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Abstract

This paper develops a method for the change of probability measures when the

component processes of the multidimensional Brownian motion are correlated and ap-

plies the method to derive formulae for pricing vulnerable options on the maximum or

minimum of n underlying assets. Based on the proposed pricing formulae, we further

develop a delta-like strategy to hedge the default risk of vulnerable multi-asset options.

Real-time analysis shows that the hedging performance is satisfactory when we adopt

the proposed hedging strategy to hedge the credit risk induced by the bankruptcy of

Lehman Brothers Holdings.
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1 Introduction

Options on multiple assets, including maximum options, minimum options, spread options,

and quanto options, are widely traded in financial markets. Many structured financial prod-

ucts traded in over-the-counter markets link their payoffs with multi-asset options as well.

Accordingly, the valuation and hedge of multi-asset options are of both theoretical and prac-

tical interests. Margrabe (1978) analyzes European options on exchanging one asset for an-

other. Stulz (1982) develops formulae for European options on the maximum or minimum of

two assets, whereas Johnson (1987) extends the results to the case of several assets. However,

these formulae cannot be applied to value structured financial products and over-the-counter

options without modifications, since these securities are exposed to potential credit risk due

to the possibility of their issuers being unable to make the necessary payments at the maturity

date.

A number of approaches have been developed to incorporate the impact of credit risk on

the value of derivatives. These approaches can be divided into two major categories. The

first group determines the event of default and recovery rate based on the evolution of the

asset value of the issuer, and thus are called firm value models. The literature that employs

firm value models to price contingent claims subject to default risk includes Merton (1974),

Black and Cox (1976), Johson and Stulz (1987), Cooper and Mello (1991), Klein (1996),

Klein and Inglis (2001), Episcopos (2004), and Baule, Entrop, and Wikens (2008), to name

a few. Since the recovery rate depends on the firm’s value in default, the firm value models

are very intuitive.

The second group, called intensity models, specifies an exogenous default process to trigger

default. Although the intensity models allow greater flexibility in the timing of a default

event, they often assume the recovery rate to be exogenous. It indicates that the recovery

rate is independent of the asset value of the issuer. Examples of intensity models include
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Duffie and Huang (1996), Jarrow and Turnbull (1995), and Jarrow and Yu (2001), to name

a few.

Klein (1996) provides a closed-form method to price vulnerable Black-Scholes options by

employing the firm value model. The model in Klein (1996) not only allows for correlation

between the asset of the issuer and the asset underlying the option, but also allows for the

proportion of nominal claims paid out in default to depend on the asset value of the issuer.

Another advantage of the model in Klein (1996) is ease for empirical calibration. This is

because Klein sets the Brownian motions driving the values of the issuer’s asset and the asset

underlying the option to be correlated and thus enables each price process to consist only

of a one-dimensional Brownian motion. This advantage will benefit more under the case of

n underlying assets. Nevertheless, the derivative investigated in Klein (1996) is a vulnerable

option on a single risky asset. In this paper we extend the model used in Klein (1996) and

develop formulae to value vulnerable options on n multiple assets.

In the literature, Johnson (1987) uses a trick from Margrabe (1987) that treats a call

option as an option on exchanging one asset for another to value a default-free option on

the maximum or minimum of n assets. Since the method cannot be applied to a vulnerable

derivative, we turn to price vulnerable multi-asset options by using the Martingale pricing

theorem. We note that the multidimensional Girsanov theorem plays an important role in

the change of probability measures when applying the Martingale pricing theorem to value

multi-asset options. However, the multidimensional Girsanov theorem is not appropriate for

adoption in our framework since the (n+1) Brownian motions are correlated. Thus, this paper

develops a method for the change of probability measures, which is suitable even when the

component processes of the multidimensional Brownian motion are correlated, and proposes

closed-form formulae to value vulnerable maximum options and vulnerable minimum options

by this method.
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Based on the proposed closed-form formulae, the second contribution of this research is

to develop a delta-like strategy for hedging the default risk of vulnerable multi-asset op-

tions. During the financial crisis in late 2008, several major institutions included Lehman

Brothers and Merrill Lynch either failed or were acquired by other institutions. Hedging

the credit risk of over-the-counter securities thus becomes an important issue for investors.

Although credit derivatives provide convenient ways to hedge default risks, it is difficult for

an individual investor to acquire a suitable position. Moreover, the hedging effectiveness of

credit derivatives is not always satisfactory, because the credit index underlying the credit

derivatives is usually composed of a basket rather than by the issuer of vulnerable derivatives

only. Recognizing that the value change in the issuer’s asset is an important source of default

risks, a more ideal scheme is to offset this risk by an instrument, such as the stock of the

counterparty, that is highly correlated with the asset value of the option’s issuer. Thus, this

research develops a delta-like strategy that enables us to hedge the credit risk of vulnerable

options by directly selling short the stocks of the issuer. We also conduct real-time analysis

to investigate the performance of the proposed strategy for hedging the credit risk induced

by the bankruptcy of Lehman Brothers Holdings. The hedging effectiveness of the proposed

strategy is satisfactory.

The remaining parts of this paper are arranged as follows. We begin by introducing the

theoretical framework in the next section and develop a method for the change of probability

measures when the component processes of the multidimensional Brownian motion are corre-

lated. By applying this method, we propose pricing formulae for valuing vulnerable maximum

options and vulnerable minimum options, and provide a numerical analysis. Finally, we de-

velop a strategy for hedging the credit risks of vulnerable options based on the proposed

pricing formulae, and conduct real-time analysis to measure the hedging performance of the

proposed strategy. Concluding remarks are given in the last section.
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2 Theoretical framework

This paper extends the model of Klein (1996) and provides a closed-form formula to value

a vulnerable rainbow option exposed to n risky assets and credit risks of the option’s issuer.

The assumptions and rules of settlement used throughout this paper are summarized in this

section. They are identical to those of Klein (1996) under the setting of n = 1.

Assumption 1. Denote the time t prices of the n assets underlying a vulnerable rainbow

option as S1,t, S2,t, · · · , Sn,t. The risk-neutral processes for S1, S2, · · · , Sn are given by:

dSi = Si (rdt+ σidWi) , ∀ i = 1, 2, · · · , n, (1)

where r denotes the risk-free rate, σi (i = 1, 2, · · · , n) is the instantaneous volatility of Si,

and dWi (i = 1, 2, · · · , n) is the standard Wiener process defined in a filtered probability

space (Ω,F ,Q). On the other hand, denote the writer of the vulnerable option as firm

XYZ, and let the time t value of XYZ’s assets be Vt. We follow the setting of Klein (1996)

to assume the market value of XYZ’s assets, Vt, including the short position in the option

being valued. Under the risk-neutral measure, the market value of XYZ’s assets follows the

diffusion process:

dV = V (rdt+ σV dWV ) , (2)

where σV is the instantaneous volatility of XYZ’s assets. Moreover, the prices of the n

underlying assets, Si (i = 1, 2, · · · , n), and the asset value of XYZ, i.e., V , are correlated

with a covariance matrix given by:

Θ ≡



σ2
1 ρ12σ1σ2 · · · ρ1nσ1σn ρ1V σ1σV

ρ12σ1σ2 σ2
2 · · · ρ2nσ2σn ρ2V σ2σV

...
...

. . .
...

...

ρ1nσ1σn ρ2nσ2σn · · · σ2
n ρnV σnσV

ρ1V σ1σV ρ2V σ2σV · · · ρnV σnσV σ2
V


, (3)
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where ρij (i, j = 1, 2, · · · , n) denotes the correlation coefficient between assets i and j, and

ρiV is the correlation coefficient between asset i and XYZ.

Assumption 2. The writer of the rainbow option, i.e., firm XYZ, is risky. Specifically,

the firm has debt outstanding, D, with maturity TD > T , where T denotes the expiration

date of the rainbow option being valued. It follows that a credit loss occurs if VT is less

than a specific amount D∗ when the option matures. As pointed out in Klein (1996), D∗

may be less than D due to the possibility that the option’s writer continues operating even

when VT is less than D. Furthermore, assume that the total deadweight cost associated with

bankruptcy expressed as a percentage of XYZ’s asset value is α, and all claims on firm XYZ

are of equal priority. It implies that the amount received by the holders of the options is only

the proportion (1− α)VT/D of the nominal claim in the event of a credit loss.

Assumption 3. Markets are perfect and frictionless. There are neither transaction costs

nor taxes, and securities are traded in continuous time.

Assumption 4. The continuous risk-free rate r is constant. Accordingly, the time t value

of the riskless bond Bt is defined by:

dBt = rBtdt,

or equivalently Bt = ert with B0 = 1.

We note that the dynamic process displayed in Equation (1) is easy for empirical cali-

bration since each price process consists only of a one-dimensional Brownian motion. Unlike

Equation (1), the dynamic process of the assets underlying an n-asset derivative is usually
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set to be composed of a d-dimensional Brownian motion in the literature. To illustrate:

dS̃i = S̃i

(
rdt+

d∑
j=1

σ̃ijdW̃j

)
, ∀ i = 1, 2, · · · , n; j = 1, 2, · · · , d,

where d > 1, the volatility matrix σij (i = 1, 2, · · · , n; j = 1, 2, · · · , d) is an adapted process,

and dW̃i (i = 1, 2, · · · , d) is a standard Wiener process. Clearly, it is difficult to estimate

all the parameters σij (i = 1, 2, · · · , n; j = 1, 2, · · · , d) simultaneously. Compared with the

setting in the literature, the price process as in Equation (1) has the advantage in estimating

parameters and thus is expected to facilitate additional empirical studies of multi-asset option

prices.

Based on the framework and rules of settlement described in Assumptions 1-4, the final

payoff from a vulnerable call option on the maximum of n assets can be represented as:

Cmax
T =


(maxSi,T −K), if maxSi,T > K and VT > D∗,

(1− α)VT
D
(maxSi,T −K), if maxSi,T > K and VT < D∗,

0, if maxSi,T < K,

(4)

where i = 1, 2, · · · , n. For a vulnerable call option on the minimum of n assets, the final

payoff received by an investor of the option is:

Cmin
T =


(minSi,T −K), if minSi,T > K and VT > D∗,

(1− α)VT
D
(minSi,T −K), if minSi,T > K and VT < D∗,

0, if minSi,T < K.

(5)

3 Pricing vulnerable rainbow options

This research investigates the valuation of a vulnerable n-asset rainbow option by using

the martingale pricing theorem. When applying this pricing theorem, the multidimensional

Girsanov theorem plays an important role in the change of probability measures. As shown on

page 225 in Shreve (2004), the conclusion of the multidimensional Girsanov theorem implies

that the component processes of the multidimensional Brownian motion are independent.
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Please note that the price of the option being valued depends not only on the prices of

the n underlying assets, but also on the asset value of XYZ. According to Assumption 1,

the (n + 1) Brownian motions, i.e., (W1,t,W2,t, · · · ,Wn,t,WV,t), are correlated under Q. It

leads that we cannot apply the multidimensional Girsanov theorem without modifications

under our framework, although the settings of price dynamics as in Equations (1) and (2) have

advantages in estimating parameters. Thus, we develop the following lemma which is suitable

for the change of probability measures even when the components of the multidimensional

Brownian motion are correlated.

Lemma 1. Let each Wi,t (i = 1, 2, · · · , k) be a Brownian motion and these Brownian

motions, W1,t, W2,t, · · · , Wk,t, are correlated. Specifically, the correlation coefficient for

any two Brownian motions, Wi,t and Wj,t, is given by ρijt. Denote X = [x1, x2, · · · , xk]⊤,

where xi = Wi,t/
√
t. We note that X follows a k-dimensional multivariate standard normal

distribution with a correlation matrix given by:

Γ ≡



1 ρ12 · · · ρ1k

ρ12 1 · · · ρ2k

...
...

. . .
...

ρ1k ρ2k · · · 1


.

Moreover, set H = [h1, h2, · · · , hk], where each hi (i = 1, 2, · · · , k) is F0-measurable, and

define:

dR
dQ

= eHX
√
t− 1

2
HΓH⊤t. (6)

We have:

EQ
[
dR
dQ

1(ψ) | F0

]
=

∫ ∫
· · ·
∫
ψ

(2π)
−N
2 |Γ|

−1
2 e

−1
2
X⊤Γ−1X dR

dQ
dx1dx2 · · · dxk

=

∫ ∫
· · ·
∫
ψ

(2π)
−N
2 |Γ|

−1
2 e

−1
2
V⊤Γ−1Vdv1dv2 · · · dvk

= ER [1(ψ) | F0

]
,
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where EQ [· | F0] and ER [· | F0] denote the expectations conditional on F0 under measures Q

and R, respectively,

V = [v1, v2, · · · , vk]⊤ ,

and

vi = xi −
k∑
j=1

ρijhj
√
t, ∀ i = 1, 2, · · · , k. (7)

Define WR
i,t = vi

√
t. Based on the definition of xi, i.e., xi = Wi,t/

√
t, and Equation (7), the

relationship between Wi,t and W
R
i,t can be represented as:

WR
i,t = Wi,t −

k∑
j=1

ρijhjt, ∀ i = 1, 2, · · · , k. (8)

According to Equation (8), each WR
i,t (i = 1, 2, · · · , k) is a Brownian motion.

Proof: See Appendix 1.

Based on Lemma 1, the value of a vulnerable path-independent option on multiple assets

can be calculated easily. The current value of a vulnerable maximum call on n underlying as-

sets can be computed by discounting the expectation of the final payoff displayed in Equation

(4). It is:

Cmax
0 = e−rTEQ {Emax1 + Emax2 + Emax3 + Emax4 | F0} , (9)

where

Emax1 =
n∑
i=1

Si,T1(Si,T>K)

( ∏
j=1,2,··· ,n;j ̸=i

1(Si,T>Sj,T )

)
1(VT>D∗),

Emax2 = (1− α)
VT
D

n∑
i=1

Si,T1(Si,T>K)

( ∏
j=1,2,··· ,n;j ̸=i

1(Si,T>Sj,T )

)
1(VT<D∗),

Emax3 = −K

[
1(VT>D∗) −

( ∏
i=1,2,··· ,n

1(Si,T<K)

)
1(VT>D∗)

]
,

and

Emax4 = −K(1− α)
VT
D

[
1(VT<D∗) −

( ∏
i=1,2,··· ,n

1(Si,T<K)

)
1(VT<D∗)

]
.
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By applying Lemma 1, the vulnerable rainbow call on the Maximum can be priced by Propo-

sition 1.

Proposition 1. Suppose that Assumptions (1)-(4) hold and the final payoff of a call option

on the maximum of n assets is given by Equation (4). Based on Lemma 1, this vulnerable

maximum call can be priced as follows:

Cmax
0 =

n∑
i=1

Si,0Nn+1

(
A(i)

1 ;J (i)
)

+
n∑
i=1

(1− α)
V0
D
e(r+ρiV σiσV )TSi,0Nn+1

(
Ã(i)

1 ; J̃ (i)
)

−Ke−rT [N(c2(V,D
∗))−Nn+1 (A2;M)]

−(1− α)
V0
D
K
[
N(−c̃2(V,D∗))−Nn+1

(
Ã2;M̃

)]
, (10)

where A(i)
1 and Ã(i)

1 denote the ith row of A1 and Ã1, respectively,

A1 =



d1(S1, K) a1(S1, S2) a1(S1, S3) · · · a1(S1, Sn) c1(V,D
∗, S1)

d1(S2, K) a1(S2, S1) a1(S2, S3) · · · a1(S2, Sn) c1(V,D
∗, S2)

...
...

...
. . .

...
...

d1(Sn, K) a1(Sn, S1) a1(Sn, S2) · · · a1(Sn, Sn−1) c1(V,D
∗, Sn)


,

Ã1 =



d̃1(S1, K) ã1(S1, S2) ã1(S1, S3) · · · ã1(S1, Sn) −c̃1(V,D∗, S1)

d̃1(S2, K) ã1(S2, S1) ã1(S2, S3) · · · ã1(S2, Sn) −c̃1(V,D∗, S2)

...
...

...
. . .

...
...

d̃1(Sn, K) ã1(Sn, S1) ã1(Sn, S2) · · · ã1(Sn, Sn−1) −c̃1(V,D∗, Sn)


,

A2 =

[
−d2(S1, K) −d2(S2, K) −d2(S3, K) · · · −d2(Sn, K) c2(V,D

∗)

]
,

and

Ã2 =

[
−d̃2(S1, K) −d̃2(S2, K) −d̃2(S3, K) · · · − d̃2(Sn, K) −c̃2(V,D∗)

]
.
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Moreover, Nn+1(.; Φ) represents the cumulative probability of an (n+1)-dimensional mul-

tivariate normal distribution with mean vector 0 and covariance matrix Φ. For i, j =

1, 2, · · · , n, the parameters in Equation (10) are defined as follows:

d1(Si, K) =
ln (Si,0/K) + (r + 0.5σ2

i )T

σi
√
T

,

a1(Si, Sj) =
ln (Si,0/Sj,0) + 0.5σ2

ijT

σij
√
T

,

c1(V,D
∗, Si) =

ln (V0/D
∗) + (r − 0.5σ2

V + ρiV σiσV )T

σV
√
T

,

d̃1(Si, K) =
ln (Si,0/K) + (r + 0.5σ2

i + ρiV σiσV )T

σi
√
T

,

ã1(Si, Sj) =
ln (Si,0/Sj0) + (0.5σ2

ij + ρV,ijσV σij)T

σij
√
T

,

c̃1(V,D
∗, Si) =

ln (V0/D
∗) + (r + 0.5σ2

V + ρiV σiσV )T

σV
√
T

,

c2(V,D
∗) =

ln (V0/D
∗) + (r − 0.5σ2

V )T

σV
√
T

,

d2(Si, K) =
ln (Si,0/K) + (r − 0.5σ2

i )T

σi
√
T

,

c̃2(V,D
∗) =

ln (V0/D
∗) + (r + 0.5σ2

V )T

σV
√
T

,

and

d̃2(Si, K) =
ln (Si,0/K) + (r − 0.5σ2

i + ρiV σiσV )T

σi
√
T

,

where

σij =
√
σ2
i + σ2

j − 2ρijσiσj,

and

ρV,ij =
ρiV σi − ρjV σj

σij
.
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The covariance matrix J (i) (i = 1, 2, · · · , n) displayed in Equation (10) denotes the sub-

matrix obtained from J(i) by deleting its (i+ 1)th row and (i+ 1)th column, where:

J(i) =



1 ρi,i1 ρi,i2 ρi,i3 · · · ρi,in ρiV

ρi,i1 1 ρi1,i2 ρi1,i3 · · · ρi1,in ρV,i1

ρi,i2 ρi1,i2 1 ρi2,i3 · · · ρi2,in ρV,i2

...
...

...
...

. . .
...

...

ρi,in ρi1,in ρi2,in ρi3,in · · · 1 ρV,in

ρiV ρV,i1 ρV,i2 ρV,i3 · · · ρV,in 1



,

ρi,ij ≡ ρij,i =
σi − ρijσj

σij
,

and

ρij,ik ≡ ρik,ij =
σ2
i − ρikσiσk − ρijσiσj + ρjkσjσk

σijσik
.

Similarly, the covariance matrix J̃ (i) (i = 1, 2, · · · , n) displayed in Equation (10) denotes the

sub-matrix obtained from J̃(i) by deleting its (i+ 1)th row and (i+ 1)th column, where:

J̃(i) =



1 ρi,i1 ρi,i2 ρi,i3 · · · ρi,in −ρiV

ρi,i1 1 ρi1,i2 ρi1,i3 · · · ρi1,in −ρV,i1

ρi,i2 ρi1,i2 1 ρi2,i3 · · · ρi2,in −ρV,i2
...

...
...

...
. . .

...
...

ρi,in ρi1,in ρi2,in ρi3,in · · · 1 −ρV,in

−ρiV −ρV,i1 −ρV,i2 −ρV,i3 · · · −ρV,in 1



.

There are still two covariance matrices, M and M̃, in Equation (10), which are given by:

M =



1 ρ12 ρ13 ρ14 · · · ρ1n −ρ1V

ρ12 1 ρ23 ρ24 · · · ρ2n −ρ2V
...

...
...

...
. . .

...
...

ρ1n ρ2n ρ3n ρ4n · · · 1 −ρnV

−ρ1V −ρ2V −ρ3V −ρ4V · · · −ρnV 1


,
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and

M̃ =



1 ρ12 ρ13 ρ14 · · · ρ1n ρ1V

ρ12 1 ρ23 ρ24 · · · ρ2n ρ2V

...
...

...
...

. . .
...

...

ρ1n ρ2n ρ3n ρ4n · · · 1 ρnV

ρ1V ρ2V ρ3V ρ4V · · · ρnV 1


.

In the literature, Johnson (1987) develops a closed-form formula to price maximum op-

tions. We note that the pricing formula displayed in Proposition 1 reduces to that in Johnson

(1987) when the default risk is trivial. Moreover, when the number of the underlying assets,

n, is set to be one, our pricing formula is identical to that of vulnerable Black-Schole options

proposed by Klein (1996).

The current value of vulnerable minimum calls on n underlying assets can be similarly

calculated by discounting the expectation of the final payoff displayed in Equation (5). It is:

Cmin
0 = e−rTEQ

{
Emin1 + Emin2 + Emin3 + Emin4 | F0

}
, (11)

where

Emin1 =
n∑
i=1

Si,T1(Si,T>K)

( ∏
j=1,2,··· ,n;j ̸=i

1(Si,T<Sj,T )

)
1(VT>D∗),

Emin2 = (1− α)
VT
D

n∑
i=1

Si,T1(Si,T>K)

( ∏
j=1,2,··· ,n;j ̸=i

1(Si,T<Sj,T )

)
1(VT<D∗),

Emin3 = −K

[( ∏
i=1,2,··· ,n

1(Si,T>K)

)
1(VT>D∗)

]
,

and

Emin4 = −K(1− α)
VT
D

[( ∏
i=1,2,··· ,n

1(Si,T>K)

)
1(VT<D∗)

]
.

By applying Lemma 1, the vulnerable rainbow call on the minimum can be priced by the

following Proposition 2.
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Proposition 2. Suppose that Assumptions (1)-(4) hold and the final payoff of a call option

on the minimum of n assets is given by Equation (5). Based on Lemma 1, this vulnerable

minimum call can be priced as follows:

Cmin
0 =

n∑
i=1

Si,0Nn+1

(
B(i)
1 ;G(i)

)
+

n∑
i=1

(1− α)
V0
D
e(r+ρiV σiσV )TSi,0Nn+1

(
B̃(i)
1 ; G̃(i)

)
−Ke−rTNn+1 (B2;Z)

−(1− α)
V0
D
KNn+1

(
B̃2; Z̃

)
, (12)

where B(i)
1 and B̃(i)

1 denote the ith row of B1 and B̃1, respectively,

B1 =



d1(S1, K) −a1(S1, S2) −a1(S1, S3) · · · −a1(S1, Sn) c1(V,D
∗, S1)

d1(S2, K) −a1(S2, S1) −a1(S2, S3) · · · −a1(S2, Sn) c1(V,D
∗, S2)

...
...

...
. . .

...
...

d1(Sn, K) −a1(Sn, S1) −a1(Sn, S2) · · · −a1(Sn, Sn−1) c1(V,D
∗, Sn)


,

B̃1 =



d̃1(S1, K) −ã1(S1, S2) −ã1(S1, S3) · · · −ã1(S1, Sn) −c̃1(V,D∗, S1)

d̃1(S2, K) −ã1(S2, S1) −ã1(S2, S3) · · · −ã1(S2, Sn) −c̃1(V,D∗, S2)

...
...

...
. . .

...
...

d̃1(Sn, K) −ã1(Sn, S1) −ã1(Sn, S2) · · · −ã1(Sn, Sn−1) −c̃1(V,D∗, Sn)


,

B2 =

[
d2(S1, K) d2(S2, K) d2(S3, K) · · · d2(Sn, K) c2(V,D

∗)

]
,

and

B̃2 =

[
d̃2(S1, K) d̃2(S2, K) d̃2(S3, K) · · · d̃2(Sn, K) −c̃2(V,D∗)

]
.

Similarly, the covariance matrices G(i) and G̃(i) (i = 1, 2, · · · , n) displayed in Equation (12)

denote the sub-matrices obtained from G(i) and G̃(i) by deleting the corresponding (i+1)th
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row and (i+ 1)th column, respectively, where:

G(i) =



1 −ρi,i1 −ρi,i2 −ρi,i3 · · · −ρi,in ρiV

−ρi,i1 1 ρi1,i2 ρi1,i3 · · · ρi1,in −ρV,i1

−ρi,i2 ρi1,i2 1 ρi2,i3 · · · ρi2,in −ρV,i2
...

...
...

...
. . .

...
...

−ρi,in ρi1,in ρi2,in ρi3,in · · · 1 −ρV,in

ρiV −ρV,i1 −ρV,i2 −ρV,i3 · · · −ρV,in 1



,

and

G̃(i) =



1 −ρi,i1 −ρi,i2 −ρi,i3 · · · −ρi,in −ρiV

−ρi,i1 1 ρi1,i2 ρi1,i3 · · · ρi1,in ρV,i1

−ρi,i2 ρi1,i2 1 ρi2,i3 · · · ρi2,in ρV,i2

...
...

...
...

. . .
...

...

−ρi,in ρi1,in ρi2,in ρi3,in · · · 1 ρV,in

−ρiV ρV,i1 ρV,i2 ρV,i3 · · · ρV,in 1



.

The remaining two covariance matrices, Z and Z̃, in Equation (12) are given by:

Z =



1 ρ12 ρ13 ρ14 · · · ρ1n ρ1V

ρ12 1 ρ23 ρ24 · · · ρ2n ρ2V

...
...

...
...

. . .
...

...

ρ1n ρ2n ρ3n ρ4n · · · 1 ρnV

ρ1V ρ2V ρ3V ρ4V · · · ρnV 1


,

and

Z̃ =



1 ρ12 ρ13 ρ14 · · · ρ1n −ρ1V

ρ12 1 ρ23 ρ24 · · · ρ2n −ρ2V
...

...
...

...
. . .

...
...

ρ1n ρ2n ρ3n ρ4n · · · 1 −ρnV

−ρ1V −ρ2V −ρ3V −ρ4V · · · −ρnV 1


.
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According to Proposition 2, it is also observed that the pricing formula of vulnerable

minimum options reduces to that of minimum options proposed by Johnson (1987) when the

default risk is trivial.

4 Numerical analyses

To gauge the impact of credit risks on the option’s price, Exhibit 1 displays the theoretical

values of vulnerable call options on the maximum of two hypothetical stocks and compares

the vulnerable prices to the corresponding default-free values. We apply Proposition 1 to

calculate the values of vulnerable options, whereas the corresponding default-free prices are

based on the formula proposed by Johnson (1987). The parameters of the Base Case in

Exhibit 1 are given by: r = 0.04833, T = 0.3333, K = 40, S1 = S2 = 40, σ1 = σ2 = σV = 0.3,

V0 = 5, D = D∗ = 5, α = 0, ρ12 = ρ1V = 0.5, and ρ2V = 0. To ensure the correlation

matrix is positive semi-definite for various combinations of ρ12 and ρ1V , we set the value

of ρ2V in the Base Case to be zero. All parameters in the Base Case are identical to the

settings in the numerical analyses of Klein (1996) except for the values of S2, σ2, ρ12, and

ρ2V . These parameters are not required when pricing one-asset vulnerable options as done

in Klein (1996).

Similar to the properties of the default-free counterpart, Exhibit 1 indicates that the value

of the vulnerable call grows with the time to maturity T and the volatility of the underlying

assets σ1. On the contrary, the strike price K and the correlation between the two underlying

stocks ρ12 induce negative impacts on vulnerable prices.

Unlike default-free options, the V/D ratio, deadweight cost α, volatility of XYZ’s assets

σV , and correlations ρ1V and ρ2V indeed influence the values of vulnerable options. As

expected, the price of a vulnerable option is never greater than its corresponding default-

free value. However, it grows as the V/D ratio increases. When the V/D ratio reaches 2.0,
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almost all vulnerable values in our Exhibit 1 converge to their default-free values. We also

note that an issuer with a specified V/D ratio may bring different credit risks on different-

maturity options. To illustrate, the issuer with a V/D ratio of 1.2 can be viewed as a riskless

writer when the option being issued is a 30-day call, because the vulnerable value reaches its

default-free price in the case of V/D = 1.2 and T = 0.833. However, when the written option

is a four-month or seven-month call, the issuer is no longer a riskless firm for investors. It

follows that the V/D ratio of XYZ required by risk-aversion investors is relatively high when

the option holds long maturity.

We also observe that the impact of the asset volatility σV on vulnerable prices depends

on the V/D ratio. Exhibit 1 exhibits that the value of σV does not affect vulnerable values

very much when the V/D ratio equals 2.0 in our numerical analysis. However, the impact of

σV grows as the V/D ratio declines. As shown in Panel B of Exhibit 1, the vulnerable value

under the case of V/D = 1.0 decreases from $4.508 to $4.349 when the value of σV increases

from 20% to 40%. It implies that the volatility of XYZ’s assets σV indeed plays an important

role when the V/D ratio of an issuer is not large enough.

Exhibit 1 also reveals that the values of ρ1V and ρ2V both have positive impacts on

vulnerable prices. This is because a larger value of either ρ1V or ρ2V implies a smaller

probability of default when the vulnerable option is in-the-money at maturity. As expected,

the values of ρ1V and ρ2V have no impacts on vulnerable values when the issuer is riskless or

the V/D ratio is large enough.

5 Hedging the credit risk

Hedging the credit risk of over-the-counter securities is an important issue for investors.

However, an individual investor is not able to acquire a suitable position easily in a credit

default swap or credit derivative. Recognizing that the value change in the issuer’s asset, ∆V ,
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is an important source of default risk, an ideal scheme is to offset this risk by an instrument,

such as the stock of firm XYZ, that is highly correlated with the asset value of XYZ. It

motivates us to develop a delta-like strategy that enables investors to hedge the credit risk

by selling short XYZ stock based on the pricing formulae offered in Propositions 1 and 2.

Define ∆V ≡ ∆C/∆V as the rate of change of the option price with respect to the asset

value of XYZ. Once the pricing formulae of options displayed in (10) and (12) are at hand,

the value of ∆V can be calculated by:

∆V =
C(V + h)− C(V )

h
, (13)

where h is a small value, and C(V ) and C(V +h) are the values of vulnerable calls given the

asset values are V and V + h, respectively. For a vulnerable n-asset maximum call, C(·) can

be priced by (10), whereas (12) can be used to value vulnerable n-asset minimum calls.

According to the definition of ∆V , a position with zero ∆V has no credit risk. It follows

that the credit risk of a vulnerable option with non-zero ∆V is able to be eliminated as

long as a new position that offsets the value of ∆V is added. One of the best candidates

to construct the new position is XYZ stock, since it is highly dependent on the asset value

of the underlying firm XYZ. Accordingly, the hedging of credit risks can be implemented

by selling short stocks of the option’s issuer to make the whole position ∆V neutral. The

hedging scheme is named ∆V -neutral strategy or ∆V strategy.

Two properties concerning ∆V that may influence the performance of ∆V strategy are

worth highlighting. Exhibit 2 plots the impact that comes from the maximum of the two

underlying stocks on the value of ∆V calculated by the hypothetical vulnerable maximum

call investigated in Exhibit 1. All parameters in Exhibit 2 are identical to the Base Case

defined in Exhibit 1, except for the value of S1 and the strike price. The strike price here

is set to be $60. We observe that the change in the value of ∆V is very slight when the

call is deep-in-the-money or deep-out-of-the-money. While the call is at-the-money or near
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at-the-money, the value of ∆V changes rapidly. The implies that the hedging effectiveness

of ∆V strategy may be better when the call is deep-in-the-money or deep-out-of-the-money.

Exhibit 3 reveals the negative impact of XYZ’s asset value V on the value of ∆V . Similarly,

all parameters in Exhibit 3 are the same as those in the Base Case, except for the value of V .

It indicates that the more worthless XYZ’s asset is, the more credit risk will be embedded in

the vulnerable option.

Before identifying the number of shares to short, the relationship between the stock price

and the asset value of the issuer needs to be clarified. Ronn and Verma (1986) and Duan

(1994) suggest that the time t equity value, Et, can be viewed as a call option and written

as:

Et = VtN(d1(Vt, D))−De−r(TD−t)N(d1(Vt, D)− σV
√
TD − t), (14)

where

d1(Vt, D) =
ln (Vt/D) + (r + 0.5σ2

V ) (TD − t)

σV
√
TD − t

. (15)

Clearly, the relationship between the equity price and asset value behind the above model is:

∆E ≡ ∆E

∆V
= N(d1(Vt, D)), (16)

where TD is the maturity of debts. In the literature, many empirical studies set TD as the

time of the next audit. Recognizing that ∆E represents the rate of change of the equity value

with respect to the asset value of XYZ, and ∆V exhibits the rate of change of the option price

with respect to the asset value of XYZ, the credit risk of vulnerable options can be offset by

shorting κ shares of XYZ stock, where κ satisfies:

∆V dV = κ∆EdV. (17)

In other words, ∆V -neutral strategy can be easily implemented by shorting κ shares of stock

XYZ, where κ = ∆V /∆E, once the values of ∆V and ∆E are at hand.
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It is worth noting that the values of ∆V and ∆E depend on the asset value V and asset

volatility σV , which cannot be observed directly from market information. Duan (1994)

develops a maximum likelihood method to estimate the unobserved asset value V and asset

volatility σV from the observed equity value E. As asset value V follows a lognormal process,

the one-period transition density of V is characterized by:

ln
Vt+1

Vt
∼ N(µV , σ

2
V ),

whereN(µV , σ
2
V ) denotes a normal distribution with mean µV and variance σ2

V . Subsequently,

the corresponding log-likelihood function for a sample of unobserved Vt (t = 1, 2, · · · ,m) can

be written as:

LV (Vt, t = 1, 2, · · · ,m;µV , σV )

= −m− 1

2
ln(2π)− m− 1

2
lnσ2

V − 1

2σ2
V

m∑
t=2

[
ln

Vt
Vt−1

− µV

]2
. (18)

Herein, the equity model displayed in (14) allows us to transform the unobserved sample

of asset values to the observed sample of equity values, and enables us to rewrite the log-

likelihood function for the observed sample of equity values as:

L (Et, t = 1, 2, · · · ,m;µV , σV ) = −m− 1

2
ln(2π)− m− 1

2
lnσ2

V

−
m∑
t=2

ln
(
N(d1(V̂t(σV ), D

∗))
)
− 1

2σ2
V

m∑
t=2

[
ln

V̂t(σV )

V̂t−1(σV )
− µV

]2
,

(19)

where the asset value estimate, V̂t(σV ), is the unique solution to (14) for a given σV and

observed equity value Et. By maximizing the objective function defined in (19), the estimates

of Vt (t = 1, 2, · · · ,m) and σV can now be obtained by market information.
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6 Measuring hedging performance

On September 15, 2008, Lehman Brothers filed for bankruptcy protection, helping trigger

the financial crisis of 2008-2010. As the biggest investment bank collapses since 1990, the

credit risk induced by it bankruptcy could be a representative lesson to be investigated. This

research thus conducts real-time analysis to explore the hedging performance of the proposed

∆V strategy during this bankrupt event.

This research specifically investigates the hedging effectiveness of the proposed ∆V strat-

egy for a hypothetical two-asset maximum call issued by Lehman Brothers Holdings (LEH,

hereafter) in LEH’s bankrupt event. The two underlying assets of the hypothetic call are

stocks of General Electric Corporation (GE, hereafter) and Bank of America Corporation

(BAC, hereafter). The data thus comprise the daily closing prices of LEH, BAC, and GE

stocks, as well as the debt and shares outstanding of LEH in its quarterly financial state-

ments. All data are listed on the website of Yahoo Finance. Since LEH was delisted from

the New York Stock Exchange on September 17, 2008, the data used in the real-time study

range from September 4, 2007 to September 16, 2008. In particular, we start the in-sample

estimation for LEH’s asset value V and asset volatility σV on September 4, 2007, and reserve

T days to conduct an out-of-sample hedging comparison for a T -day hypothetic call.

Before estimating the parameters in the equity model, the setting of TD displayed in

(14) should be clarified. Ronn and Verma (1986) and Duan (1994) apply the option pricing

theorem to price equity value E as in Equation (14), since the equity of a limited liability

company can be viewed as a call option. Based on the option pricing theorem, the value of

∆E defined in (16) stands for the probability that firm value VTD is greater than the debt at

time TD under the probability measure R. In practice, the settlement day of derivatives is

usually two days after its maturity. Since the real concern of investors should be the default

probability on settlement day, we set TD to be T + 2 days when estimating the value of ∆E
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and parameters in (14).

Exhibit 4 displays the historical prices of LEH stock. We observe that LEH’s stock price

dropped from $56.46 (September 4, 2007) to $0.3 (September 16, 2008). Moreover, there are

at least four price jumps around the time at which LEH went bankrupt. On September 9,

11, and 15 of 2008, LEH’s stock price dropped 45%, 42%, and 94%, respectively, whereas

it increased 43% on September 16, 2008. Exhibit 5 plots the two underlying stock prices,

BAC and GE, and shows that the stock prices of BAC are more volatile than that of GE in

mid-2008.

The following explains the operation of the proposed strategy in detail. For ease of

reference, denote the (T +1)th day before September 16, 2008 as time 0, the T th day before

September 16, 2008 as time 1, · · · , and September 16, 2008 as time T , where T is the time to

maturity of the hypothetical vulnerable option to be hedged. For an investor with a T -day

vulnerable maximum call, the ∆V strategy involves shorting κ shares of LEH stock at time 0,

rebalancing the hedged position in the following T days, and buying back all the short-sold

LEH stock at time T . In particular, let κt be the total LEH shares required to be short at

time t. The number of LEH shares sold to rebalance the hedged position at t is:

βt =


κ0, when t = 0,

κt − κt−1, when t = 1, 2, · · · , T − 1.

(20)

Incorporating the cost arising from buying the full short position of LEH stock back at the

end of the hedge, the cumulated cash inflow resulting from ∆V strategy is as follows:

CFT =
T−1∑
t=0

βtEte
r(T−t) − κT−1ET . (21)

Based on Assumption 2, the holder of a vulnerable option receives only the proportion

(1−α)VT/D of the nominal claim in the event of a credit loss. Accordingly, the total maturity

value received by an option holder who carries out ∆V strategy, MVT (∆V ), is:

MVT (∆V ) = (1− α)
VT
D

Max [Max(S1,T , S2,T )−K, 0] + CFT , (22)
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whereas the maturity value of a vulnerable option received by investors without hedging,

MVT , is:

MVT = (1− α)
VT
D

Max [Max(S1,T , S2,T )−K, 0] , (23)

where the time T value of LEH’s assets, VT , can be estimated by (19).

Exhibit 6 displays the real-time hedging performance of ∆V -neutral strategy for the vul-

nerable maximum calls with various times to maturity T and strike prices K. As mentioned

above, we estimate the asset value V and asset volatility σV with the data beginning on

September 4, 2007, and reserve T days to conduct an out-of-sample hedging comparison. It

implies that all hypothetic calls mature at the last day of our dataset, i.e., September 16,

2008. The is the reason why options with different maturities have the same maturity values

in our Exhibit 6.

As shown in Exhibit 6, the maturity value of a 10-day default-free call with a strike price

of $15 is $14.550. Investing the corresponding $15 10-day vulnerable call without hedging

for default risk receives only $11.200 in LEH’s bankrupt event, whereas the amount received

by an investor who takes ∆V strategy is $14.483, which is very close to the default-free value

$14.550. There are similar results observed in the hedging performance of 20-day and 30-day

calls. The holder of a $15 20-day vulnerable call receives $14.156 as long as the proposed

hedging strategy is adopted, while the hedging result of a $15 30-day vulnerable call is

$14.429. Both of the two values are very close to the maturity value of the corresponding

default-free option, i.e., $14.550, as well.

We also note that the characteristic of ∆V is very different when the option is at-the-

money. As mentioned in Exhibit 2, the rate of change in ∆V with respect to the maximum

price of the underlying stocks changes rapidly when the option is at-the-money, and thus the

hedging performance of strategies depending on ∆V may be poor for an at-the-money option.

This conjecture is clearly borne out in Exhibit 6. Recognizing that the maximum price of the
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two underlying stocks on September 16, 2008 is $29.55, the option with a strike price of $30

can be viewed as an at-the-money option. We observe that the hedging performance of ∆V

strategy is more satisfactory when the vulnerable option is in-the-money or out-of-the-money.

To further highlight the hedging scheme of ∆V strategy, the associated stock prices, total

shares sold, and the estimated V/D ratio of LEH from hedging the $25 20-day maximum

call are plotted in Exhibits 7-9. Exhibit 7 indicates that the maximum of the two underlying

stocks comes from BAC starting from August 20, 2008. We also observe that the stock price

of LEH starts tumbling dramatically after September 8, 2008. Exhibit 8 shows the associated

number of total shares sold, κt. Based on Equation (17), the value of κt is affected by the

values of ∆V and ∆E. The bigger the value of ∆V , the greater the value of κt. Oppositely,

the smaller the value of ∆E, the greater the value of κt. We also note that the impact of

LEH’s asset value, V , on the values of ∆E is positive, but its impacts on the value of ∆V

are negative, as shown in Exhibit 3, as long as the option investigated is not default-free.

Consequently, the total shares sold for hedging increase as the market value of LEH’s asset

drops. The phenomenon stands out very clearly in Exhibits 7 and 8. The number of shares

sold required by ∆V strategy is mainly dominated by the stock price of LEH, which is highly

correlated with the market value of LEH’s assets. Particularly, the number of shares sold

increases obviously once LEH’s stock price drops evidently, and vice versa.

We also note that the value of the vulnerable call, C, has a positive impact on the value

of ∆V , and thus total shares sold for hedging grow as the value of the vulnerable option

increases. This phenomenon is also borne out in Exhibits 7 and 8. The stock price of LEH is

observed to increase from $15.17 to $16.20 on September 5, 2008, however, the corresponding

number of shares sold for implementing ∆V strategy does not decrease. This is because the

maximum stock price, i.e., BAC, increases from $30.6 to $32.23, and results in both the call

price and the value of ∆V appreciating.
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Shortly before 1 a.m. Monday morning (New York time) on September 15, 2008, LEH

announced it would file for bankruptcy protection citing bank debt of $613 billion, $155 billion

in bond debt, and assets worth $639 billion. This implied that the V/D ratio proclaimed by

LEH was 83.20% before the opening of the New York Stock Exchange on September 15, 2008.

Exhibit 9 displays the estimated V/D ratio of LEH from hedging the $25 20-day maximum

call. As September 12, 2008 is the last trading day before September 15, 2008, we note that

the estimated V/D ratio for LEH is 81.42% on September 12, 2008, which is very close to

the announcement of LEH.

7 Conclusions

This paper develops a method for the change of probability measures when the component

processes of the multidimensional Brownian motion are correlated. We note that in order

to model the correlations between assets, many studies set the price process of the assets

underlying an n-asset derivative to be composed of a d-dimensional Brownian motion. Unlike

the setting in the literature, the method herein allows all Brownian motions to be correlated

and thus enables each price process to consist only of one-dimensional Brownian motion.

Since this setting for price dynamics has advantages for empirical calibration, it is expected

to facilitate additional empirical studies for the prices of multi-asset options.

We further apply the method to propose pricing formulae for vulnerable options on the

maximum or minimum of n underlying assets. In addition to vulnerable maximum options

and vulnerable minimum options, we note that other vulnerable path-independent options

on multiple assets can be valued easily by using this method. We also develop a delta-like

strategy to hedge the default risk of vulnerable multi-asset options based on the proposed

pricing formulae and investigate hedging effectiveness by applying the proposed strategy to

hedge the default risk induced by the bankruptcy of Lehman Brothers Holdings. The hedging
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performance is satisfactory.

One potential extension of the current paper is to incorporate the risk due to a change in

the volatility of the issuer’s asset, σV , into the hedging of credit risks. That will be left for

our future study.

Appendix

Proof of Lemma 1

Given that X = [x1, x2, · · · , xk]⊤ follows a k-dimensional multivariate standard normal

distribution, H = [h1, h2, · · · , hk] is F0-measurable, and

dR
dQ

= eHX
√
t− 1

2
HΓH⊤t,

the expectation of the random variable dR/dQ when event ψ occurs can be represented as:

EQ
[
eHX

√
t− 1

2
HΓH⊤t 1(ψ) | F0

]
=

∫ ∫
· · ·
∫
ψ

(2π)
−N
2 |Γ|

−1
2 e

−1
2
X⊤Γ−1X

(
eHX

√
t− 1

2
HΓH⊤t

)
dx1dx2 · · · dxk

=

∫ ∫
· · ·
∫
ψ

Z dx1dx2 · · · dxk, (A.1)

where

Z ≡ (2π)
−N
2 |Γ|

−1
2 e

−1
2
X⊤Γ−1X

(
eHX

√
t− 1

2
HΓH⊤t

)
.

Assume that V = [v1, v2, · · · , vk]⊤ and

vi = xi −
k∑
j=1

ρijhj
√
t, ∀ i = 1, 2, · · · , k,

the relationship between X and V can be written as:

X = V + ΓH⊤√t, (A.2)

or

X⊤ = V⊤ +HΓ⊤√t. (A.3)
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According to Equations (A.2) and (A.3), the term Z in (A.1) can be displayed as:

Z ≡ (2π)
−N
2 |Γ|

−1
2 e

−1
2
X⊤Γ−1XeHX

√
t− 1

2
HΓH⊤t

= (2π)−
N
2 |Γ|

−1
2 e−

1
2(V⊤+HΓ⊤√

t)Γ−1(V+ΓH⊤√
t)+H

√
t(V+ΓH⊤√

t)− 1
2
HΓH⊤t

= (2π)−
N
2 |Γ|

−1
2 e−

1
2
V⊤Γ−1V− 1

2
V⊤H⊤√

t− 1
2
HΓΓ−1V

√
t− 1

2
HΓΓ−1ΓH⊤t+HV

√
t+HΓH⊤t− 1

2
HΓH⊤t

= (2π)−
N
2 |Γ|

−1
2 e−

1
2
V⊤Γ−1V− 1

2
(HV)⊤

√
t− 1

2
HV

√
t− 1

2
HΓH⊤t+HV

√
t+HΓH⊤t− 1

2
HΓH⊤t

= (2π)−
N
2 |Γ|

−1
2 e

−1
2
V⊤Γ−1V. (A.4)

Based on the result in Equation (A.4), Equation (A.1) can be rewritten as:

EQ
[
eHX

√
t− 1

2
HΓH⊤t 1(ψ) | F0

]
=

∫ ∫
· · ·
∫
ψ

(2π)−
N
2 |Γ|

−1
2 e

−1
2
V⊤Γ−1Vdv1dv2 · · · dvk

= ER [1(ψ) | F0

]
.

The proof of Lemma 1 is complete.
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Exhibit 1   
Values of vulnerable two-asset maximum call options 

    Panel A：V D  =1 Panel B：α=0 
   

Default-free Value 
 α=0 α=0.5  α=1 V D =1.0 V D =1.2 V D =2.0 

T 0.0833   2.198  2.146 1.744  1.343 2.146 2.198 2.198 
 0.3333 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 
 0.5833   6.334  5.969 4.934  3.899 5.969 6.226 6.334 

1  0.2   3.996  3.794 3.051  2.308 3.794 3.959 3.996 
 0.3 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 
 0.4   5.397  5.178 4.327  3.477 5.178 5.358 5.397 

V  0.2   4.639  4.508 3.740  2.972 4.508 4.632 4.639 
 0.3 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 
 0.4   4.639  4.349 3.554  2.759 4.349 4.550 4.638 

K 30   13.257  12.552 9.970  7.387 12.552 13.126 13.257 
 40 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 
 50   0.766  0.737 0.629  0.520 0.737 0.760 0.766 

12  -0.5   5.732  5.495 4.546  3.596 5.495 5.694 5.732 
 0   5.274  5.041 4.142  3.242 5.041 5.233 5.274 
 0.5 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 

1V  -0.5   4.639  4.227 3.020  1.813 4.227 4.536 4.639 
 0   4.639  4.352 3.342  2.331 4.352 4.583 4.639 
 0.5 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 

2V  0 (Base Case)  4.639  4.429 3.638  2.847 4.429 4.601 4.639 
 0.5   4.639  4.529 3.968  3.407 4.529 4.628 4.639 

Note：The parameters used in the Base Case are given by: r = 0.04833, T = 0.3333, K = 40, 1 2 40S S  , 1 2 0.3V     , 0 5V  , 
* 5D D  , 0  , 12 1 0.5V   , and 2 0V  . The default-free option price is calculated by the formula proposed in Johnson 

(1987). 



Exhibit 2

The influence that comes from the maximum of the two underlying stocks,

S1, on the value of ∆V

Notes: The parameters are given by: r = 0.04833, T = 0.3333, K = 60, S2 = 40, σ1 = σ2 = σV =

0.3, V0 = 5, D = D∗ = 5, α = 0, ρ12 = ρ1V = 0.5, and ρ2V = 0. All parameters are identical to

those of the Base Case defined in Exhibit 1, except for the strike price and the value of S1.



Exhibit 3

The influence that comes from the value of XYZ’s assets on the value of

∆V

Notes: The parameters are given by: r = 0.04833, T = 0.3333, K = 40, S1 = S2 = 40, σ1 = σ2 =

σV = 0.3, D = D∗ = 5, α = 0, ρ12 = ρ1V = 0.5, and ρ2V = 0. All parameters are identical to

those of the Base Case defined in Exhibit 1, except for the asset value of XYZ, i.e., V0.



 
 
 
 
 
 

Exhibit 4   
The stock price of LEH ranging from September 4, 2007 to September 16, 2008 
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Exhibit 5   
The stock prices of the two underlying assets ranging from September 4, 2007 to 
September 16, 2008 
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Exhibit 6    
Hedging effectiveness of V -neutral hedging strategy 
   10-day vulnerable option 20-day vulnerable option 30-day vulnerable option 
   
Strike  

Maturity value 
from default-free 

 
Maturity value 
with V  hedging

Maturity value 
without hedging

Maturity value 
with V  hedging 

Maturity value 
without hedging

Maturity value 
with V  hedging

Maturity value 
without hedging 

15  14.550  14.483 11.200 14.156 11.086 14.429 11.020 
20   9.550   9.759  7.351  9.619  7.276  9.736  7.233 
25   4.550   5.034  3.502  5.079  3.467  5.040  3.446 
30   0.000   0.616  0.000  0.735  0.000  0.590  0.000 
35   0.000   0.038  0.000  0.057  0.000 - 0.034  0.000 

Note: (1) The data used in the real-time study range from September 4, 2007 to September 16, 2008. In particular, we start the in-sample estimation 
for the LEH asset value V and asset volatility V  on September 4, 2007, and reserve T days to conduct an out-of-sample hedging comparison for a 
T-day hypothetic call. Thus, all hypothetic calls mature on the last day of our dataset, i.e., September 16, 2008. (2) The maturity value without 
hedging is calculated by Equation (23), whereas the total maturity value received by the holder of a vulnerable option who carries out V  strategy 
is computed based on Equation (22). 
 



 
 
 
 
 
 

Exhibit 7   
The stock prices of LEH, BAC, and GE 
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Exhibit 8   
Shares sold for hedging the maximum call option 
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Exhibit 9   
The estimated V/D ratio of LEH 
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