liquidity may harm portfolios by preventing optimal weight changes.  They

may also cause a hedging demand in the other assets.  Portfolio optimization models which

take such effects into consideration by other means than by imposing liquidity costs on the

moments of the return distribution have only recently been proposed.  We contribute to the

empirical study of such models by not only investigating the in-sample performance, but also

by  conducting  the  (first)  out-of-the  sample  tests  of  the  performance  of  the  multi-period

optimization method by Brandt and Santa-Clara (2006), complemented by a lock-up for the

illiquid  asset  in  line  with  de  Roon,  Guo  and  ter  Horst  (2009),  and  by  empirically

implemented short sales constraints for the illiquid asset.  We also apply the Brandt, Santa-

Clara and Valkanov (2009) model with rebalancing costs into an asset allocation framework,

and report evidence in support of its use.  Our setup furthermore provides an extended out-of-
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sample  study  of  an  estimation  error  corrected  portfolio  policy  recently  proposed  in  the

literature, the Kan and Zhou (2007) shrinkage estimator.

As a proxy for an illiquid asset, we use REITs data, which is available from the early 1970s,

giving us one of the longest possible time series available for a relatively illiquid asset class.

Through this, we also contribute to the literature on the optimal weight for real estate in a

multi-asset portfolio.  Prior studies have typically been unable to solve the contradiction

between the high theoretical weight for real estate in portfolio optimization studies, and the

low empirical weight observed in institutional asset portfolios.

In our in-sample tests for the time period from 1982 to 2088, we find that the weight for the

illiquid  asset  (REITs)  is  in  general  lower  that  in  prior  studies  of  real  estate  weights,  and  is

reduced to values below 10% once a lock-up for REITs is introduced.  These values come

close to observed values for real estate in institutional portfolios.

When testing the recently proposed portfolio strategies, which should lead to more stable

weights than in traditional asset allocation approaches, in an out-of-the-sample framework,

we still find extreme weights accompanied by a significant instability, and a resulting

reduced out-of-the-sample performance.  However, the Brandt, Santa-Clara and Valkanov

(2009) model with rebalancing costs, which we here introduce to an asset allocation

framework, substantially reduces the noise from conditional signals and produces the highest

Sharpe ratios in this study.  These results indicate that while higher transaction costs hurt the

strategies in terms of somewhat lower average returns, they actually improve Sharpe ratios

from conditional strategies due to relatively higher benefits from a lower portfolio volatility.
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Table 1. Descriptive Statistics

This table reports descriptive statistics for our raw data.  Panel A reports, for the whole time period of January
1972 to December 2008, the means, medians, standard deviations, and skewness and kurtosis values for
monthly arithmetic returns for STOCKS (the CRSP value-weighted index), BONDS (the CRSP Fama Bond
Portfolio with maturities greater than 10 years), and REITs (the FTSE NAREIT US All-REIT index), together
with T-BILL, the 3-month T-Bill rate.  We also report corresponding values for our instruments: the default
spread DEFSPR (the difference between Moody’s yield on seasoned corporate all-industries AAA- and BAA-
rated bonds), the dividend yield DIVYIELD (the 1-month return difference between the logarithmic returns on
the CRSP value-weighted index in its total return and price index forms), the term spread TERMSPR (the
difference between the 10 year Federal government bond yield and the 3-month T-Bill rate), and 3M_T_BILL,
(the 3 month T-Bill yield).  Skewness and kurtosis values significant at the 5% level (2-sided tests) are denoted
by boldface.  In Panels B to E, we report means and standard deviations for four sub-periods: 1972 to 1981 (120
obs), 1982 to 1991 (120 obs.), 1992 to 2001 (120 obs.), and 2002 to 2008 (82 obs.).

Panel A. 1972-2008
STOCKS BONDS REITs T-BILL DEFSPR DIVYIELD TERMSPR 3M_T-

BILL
Mean 0.0086 0.0076 0.0081 0.0048 1.0853 0.0284 1.6117 5.8394
Median 0.0125 0.0073 0.0102 0.0044 0.9450 0.0272 1.7300 5.3450
Stdev 0.0458 0.0284 0.0486 0.0024 0.4376 0.0112 1.3238 2.9643
Skewness -0.6095 0.5402 -0.6775 0.8548 1.4185 0.2294 -0.5031 0.8581
Kurtosis 2.4676 2.6048 8.1571 1.1828 2.1149 -1.0268 -0.2684 1.1655

Panel B. 1972-1981
Mean 0.0070 0.0030 0.0077 0.0063 1.2043 0.0386 0.9103 7.7099
Median 0.0052 0.0007 0.0093 0.0054 1.0200 0.0400 1.3450 6.8700
Stdev 0.0486 0.0298 0.0608 0.0027 0.4517 0.0074 1.5128 3.2525

Panel C. 1982-1991
Mean 0.0137 0.0127 0.0086 0.0062 1.3451 0.0356 2.1348 7.6193
Median 0.0156 0.0116 0.0061 0.0061 1.2150 0.0350 2.3050 7.6350
Stdev 0.0479 0.0317 0.0332 0.0016 0.4298 0.0063 0.9739 1.8312

Panel D. 1992-2001
Mean 0.0104 0.0069 0.0093 0.0037 0.7201 0.0184 1.6398 4.5051
Median 0.0149 0.0068 0.0108 0.0039 0.6900 0.0180 1.4100 4.9050
Stdev 0.0421 0.0216 0.0342 0.0009 0.1131 0.0055 1.1397 0.9861

Panel E. 2002-2008
Mean 0.0008 0.0081 0.0064 0.0021 1.0660 0.0176 1.8262 2.5310
Median 0.0107 0.0091 0.0199 0.0016 0.9500 0.0173 2.2050 1.7750
Stdev 0.0433 0.0291 0.0636 0.0013 0.3676 0.0029 1.3019 1.4963
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Table 2. Correlation Matrix of Asset Returns and Instruments

This table reports correlation coefficient between our assets (total returns) and instruments using data for the
whole time period from January 1972 to December 2008.  The assets are: returns for STOCKS (the CRSP
value-weighted index), BONDS (the CRSP Fama Bond Portfolio with maturities greater than 10 years), and
REITs (the FTSE NAREIT US All-REIT index), together with T-BILL, the 3-month T-Bill rate.  The
instruments are: the default spread DEFSPR (the difference between Moody’s yield on seasoned corporate all-
industries AAA- and BAA-rated bonds), the dividend yield DIVYIELD (the 1-month return difference between
the logarithmic returns on the CRSP value-weighted index in its total return and price index forms), the term
spread TERMSPR (the difference between the 10 year Federal government bond yield and the 3-month T-Bill
rate), and 3M_T_BILL (the 3 month T-Bill yield).

STOCKS BONDS REITs T-BILL DEFSPR DIVYIELD TERMSPR 3M_T-
BILL

STOCKS 1
BONDS 0.1718 1
REITs 0.1795 0.5984 1
T-BILL 0.0445 0.0075 -0.0134 1
DEFSPR 0.1088 0.0709 0.1077 0.3758 1
DIVYIELD 0.0737 0.1011 0.0653 0.6864 0.5545 1
TERMSPR 0.1216 0.0431 0.0921 -0.4968 0.1559 -0.0340 1
3M T-BILL 0.0398 0.0319 0.0043 0.9826 0.4122 0.7160 -0.4834 1
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Table 3. The Performance of Unconditional In-Sample Portfolio Strategies

This table reports statistics concerning the performance and characteristics of estimated multi-period (3-month)
unconditional and in-sample portfolio strategies for data for the time period of January 1982 to December 2008.
Our assets are stocks (the CRSP value-weighted index), bonds (the CRSP Fama Bond Portfolio with maturities
greater  than  10  years,  and the  FTSE NAREIT US All-REIT index together  with  the  3-month  T-Bill  rate.   In
Columns  1  and  2,  we  report  results  from  two  dynamic  strategies  with  no  lock-up  for  any  asset,  while  in
Columns 3  and 4,  results  from these  strategies  with  a  3-month  lock  up  for  real  estate  are  reported.   The  two
strategies are: the optimal portfolio strategy for a  =5 investor with initial (period 1) weights scaled to sum to 1,
and an optimal Kan and Zhou (2007) portfolio strategy (the intuitive interpretation of which is a shrinkage
towards 1/N), using the global minimum variance portfolio and a  =5.  In Panel A, no short sales restrictions
are imposed, while in Panel B, a short sales constraint is imposed for REITs (only the first strategy is possible to
compute by our method of empirically restricting the REIT weight to nonnegative values).  The statistics
reported are the mean excess return and the standard deviation, the Sharpe ratio, and the certainty equivalent
(CEV), followed by average relative weights and weight turnover measures for the risky assets (stocks, bonds,
and real estate).  The weight turnover statistics are calculated as the mean absolute value of weight changes
implied by the strategy between specific sub-quarter periods.  Significance testing of Sharpe ratios between
strategies without a lock-up, and their locked-up versions, uses serial correlation preserving bootstrapping
methods by Ledoit and Wolf (2008) with B=1,000 bootstrap re-samples, and expected block size b=5.  Sharpe
ratios significantly different from each other in pairwise strategy comparisons (Columns 1 vs. 3, and Columns 2
vs. 4 in Panel A; Columns 1 vs. 2 in Panel B) at the 10% level are denoted boldface.

Panel A: no constraints
for short sales

No lock-up 3-m. lock-up for REITs
Column (1):
=5, initial

weights
sum up to 1

Column (2):
Kan-Zhou
(2007) strategy

Column (3):
=5, initial

weights sum
up to 1

Column (4):
Kan-Zhou
(2007) strategy

Mean excess return 0.0065 0.0039 0.0042 0.0037
St. deviation 0.0384 0.0359 0.0354 0.0364
Sharpe ratio 0.5855 0.3794 0.4153 0.3477
Certainty equivalent 0.0844 0.0591 0.0639 0.0545

Average bond weight 0.6262 0.6976 0.7203 0.8027
(weigh turnover) ( 0.3208) ( 0.2870) ( 0.5817) ( 0.3053)
Average stock weight 0.2070 0.1725 0.1971 0.2822
(weigh turnover) ( 0.5836) ( 0.2547) ( 0.1899) ( 0.2451)
Average REITs weight 0.1668 0.1299 0.0826 -0.085
(weigh turnover) ( 0.6042) ( 0.1467) ( 0.0266) ( 0.0331)
Panel  B: short-sales
constraint for REITs

No lock-up 3-m. lock-up for REITs
=5, initial weights sum up to

1
=5, initial weights sum up to

1
Mean excess return 0.0060 0.0042
St. deviation 0.0387 0.0354
Sharpe ratio 0.5379 0.4153
Certainty equivalent 0.0780 0.0639

Average bond weight 0.6043 0.7202
(weigh turnover) ( 0.3569) ( 0.5815)
Average stock weight 0.1600 0.1973
(weigh turnover) ( 0.4844) ( 0.1897)
Average REITs weight 0.2357 0.0825
(weigh turnover) ( 0.4639) ( 0.0265)



31

Table 4. The Performance of Conditional In-Sample Portfolio Strategies

This table reports statistics concerning the performance and characteristics of estimated multi-period (3-month)
conditional in-sample portfolio strategies for data for the time period of January 1982 to December 2008.  Our
assets are stocks (the CRSP value-weighted index), bonds (the CRSP Fama Bond Portfolio with maturities
greater than 10 years, and the FTSE NAREIT US All-REIT index together with the 3-month T-Bill rate.  The
dividend  yield  has  been  used  as  the  state  (conditioning)  variable.   In  Column  1,  we  report  results  from  an
optimal portfolio strategy for a  =5 investor with initial (period 1) weights scaled to sum to 1, with no lock-up
for any asset, while in Column 2, results from a strategy with a 3-month lock up for real estate are reported.  In
Panel A, no short sales restrictions are imposed, while in Panel B, a short sales constraint is imposed for REITs
(only the first strategy is possible to compute by our method of empirically restricting the REIT weight to
nonnegative values).  The statistics reported are the mean excess return and the standard deviation, the Sharpe
ratio, and the certainty equivalent (CEV), followed by average relative weights and weight turnover measures
for the risky assets (stocks, bonds, and real estate).  The weight turnover statistics are calculated as the mean
absolute value of weight changes implied by the strategy between specific sub-quarter periods.  Significance
testing of Sharpe ratios between strategies without a lock-up, and their locked-up versions, uses serial
correlation preserving bootstrapping methods by Ledoit and Wolf (2008) with B=1,000 bootstrap re-samples,
and expected block size b=5.  Sharpe ratios significantly different from each other in pairwise strategy
comparisons (Columns 1 vs. 3, and Columns 2 vs. 4 in Panel A; Columns 1 vs. 2 in Panel B) at the 10% level
are denoted in boldface.

Panel A: no constraints
for short sales

No lock-up 3-m. lock-up for REITs
Column (1):
=5, initial

weights
sum up to 1

Column (2):
Kan-Zhou
(2007) strategy

Column (3):
=5, initial

weights sum
up to 1

Column (4):
Kan-Zhou
(2007) strategy

Mean excess return 0.0065 0.0095 0.0043 0.0071
St. deviation 0.0380 0.0268 0.0350 0.0218
Sharpe ratio 0.5937 1.2206 0.4237 1.1359
Certainty equivalent 0.0856 0.1418 0.0652 0.1216

Average bond weight 0.6241 0.7078 0.7175 0.7788
(weigh turnover) ( 0.3048) ( 0.5220) ( 0.5678) ( 0.4339)
Average stock weight 0.2098 0.301 0.1996 0.2234
(weigh turnover) ( 0.5712) ( 1.5925) ( 0.1840) ( 0.3454)
Average REITs weight 0.1661 -0.0088 0.0829 -0.0022
(weigh turnover) ( 0.5975) ( 2.2129) ( 0.0264) ( 0.1591)
Panel  B: short-sales
constraint for REITs

No lock-up 3-m. lock-up for REITs
=5, initial weights sum up to

1
=5, initial weights sum up to

1
Mean excess return 0.0060 0.0043
St. deviation 0.0384 0.0350
Sharpe ratio 0.5422 0.4237
Certainty equivalent 0.0787 0.0652

Average bond weight 0.6026 0.7176
(weigh turnover) ( 0.3485) ( 0.5678)
Average stock weight 0.1600 0.1995
(weigh turnover) ( 0.4753) ( 0.1841)
Average REITs weight 0.2373 0.0829
(weigh turnover) ( 0.4609) ( 0.0264)
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Table 5. The Performance of Unconditional Out-of-Sample Portfolio Strategies

This table reports statistics concerning the performance and characteristics of estimated multi-period (3-month)
unconditional out-of-sample portfolio strategies, using data for January 1972 to December 1981 as the
estimation period, the next three months as the first test period, and then quarterly rolling forward (non-
overlapping, and keeping the estimation period equally long, i.e. dropping the oldest quarter) until December
2008.  Our assets are stocks (the CRSP value-weighted index), bonds (the CRSP Fama Bond Portfolio with
maturities greater than 10 years, and the FTSE NAREIT US All-REIT index together with the 3-month T-Bill
rate.  In Columns 1 and 2, we report results from two dynamic strategies with no lock-up for any asset, while in
Columns 3  and 4,  results  from these  strategies  with  a  3-month  lock  up  for  real  estate  are  reported.   The  two
strategies are: the optimal portfolio strategy for a  =5 investor with initial (period 1) weights scaled to sum to 1,
and an optimal Kan-Zhou (2007) portfolio strategy (the intuitive interpretation of which is a shrinkage towards
1/N), using the global minimum variance portfolio and a  =5.   In  Panel  A,  no  short  sales  restrictions  are
imposed, while in Panel B, a short sales constraint is imposed for REITs (only the first strategy is possible to
compute by our method of empirically restricting the REIT weight to nonnegative values).  The statistics
reported are the mean excess return and the standard deviation, the Sharpe ratio, and the certainty equivalent
(CEV), followed by average relative weights and weight turnover measures for the risky assets (stocks, bonds,
and real estate).  The weight turnover statistics are calculated as the mean absolute value of weight changes
implied by the strategy between specific sub-quarter periods.  Significance testing of Sharpe ratios between
strategies without a lock-up, and their locked-up versions, uses serial correlation preserving bootstrapping
methods by Ledoit and Wolf (2008) with B=1,000 bootstrap re-samples, and expected block size b=5.  Sharpe
ratios significantly different from each other in pairwise strategy comparisons (Columns 1 vs. 3, and Columns 2
vs. 4 in Panel A; Columns 1 vs. 2 in Panel B) at the 10% level are denoted boldface.

Panel A: no constraints
for short sales

No lock-up 3-m. lock-up for REITs
Column (1):
=5, initial

weights
sum up to 1

Column (2):
Kan-Zhou
(2007) strategy

Column (3):
=5, initial

weights sum
up to 1

Column (4):
Kan-Zhou
(2007) strategy

Mean excess return 0.0060 0.0037 0.0038 0.0037
St. deviation 0.0458 0.0392 0.0494 0.0410
Sharpe ratio 0.4559 0.3308 0.2648 0.3142
Certainty equivalent 0.0595 0.0488 0.0222 0.0442

Average bond weight 0.3665 0.5974 0.4037 0.6788
(weigh turnover) ( 1.5729) ( 2.5252) ( 1.8044) ( 1.3409)
Average stock weight 0.4275 0.3301 0.3394 0.3064
(weigh turnover) ( 5.2339) ( 3.6958) ( 1.4361) ( 1.2290)
Average REITs weight 0.2060 0.0725 0.2569 0.0148
(weigh turnover) ( 5.6137) ( 3.2083) ( 1.2492) ( 1.2418)
Panel  B: short-sales
constraint for REITs

No lock-up 3-m. lock-up for REITs
=5, initial weights sum up to

1
=5, initial weights sum up to

1
Mean excess return 0.0050 0.0033
St. deviation 0.0460 0.0488
Sharpe ratio 0.3778 0.2323
Certainty equivalent 0.0470 0.0181

Average bond weight 0.2938 0.3615
(weigh turnover) ( 1.0081) ( 1.1239)
Average stock weight 0.2594 0.2614
(weigh turnover) ( 1.0547) ( 1.2804)
Average REITs weight 0.4469 0.3771
(weigh turnover) ( 0.8375) ( 0.5661)
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Table 6.  The Performance of Conditional Out-of-Sample Portfolio Strategies

This table reports statistics concerning the performance and characteristics of estimated multi-period (3-month)
unconditional out-of-sample portfolio strategies, using data for January 1972 to December 1981 as the
estimation period, the next three months as the first test period, and then quarterly rolling forward (non-
overlapping, and keeping the estimation period equally long, i.e. dropping the oldest quarter) until December
2008.  Our assets are stocks (the CRSP value-weighted index), bonds (the CRSP Fama Bond Portfolio with
maturities greater than 10 years, and the FTSE NAREIT US All-REIT index together with the 3-month T-Bill
rate.  The dividend yield has been used as the state (conditioning) variable.  In Column 1, we report results from
an optimal portfolio strategy for a  =5 investor with initial (period 1) weights scaled to sum to 1, with no lock-
up for any asset, while in Column 2, results from a strategy with a 3-month lock up for real estate are reported.
In Panel A, no short sales restrictions are imposed, while in Panel B, a short sales constraint is imposed for
REITs (only the first strategy is possible to compute by our method of empirically restricting the REIT weight
to nonnegative values).  The statistics reported are the mean excess return and the standard deviation, the Sharpe
ratio, and the certainty equivalent (CEV), followed by average relative weights and weight turnover measures
for the risky assets (stocks, bonds, and real estate).  The weight turnover statistics are calculated as the mean
absolute value of weight changes implied by the strategy between specific sub-quarter periods.  Significance
testing of Sharpe ratios between strategies without a lock-up, and their locked-up versions, uses serial
correlation preserving bootstrapping methods by Ledoit and Wolf (2008) with B=1,000 bootstrap re-samples,
and expected block size b=5.  Sharpe ratios significantly different from each other in pairwise strategy
comparisons (Columns 1 vs. 3, and Columns 2 vs. 4 in Panel A; Columns 1 vs. 2 in Panel B) at the 10% level
are denoted boldface.

Panel A: no constraints
for short sales

No lock-up 3-m. lock-up for REITs
Column (1):
=5, initial

weights
sum up to 1

Column (2):
Kan-Zhou
(2007) strategy

Column (3):
=5, initial

weights sum
up to 1

Column (4):
Kan-Zhou
(2007) strategy

Mean excess return 0.0060 0.0088 0.0037 0.0142
St. deviation 0.0458 0.2937 0.0492 0.2351
Sharpe ratio 0.4550 0.1034 0.2606 0.2088
Certainty equivalent 0.0594 -2.4264 0.0221 -1.4331

Average bond weight 0.3665 0.0812 0.3988 0.4844
(weigh turnover) ( 1.7964) ( 4.9620) ( 1.9436) ( 6.1966)
Average stock weight 0.427 0.1545 0.3415 0.038
(weigh turnover) ( 8.6447) ( 5.8914) ( 1.4451) ( 4.3549)
Average REITs weight 0.2065 0.7642 0.2597 0.4776
(weigh turnover) ( 8.6524) ( 5.7879) ( 1.1617) ( 3.1537)
Panel  B: short-sales
constraint for REITs

No lock-up 3-m. lock-up for REITs
=5, initial weights sum up to

1
=5, initial weights sum up to

1
Mean excess return 0.0050 0.0032
St. deviation 0.0460 0.0486
Sharpe ratio 0.3781 0.2305
Certainty equivalent 0.0472 0.0183

Average bond weight 0.2936 0.3573
(weigh turnover) ( 1.1068) ( 1.0015)
Average stock weight 0.2622 0.2657
(weigh turnover) ( 1.1576) ( 1.0561)
Average REITs weight 0.4442 0.3770
(weigh turnover) ( 0.8338) ( 0.4672)
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Table 7.  Portfolio Strategies with Transaction Costs and a Cross-sectional Instrument

This table reports statistics concerning the performance of strategies in line with Brandt; Santa-Clara and
Valkanov (2009), using alternative assumptions for the rebalancing cost of the illiquid asset (REITs) and an
adjustment parameter k of 0.2.  The data is for January 1972 to December 1981 (of which the 12 first months
are used to estimate values for the cross-sectional instrument for the first execution of the strategy, and the
remaining  months  are  used  to  execute  the  strategy  month  by  month,  with  a  rolling  estimation  period).   Our
assets are stocks (the CRSP value-weighted index), bonds (the CRSP Fama Bond Portfolio with maturities
greater than 10 years, and the FTSE NAREIT US All-REIT index together with the 3-month T-Bill rate.  The
cross-sectional instrument is the past 12-month return for the assets in question.  In Panel A, the benchmark is
60% bonds (B), 20% stocks (S), and 20% REITs (R), whereas in Panel B it is 70% bonds, 20% stocks, and 10%
REITs.  The statistics reported are the monthly mean excess return and the standard deviation, and the
annualized Sharpe ratio, followed by average relative weights and weight turnover measures for the risky assets
(stocks, bonds, and real estate).  The weight turnover statistic measures total relative transaction costs.  It is
calculated as the sum of the proportional transaction costs times the optimal absolute weight updates.

Panel A: benchmark 1;
B: 60%, S: 20%, R: 20%

Transaction costs
0% 0.5% 1% 2%

Mean excess return 0.0062 0.0060 0.0059 0.0057
St. deviation 0.0284 0.0273 0.0264 0.0252
Sharpe ratio 0.7562 0.7613 0.7742 0.7835

Average bond weight 0.5451 0.5557 0.5709 0.5825
(weigh turnover) (0.0145) (0.0139) (0.0129) (0.0023)
Average stock weight 0.2023 0.1952 0.1972 0.1881
(weigh turnover) (0.0147) (0.0149) (0.0173) (0.0033)
Average REITs weight 0.2526 0.2491 0.2319 0.2293
(weigh turnover) (0.0125 (0.0122) (0.0132) (0.0023)
Panel  B: benchmark 2;
B: 70%, S: 20%, R: 10%

Transaction costs
0% 0.5% 1% 5%

Mean excess return 0.0062 0.0060 0.0059 0.0057
St. deviation 0.0285 0.0273 0.0263 0.0246
Sharpe ratio 0.7536 0.7613 0.7771 0.8027

Average bond weight 0.6501 0.6477 0.6780 0.6789
(weigh turnover) (0.0147) (0.0133) (0.0072) (0.0020)
Average stock weight 0.2112 0.1955 0.1859 0.1870
(weigh turnover) (0.0136) (0.0168) (0.0074) (0.0028)
Average REITs weight 0.1387 0.1568 0.1360 0.1342
(weigh turnover) (0.0115) (0.0127) (0.0065) (0.0021)
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Table 8.  Conditional Portfolio Strategies with Transaction Costs and a Cross-sectional
Instrument

This table reports statistics concerning the performance of strategies in line with Brandt, Santa-Clara and
Valkanov (2009), using alternative assumptions for the rebalancing cost of the illiquid asset (REITs).  The data
is for January 1972 to December 1981 (of which the 12 first months are used to estimate values for the cross-
sectional instrument for the first execution of the strategy, and the remaining months are used to execute the
strategy month by month, with a rolling estimation period).  Our assets are stocks (the CRSP value-weighted
index), bonds (the CRSP Fama Bond Portfolio with maturities greater than 10 years, and the FTSE NAREIT US
All-REIT index together with the 3-month T-Bill rate.  The cross-sectional instrument is the past 12-month
return for the assets in question, and the time-series instrument is the dividend yield. In Panel A, the benchmark
is 60% bonds (B), 20% stocks (S), and 20% REITs (R), whereas in Panel B it is 70% bonds, 20% stocks, and
10% REITs.  The statistics reported are the monthly mean excess return and the standard deviation, and the
annualized Sharpe ratio, followed by average relative weights and weight turnover measures for the risky assets
(stocks, bonds, and real estate).  The weight turnover statistic measures total relative transaction costs.  It is
calculated as the sum of the proportional transaction costs times the optimal absolute weight updates.

Panel A: benchmark 1;
B: 60%, S: 20%, R: 20%

Transaction costs

0% 0.5% 1% 5%
Mean excess return 0.0067 0.0064 0.0061 0.0059
St. deviation 0.0304 0.0288 0.0276 0.0256
Sharpe ratio 0.7635 0.7698 0.7656 0.7984

Average bond weight 0.5435 0.5309 0.5703 0.5809
(weigh turnover) (0.0197) (0.0122) (0.0097) (0.0025)
Average stock weight 0.1934 0.2071 0.2083 0.1764
(weigh turnover) (0.023) (0.0117) (0.0108) (0.0022)
Average REITs weight 0.2631 0.2620 0.2214 0.2427
(weigh turnover) (0.019) (0.0099) (0.0091) (0.0021)
Panel  B: benchmark 2;
B: 70%, S: 20%, R: 10%

Transaction costs

0% 0.5% 1% 5%
Mean excess return 0.0067 0.0065 0.0062 0.0059
St. deviation 0.0310 0.0292 0.0278 0.0252
Sharpe ratio 0.7487 0.7711 0.7726 0.8110

Average bond weight 0.6452 0.6484 0.6730 0.6770
(weigh turnover) (0.0214) (0.0132) (0.0118) (0.0036)
Average stock weight 0.2034 0.2056 0.2006 0.1840
(weigh turnover) (0.0283) (0.0124) (0.0157) (0.0043)
Average REITs weight 0.1514 0.1460 0.1264 0.1389
(weigh turnover) (0.0199) (0.0100) (0.0117) (0.0033)


