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Abstract

The aim of this paper is to obtain the risk-neutral density of an underlying asset price as a

function of its option implied volatility smile. We derive a known closed form non-parametric

expression for the density and decompose it into a sum of lognormal and adjustment terms.

By analyzing this decomposition we also derive two no-arbitrage conditions on the volatility

smile. We then explain how to use the results. Our methodology is applied first to the pricing

of a portfolio of digital options in a fully smile-consistent way. It is then applied to the fitting

of a parametric distribution for log-return modelling, the Normal Inverse Gaussian.
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1 Introduction

The knowledge of the risk-neutral density of an asset price is of great interest for researchers
and market practitioners. It has applications such as option pricing and analysis of market
information. Following the seminal result of Breeden and Litzenberger in [7] (Breeden &
Litzenberger, 1978) the study of risk-neutral densities is the topic of an important literature.

The great majority of this literature details approaches where risk-neutral density is obtained
from option prices. See among others [19] (Jackwerth & Rubinstein, 1996) [2] (Äıt-Sahalia

& Lo, 1998) and [13] (Figlewski, 2010). See also [18] (Jackwerth, 2004) for a detailed review
of literature and methodologies. In [6] (Bliss & Panigirtzoglou, 2002) authors recommend
an intermediary step where prices are converted to implied volatility to be smoothed and then
converted back to prices for the density to be computed. [23] (Kermiche, 2009) uses this
approach to construct the evolution over time of the risk-neutral density implied in CAC40
options and performs a principal component analysis to study its behavior.

Our approach to compute risk-neutral density is much simpler because it involves only one
step as we consider implied volatility as the available market data for options. Monitoring an
options market through implied volatility can be seen as more convenient than doing it through
prices. A first reason is that implied volatility can be instantly compared across strikes, where
prices need to be adjusted for the underlying price before being compared. Another reason is
that, on some markets, options are negotiated in terms of implied volatility instead of price. For
example this convention is in use for over-the-counter currency options. See [24] (Lee, 2005)
who also advocates using implied volatility to represent options data.
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In this paper we propose a methodology to directly build a risk-neutral density from implied
volatility data. We take the Breeden-Litzenberger formula, see [7] (Breeden & Litzenberger,
1978), as starting point and derive a known result that can be seen as an implied volatility version
of it. This result has already been obtained in [17] (Jackwerth, 2000) and [8] (Brunner &
Hafner, 2003).

It is possible to obtain this implied volatility version because there is a one to one relation
between option price and implied volatility. This one to one relation is Black-Scholes formula, see
[5] (Black & Scholes, 1973), or Black’s formula, see [4] (Black, 1976), both seen as functions
of the volatility parameter σ (other parameters and variables held constant).

The paper is organized as follows. In section 2 we first explain the financial setup. We then
propose an intuitive and closed form decomposition of the underlying asset price’s risk-neutral
density as a function of the volatility smile and make comments on its terms. Finally, we examine
how to use the formula and provide a numerical example. In section 3 we apply our method to
the pricing of a portfolio of digital options. We then study how to fit a parametric distribution
for log returns, the Normal Inverse Gaussian (NIG), directly to the volatility smile using the
formula and avoiding the computation of option prices. In section 4 we conclude.

2 Implied density of an underlying asset price

2.1 Financial framework

We consider a financial market in continuous time where an asset S is traded. We consider that
S pays and instantaneous dividend rate. We denote St and δt its time t price and dividend rate.
European vanilla options on S are also traded. A strike K, maturity T , vanilla option pays at
time T

CT = (ST −K)
+
for a Call option

PT = (K − ST )
+
for a Put option

We consider that a money market and zero-coupon bonds are available for trading. We
denote n(t) the time t value of the money market account (with n(0) = 1) and B(t, T ) the time
t price of the ZC bond maturing at time T . The money market account is an asset earning the
instantaneous risk-free rate, which is assumed to follow a stochastic process rt (t ≥ 0):

n(t) = exp

(
∫ t

0

rsds

)

(2.1)

As we suppose that our market is free of arbitrage, there exists a risk-neutral probability Q

equivalent to the true (historical) probability P. This probability is associated with (n(t), t ≥ 0)
as numéraire. Asset prices can be written as expectations, under Q, of their discounted payoffs.

B(0, T ) = EQ

[

1

n(T )

]

= EQ

[

exp

(

−
∫ T

0

rsds

)]

(2.2)

C∗
0 = EQ

[

CT

n(T )

]

= EQ

[

exp

(

−
∫ T

0

rsds

)

(ST −K)
+

]

(2.3)

P ∗
0 = EQ

[

PT

n(T )

]

= EQ

[

exp

(

−
∫ T

0

rsds

)

(K − ST )
+

]

(2.4)

When interest rates are stochastic it is more convenient to work with the forward-neutral
probability QT associated with T , the maturity of the European options. QT is the probability
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associated with (B(t, T ), t ≥ 0) as numraire:

dQT

dQ
=

B(T, T )

B(0, T )

n(0)

n(T )
=

1

B(0, T )n(T )
(2.5)

C∗
0 = B(0, T )EQT [CT ] = B(0, T )EQT

[

(ST −K)
+
]

(2.6)

P ∗
0 = B(0, T )EQT [PT ] = B(0, T )EQT

[

(K − ST )
+
]

(2.7)

For details on this change of probability, see chap. 11 and 19 in [27] (Portait & Poncet,
2010). In the sequel, we work with undiscounted option prices, defined as

C0 =
C∗

0

B(0, T )
= EQT

[

(ST −K)
+
]

P0 =
P ∗
0

B(0, T )
= EQT

[

(K − ST )
+
]

(2.8)

2.2 Expression and decomposition of the implied density

Considering a vanilla option price as a function of strike and maturity, the Breeden-Litzenberger
formula links φT , the risk-neutral density of ST , with a second order partial derivative of this
function. For a fixed T > 0, and ∀k ≥ 0

φT (k) =
1

B(0, T )

∂2C∗

∂K2
(k, T ) =

1

B(0, T )

∂2P ∗

∂K2
(k, T ) (2.9)

This formula is key to obtain Dupire’s equation for local volatility models, see [11] (Dupire,
1993) or to reveal anticipations of market participants embedded in option prices, see [20]
(Jondeau & Rockinger, 2000). With undiscounted option prices, C and P , the formula
simplifies to

φT (k) =
∂2C

∂K2
(k, T ) =

∂2P

∂K2
(k, T ) (2.10)

In our stochastic interest rates setting φT is the density of ST under QT the T -forward
neutral probability. When rates are deterministic, the forward and risk-neutral probabilities are
identical, that is QT = Q ∀T ≥ 0.

Whether interest rates are deterministic or not does not matter here. Breeden-Litzenberger
formula gives the underlying density under the relevant pricing measure. So that the price of a
European claim v paying h(ST ) at time T can always be written as

v∗0 = B(0, T )

∫ +∞

0

h(x)φT (x)dx = B(0, T )

∫ +∞

0

h(x)
∂2C

∂K2
(x, T ) dx (2.11)

A maturity T , strike K, vanilla option on S can be seen as an option on FT , the forward
contract written on S and expiring at time T . As ST = FT

T , we have

CT = (ST −K)
+
=
(

FT
T −K

)+
PT = (K − ST )

+
=
(

K − FT
T

)+

The time t forward price of S is (with t ∈ [0, T ])

FT
t =

St exp
(

−
∫ T

t
δudu

)

B(t, T )
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It is a martingale under QT .

Under the assumption of a constant volatility geometric Brownian motion diffusion for F ,
Black’s formula holds, see [4] (Black, 1976). The undiscounted call price given by Black’s
formula at time t = 0 is

CB (F, σ,K, T ) = FN (d1)−KN (d0) (2.12)

d0 (F, σ,K, T ) =
ln F

K

σ
√
T

− 1

2
σ
√
T d1 = d0 + σ

√
T

where N is the cumulative distribution function of a standard Gaussian:

N : x 7−→ N (x) =
1√
2π

∫ x

−∞

exp

(

− t2

2

)

dt (2.13)

This function is not known in closed form but fast and accurate approximations are available,
see for example Chap. 26 in [1] (Abramovitz & Stegun, 1972).

Black’s formula seen as a function of the volatility (σ 7−→ CB (F, σ,K, T )) is strictly increas-
ing. Hence from any observed call price it is possible to numerically back out a unique implied
volatility parameter by inverting this function. Observed option prices are market prices or
model outputs.

Practitioners represent vanilla options market data as implied volatility because it is easier
to interpret and to monitor. For a given maturity, implied volatility as a function of strike is not
constant and often smile shaped or skewed. It is usually called volatility smile. Although this
fact invalidates the assumption behind Black’s formula, it is still possible to use it to express
observed prices with a strike dependent volatility parameter

Cobs (K,T ) = CB (F, σ (K,T ) ,K, T ) (2.14)

In the right hand side of (2.14) the strike dependence is twofold. Plugging this representation
of observed prices into formula (2.10) should allow us to obtain the risk-neutral density of ST

as a function of the volatility smile. The second order derivative of C with respect to K will be
expressed with partial derivatives of Black’s formula with respect to K and σ. Applying twice
the chain rule for partial derivatives leads to

∂C

∂K
=

∂CB

∂K
+

∂CB

∂σ

∂σ

∂K
(2.15)

φT =
∂2C

∂K2
=

∂2CB

∂K2
+ 2

∂2CB

∂σ∂K

∂σ

∂K
+

∂2CB

∂σ2

(

∂σ

∂K

)2

+
∂CB

∂σ

∂2σ

∂K2
(2.16)

Partial derivatives of CB involved in (2.16) are known in closed form. They are similar to the
Greeks in Black’s model: Gamma and Vanna with respect to strike, Vomma (also called Volga)
and Vega.

∂2CB

∂K2
=

n (d0)

Kσ
√
T

∂2CB

∂σ∂K
=

n (d0) d1
σ

(2.17)

∂2CB

∂σ2
=

d0d1

σ
n (d1)F

√
T

∂CB

∂σ
= n (d1)F

√
T (2.18)

where n = ∂N
∂x

is the probability density function of a standard Gaussian.

n : x 7−→ n(x) =
1√
2π

exp

(

−x2

2

)
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See Appendix A.1 for derivation details.

As K 7−→ σ(K,T ) is the smile function, partial derivatives of σ involved in (2.16) make
it dependent of the volatility smile, unsurprisingly. Graphically they correspond to the smile
slope, convexity and squared slope. It is interesting to remark that only the first two derivatives
of the smile are needed to express the risk-neutral density. We define now G = G(K,T ) and
H = H(K,T ) as the smile slope and convexity (with respect to strike) at point (K,T ).

∂σ

∂K
= G

∂2σ

∂K2
= H (2.19)

Substituting (2.17), (2.18) and (2.19) in (2.16) we get the density as a closed form non-
parametric function of the implied volatility smile

φT =
n (d0)

Kσ
√
T

+ 2G
n (d0) d1

σ
+

(

G2 d0d1

σ
+H

)

n (d1)F
√
T (2.20)

This formula is also derived in [17] (Jackwerth, 2000) where it is used to obtain risk aversion
functions, and in [8] (Brunner & Hafner, 2003) where it is used in the context of a no-arbitrage
analysis of the volatility smile.

We now rearrange the above formula to propose a decomposition of φT as a lognormal density
term f plus two adjustment terms A1 and A2.

φT (k) = f(k) +A1(k) +A2(k) k > 0 (2.21)

Where f is a probability density function, which corresponds to the lognormal density of ST

in Black’s model with a volatility parameter equal to σ0 = σ(F, T ), the ATM implied volatility
(an option is said At The Money if struck at F ). A1 is a level adjustment term, accounting
for the difference between ATM implied volatility σ0 and its value at strike. And A2 is also an
adjustment term, accounting for the slope and convexity of the smile. These terms are written

f(k) = fLN

(

k; lnF − 1

2
σ2
0T, σ

2
0T

)

A1(k) =
1

k
√
T

(

1

σ(k)
n (d0(F, σ(k), k, T ))−

1

σ0
n (d0(F, σ0, k, T ))

)

A2(k) = 2G(k)
n (d0) d1
σ(k)

+

(

G(k)2
d0d1

σ(k)
+H(k)

)

n (d1)F
√
T

The function x 7−→ fLN

(

x;m, s2
)

is the density function of a lognormal distribution with
parameters m and s2. That is, ∀x > 0

fLN

(

x;m, s2
)

=
1

xs
√
2π

exp

(

−1

2

(

lnx−m

s

)2
)

Option traders usually analyze the implied volatility smile in three steps, examining well
known trading strategies. The first step is to check the ATM level, kept as a reference. In terms
of options trading it usually corresponds to an ATM straddle1 strategy. The second is to compare

1A long ATM Straddle involves a call and a put, both long and struck at F .
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the implied volatility at a specified strike K with the ATM reference. It corresponds to a call
spread2 (or put spread) strategy with one option struck at F and the other at K. The third step
is to analyze the overall shape of the volatility smile, its slope and convexity. That is done with
a risk reversal strategy3 for the slope and with a butterfly4 for the convexity.

The decomposition (2.21) of the density as a closed form function of the smile is sound and
makes sense financially because it is built exactly on the same three steps.

Pursuing further the analysis of (2.21) we derive no-arbitrage conditions on adjustment terms.
For φT to be a proper probability density function it should integrate to 1 on R+ and be positive
everywhere. That is

∫ +∞

0

φT (k)dk = 1

φT (k) ≥ 0∀k ≥ 0

This constraint on the density function is used in [8] (Brunner & Hafner, 2003). See also
[24] (Lee, 2005) who provides no-arbitrage bounds on the slope of the volatility smile.

As f already is a probability density function, it verifies

∫ +∞

0

f(k)dk = 1

f(k) ≥ 0 ∀k ≥ 0

Hence we bring out two no-arbitrage conditions on the volatility smile. The first one is global.
The second one is local and holds at any particular point.

∫ +∞

0

(A1(k) +A2(k)) dk = 0 (2.22)

A1(k) +A2(k) ≥ −f(k) ∀k ≥ 0 (2.23)

The particularity of the above two results is to link at the same time the level, slope and
convexity of the volatility smile.

2.3 Working with the formula

To work with the risk-neutral density formula (2.21) one needs implied volatility values at any
positive strike. Market data for traded options is only available at discrete strike points. The
implied volatility smile corresponding to real market data is a set of points instead of a continuous
curve. So we need an interpolation/extrapolation engine for the implied volatility : that is a
technique to produce a continuous smile, given a discrete market data set.

We consider three different techniques, which correspond to different approaches to smile gen-
eration. Many techniques are acceptable for that purpose. We choose to present and implement
three classical techniques. The first smile generation technique we consider is a parametrization
based on the implied volatility formula derived in stochastic volatility SABR model, introduced
by [16] (Hagan et al., 2002). We take the version of the formula proposed in [26] (Obloj,
2008) because it has less occurrence of arbitrage at very low strikes than Hagan’s version. This
parametrization works with 3 parameters (α0, ρ, v) plus a fixed fourth parameter β.

2A Call Spread involves two calls, a long and a short, with different strikes.
3A Risk Reversal involves a long call, struck higher than F , and a short put, struck lower than F .
4A long Butterfly involves two long calls, struck higher and lower than F , and two short calls, struck at F .
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Under SABR parametrization, implied volatility is written, for K 6= F

σSABR(K,F ) =
v ln

(

F
K

)

ln

(√
1−2ρz+z2+z−ρ

1−ρ

)

(

1 + T

(

1

24

(1− β)
2
α2
0

(FK)(1−β)
+

1

4

ρβα0v

(FK)
1

2
(1−β)

+
2− 3ρ2

24
v2

))

(2.24)
and for K = F

σSABR(F, F ) =
α0

F 1−β

(

1 + T

(

1

24

(1− β)
2
α2
0

F 2(1−β)
+

1

4

ρβα0v

F (1−β)
+

2− 3ρ2

24
v2

))

where

z =
v

α0

F (1−β) −K(1−β)

1− β

The second technique we consider is the SVI parametrization. It is an on purpose(ad hoc)
functional form for the smile proposed in [15] (Gatheral, 2004). SVI stands for Stochas-
tic Volatility Inspired. This parametrization is arbitrage free and works with 5 parameters
(a, b, v, ρ,m). Under SVI parametrization, implied volatility is written

σSV I(K,F ) =
1√
T

√

√

√

√a+ b

(

ρ

(

ln
K

F
−m

)

+

√

(

ln
K

F
−m2 + v2

)

)

(2.25)

SABR and SVI parametrizations need to be calibrated to the available market smile points. It
is done by minimizing the sum of squared errors on volatility values using a deterministic, gradient
based, optimization routine (Levenberg-Marquardt algorithm). We consider that market data
is available for a number N of strikes and we denote σM (Ki) the corresponding set of volatility
values (i = 1, ..., N) .

Calibration is done by solving the following minimization programs

P1 : min
(α,ρ,v)

N
∑

i=1

(σSABR(Ki)− σM (Ki))
2

P2 : min
(a,b,v,ρ,m)

N
∑

i=1

(σSV I(Ki)− σM (Ki))
2

The last technique we consider is a non-parametric regression, where the smile is built us-
ing the Nadaraya-Watson Kernel estimator (NWK). This technique is commonly used in non-
parametric statistics. It has been presented and detailed in the context of implied distributions
by [2] (Äıt-Sahalia & Lo, 1998) and it used for example in [23] (Kermiche, 2009). Implied
volatility at strike K is written as a weighted average of the available data points

σNWK(K) =

∑N
i=1 Z

(

K−Ki

h

)

σM (Ki)
∑N

i=1 Z
(

K−Ki

h

)
(2.26)

where Z is a kernel function (positive, symmetric and integrating to 1) and h is the bandwidth
parameter controlling for smoothness of the obtained function.

We choose to work with the classical Gaussian kernel, so that Z actually is the Gaussian
probability density function. The value of the smoothing parameter h affects the smoothness
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of the obtained curve (higher value for more smoothness). It affects as well the data fit quality
(lower value for better fit), so that the choice of a value for h boils down to a trade-off between
both. See [2] (Äıt-Sahalia & Lo, 1998) for details on how to compute h.

The kernel regression method needs no calibration, as the volatility at any strike is obtained
directly as a weighted average of market data.

We now consider a numerical illustration of the proposed method. The underlying is the DJ
Eurostoxx 50, it is an equity index composed of 50 large eurozone companies. The details of
market data are summarized in table 1 below. In the sequel, forward value is normalized at 100.

Underlying SX5E Index
Date 20-12-2007
St 4315
T 1 year
FT
t 4350

B(t, T ) 0.9547
N 13

Table 1: Market data details

Figure 1 shows implied volatility market data points and the smile curves produced with
fitted smile generation engines. It can be noted that between data points smile curves are close
to each other, but away from data points differences are noticeable and due to the different
behaviors of parametrization methods.

Figure 2 shows the risk-neutral density obtained using the proposed method (with the different
smile engines). Lognormal density corresponding to Black’s model is plotted as a reference.
Obtained densities are smooth and close to each other, with differences near their maxima.
They are clearly skewed to the left compared to the lognormal one.

Figure 3 shows the total adjustment term A1 + A2 and the no-arbitrage bound correspond-
ing to the local condition (2.23). The three plotted curves are above the no-arbitrage bound,
illustrating that the condition is met.

Figures 4 and 5 show the details of adjustment terms A1 and A2 respectively. Curves on
both figures are smooth and it can be noted that the order of magnitude of the two adjustment
terms is the same.
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Figure 1: SX5E Implied Volatility Smile (T = 1 year, F = 100, N = 13)
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Figure 2: Risk-Neutral Density
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Figure 3: Total Adjustement Term
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Figure 5: Shape Adjustment Term

3 Applications

Our approach to expressing the risk-neutral density, detailed in sections 2 and 2.3, is now applied
to concrete cases. The first case we present is the pricing of a portfolio of digital options on S

in a fast and fully smile-consistent way. In the second we model the log-return of S using a
parametric distribution, the Normal Inverse Gaussian, and fit it to the non-parametric risk-
neutral distribution obtained from the volatility smile.

3.1 Pricing of digital options

A European, maturity T , digital call (put) option is an option paying 1 at time T if ST is above
(below) K, its strike, and 0 otherwise.

DCT = {ST≥K} for a digital call
DPT = {ST≤K} for a digital put

Digital options are known to be sensitive not only to the implied volatility level at strike but
also to the shape of the volatility smile, see Chap. 17 in [28] (Taleb, 1997). Using a smiled
Black model to price it (a formula with a strike dependent volatility) is not appropriate because
the whole shape of the smile is not accounted for. The undiscounted price of a digital call option
DC0 is obtained as

DC∗
0 = B(0, T )EQT

[

{ST≥K}

]

= B(0, T )QT ({ST ≥ K}) (3.1)

DC0 = QT ({ST ≥ K}) =
∫ +∞

K

φT (k)dk (3.2)

It can also be written directly using (2.11) with h(ST ) = {ST≥K}

DC0 =

∫ +∞

0
{k≥K}φT (k)dk =

∫ +∞

K

φT (k)dk
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Our method is particularly suitable for handling large portfolios of digital options because it
allows for a systematic pricing, consistent with the full smile. To obtain digital option prices it
is necessary to compute the integral in (3.2). A numerical quadrature method is needed because
φT , while known, has no parametric form. In our numerical implementation we use a Gauss-
Kronrod adaptative quadrature method. This method is appropriate because it is robust and
allows for a control of error.

Figure 6 below shows the undiscounted prices of digital calls on S. Results obtained with the 3
different smile interpolation techniques are plotted. Prices corresponding to Black’s model (with
volatility input equals to ATM value) are also shown as a reference. Market data is identical as
in Part 2.3.

As expected, prices are substantially different from prices obtained with Black’s model, even
for the ATM struck option, because of the smile shape. Error made using Black’s price is not
negligible, it is positive or negative depending on the option’s strike.

Curves obtained are close to each other illustrating the stability across strikes of our method
to price digital options.

To plot figure 6, digital calls were priced (2000 different strikes) with 3 smile interpolation
methods: the computation is done in less than 20 seconds with a Matlab program on a personal
computer.
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Figure 6: Undiscounted prices of digital calls (T = 1 year, F = 100)

For this application, it is interesting to investigate the sensitivity of our method and the
risk of error associated with the choice of a smile interpolation technique. As implied volatility
market data is discrete in strike, there is uncertainty on the interpolation technique to be used,
even after the available parametrizations are calibrated.

Due to this uncertainty, the choice of a technique among the available ones, by itself, intro-
duces model risk in our proposed method to price digital options.

The different aspects of model risk in the area of derivatives pricing were introduced by [10]
(Derman, 1996). To analyze this risk, we work under the theoretical framework built in [9]
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(Cont, 2006). In this approach model risk is measured as the difference between price bounds
obtained when varying the pricing model over a predefined set.

Our set of models, M, is composed of our three available parametrizations of the volatility
smile, namely SABR, SVI and Nadaraya-Watson Kernel (NWK).

M = {SABR,SV I,NWK}

Upper and lower bounds for the undiscounted price of strike K digital call are respectively
defined as

π∗(K) = max
M∈M

QM
T ({ST ≥ K}) π∗(K) = min

M∈M
QM

T ({ST ≥ K})

where the exponent over QT means the model M ∈ M has been chosen to compute the
probability. In this set-up, the model risk measure for strike K digital call is written

µ(K) = π∗(K)− π∗(K)

Defined that way, model risk can be interpreted as the maximum error made on the price by
picking the wrong model out of the set.

Table 2 below gathers prices and model risk results for digital calls struck in, at and out of
the money. For a given strike, the model risk figure is, by construction, homogeneous with the
prices that are undiscounted and expressed in cents of monetary unit.

Strike 60 80 100 120 140
SABR 95.57 81.47 51.48 18.73 3.15
SVI 95.31 81.35 52.17 18.67 2.87
NWK 95.08 81.05 52.41 18.6 3.08
π∗ − π∗ 0.49 0.42 0.93 0.14 0.28

Table 2: Model risk on prices of digital calls (%)

Table 2 illustrates that the method is stable but sensitive to the parametrization choice as
measured by model risk. It advocates for a careful choice, if any, of the interpolation technique.

As we examine further the results in table 2, model risk appears to be larger for the digital
call struck at the money. It can also be noted that pricing with the SABR parametrization
always leads to a pricing bound (upper or lower depending on the strike). This last remark does
not favor the choice of this technique.

3.2 Modelling of log-return with a parametric distribution

In this second application we model XT , the time T log-return of S defined as

XT = ln

(

ST

S0

)

(3.3)

We first use the results obtained in Part 2 to get a non-parametric density for the log-
return. We then introduce the Normal Inverse Gaussian distribution (NIG hereafter) to model
the distribution of XT .

Considering that φT , the risk-neutral density of ST , is known and given by (2.21), it is possible
to express fnp the non-parametric density of XT as

13



fnp(x) = S0e
xφT (S0e

x) x ∈ R (3.4)

See Appendix A.2 for a proof.

This approach to obtain the risk-neutral density of log-return from the risk-neutral density of
asset price is also used in [23] (Kermiche, 2009) and [13] (Figlewski, 2010). Figure 7 presents
fnp graphs for different smile construction techniques. Density obtained with Black’s model is
also plotted as a reference, it is a Gaussian density.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

f np
(x

)

 

 

Black (with ATM vol)
SABR
SVI
NWK

Figure 7: Non-parametric density of log-return

Table 3 presents the values of the first four moments1 of XT , computed using the method
presented in Appendix A.3 and with the non-parametric density fnp. Moments of XT in Black’s
model are also computed to provide a check on the numerical quadrature method.

Mean Variance Skewness Kurtosis
SABR -0.0289 0.0632 -1.2086 6.7146
SVI -0.029 0.0633 -1.1421 5.5395
NWK -0.0291 0.0632 -1.0135 4.5845
BS -0.0255 0.051 0 3

Table 3: Moments of XT numerically computed with non-parametric density

To model XT we now use the NIG distribution. It is parametric and we use fnp to determine
its parameter set θ = (α, β, µ, δ).

The NIG distribution was introduced in [3] (Barndorff-Nielsen, 1997). It allows for the
modelling of fat tails, skewness and kurtosis. For applications of the NIG distribution see [21]
(Kalemanova, Schmid & Werner, 2007) where authors use it in the context of CDO2 pricing.

1For a definition of Mean, Variance, Skewness and Kurtosis see Appendix A.3.
2A CDO (Collateralized Debt Obligation) is a multi-name credit derivative.
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See also [12] (Eriksson,Ghysels & Wang, 2009) where it is applied to the modelling of the
risk-neutral density of an underlying asset price. For details on its properties and implementation
see [22] (Kalemanova & Werner, 2006).

If we suppose the distribution of XT under QT to be a NIG, its density fθ is

fθ(x) =
δα exp(δγ + β(x− µ))

π
√

δ2 + (x− µ)2
K1

(

α
√

δ2 + (x− µ)2
)

x ∈ R (3.5)

γ =
√

α2 − β2 and K1 is the second kind modified Bessel function of order 1, see Chap. 9 in
[1] (Abramovitz & Stegun, 1972).

We want to fit the NIG distribution of XT , that is the parameter vector θ, according to
the volatility smile considered to be the available market data. It can be done by matching
risk-neutral moments, computed numerically using fnp. This method takes advantage of the
relationship between moments and parameters of the NIG distribution. It is also used, for
example, in [12] (Eriksson,Ghysels & Wang, 2009).

α β µ δ

SABR 7.1514 -3.7538 0.1431 0.2789
SVI 16.8487 -12.419 0.3301 0.3292
NWK 12.6512 -8.0654 0.2732 0.3654

Table 4: NIG parameters (moment matching method)

The results in Table 4 appear to depend on the smile generation technique. This is because
the computation of moments is rather sensitive to it. In particular the kurtosis is significantly
higher for the SABR parametrization (see Table 3).

Another approach to fit the NIG parameters is to minimize the distance between the distri-
butions, that is the distance between fθ and fnp seen as elements of the set of probability density
functions, with fnp fixed and considered to be the true distribution. This method accounts for
the whole distribution but involves an optimization step.

To achieve the fitting we consider three different distance criteria :

the Hellinger distance

DH (fθ, fnp) =

√

1

2

∫ +∞

−∞

(

√

fθ(x)−
√

fnp(x)

)2

dx (3.6)

the L2-norm

L2 (fθ, fnp) =

√

∫ +∞

−∞

(fθ(x)− fnp(x))
2
dx (3.7)

the Relative Entropy (Kullback-Leibler divergence)

DKL (fnp||fθ) =
∫ +∞

−∞

fnp(x) ln

(

fnp(x)

fθ(x)

)

dx (3.8)

It can be noted that DH and L2 are proper distances. DH lies within [0, 1] and L2 is a
member of the Lp − norms family.

The Kullback-Leibler divergenceDKL has been introduced in information theory. DKL(F ||G)
quantifies the additional information needed to describe a reference model F , when a model G
is given. It is used in probability and statistics as a non-symmetric measure of dissimilarity
between distributions.
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The optimization programs to solve are

P1 : min
θ=(α,β,µ,δ)

DH (fθ, fnp) P2 : min
θ=(α,β,µ,δ)

L2 (fθ, fnp) P3 : min
θ=(α,β,µ,δ)

DKL (fnp||fθ)

These are non linear minimization problems for a multivariate and real valued objective
function, solved with a downhill simplex algorithm. Values shown in Table 4, obtained by
moment matching, are used as seed to start the algorithm. Although it makes sense to use this
seed, the algorithm is not sensitive to it.

Table 5 shows the distance values associated to the NIG distributions with parameters used
as seed of the algorithm. Tables 6, 7 and 8 show the NIG parameters obtained after the mini-
mization, for different distance criteria and smile interpolation techniques.

H L2 KL
SABR 0.0424 0.0891 0.0063
SVI 0.0042 0.0055 0.0001
KS 0.0247 0.0495 0.0023

Table 5: Distance between non-parametric density and NIG density (parameters in Table 4)

α β µ δ

H 16.4145 -11.7119 0.3293 0.3516
L2 17.278 -12.1172 0.3438 0.3758
KL 16.0541 -11.4116 0.324 0.3493

Table 6: Fitted NIG parameters for SABR parametrization

α β µ δ

H 15.2555 -10.9607 0.3074 0.3256
L2 15.8999 -11.6095 0.3157 0.3231
KL 15.2107 -10.92 0.3068 0.3256

Table 7: Fitted NIG parameters for SVI parametrization

α β µ δ

H 15.5525 -11.0935 0.316 0.3385
L2 11.4192 -7.834 0.2524 0.3023
KL 14.9733 -10.6426 0.3075 0.3332

Table 8: Fitted NIG parameters for NWK technique

Solving the distance minimization problem is fast. To obtain Tables 6, 7 and 8 takes 20
seconds. All computations are done with a Matlab program on a personal computer.

Figure 8 shows the risk-neutral NIG densities of log-return obtained after minimizing the
Kullback-Leibler divergence for the different smile generation techniques. Local differences ob-
served near their maxima illustrate the sensitivity of the results to the choice of the smile tech-
nique. Curves are globally similar to each other which confirm the stability of our approach.
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Figure 8: Fitted NIG density of log-return (relative entropy criterion)

4 Conclusion

We have proposed in this paper an exact expression of an underlying asset price risk-neutral
density as a function of the volatility smile. The proposed expression is a decomposition of the
density as a lognormal density, corresponding to Black’s model (fitted ATM), plus two adjustment
terms accounting for smile level and shape. In the way we have also obtained two no-arbitrage
conditions concerning the volatility smile.

The implementation steps of our approach have been detailed and numerical results have been
provided in the context of two practical applications. The first one was the pricing of digital
options for which model risk has been investigated and the second was the fitting of a NIG
distribution for log-return modelling. The proposed method proves to be simple to implement
and to perform well on real market data. It turns out to be stable but sensitive to the choice of
a smile interpolation technique.

Our methodology to build risk-neutral density appears to be suitable for industrial as well
as research purposes. For example, a risk management department can use it to control the
valuation of a trading portfolio of European derivatives. It can also be used to obtain marginal
distributions when modelling the joint distribution of several underlying assets.
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A Appendix

A.1 Proof of 2.17 and 2.18

First recall three usefull identities for greeks calculation

∂d1

∂K
=

∂d0

∂K

∂d1

∂σ
=

∂d0

∂σ
+
√
T Fn (d1) = Kn (d0)

We then obtain

∂CB

∂K
= F

∂N
∂d1

∂d1

∂K
−K

∂N
∂d0

∂d0

∂K
−N (d0) = −N (d0)

∂CB

∂σ
= F

∂N
∂d1

∂d1

∂σ
−K

∂N
∂d0

∂d0

∂σ
= (Fn (d1)−Kn (d0))

∂d0

∂σ
+ Fn (d1)

√
T = n (d1)F

√
T

∂2CB

∂K2
= −∂N

∂d0

∂d0

∂K
=

n (d0)

Kσ
√
T

∂2CB

∂σ∂K
= −∂N

∂d0

∂d0

∂σ
= −n (d0)

(

− 1

σ2

ln F
K√
T

− 1

2

√
T

)

=
n (d0) d1

σ

∂2CB

∂σ2
=

∂n

∂d1

∂d1

∂σ
F
√
T =

(

1√
2π

(−d1) exp

(

−d21
2

))

(

− 1

σ2

ln F
K√
T

+
1

2

√
T

)

F
√
T

=
d0d1

σ
n (d1)F

√
T

A.2 Expression of the log-return density

Let g be a monotone and differentiable function and X a random variable with density fX . Let
Y be the random variable defined as Y = g(X). Its density fY can be expressed as

fY : y 7−→ fY (y) =

∣

∣

∣

∣

∂

∂y
g−1(y)

∣

∣

∣

∣

fX
(

g−1(y)
)
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For details, see Chap. 15 in [14] (Foata & Fuchs, 2003).

To obtain (3.4), all you need to do is to apply the above result with XT seen as a transfor-
mation of ST . That is

XT = g(ST )

with

g(x) = ln

(

x

S0

)

x > 0

g−1(y) = S0e
y y ∈ R

∂

∂y
g−1(y) = S0e

y y ∈ R

so that
fnp(y) = |S0e

y|φT (S0e
y) = S0e

yφT (S0e
y) y ∈ R

A.3 Computation of Moments

Considering a random variable X with fX its density function. Mean, Variance, Skewness and
Kurtosis the first four moments are defined, when they exist, as (respectively)

m = E [ X] v = E

[

(X −m)
2
]

s = E

[

(

X −m√
v

)3
]

k = E

[

(

X −m√
v

)4
]

If X is Gaussian, s = 0 and k = 3. Those values are considered as references when analyzing
moments of a distribution.

The computation of (m, v, s, k) relies on the numerical computation of the following integral
for k = 1, 2, 3, 4

Ik = E
[

Xk
]

=

∫ +∞

0

xkfX(x)dx

Once the Ik are computed for k = 1, 2, 3, 4, moment values are recovered sequencially using
the following identities

m = I1

v = I2 −m2

s = v−
3

2

(

I3 − 3mv −m3
)

k = v−2
(

I4 − 4msv
3

2 − 6m2v −m4
)
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Proof.

v = E

[

(X −m)
2
]

= E
[

X2 − 2Xm+m2
]

= I2 −m2

s = E

[

(

X −m√
v

)3
]

= v−
3

2E
[

X3 − 3X2m+ 3Xm2 −m3
]

= v−
3

2

(

I3 − 3m
(

v +m2
)

+ 2m3
)

= v−
3

2

(

I3 − 3mv −m3
)

k = E

[

(

X −m√
v

)4
]

= v−2E
[

X4 − 4X3m+ 6X2m2 − 4Xm3 +m4
]

= v−2
(

I4 − 4m
(

sv
3

2 + 3mv +m3
)

+ 6m2
(

v +m2
)

− 3m4
)

= v−2
(

I4 − 4msv
3

2 − 6m2v −m4
)
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