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Does Modeling Framework Matter?

A Comparative Study of Structural and Reduced-Form Models

1. Introduction

The empirical literature on defaultable claim valuation is a fast spreading research field.

Structural and reduced-form models have been tested for different markets including cor-

porate bonds and credit default swaps. The empirical performance of structural models is

rather poor up to now. While early studies conclude that models consistently underpredict

spreads (Jones, Mason, and Rosenfeld (1984), Ogden (1987), Lyden and Saraniti (2000)),

both under- and overprediction with large pricing errors are found in later empirical ap-

proaches (Eom, Helwege, and Huang (2004)). Tests of the reduced-form models appear

to be more successful (Duffee (1999), Driessen (2005), and Bakshi, Madan, and Zhang

(2006)). Empirical studies of credit derivatives typically focus on reduced-form models

(Houweling and Vorst (2005), Longstaff, Mithal, and Neis (2005), Chen, Cheng, Fabozzi,

and Liu (2008)).1 This is not very surprising, since these models are perceived as being

flexible enough to be calibrated to arbitrary market data. Thus, the reduced-form ap-

proach seems to be ideally suited for the purpose of credit spread modeling and derivative

pricing and one might be tempted to abandon the structural in favor of the reduced-form

approach.

Despite the challenge in practical implementation structural models clearly stand

out due to the economic insights concerning the risk structure of interest rates and its

relation to fundamentals. It is encouraging that some recent empirical studies present

more favorable findings on structural models. Leland (2004) shows that the models fit

1Few recent studies make use of credit default swap prices with structural models, i.e., Chen, Fabozzi,
Pan, and Sverdlove (2006), Ericsson, Reneby, and Wang (2008), and Huang and Zhou (2008).
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actual default frequencies reasonably well. Schaefer and Strebulaev (2008) document quite

accurate predictions of the sensitivities of debt returns to equity even for the simplest

structural model (Merton (1974)).

This paper contributes to this ongoing debate by empirically comparing structural

and reduced-form models of credit risk. To our knowledge, this is the first study providing

a rigorous empirical test of both model classes on the same dataset. The previous literature

typically relies on equity and balance sheet data when calibrating structural models while

using bond data for reduced-form models. It is therefore almost impossible to assess

the impact of the model type on the valuation results. In contrast, we calibrate both

approaches to bond and equity data. To assess the quality of the models, we focus on

the models’ ability to explain credit default swap (CDS) prices. CDS prices lead the price

discovery process, are less constrained by liquidity effects, and are a cleaner credit risk

indicator than bond spreads (Blanco, Brennan, and Marsh (2005), Ericsson, Reneby, and

Wang (2008)). They are therefore well suited to assess the models’ ability to capture

credit risk.2 By using the same input data, applying comparable estimation techniques,

and assessing the out-of-sample prediction quality on the same time series of CDS prices

we are able to judge whether empirically the model structure itself makes an important

difference between structural and reduced-form approaches.

As major difference between the approaches we focus on the discriminative modeling

of the default time. Default is predictable in the structural case, but it becomes a purely

random event in reduced-form models. The two approaches imply a significantly different

behavior of spreads. This is most obvious for short-term spreads. They are predicted to

decline to zero as the maturity goes to zero in the first case, while they remain positive

also for very short maturities for the second case. This difference is not only important

2However, Nashikkar, Subrahmanyam, and Mahanti (2010) show that the CDS spreads might not fully
capture the credit risk due to frictions in the arbitrage between the CDS and the bond market.
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on its own but might well lead to differences in the ability to explain longer-term premia

and the behavior of premia across rating classes. However, ex ante, differences between

approaches are less clear-cut.

From each approach we choose one representative. Leverage and risk-free interest

rates have found to be significant in explaining credit spreads (Ericsson, Jacobs, and

Oviedo (2009), Collin-Dufresne, Goldstein, and Martin (2001)). They are modeled as

state variables within both our structural and our reduced-form approach. A stationary

leverage process triggers default when reaching zero in our structural model, while the

same leverage process enters the default intensity of our reduced-form model.

Our study shows that both models perform quite similarly on average in out-of-

sample tests. Neither approach consistently outclasses the other one. The similar average

prediction power reached through a comparable empirical test design indicates that many

of the differences documented in the literature so far were due to other reasons such as

different input data, calibration methods, and sampling design. Our empirical study shows

that once a comparable test design is applied for both frameworks, the reduced-form

approach outperforms the structural approach for investment-grade names and longer

maturities. In contrast the structural approach performs better for shorter maturities and

sub-investment grade names.

The following sections are organized as follows: The next section introduces the

valuation framework and describes the representatives chosen on the structural and the

reduced-form side. In Section 3 the empirical methodology, datasets, and estimation re-

sults are given. The out-of-sample CDS predictions with both frameworks can be found

in Section 4. Finally, conclusions that summarize and comment on the findings end the

study.
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2. Valuation Framework

A valuation model for defaultable claims consists of three components, the model for the

default time, the model for the magnitude of default, and the interest rate model that

characterizes the dynamics of the risk-free term structure. The fundamental difference

between the structural and the reduced-form approach lies in how the models specify

the timing risk of default. While structural models assume that default occurs when an

exogenously modeled asset value hits some lower boundary, the reduced-form models use

an exogenous intensity process to specify the default time. Default is predictable in the

first case, but it becomes a purely random event in the second case.3 In fact, Jarrow

and Protter (2004) argue that the crucial difference between the models comes from the

information assumed known by the modeler.

In order to focus on this discriminative modeling of the default time we specify

identical models for the other two components. In particular, we rely on the recovery-

of-treasury assumption4 for both settings and use identical models for the interest rate

risk. The state variables and their dynamics are chosen to be the same in both settings;

namely, the short-term interest rate r and the leverage ratio l.

2.1. Common Components

More precisely, for the dynamics of the short rate, we assume a Vasicek (1977) process:

drt = κr(θr − rt)dt + σrdWQ
1 . (1)

3See Uhrig-Homburg (2002) for a more detailed discussion of the structural differences. Duffie (2005)
provides a comprehensive mathematical background for both type of models.

4I.e., the firm recovers a fraction of an otherwise identical default free security. Note that in the seminal
work of Merton (1974) the magnitude of default is determined endogenously from the relation between
the firm value and the promised payments to the debtor. In contrast, more recent structural models and
most empirical implementations relax this elegant though restrictive relation stemming from the option
analogy. In this sense recent structural models including the one we are focussing on feature some kind
of hybrid character.
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Here rt is the risk-free interest rate, κr is the mean-reversion rate, θr is the long-run mean,

σr is the volatility of the short rate, and WQ
1 is a Brownian motion under the risk-neutral

measure. For the second state variable, we rely on the ratio of debt value Kt to asset value

Vt and assume leverage ratios to be stochastic but stationary. Define log-leverage

lt = ln
Kt

Vt

(2)

and let lt follow a mean-reverting process of the form5

dlt = κl(θl(·)− lt)dt− σvdWQ
2 (3)

where κl is the mean-reversion rate of the leverage to its long-run mean θl(·), σv is a

volatility parameter, and WQ
2 is a Brownian motion under the risk-neutral measure such

that dWQ
1 dWQ

2 = ρdt. To establish (3) assume that Vt follows a geometric Brownian

motion dVt/Vt = (rt− δ)dt+σvdWQ
2 with payout rate δ and asset volatility σv. Moreover,

let lnKt follow some stationary process lnKt = κl(lnVt − ν − lnKt)dt. Here, ν is a buffer

parameter for the distance of log-asset value to log-debt value. The idea behind this

mean-reversion process is that when lnKt is less than (lnVt − ν) the firm acts to increase

lnKt, and vice versa. Therefore, the firms adjust outstanding debt levels in response to

changes in asset value such that mean-reverting leverage ratios result. From Itô’s Lemma

(3) results with

θl(rt) =
δ + σ2

v

2
− r

κl

− ν = − r

κl

− ν̄. (4)

2.2. Default-Timing in Reduced-Form and Structural Settings

To specify the default time within the reduced-form setting we rely on Lando’s (1998)

doubly stochastic valuation framework and define the default intensity to be

λt = a + c · lt, (5)

5Collin-Dufresne and Goldstein (2001) first proposed this dynamics in the context of structural models.
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with constants a and c. Obviously, here the critical choice is the selection of the state

variables driving credit risk. There have been many empirical studies with reduced-form

models that either estimated a stochastic process for the unobserved intensity (Duffee

(1999), Driessen (2005)), or made use of a credit risk factor as part of the adjusted

discount rate (Bakshi, Madan, and Zhang (2006)). Our setup accommodates the second

approach, where the leverage process is defined as the credit risk factor that drives the

intensity.

Within the structural stetting the firm defaults at the first passage time τ of the

log-leverage ratio l reaching zero:

τ = inf {t : lt ≥ 0} (6)

This idea is in line with Black and Cox (1976) and Longstaff and Schwartz (1995) where

default happens the first time when the firm value reaches an exogenously6 specified

boundary. In fact, the resulting model is a specific version7 of Collin-Dufresne and Gold-

stein’s (2001) structural model, extending the basic idea of Merton (1974) to (i) stochastic

interest rates, (ii) first-passage time, and (iii) stationary leverage ratios.

2.3. Pricing Corporate Debt

Let vtheo(rt, lt, T ) be the time-t theoretical price of a risky discount bond that matures at

T . The recovery-of-treasury assumption with recovery rate ϕ leads to

vtheo(rt, lt, T ) = EQ
t

(
e−

∫ T
t rsds · 1{τ>T} + e−

∫ τ
t rsds · ϕ · b(rτ , T ) · 1{τ≤T}

)

= EQ
t

(
e−

∫ T
t rsds

(
ϕ + (1− ϕ)1{τ>T}

))
. (7)

6For models with endogenously derived default boundaries, see the empirical study of Anderson and
Sundaresan (2000).

7In Collin-Dufresne and Goldstein’s (2001) most general version the drift of the log-default threshold
can be taken as a decreasing function of the spot interest rate to reflect that debt issuances drop during
high interest rate periods.
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Within the reduced-form setting, (7) further simplifies to

vtheo(rt, lt, T ) = ϕ · b(rt, T ) + (1− ϕ) · EQ
t

(
e−

∫ T
t rsds1{τ>T}

)

= ϕ · b(rt, T ) + (1− ϕ) · EQ
t

(
e−

∫ T
t rs+λsds

)
(8)

where b(rt, T ) is the price of a riskless bond. Let v0 be the defaultable bond price with

zero recovery as in the last part of Equation (8) in expectation brackets. Due to the affine

structure8 the analytical solution of the expectation is of the form

v0(rt, lt, T ) = EQ
t

(
e
−

T∫
t

Rsds)
= eA(t,T )−B(t,T )rt−C(t,T )lt (9)

and solves the following PDE:

∂v0

∂t
+κr(θr− r)

∂v0

∂r
+κl(θl(r)− l)

∂v0

∂l
+

1

2
σ2

r

∂2v0

∂r2
+

1

2
σ2

v

∂2v0

∂l2
−ρσvσr

∂2v0

∂r∂l
= (a+ r+ cl)v0

(10)

with boundary conditions A(T, T ) = 0, B(T, T ) = 0, and C(T, T ) = 0. By taking partial

derivatives of v0 in (9) and replacing into the PDE, the closed-form solutions for A(t, T ),

B(t, T ), and C(t, T ) can be reached. Solutions can be found in Appendix A.

Within the structural setting we switch from the expectation under the risk-neutral

measure EQ to the expectation under the T -forward measure EFT to further simplify (7):

vtheo(rt, lt, T ) = b(rt, T ) · EFT
(
1− (1− ϕ) · 1{τ≤T}

)

= b(rt, T ) · (1− (1− ϕ) ·QFT (rt, lt, T )
)

(11)

It remains to determine QFT (rt, lt, T ) which is the time-t probability of default occurring

before maturity T under the T -forward measure9. In general, it is a complex task to

derive expressions for the first-passage density. But fortunately, in our case we can follow

the ideas of Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and

8See Duffie and Singleton (1999).
9See Geman, El-Karoui, and Rochet (1995).
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Eom, Helwege, and Huang (2004) to reach the straightforward implementation given in

Appendix B.

Equations (8) and (11) are used to determine coupon bond prices with the portfolio

of zeros approach:

vtheo
coup(rt, lt, T, C) =

N∑
j=1

C · vtheo(rt, lt, tj) + vtheo(rt, lt, T ) (12)

where C is the coupon fraction with N payments on dates tj.

3. Empirical Methodology and Estimation Results

The structural and reduced-form models are calibrated to equity and balance sheet data,

corporate bond prices, and risk-free interest rates. For both of the models, the interest

rate process parameters (κr, θr, σr) as well as the initial short rate r0, the leverage process

parameters (κl, θl) as well as the initial leverage ratio l0, and the correlation between the

interest rate process and the asset value process (ρ) enter similarly. Each of the models

uses their theoretical bond prices vtheo
coup(r0, l0, T, C) to estimate their unique asset volatility

(σv) figure. In the reduced-form setup, the two additional constant parameters a and c

are also estimated. After calibration of the models to this market information, CDS prices

are predicted out-of-sample, without making use of any CDS information used prior. The

following section introduces the datasets used in the analysis.

3.1. Data

3.1.1. CDS Data

Time series of CDS prices were retrieved from CreditTrade and Markit for the period

between January 2003 and December 2005. We use mid-month observations of 1, 3, 5, 7,

and 10-year senior CDSs. The mid-month value is typically on the 15th of each month. In
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case that the 15th is a non-working day, the next working day is selected. For each day

considered, the indicative bid and ask quotes are averaged to reach a CDS premium, in

the end attaining 36 mid-month observations per issuer for the three year period. The

credit quality of the issuers varies between Aa and Ba rated by Moody’s. The lowest CDS

midpoint of 2.4 bps is within the series of the Aa-rated WAL-MART, whereas the highest

midpoint is as much as 578 bps for the Baa-rated SPRINT.

3.1.2. Corporate Bond Data

For each firm in the CDS dataset, corresponding deliverable bonds10 were retrieved from

REUTERS. A typical bond in the dataset is senior unsecured and has annual, semiannual

or quarterly coupon payments. The final dataset has been constructed after the removal

of the bonds with the following properties:

• callable, putable, or convertible bonds

• perpetual bonds

• index-linked bonds

• floating rate notes

• foreign currency bonds (bonds should be in the same denomination as the CDS)

• any rank else than senior unsecured bonds

• financial companies’ bonds

Bonds with non-standard properties are excluded due to the necessity of including intricate

techniques in bond price calculations. Financial companies are excluded due to having

10Gündüz, Lüdecke, and Uhrig-Homburg (2007) note that the smaller the set of deliverable bonds, the
lower the delivery option, which reflects the extra premium for the buyer of CDS for the privilege of
being able to deliver any bond in case of default. Recently, Jankowitsch, Pullirsch, and Veza (2008) have
analyzed the delivery option embedded in CDS prices.
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significantly different capital structures. The time span of the bonds match the CDS

dataset, with monthy data from January 2003 to December 2005.

3.1.3. Balance Sheet and Stock Market Data

Leverage values are constructed by dividing the book value total liabilities to the sum of

market value of equity and total liabilities. Quarterly total liabilities figures were retrieved

from REUTERS balance sheet pages, while market value of equity (MVE) is the product

of number of outstanding shares times the closing stock price on a given day. MVE figures

can be retrieved daily, whereas total liabilities figures are available only quarterly. In

order to avoid loss of data, a method similar to Eom, Helwege, and Huang (2004) has

been used. For the mid-month dates where bond and CDS data are available, the leverage

ratios are computed by making use of the latest available quarterly liabilities figure from

balance sheets. For a consecutive three month period after the quarterly announcement,

the leverage ratio is constructed from a constant liabilities figure and an MVE figure

unique for the day.

In Table 1, the descriptive statistics of the 30 firms in the sample can be found

with their leverage ratios, total liabilities, and market capitalizations. For 24 of these

firms, CDSs are denominated in USD (US sample); the remaining 6 firms have EUR-

denominated CDS contracts (European sample). A description of the complete list of the

86 bonds used in the study with details such as the issue date, maturity date, and coupon

amount is placed in Appendix C.

3.1.4. Interest Rate Data

The 3-, 6-monthly, and 1, 2, 3, 5, 7, 10-yearly yields are retrieved for the interest rate

calibration process. For the US sample, Constant Maturity Treasuries from the Federal

Reserve Board have been used. A detailed explanation of how these series are constructed
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Table 1: Descriptive Statistics for the Leverage Ratios

Firm Avg. Max. Min. Avg. Total Avg. Market
Lev. Lev. Lev. Liab. Capital.

Ratio(%) Ratio(%) Ratio(%) (Mil.USD) (Mil.USD)
AKZO NOBEL 53.88 66.41 45.66 9,743 8,421
CARNIVAL 27.62 35.21 21.63 10,218 26,855
CATERPILLAR 65.15 76.01 44.10 27,640 16,202
CITIZENS 61.01 71.84 53.12 6,005 3,840
CVS 38.47 49.95 21.98 5,562 10,014
DEERE 61.00 69.78 54.80 22,847 14,758
DELL 13.86 20.28 11.41 13,861 86,054
E. KODAK 58.41 65.70 50.83 11,235 8,035
ENEL 53.34 60.32 42.91 42,592 37,508
FEDERATED 66.88 78.55 48.22 9,434 4,728
HP 36.87 42.87 31.25 36,703 63,534
HILTON 47.08 60.37 37.85 5,960 6,880
IBM 4.00 4.62 3.34 5,960 144,175
INT. PAPER 57.47 61.81 52.67 24,479 18,173
KPN 52.35 58.16 48.17 17,526 15,918
LOCKHEED 49.47 54.74 45.12 19,375 19,891
MARRIOTT 50.06 59.59 42.43 4,606 4,659
MOTOROLA 35.05 51.87 22.77 18,515 36,940
NORDSTROM 50.65 71.36 21.87 2,865 3,477
NORFOLK 58.40 65.44 47.88 14,873 10,941
NORTHROP 63.10 85.62 49.84 18,390 11,151
PHILIPS 38.62 49.31 33.21 16,617 26,712
SPRINT 55.89 75.33 27.55 30,596 27,820
STORA ENSO 56.83 63.05 51.96 9,368 7,094
TARGET 33.47 42.77 26.14 19,491 39,581
TELECOM IT. 70.16 78.80 63.15 61,438 26,312
TIME WARNER 48.87 57.97 44.39 57,505 60,349
VERIZON 57.24 59.97 53.50 106,088 79,446
WAL-MART 22.53 29.32 17.5 64,975 224,869
WALT DISNEY 36.40 44.89 31.58 27,000 47,812
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can be found on the web page of the Federal Reserve Board. For the European sample,

the daily estimates of the Svensson (1994) model are used. Deutsche Bundesbank has

estimated these parameters from government bonds and they can be found in the Bun-

desbank homepage. The time span used to calibrate the model is 1998 to 2005 with daily

frequency.

3.2. Estimation of the Parameters

3.2.1. Interest Rate Process Parameters

In a first step, we estimate the parameters of the interest-rate process from government

yields by means of Kalman filtering. This allows making use of cross-sectional and time

series information at the same time.11 The method results in time series of the short rate

rt, plus the Vasicek process parameters κr, θr, σr, and the market price of interest rate

risk parameter η. In Table 2, the estimated values for the risk-neutral parameters can be

found for US and European interest rates.

Table 2: Kalman Filter Estimates of the Interest Rate Process

Parameter US Euro
κr 0.247 0.171
θr 0.061 0.064
σr 0.012 0.021
η -0.205 -0.162

The risk-neutral (under Q) and physical (under P ) processes of the short rate are:
dr = κr(θr − r)dt + σrdWQ and dr = κr(θ̃r − r)dt + σrdWP where θr = θ̃r − σrη

κr

The mean reversion rates are in accordance with the values previously found in the

literature (Babbs and Nowman (1999), Duan and Simonato (1999)). The same is true for

the volatility parameter. The risk-neutral long-run mean is relatively high at 6.1 per cent

11See the studies of Duan and Simonato (1999), Geyer and Pichler (1999), and Babbs and Nowman
(1999) for examples.
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for US and 6.4 per cent for Euro. This converts to a physical mean of 5.1 (US) and 4.4

(Euro) per cent. The overall fit to actual yields lies between a mean absolute error of 28

bps and 121 bps for different maturities. These figures are higher than those of Duffee

(1999) who has made use of Kalman filter for a two-factor square root process. However,

note that these errors affect both models in a similar way and thus are not expected to

cause a significant distortion in relative terms.

3.2.2. Leverage Process Parameters and the Correlation Coefficient

Next, we determine the parameters describing the second state variable common to both

approaches, the log-leverage. For its firm-specific parameters (κl, θl)
12 the approach of

Eom, Helwege, and Huang (2004) is followed (pp. 540-541). The starting point is the

dynamics

dln(Vt/Kt) = [µv + κlν̄ − κl(ln(Vt/Kt)]dt + σvdW P (13)

of the (negative) log-leverage under the physical measure P , with a constant expected asset

return µv and the other constant parameters defined earlier. The constant µv + κlν̄ ≡ αl

and κl are estimated via a regression of the change in the log-leverage ratio against

log-leverage ratio lagged one period. With an estimate of the mean return µv, also an

estimate for ν̄ is obtained easily. In the implementation, the mean return is estimated

from the mean return of the asset value for the period 2001-2005 in monthly intervals,

and monthly market leverage ratios are regressed on one month lagged ratios for the same

period. Moreover, the correlation between asset returns and the interest rate process is

estimated from correlation between daily equity returns and changes in the 3-monthly

interest rates, for the same time interval.

The parameter estimates common in both models can be found in Table 3. First, the

12In order to simplify notation, the firm-specific index i was not indicated, which otherwise should have
been written as κi

l, θ
i
l where i = 1, .., 30.
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mean-reversion rate of the leverage κl has a value around 3-20 per cent, although very low

figures as well as higher figures are also estimated from regressions. These values fall in a

consistent range with prior studies: To Fama and French (2002) who reach a value around

7-10 per cent in their regression analysis and to Shyam-Sunder and Myers (1999) who

have a sample weighted towards large and financially conservative firms and reach a value

around 40 per cent. The correlation coefficient between the stock returns and change in

interest rates has a positive value except few firms, mostly lying in a range between 0 and

15 per cent. This is comparable to the figure of Eom, Helwege, and Huang (2004) who

report that they have relatively low correlation values all below 15 per cent. They also

note that the correlation variable has not been found to effect the spreads significantly.

3.2.3. Asset Volatility and Reduced-Form Model Specific Parameters

In the final step, we determine the model-specific parameters, the asset volatility σv and

intensity parameters a and c for each model from the prices of corporate bonds. By

minimizing the sum of squared errors over each observation day and each bond price, one

can reach the bond-implied asset volatility for the structural model on a firm basis:

min
σv

ObsDays∑
i=1

Bonds∑
j=1

(vtheo
i,j (rt, lt)− vobs

i,j )2. (14)

On the reduced-form side, we simultaneously estimate the adjusted short-rate pa-

rameters a and c and the volatility parameter:

min
σv,a,c

ObsDays∑
i=1

Bonds∑
j=1

(vtheo
i,j (rt, lt)− vobs

i,j )2. (15)

Note that the number of free parameters used to calibrate the models to bond

prices differs across approaches. In the structural model asset volatility is the only free

parameter, whereas in the intensity case there are three parameters. The results will be
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Table 3: Parameters Common to Both Models

Firm κl ν̄ ρ

AKZO NOBEL 0.070 0.716 -0.043
CARNIVAL 0.231 1.282 0.091
CATERPILLAR -0.004 1.201 0.037
CITIZENS 0.031 0.727 0.003
CVS 0.102 0.847 0.061
DEERE 0.136 0.438 0.078
DELL 0.009 0.082 0.070
E. KODAK 0.105 0.555 0.045
ENEL 0.152 0.682 0.023
FEDERATED 0.061 0.216 0.133
HP 0.279 0.972 0.090
HILTON 0.105 0.567 0.176
IBM 0.052 2.795 0.049
INT. PAPER 0.197 0.595 0.119
KPN 0.037 0.828 0.005
LOCKHEED 0.118 0.732 0.088
MARRIOTT 0.159 0.693 0.108
MOTOROLA 0.030 1.024 0.048
NORDSTROM 0.002 -2.398 0.116
NORFOLK 0.030 0.432 0.094
NORTHROP 0.056 0.012 0.076
PHILIPS 0.154 1.002 -0.032
SPRINT 0.060 0.314 0.041
STORA ENSO 0.198 0.580 0.009
TARGET 0.083 1.022 0.154
T.COM ITALIA 0.127 0.323 -0.003
TIME WARNER 0.191 0.728 0.070
VERIZON 0.054 0.644 0.025
WAL-MART 0.027 1.053 0.120
WALT DISNEY 0.078 1.011 0.151
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analyzed taking into account the number of free parameters.13

In the empirical implementation, we have mostly semiannual coupon payments for

the bonds in the dataset. Since future coupon payments are of low priority and are rarely

recovered in default (see Helwege and Turner (1999)), we set the recovery rate on coupons

to 0, letting only the principal payment receive compensation at default. The recovery

rate on principal is fixed at 0.5, following the results produced by Altman and Kishore

(1996) and recent practice.

Tables D.1 and D.2 in Appendix D provide the estimation results. For the structural

model, estimated asset volatilities are mostly between 15-40 per cent except a few outliers.

A comparison to option-implied volatilities computed from at-the-money call options with

a maturity of June 2007 reveals that the majority of option-implied volatilities is also in

this range, indicating that the bond-implied figures are economically reasonable as well.

Nevertheless, there are significant outliers such as the values for IBM and DELL. Within

the reduced-form model, the a and c figures convert mostly into reasonable values for the

default intensities. The next section will present a more detailed analysis of how these

figures transfer into default probabilities. Apart from a few outliers, long-run leverage

ratios are between 0 and 1 in both models. For most companies, their value falls close to

the range of the original input leverage parameters.

To assess the estimation results, the in-sample fit to bond prices can be found in

Table 4. In the table, the mean error (ME), the mean absolute error (MAE), and the

mean absolute percentage errors (MAPE) are computed. The results indicate that there

is a good fit to bond prices with rather low error figures. A better fit is observed with the

intensity model, also indicated by the significance test. However, note that the intensity

13Although not documented, an alternative version of the intensity model has also been tested in
our runs. This model estimated the a and c parameters common to all firms, instead of individual
estimation. The out-of-sample prediction results were inferior to both the firm-specific intensity setup
and the structural model.
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model has three free parameters in estimation whereas the structural model has only one.

Also after considering the free parameters, the Akaike Information Criterion values in the

lower panel show that the intensity model has a better (lower) value, and thus a better

fit. Further analysis in Section 4 will show whether the better in-sample fit to bond prices

carries over to an out-of-sample fit to CDS prices.

3.3. Implied Default Probabilities from Bond Prices

Before predicting CDS prices, it might be insightful to compute the default probabilities

indicated by the parameter estimates. With the structural model, we compute the 5-year

forward risk-neutral probability of default QFT (r0, l0, T ) mentioned in Equation (11) and

compare it with the actual default probabilities for the same rating class reported by

Moody’s (corresponding to a period of 1970-2003). The default probability PD in the

intensity setting is:

PD = 1− EQ
(
e
−

T∫
0

λsds)
(16)

Afterwards, the risk-neutral probability is converted into the forward probability. Model-

implied 5-year default probabilities are the average values of the full observation period

(36 mid-month observations).

For both models, the default probability figures are close to each other. The intensity

model has generated on average around 1% higher default probabilities. Still, in more

than one third of the cases the structural model’s 5-year implied default probabilities are

higher. Actually, the model-implied default probabilities draw a clear picture. Although

not strictly monotonous, the higher the actual probability of default, the higher is the

model-implied probability. The implied default probabilities averaged across companies

with respect to rating classes in Table 5 confirm this observation. The applicable rating

class is taken as the rating at the beginning of the observation period (January 2003).

Detailed results for each firm are given in Table D.3 in Appendix D. Note also that the
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Table 4: Structural and Intensity Models - In-Sample Fit to Bond Prices

Bonds Structural Intensity
Firm No. of No. of ME MAE MAPE ME MAE MAPE

Bonds Prices (pts) (pts) (%) (pts) (pts) (%)
AKZO NOBEL 3 103 0.70 2.21 2.10% 0.01 1.65 1.57%
CARNIVAL 2 55 0.02 1.77 1.68% -0.36 1.80 1.72%
CATERPILLAR 2 72 1.39 2.56 2.30% 0.30 1.54 1.39%
CITIZENS 3 86 1.89 7.94 7.23% 0.06 3.75 3.41%
CVS 9 171 1.13 1.77 1.76% 0.44 1.04 1.03%
DEERE 1 36 0.35 3.48 3.00% -0.24 3.04 2.63%
DELL 1 36 0.05 1.13 1.04% -0.02 1.01 0.92%
E. KODAK 2 63 0.00 2.07 2.00% -0.31 1.79 1.72%
ENEL 1 36 0.27 1.37 1.31% 0.00 1.22 1.18%
FEDERATED 4 144 1.12 3.96 3.47% -0.06 1.94 1.69%
HP 2 66 0.26 1.02 0.99% 0.00 0.82 0.79%
HILTON 5 180 -0.37 4.22 3.98% 0.01 2.00 1.88%
IBM 10 331 0.23 1.19 1.17% -0.01 1.03 1.01%
INT. PAPER 1 36 -0.05 2.51 2.28% -0.21 2.32 2.10%
KPN 1 36 1.66 2.89 2.71% 0.49 2.15 2.01%
LOCKHEED 1 36 0.13 1.64 1.37% -0.11 1.52 1.27%
MARRIOTT 4 115 0.38 1.62 1.48% 0.00 1.26 1.14%
MOTOROLA 2 72 0.47 2.57 2.23% -0.08 2.52 2.21%
NORDSTROM 1 36 2.45 3.38 3.21% -0.02 1.13 1.08%
NORFOLK 3 108 0.54 2.00 1.76% -0.06 1.46 1.28%
NORTHROP 3 89 2.66 3.50 3.13% 0.20 1.22 1.10%
PHILIPS 2 72 0.35 2.06 1.87% -0.02 2.10 1.91%
SPRINT 4 144 1.76 3.96 3.60% 0.09 2.80 2.62%
STORA ENSO 1 36 0.09 1.57 1.47% -0.25 1.63 1.53%
TARGET 3 104 0.64 2.46 2.44% 0.12 1.48 1.46%
T.COM ITALIA 2 71 0.99 2.50 2.33% 0.21 1.74 1.61%
TIME WARNER 4 144 0.00 2.26 2.12% -0.31 2.18 2.04%
VERIZON 5 180 0.08 2.08 1.85% -0.08 1.95 1.73%
WAL-MART 1 36 0.05 1.75 1.55% -0.04 1.25 1.10%
WALT DISNEY 3 108 -0.07 2.21 2.06% -0.09 1.93 1.79%
Average 0.60 2.54 2.35% 0.01 1.74 1.61%
AIC 196.96 142.47
Significance Test Mean Difference t-statistic p-value
Str. - Int. 0.80 35.72 0.000

“Mean Error (ME)” is the difference between the model and the observed bond price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed bond price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed bond price.
“AIC” is the Akaike Information Criterion calculated from 2k + nln(RSS/n) where k is the number of free parameters for the model, n is the
number of observations, and RSS is the residual sum of squares.
“Significance Test, Structural - Intensity” is the significance test between the difference of the structural model mean absolute errors and the
intensity model mean absolute errors per firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995)
approach.
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risk-neutral probabilities are always higher than real world probabilities. Although this

general relation is in line with theory and other empirical findings, the high values for

the risk-neutral probabilities are conspicuous, in particular for the better-rated firms.

The standard explanation for this is that besides risk premia compensating for default

risk, bond prices also contain other components such as liquidity premia which then lead

to higher model-implied default probabilities for both the structural and the reduced-

form approach. Another explanation is that standard asset pricing models fail to capture

a strong covariation between the pricing kernel on the one hand and the default time

and loss rate on the other hand.14 Moreover, for the above comparison we simply used

historical average default frequencies, which can be seen at most as first approximation

for current conditional default probabilities.15

Table 5: Model-Implied and Actual Probabilities of Default, Breakdown to Ratings

Rating Structural Intensity Actual PD in
(Moody’s) Model-implied Model-implied Rating

5 year PD 5 year PD Class
Aa 8.18% 7.29% 0.24%
A 9.52% 9.49% 0.54%
Baa 13.27% 15.27% 2.16%
Ba 24.56% 22.29% 11.17%

4. Prediction of Credit Default Swap Prices

The final aim with both types of models is to predict the prices of CDSs out-of-sample.

After assuming zero recovery on coupon payments in parallel to the estimation phase, the

14Chen, Collin-Dufresne, and Goldstein (2009) show that a countercyclical nature of defaults, e.g.
through a countercyclical default boundary, generates a better matching of historical and model-implied
results. See also Hackbarth, Miao, and Morellec (2006) and Bhamra, Kühn, and Strebulaev (2010) for
further macroeconomic equilibrium settings.

15For a comprehensive comparison of CDS-implied and actual default probabilities, see Berndt, Douglas,
Duffie, Ferguson, and Schranz (2005).
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fair price of a credit default swap (CDS) with the recovery-of-treasury assumption is:

CDS(T ∗) =
EQ

t

(
e
−

τ∫
t

rsds
(1− ϕ · e−

T∫
τ

rsds
) · 1{τ≤T ∗}

)

EQ
t

( n∑
i=1

e
−

ti∫
t

rsds · 1{τ>ti}
) (17)

The denominator is the cumulation of n discount factors which are at time points ti. The

numerator gives the recovered amount in case of default prior to the CDS’s maturity (T ∗).

The recovery leg (the numerator) has to be equal to the premium leg (the denominator)

under no-arbitrage assumptions, which will yield the theoretically fair premium CDS(T ∗).

A simulation algorithm with 2000 runs has been used in order to reach the fair premium.

Details of the simulation algorithm can be found in Appendix E.

4.1. CDS Prediction Results

As it is the most common practice in the industry to agree on a 5-year CDS contract,

we first concentrate on premia of CDSs with a maturity of 5 years and evaluate the out-

of-sample prediction using deviations from observed premia. In Table 6, the mean errors

(ME), the mean absolute errors (MAE), and the mean absolute percentage errors (MAPE)

for the structural and the intensity model can be found.

The results indicate that both models have mostly underpredicted CDS premia with

an average of 21 to 26 bps. For the structural model, underprediction comes not as a sur-

prise but is well documented in the previous empirical literature on structural prediction

of spreads. Underprediction is slightly lower for the majority of firms in the reduced-form

case, but remarkably, pricing errors show a comparable pattern. The absolute errors for

the structural and reduced-form models of 30 and 26 bps respectively are also rather

similar, although at least statistically, the difference is significant. The structural model

has a higher percentage error (49 per cent) than the intensity model (37 per cent). Still,
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Table 6: Structural and Intensity Models - Out-of-Sample Fit to 5-Year CDS Prices

Structural Intensity Test Stat.
Firm ME MAE MAPE ME MAE MAPE Diebold-

(bps) (bps) (%) (bps) (bps) (%) Mariano
AKZO NOBEL -17.60 17.60 47.31% -0.70 9.13 24.44% 4.49*
CARNIVAL -23.99 24.31 43.06% -4.69 22.95 52.19% 0.43
CATERPILLAR -11.39 14.15 55.58% -1.05 6.61 23.09% 3.48*
CITIZENS -126.19 130.91 58.47% -115.87 115.87 51.95% 1.83
CVS -22.89 23.27 64.74% -20.24 20.24 53.25% 1.50
DEERE -2.69 7.52 26.80% -5.95 7.77 23.75% -0.13
DELL 17.94 19.33 113.91% 10.39 12.95 75.15% 2.46*
E. KODAK -87.67 87.67 55.14% -86.67 86.67 50.14% 0.29
ENEL -14.31 14.49 53.05% -10.26 10.99 36.77% 4.64*
FEDERATED -11.49 15.37 32.37% -12.41 16.93 29.25% -0.37
HP -4.52 8.16 22.59% -3.98 8.65 22.67% -0.50
HILTON -55.98 59.91 31.51% -84.41 84.58 50.02% -9.54*
IBM -3.93 6.95 25.63% -3.49 7.36 25.58% -0.61
INT. PAPER -29.36 29.71 42.84% -32.68 32.98 46.89% -1.78
KPN -42.67 42.67 80.92% -6.09 17.16 27.62% 11.66*
LOCKHEED -16.07 16.23 39.74% -16.80 16.80 38.68% -0.32
MARRIOTT -13.54 14.66 25.13% 4.81 12.83 27.99% 0.60
MOTOROLA -42.18 42.18 52.82% -40.81 40.81 43.53% 0.47
NORDSTROM -29.00 29.00 72.98% -13.50 13.85 27.55% 3.65*
NORFOLK -4.84 10.33 30.91% -4.35 7.30 19.36% 2.27*
NORTHROP -31.64 32.28 80.37% -13.20 13.25 28.95% 5.32*
PHILIPS -21.36 21.36 41.57% -16.20 16.31 27.71% 5.69*
SPRINT -75.96 75.96 71.38% -70.31 70.31 49.05% 0.81
STORA ENSO -17.75 20.06 42.67% 8.62 10.63 25.78% 4.46*
TARGET 8.94 10.01 47.38% -3.55 7.90 29.08% 1.10
T.COM ITALIA -42.09 42.09 60.43% -38.06 38.06 50.66% 1.95
TIME WARNER -39.66 40.97 37.73% -41.97 42.77 40.90% -1.24
VERIZON -14.14 16.81 32.24% -13.55 16.88 33.00% -0.07
WAL-MART -10.64 10.64 59.34% 3.16 5.38 35.54% 4.76*
WALT DISNEY 0.48 13.81 29.94% 0.92 17.51 39.13% -3.07*
Average -26.21 29.95 49.29% -21.10 26.38 36.99%
AIC 239.95 234.27
Significance Test Mean Difference t-statistic p-value
Str. - Int. 3.57 11.63 0.0000

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed CDS price.
“Diebold-Mariano Test Statistic” is the significance test from Diebold and Mariano (1995) between the structural model absolute errors and
the intensity model absolute errors, aiming to test whether the expected value of the difference of time series is significantly different than
zero with 95% confidence (indicated by “*”)
“AIC” is the Akaike Information Criterion calculated from 2k + nln(RSS/n) where k is the number of free parameters for the model, n is the
number of observations, and RSS is the residual sum of squares.
“Significance Test, Structural - Intensity” is the significance test between the difference of the structural model mean absolute errors and the
intensity model mean absolute errors per firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995)
approach.
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for 10 out of 30 firms, the structural model leads to lower mean absolute errors. The in-

difference between the two models is also seen from the 17 insignificant Diebold-Mariano

test statistics in the right column. Although, this statistic indicates that the intensity has

significantly lower absolute errors for other 11 firms, it should not be forgotten that the

intensity model had three free parameters for fitting to bond prices while the structural

model had only one. After checking the Akaike Information Criterion values, it can be ob-

served that the figures of the two models are quite close, with the intensity model having

a slightly better (lower) value.

On an aggregate level, the comparison shows that the structural and reduced-form

models perform quite similarly once a comparable empirical test design is applied for both

frameworks. However, one also has to recognize that pricing errors are at considerable

levels for both approaches. To put these results into perspective, one should note that our

implementation keeps fixed the model specification and the parameter values over time.

Thus, we refrain from inconsistently re-calibrating the models to market data on every

observation day in a rolling sample estimation. Our pricing errors can be compared to

prior research results in at least two ways. First, the testing of the Collin-Dufresne and

Goldstein (CDG) model has few examples in the literature. Among them, the studies of

Eom, Helwege, and Huang (2004) (EHH) and Huang and Zhou (2008), which compare the

CDG model with four other structural models, are most noteworthy. EHH make use of

bond data only. They find that the CDG model suffers from an accuracy problem, where

predicted bond spreads are either too small or incredibly large. As a result, they reach a

percentage error of 269.78 per cent and an absolute percentage error of spread prediction

of 319.31 per cent. Interestingly, in their recent follow-up study Huang and Zhou (2008)

find much more support for the CDG model, this time using CDS spreads rather than

bond prices. Their overall mean absolute percentage pricing error of 47 per cent is quite

close to our result of 49 per cent. Secondly, the results can be compared with recent
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studies that predict CDS prices using other types of structural and intensity models. For

instance, Ericsson, Reneby, and Wang (2008) report mean errors in the range of 10 to 52

bps with the models of Leland (1994), Leland and Toft (1996), and Fan and Sundaresan

(2000), whereas Arora, Bohn, and Zhu (2005) have reached 27 to 102 bps with the Merton

(1974) model and -80 to 2 bps with the Vasicek/Kealhofer model.16 These results are well

comparable with the mean error of -26 bps and mean absolute error of 30 bps for our

structural model. The error figures signify that the CDS price prediction ability of our

structural model is competitive with respect to other models used in the literature. On

the other hand, Bakshi, Madan, and Zhang’s (2006) observable credit risk factor approach

in an intensity model has yielded out-of-sample absolute bond yield prediction errors in a

range of 26 - 49 bps when log-leverage is selected as the factor. Our results extend Bakshi,

Madan, and Zhang’s (2006) results to CDS price prediction.

Previous literature documents that structural spreads are too low particularly for

low-risk firms. To understand the dependence on credit quality for our setting, the errors

are further analyzed by classifying to ratings. Again the applicable rating is taken as of

January 2003. Table 7 shows that indeed structural models always underpredict Aa-rated

CDSs with percentage errors clearly above 50%. In terms of absolute and percentage

errors, the reduced-form approach does a better job and even overpredicts Aa spreads

on average. For both models, the mean absolute errors naturally increase as the rating

worsens. The models have difficulties especially in reaching the high CDS premia for low

rated classes, where almost always underprediction is observed within both approaches.

Interestingly, here it is the structural model that performs better. The significance tests

indicate that the intensity model outperforms the structural model for investment grade

rated CDSs, but the structural model performs better for sub-investment grades. This

finding can be traced back to differences in convexity across rating classes. Our structural

16See Crosbie and Bohn (2003) and Vasicek (1984).
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model produces credit spreads that are on average well below market spreads but show

a curvature that is not too different from the behavior of market spreads. In contrast,

the reduced-form model starts off at high levels for low-risk firms but increases more

moderately with a lower convexity across rating classes.

Table 7: Structural and Intensity Models - Out-of-Sample Fit, Breakdown to Ratings

Structural Intensity t-test
Ratings ME MAE MAPE ME MAE MAPE Mean Diff.

(bps) (bps) (%) (bps) (bps) (%) (bps)
5-Year
Aa -10.64 10.64 59.34% 3.16 5.38 35.54% 5.25**
A -9.16 15.33 47.82% -6.11 12.31 35.56% 3.02**
Baa -38.10 40.24 50.87% -29.90 34.61 37.34% 5.64**
Ba -55.98 59.91 31.51% -84.41 84.58 50.02% -24.67**

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed CDS price.
“t-test Structural-Intensity” is the significance test between the difference of the structural model mean absolute errors and the intensity
model mean absolute errors per firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995) approach.
“**” represents significance at 1% level.“*” represents significance at 5% level.

4.2. Robustness Check

We perform a range of robustness checks on our empirical design. First, our analysis so far

is restricted to 5-year CDS premia only. Second, estimation and out-of sample prediction

are based on the same time period.

4.2.1. Term Structure Results

It might well be that structural models can compete with reduced-form models as long

as we fix some specific maturity. However, when it comes to explain the whole term

structure of CDS spreads, we could guess that structural models do poorly: In contrast

to reduced-form models they predict that credit spreads decline to zero as the maturity

goes to zero.
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Interestingly, Table 8 shows that on average the structural model underpredicts

premia for all maturities while the reduced-form model overpredicts one-year premia and

underpredicts premia with a longer term to maturity. The mean absolute errors indicate

that for maturities below five years the structural model even outperforms the reduced-

form model. In particular for the shortest maturity considered, the reduced-form model

reveals large pricing errors. Here, for all but three firms, percentage errors are clearly

larger than for the structural model. At the long end of the term structure the reduced-

form model does better. On average absolute pricing errors are lower, and also on a firm

basis, the reduced-form model outperforms the structural model in 20 (5-year CDSs), 21

(7-year CDSs), and 23 (10-year CDSs) out of 30 cases.

Table 8: Structural and Intensity Models - Out-of-Sample Fit to CDS Term Structure

Structural Intensity t-test
Maturity ME MAE MAPE ME MAE MAPE Mean Diff.

(bps) (bps) (%) (bps) (bps) (%) (bps)
1-Year -21.60 22.94 77.15% 7.54 25.25 184.90% -2.31**
3-Years -14.44 22.11 52.18% -7.55 22.80 57.84% -0.69**
5-Years -26.21 29.95 49.29% -21.10 26.38 36.99% 3.57**
7-Years -35.61 38.27 54.27% -30.39 32.05 38.49% 6.22**
10-Years -50.57 51.74 65.40% -41.28 41.63 47.24% 10.11**

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed CDS price. “t-test Structural-Intensity” is
the significance test between the difference of the structural model mean absolute errors and the intensity model mean absolute errors per
firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995) approach. “**” represents significance at
1% level.“*” represents significance at 5% level.

The shape of the average term structure of credit spreads differs between approaches.

Similar to average market spreads structural spreads are upward sloping for short- and

medium terms. However, the average term structure is much more flat in the reduced-

form approach. Although one could expect from theoretical considerations that for short

maturities, reduced-form models do a better job we in fact find the opposite result. Huge

deviations from short-term market spreads in both directions render the reduced-form

model completely out of scope. At this point, the dependence on ratings deserves further
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investigations.

The breakdown to rating classes in Table 9 reveals that apart from few exceptions

both models underpredict premia and underprediction almost always increases as the

credit rating worsens and maturity increases. Exceptions occur only with the reduced-

form model for short maturities and good rating classes. We find overprediction for the

best three rating classes (Aa, A, Baa) with one-year CDSs, the best two rating classes (Aa,

A) with three-year CDSs, and the best rating class (Aa) with five-year CDSs. For both

models mean absolute errors are particularly high for short maturities and in percentage

terms the models’ inability to explain short term premia for good rating classes is shown

clearly. This inability is even stronger for the reduced-form model. For longer terms to

maturity it is observed from the significance tests that the intensity model outperforms

the structural model for investment grade names, while the structural model performs

better in pricing sub-investment grade names.

This more detailed comparison delivers several novel findings: The structural ap-

proach underpredicts premia on average in all maturity/rating buckets; in contrast, the

reduced-form approach comes up with higher premia when the general spread level is low

(good credit quality, short maturity). Unfortunately, within these buckets reduced-form

model premia are far off from being reasonable. Along both dimensions, maturity and

rating, spread curves are only gently inclined for the reduced-form model while structural

spreads reveal an upward-sloping term structure of credit spreads for short- and medium-

terms and a stronger convexity across ratings. This convex course is much closer to the

behavior of market spreads and explains why the structural model performs better for

sub-investment grade names.
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Table 9: Structural and Intensity Models - Out-of-Sample Fit, Breakdown to Ratings

Structural Intensity t-test
Ratings ME MAE MAPE ME MAE MAPE Mean Diff.

(bps) (bps) (%) (bps) (bps) (%) (bps)
1-Year
Aa -7.49 7.49 94.14% 12.61 13.48 252.96% -5.99*
A -13.50 14.13 82.25% 11.33 17.17 210.72% -3.04
Baa -25.98 28.03 73.57% 7.28 29.86 165.84% -1.83
Ba -65.55 65.77 54.22% -41.89 62.06 84.09% 3.71
3-Year
Aa -2.34 8.05 71.52% 9.20 9.86 105.50% -1.81
A -4.48 12.29 53.48% 1.91 12.82 62.61% -0.53
Baa -21.37 28.57 49.80% -12.08 28.10 51.48% 0.46
Ba -38.48 51.19 40.68% -68.82 73.23 46.70% -22.04*
5-Year
Aa -10.64 10.64 59.34% 3.16 5.38 35.54% 5.25**
A -9.16 15.33 47.82% -6.11 12.31 35.56% 3.02**
Baa -38.10 40.24 50.87% -29.90 34.61 37.34% 5.64**
Ba -55.98 59.91 31.51% -84.41 84.58 50.02% -24.67**
7-Year
Aa -8.94 8.99 41.29% -1.68 4.39 20.18% 4.59**
A -16.09 20.65 50.80% -13.22 15.28 34.66% 5.53**
Baa -50.42 51.32 58.11% -41.14 42.42 41.09% 8.88**
Ba -67.06 70.16 36.45% -96.54 96.54 57.96% -26.38**
10-Year
Aa -18.27 18.27 67.93% -7.50 7.66 26.65% 10.62**
A -27.98 30.44 60.56% -22.40 22.78 44.43% 7.74**
Baa -67.89 67.89 70.16% -53.29 53.61 49.63% 14.24**
Ba -84.72 84.72 43.05% -112.67 112.67 65.66% -27.94**

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed CDS price.
“t-test” is the significance test between the difference of the structural model mean absolute errors and the intensity model mean absolute errors
per firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995) approach.“**” represents significance
at 1% level.“*” represents significance at 5% level.
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4.2.2. Time Out-Of-Sample Analysis

In a final step, we look at whether significant differences in approaches are revealed in

a time out-of-sample analysis. In order to check this, the estimation results from the

full observation period were used to compute the theoretical CDS prices of mid-month

January 2006. By doing this, it is ensured that the out-of-sample analysis does not include

the time horizon of estimation.

Table 10 shows the mean errors, mean absolute errors, and mean absolute percentage

errors for this point in time. It is observed that the prediction power deteriorates - an

expected outcome with a time out-of-sample analysis. Nonetheless, changes in the overall

pattern of pricing errors are small. The structural model still outperforms the reduced-

form model for short maturities (one-year). For three-year CDS contracts differences in

prediction errors are insignificant. Again, at the long-end of the term structure, reduced-

form models perform better. Thus once again, the results show that the two models do not

consistently outperform one another: for shorter horizons the structural model is better,

whereas for longer maturities the intensity model outperforms.

Table 10: Structural and Intensity Models - Time Out-of-Sample Fit (January 2006)

Structural Intensity t-test
Maturity ME MAE MAPE ME MAE MAPE Mean Diff.

(bps) (bps) (%) (bps) (bps) (%) (bps)
1-Year -7.09 9.10 82.51% 24.77 24.77 343.60% -15.67**
3-Year -10.49 20.19 76.54% 2.65 19.31 85.48% 0.87
5-Year -29.05 35.66 72.39% -18.37 26.30 44.15% 9.36**
7-Year -41.97 46.71 70.50% -34.40 35.21 43.00% 11.50**
10-Year -60.10 63.27 79.23% -48.14 48.14 54.04% 15.13**

“Mean Error (ME)” is the difference between the model and the observed CDS price.
“Mean Absolute Error (MAE)” is the absolute value of the difference between the model and the observed CDS price.
“Mean Absolute Error (MAPE)” is the percentage value of the division of MAE by the observed CDS price.
“t-test” is the significance test between the difference of the structural model mean absolute errors and the intensity model mean absolute errors
per firm per day, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995) approach.“**” represents significance
at 1% level.“*” represents significance at 5% level.
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5. Conclusions

This study has provided a comparison of the two major credit risk frameworks, the struc-

tural and the reduced-form approach. On the one hand, we assessed a structural models’s

ability to explain CDS prices by using a stationary leverage model calibrated to bond,

stock, and balance sheet information. On the other hand, we examined a comparable

reduced-form model with the leverage process as the state variable calibrated to the same

data. The results show that the models’ overall out-of-sample prediction performance is

quite close on average in out-of-sample tests. Both models mostly underpredict spreads

(with the exception of short-term CDSs in good rating classes within the reduced-form

model) and underprediction typically increases as credit-rating worsens and maturity

increases. As a consequence, we can not conclude that the reduced-form approach is

superior to the structural approach for pricing CDS. Rather, the study shows that for

pricing purposes, the discriminative modeling of the default time, i.e. the modeling type,

does not greatly matter on an aggregate level compared to the input data used. Still, the

reduced-form approach outperforms the structural for investment-grade names and longer

maturities. In contrast the structural approach performs better for shorter maturities and

sub-investment grade names.

In the light of the information based perspective by Jarrow and Protter (2004) this

result does not come at a surprise. The authors argue that the crucial difference between

the approaches comes from the information set available by the modeler: structural mod-

els rely on the complete knowledge of very detailed information typically held by firm’s

insiders and reduced form models rely on less detailed information as it is typically ob-

served by the market. Given that our empirical implementations of both approaches rely

on exactly the same market information, a similar performance is to be expected.

Blanco, Brennan, and Marsh (2005) and Hull, Predescu, and White (2004) have
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shown that the no-arbitrage equality between CDS premia and bond spreads may not

perfectly hold. This may be partly due to liquidity premia in bond prices. Recent studies

such as e.g. Longstaff, Mithal, and Neis (2005) have investigated the bond and CDS

price differences including a liquidity premium in bond prices. In our analysis liquidity

differences are not explicitly taken into account. Rather, we ignore the presence of non-

default components in both bonds and CDS spreads. It remains for future research to

check whether extensions with liquidity yield a better performance of the models on an

absolute level. Also empirical tests of model extensions to a macroeconomic equilibrium

setting such as Hackbarth, Miao, and Morellec (2006), Bhamra, Kühn, and Strebulaev

(2010), and Chen, Collin-Dufresne, and Goldstein (2009) could be a fruitful direction.

It is a task for further research to maintain better accuracy of predictions, to compare

model performance within stress scenarios such as the recent financial crises, and to find

the best performing structural and reduced-form models.
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Appendix

A. Stochastic Intensity Model Solution

The values for A(t, T ), B(t, T ), and C(t, T ) can be derived as:

C(t, T ) =
c

κl

(1− e−κl(T−t)) (A.1)

B(t, T ) =
[
e−κr(T−t)

( c

κlκr

+
c

κl(κl − κr)
− 1

κr

)]

+
[ 1

κr

− c

κlκr

− c

κl

e−κl(T−t)

κl − κr

]
(A.2)

A(t, T ) = −a(T − t)− Ξ−Υ + Γ + Λ− Π (A.3)

with

θ̃l =
δ + σ2

v

2

κl

− ν (A.4)

W =
c

κrκl

+
c

κl(κl − κr)
− 1

κr

(A.5)

Z =
1

κr

− c

κlκr

(A.6)

Ξ = θ̃lc
[
(T − t)− 1− e−κl(T−t)

κl

]
(A.7)

Υ = κrθr

[
W

1− e−κr(T−t)

κr

+ Z(T − t)− c

κ2
l (κl − κr)

(
1− e−κl(T−t)

)]
(A.8)

Γ =
σ2

vc
2

2κ2
l

[
(T − t)− 2(1− e−κl(T−t))

κl

+
1− e−2κl(T−t)

2κl

]
(A.9)

Λ =
σ2

r

2

[W 2

2κr

(1− e−2κr(T−t)) +
2WZ

κr

(1− e−κr(T−t)) + Z2(T − t)

−2Wc(1− e−(κl+κr)(T−t))

κl(κl − κr)(κl + κr)
− 2Zc(1− e−κl(T−t))

κ2
l (κl − κr)

+
( c

κl(κl − κr)

)2 1− e−2κl(T−t)

2κl

]
(A.10)
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Π = ρσvσr

[Wc(1− e−κr(T−t))

κlκr

+
Zc(T − t)

κl

− c2(1− e−κl(T−t))

κ3
l (κl − κr)

−Wc(1− e−(κl+κr)(T−t))

κl(κl + κr)
− Zc(1− e−κl(T−t))

κ2
l

+
c2(1− e−2κl(T−t))

2κ3
l (κl − κr)

]
(A.11)
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B. Structural Model Solution

Utilizing the framework provided by Longstaff and Schwartz (1995) and Collin-Dufresne

and Goldstein (2001), Eom, Helwege, and Huang (2004) arrive at the below formulation

(pp. 537-539):

QFT (r0, l0, T ) =
n∑

i=1

q(ti−1/2; t0) (B.1)

In deriving this formula, t0 is set equal to 0 and the time is discretized into n intervals as

ti = iT/n,

for i = 1, 2, ..., n,

q(ti−1/2; t0) =
N(a(ti; t0))−

∑i−1
j=1 q(tj−1/2; t0)N(b(ti; tj−1/2))

N(b(ti; ti−1/2))
(B.2)

The sum on the right hand-side of the equation becomes zero when i = 1. N is the cdf

of Normal distribution. Values for a and b are required to compute QFT (r0, l0, T ) in the

structural model. They are given as:

a(ti; t0) = −M(ti, T |X0, r0)√
S(ti|Xtj)

(B.3)

b(ti; tj) = −M(ti, T |Xtj)√
S(ti|Xtj)

(B.4)

X = V/K is the inverse of the leverage ratio, where M and S are

M(t, T |X0, r0) = EFT
0 [lnXt] (B.5)

S(t|X0, r0) = varFT
0 [lnXt] (B.6)

M(t, T |Xu) = M(t, T |X0, r0)−M(u, T |X0, r0)
covFT

0 [lnXt, lnXu]

S(u|X0, r0)
, u ε (t0, t) (B.7)

S(t|Xu) = S(t|X0, r0)− (covFT
0 [lnXt, lnXu])

2

S(u|X0, r0)
, u ε (t0, t) (B.8)
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What remains is to have closed form solutions for EFT
0 [lnXt] and covFT

0 [lnXt, lnXu] which

are computed in Eom/Helwege/Huang (pp. 538-539).

EFT
0 [lnXt] = e−κlt

[
lnX0 + ν̄(eκlt − 1)

+
( 1

κl − κr

(e(κl−κr)t − 1)(r0 − θr +
σ2

r

κ2
r

− σ2
r

2κ2
r

e−κrT )

+
1

κl + κr

σ2
r

2κ2
r

e−κrT (e(κl+κr)t − 1) +
1

κl

(θr − σ2
r

κ2
r

)(eκlt − 1)
)

−ρσvσr

κr

(eκlt − 1

κl

− eκrT e(κl+κr)t − 1

κl + κr

)]
(B.9)

covFT
0 [lnXt, lnXu] = e−κl(t+u)

[ σ2
v
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ρσvσr
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r
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− κr

κ2
l − κ2

r
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κl
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κ2
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r
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κ2
l − κ2

r

(1− 2e(κl−κr)u + e2κlu)
)]

where

ν̄ = (ν − (δ + σ2
v/2)/κl) (B.10)

From these equations one can obtain QFT (r0, l0, T ) required for pricing the bond.
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C. List of Bonds Used in Analysis

Table C.1: List of Bonds Used in Analysis

Firm Bond ID Issue Date Maturity Date Coupon No. Coupons
AKZO NOBEL 1 17.11.1998 17.11.2008 5.375 1
AKZO NOBEL 2 13.06.2003 14.06.2011 4.250 1
AKZO NOBEL 3 07.05.2002 07.05.2009 5.625 1
CARNIVAL 1 31.01.2001 01.06.2007 7.300 2
CARNIVAL 2 11.05.2004 15.11.2007 3.750 2
CATERPILLAR 1 01.05.2001 01.05.2011 6.550 2
CATERPILLAR 2 29.04.1991 15.04.2006 9.000 2
CITIZENS 1 23.05.2001 15.05.2011 9.250 2
CITIZENS 2 11.03.2002 15.08.2008 7.625 2
CITIZENS 3 12.11.2004 15.01.2013 6.250 2
CVS 1 09.07.2001 15.03.2006 5.625 2
CVS 2 04.11.2002 01.11.2007 3.875 2
CVS 3 25.03.2003 01.11.2007 3.875 2
CVS 4 14.09.2004 15.09.2009 4.000 2
CVS 5 14.09.2004 15.09.2014 4.875 2
CVS 6 22.11.2004 15.09.2009 4.000 2
CVS 7 22.11.2004 15.09.2014 4.875 2
CVS 8 14.09.2004 15.09.2009 4.000 2
CVS 9 14.09.2004 15.09.2014 4.875 2
DEERE 1 17.04.2002 25.04.2014 6.950 2
DELL 1 27.04.1998 15.04.2008 6.550 2
E. KODAK 1 26.06.2001 15.06.2006 6.375 2
E. KODAK 2 10.10.2003 15.11.2013 7.250 2
ENEL 1 13.10.1998 13.10.2008 4.500 1
FEDERATED 1 14.07.1997 15.07.2017 7.450 2
FEDERATED 2 14.06.1999 01.04.2009 6.300 2
FEDERATED 3 06.06.2000 01.06.2010 8.500 2
FEDERATED 4 27.03.2001 01.04.2011 6.625 2
HP 1 16.12.2002 17.12.2007 4.250 2
HP 2 26.06.2002 01.07.2007 5.500 2
HILTON 4 11.05.2001 15.05.2008 7.625 2
HILTON 1 15.04.1997 15.04.2007 7.950 2
HILTON 2 22.12.1997 15.12.2009 7.200 2
HILTON 3 22.12.1997 15.12.2017 7.500 2
HILTON 5 22.11.2002 01.12.2012 7.625 2
IBM 1 01.10.1998 01.10.2008 5.400 2
IBM 2 03.12.1998 01.12.2008 5.400 2
IBM 3 15.01.1999 15.01.2009 5.500 2
IBM 4 22.01.1999 22.01.2009 5.390 2
IBM 5 26.01.1999 26.01.2009 5.400 2
IBM 6 01.08.2002 15.08.2007 4.200 2
IBM 7 27.12.2002 15.12.2006 3.000 2
IBM 8 30.01.2003 15.01.2009 3.500 2
IBM 9 06.02.2003 15.02.2013 4.200 2
IBM 10 01.02.2005 01.02.2008 3.800 2
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Firm Bond ID Issue Date Maturity Date Coupon No. Coupons
INT. PAPER 1 27.08.2001 01.09.2011 6.750 2
KPN 1 12.04.2001 12.04.2006 7.250 1
LOCKHEED 1 23.11.1999 01.12.2009 8.200 2
MARRIOTT 1 16.01.2001 15.06.2008 7.000 2
MARRIOTT 2 11.01.2002 15.01.2008 7.000 2
MARRIOTT 3 20.09.1999 15.09.2009 7.875 2
MARRIOTT 4 14.06.2005 15.06.2012 4.625 2
MOTOROLA 1 14.01.2002 01.11.2011 8.000 2
MOTOROLA 2 13.11.2000 15.11.2010 7.625 2
NORDSTROM 1 20.01.1999 15.01.2009 5.625 2
NORFOLK 1 26.04.1999 15.04.2009 6.200 2
NORFOLK 2 23.05.2000 15.05.2010 8.625 2
NORFOLK 3 06.02.2001 15.02.2011 6.750 2
NORTHROP 1 01.03.1996 01.03.2006 7.000 2
NORTHROP 2 16.08.2004 16.11.2006 4.079 4
NORTHROP 3 14.04.2000 15.10.2009 8.000 2
PHILIPS 1 16.05.2001 16.05.2008 5.750 1
PHILIPS 2 16.05.2001 16.05.2011 6.125 1
SPRINT 1 25.01.2001 30.01.2006 7.125 2
SPRINT 2 06.05.1999 01.05.2009 6.375 2
SPRINT 3 25.01.2001 30.01.2011 7.625 2
SPRINT 4 21.06.2002 15.03.2012 8.375 2
STORA ENSO 1 29.06.2000 29.06.2007 6.375 1
TARGET 1 26.03.2001 01.04.2007 5.500 2
TARGET 2 10.10.2001 01.10.2008 5.400 2
TARGET 3 02.05.2003 15.05.2018 4.875 2
T.COM ITALIA 1 01.02.2002 01.02.2007 5.625 1
T.COM ITALIA 2 01.02.2002 01.02.2012 6.250 1
TIME WARNER 1 19.04.2001 15.04.2006 6.125 2
TIME WARNER 2 08.04.2002 01.05.2007 6.150 2
TIME WARNER 3 19.04.2001 15.04.2011 6.750 2
TIME WARNER 4 08.04.2002 01.05.2012 6.875 2
VERIZON 1 28.03.2000 15.03.2007 7.600 2
VERIZON 2 21.06.2002 15.06.2007 6.125 2
VERIZON 3 07.09.2001 01.12.2010 7.250 2
VERIZON 4 21.06.2002 15.06.2012 6.875 2
VERIZON 5 26.08.2002 01.09.2012 7.375 2
WAL-MART 1 10.08.1999 10.08.2009 6.875 2
WALT DISNEY 1 28.06.1999 28.06.2010 6.800 2
WALT DISNEY 2 20.06.2002 20.06.2014 6.200 2
WALT DISNEY 3 27.10.1993 27.10.2008 5.800 2
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D. Estimation Results

Table D.1: Structural Model Estimation Figures

Firm σv σv θl θK/V

Estimated Option-implied
AKZO NOBEL 0.202 0.246 -1.14 0.43
CARNIVAL 0.559 0.541 -1.41 0.48
CATERPILLAR 0.115 0.509 7.05 >1
CITIZENS 0.213 0.226 -1.70 0.36
CVS 0.263 0.223 -1.14 0.45
DEERE 0.177 0.370 -0.66 0.58
DELL 0.594 0.312 -3.38 >1
E. KODAK 0.255 0.828 -0.84 0.59
ENEL 0.211 0.256 -0.88 0.48
FEDERATED 0.141 0.237 -0.71 0.58
HP 0.392 0.240 -1.08 0.45
HILTON 0.345 0.292 -0.85 0.75
IBM 0.913 0.173 -3.37 >1
INT. PAPER 0.240 0.192 -0.75 0.55
KPN 0.255 0.089 -1.64 0.47
LOCKHEED 0.250 0.235 -0.99 0.49
MARRIOTT 0.279 0.456 -0.88 0.53
MOTOROLA 0.350 0.237 -2.02 >1
NORDSTROM 0.147 0.320 -13.04 <0.01
NORFOLK 0.176 0.299 -1.42 0.40
NORTHROP 0.088 0.229 -0.54 0.62
PHILIPS 0.342 0.377 -1.20 0.44
SPRINT 0.180 0.543 -0.81 0.58
STORA ENSO 0.263 0.323 -0.73 0.57
TARGET 0.365 0.230 -1.38 0.48
T.COM ITALIA 0.131 0.210 -0.56 0.61
TIME WARNER 0.303 0.262 -0.89 0.53
VERIZON 0.204 0.132 -1.20 0.44
WAL-MART 0.429 0.181 -1.13 0.41
WALT DISNEY 0.384 0.208 -1.39 0.64

The last two columns indicate the long-run mean of the log-leverage process and the leverage itself by applying Itô’s lemma to the log-leverage
process in Equation (3). In calculating the long-run mean of the log-leverage from θl = −ν̄ − r/κl, the short rate r is assumed at a constant
3 per cent.
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Table D.2: Intensity Model Parameter Estimates

Firm a c σv θK/V

AKZO NOBEL 0.057 0.049 0.569 >1
CARNIVAL 0.037 0.001 0.200 0.27
CATERPILLAR 0.030 0.025 0.629 <0.01
CITIZENS 0.045 0.001 0.501 >1
CVS 0.014 0.004 0.200 0.39
DEERE 0.034 0.033 0.014 0.52
DELL 0.020 0.001 0.828 >1
E. KODAK 0.113 0.112 0.002 0.43
ENEL 0.045 0.045 0.009 0.41
FEDERATED 0.043 0.043 0.211 0.71
HP 0.024 0.003 0.335 0.35
HILTON 0.165 0.158 0.001 0.43
IBM 0.022 0.002 0.112 0.03
INT. PAPER 0.024 0.001 0.987 >1
KPN 0.040 0.001 0.164 0.28
LOCKHEED 0.039 0.026 0.026 0.37
MARRIOTT 0.117 0.111 0.477 0.85
MOTOROLA 0.095 0.058 0.003 0.13
NORDSTROM 0.034 0.015 0.042 <0.01
NORFOLK 0.056 0.057 0.007 0.24
NORTHROP 0.036 0.026 0.010 0.58
PHILIPS 0.080 0.056 0.001 0.30
SPRINT 0.081 0.073 0.002 0.44
STORA ENSO 0.104 0.100 0.002 0.48
TARGET 0.055 0.035 0.001 >1
T.COM ITALIA 0.072 0.115 0.001 0.57
TIME WARNER 0.166 0.175 0.002 0.41
VERIZON 0.021 0.001 0.614 >1
WAL-MART 0.015 0.001 0.232 0.31
WALT DISNEY 0.106 0.071 0.356 0.56

The last column indicates the long-run mean of the log-leverage process and the leverage itself by applying Itô’s lemma to the log-leverage
process in Equation (3). In calculating the long-run mean of the log-leverage from θl = −ν̄ − r/κl, the short rate r is assumed at a constant
3 per cent.
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Table D.3: Model-Implied and Actual Probabilities of Default

Firm Structural Intensity Rating Actual PD in
Model-implied Model-implied (Moody’s) Rating

5 year PD 5 year PD Class
AKZO NOBEL 8.49% 10.76% A2-A3 0.54%
CARNIVAL 17.04% 16.45% A2-A3 0.54%
CATERPILLAR 6.12% 8.83% A2 0.54%
CITIZENS 19.37% 20.11% Baa2-Ba3 2.16%-11.17%
CVS 4.99% 5.18% A2-A3 0.54%
DEERE 9.46% 8.51% A3 0.54%
DELL 11.43% 8.93% A2-A3 0.54%
E. KODAK 22.37% 22.79% Baa1-B1 2.16%-31.99%
ENEL 6.40% 7.48% Aa3-A1 0.24%-0.54%
FEDERATED 12.21% 12.17% Baa1 2.16%
HP 10.35% 9.99% A3 0.54%
HILTON 24.79% 22.44% Baa3-Ba1 2.16%-11.17%
IBM 8.17% 7.43% A1 0.54%
INT. PAPER 13.04% 11.19% Baa2 2.16%
KPN 16.76% 18.01% Baa1-Baa3 2.16%
LOCKHEED 9.08% 9.66% Baa2 2.16%
MARRIOTT 13.44% 15.33% Baa2 2.16%
MOTOROLA 13.23% 14.97% Baa2-Baa3 2.16%
NORDSTROM 5.54% 11.13% Baa1 2.16%
NORFOLK 9.63% 11.73% Baa1 2.16%
NORTHROP 4.32% 11.74% Baa2-Baa3 2.16%
PHILIPS 10.46% 12.06% A3 0.54%
SPRINT 13.42% 17.85% Baa2-Baa3 2.16%
STORA ENSO 19.76% 20.83% Baa1 2.16%
TARGET 10.07% 8.11% A2 0.54%
T.COM ITALIA 10.85% 14.59% Baa1-Baa2 2.16%
TIME WARNER 14.80% 17.81% Baa1 2.16%
VERIZON 11.22% 10.12% A2 0.54%
WAL-MART 8.18% 7.29% Aa2 0.24%
WALT DISNEY 14.53% 14.45% Baa1 2.16%
Significance Test Mean Difference t-statistic p-value
Str. - Int. -0.95% -13.01 0.000

“Significance Test, Structural - Intensity” is the significance test between the model-implied default probabilities of the structural and reduced-
form models per firm, after correcting for autocorrelation and heteroscedasticity with Beck and Katz (1995) approach.
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E. Simulation Algorithm

For the structural model, paths of the short rate and the leverage ratio are simulated where

default occurred at the first time when the log-leverage is larger than zero (leverage is

greater than or equal to 1). For a typical 5-year horizon of the maturity of the CDS, the

simulation algorithm generates paths and at each time point the log-leverage is checked

for whether it has a value higher than zero:

(i) At first step, the short rate is simulated using an Euler discretization of the Vasicek

process: Start with rt=r0, and generate rt+1 through

rt+1 = rt + κr(θr − rt)∆t + σr

√
∆tε1

t (E.1)

where ε1
t ∼ N(0, 1).

(ii) Substitute the simulated rt+1 into

θl(rt+1) = −ν̄ − rt+1

κl

(E.2)

(iii) Generate lt+1 through Euler discretization of the leverage process:

lt+1 = lt + κl(θl − lt)∆t− σv

√
∆t(ρε1

t +
√

1− ρ2ε2
t ) (E.3)

Here, note that the Brownian motions of the two processes are correlated with a

factor of ρ and ε2
t ∼ N(0, 1).

a. If lt+1 < 0 (log leverage having a negative sign) then no default occurs. The

CDS premiums up to this time point are cumulated, when a quarter is complete

(typical quarterly payments is assumed). This accumulation constitutes the

“Premium Leg” of a CDS.

PremLegi = PremLegi−1 +
(
e
−

ti∑
0

rti∆t)
(E.4)

Here, ti is the ith premium date. Simulation continues with step (iv).

b. If lt+1 ≥ 0, default happens. Simulation is terminated and the recovery leg is

computed to constitute the numerator of the fair price of a CDS. τ = t+1 and

RecLeg =
(
e
−

τ∑
0

rt∆t
(1− ϕ · b(rτ , T − τ))

)
(E.5)
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In addition, the accrued premium since the last premium payment is calculated

and added to the premium leg. In this implementation, the recovered bond

maturity (T ) is taken to be the longest dated bond’s maturity. According to

the intuition, with no recovery on coupons, the longest available bond should

be delivered in case the “cheapest-to-deliver” option is available.

(iv) Go back to step (i) to generate rt+2.

For simulating the fair price of a CDS in the reduced-form case, Euler discretizations

for the short rate and leverage process as in Equations (E.1) and (E.3) have been used.

Following Schönbucher (2003), a uniform random variate U is generated as the trigger

level. Let γ be the default countdown process, which is initiated by letting γ(0) = 1.

Different from the structural model described above, step (iii) is replaced by:

(iii) Generate lt+1 through Euler discretization of the leverage process:

lt+1 = lt + κl(θl − lt)∆t− σv

√
∆t(ρε1

t +
√

1− ρ2ε2
t ) (E.6)

Compute the associated default intensity as:

λ(t + 1) = a + clt+1 (E.7)

Then at each time step, the default countdown process is decreased by,

γ(t + 1) = γ(t)eλ(t+1)∆t (E.8)

a. If U < γ(t + 1) then no default occurs. Similar to the structural side, the CDS

premiums up to this quarter are cumulated, when a quarter is complete. This

is the premium leg of the CDS.

PremLegi = PremLegi−1 +
(
e
−

ti∑
0

rti∆t)
(E.9)

b. If U ≥ γ(t + 1), default happens and the recovery leg is computed.

RecLeg =
(
e
−

τ∑
0

rt∆t
(1− ϕ · b(rτ , T − τ))

)
(E.10)

Accrued premiums are taken into account since the last premium payment

date, as well.
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