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Abstract. Corrado and Zivney (1992) have presented a sign test, which

provides well-speci�ed inferences in event studies. However, the sign test is

derived only for a one-day event window. This paper examines a new sign

test (SIGN-GSAR-T), which is derived by developing the existing sign test

for testing in addition to one-day abnormal returns also cumulative abnor-

mal returns (CARs). The new test statistic is developed by adopting the

procedure of generalized standardized abnormal returns (GSARs) presented

by Kolari and Pynnönen (2010b). Simulations with real returns show that

the statistic SIGN-GSAR-T has competitive empirical power properties and

is robust against event-induced volatility. Moreover, if the event-dates are

clustered, the test statistic SIGN-GSAR-T outperforms both the examined

parametric and nonparametric test statistics.
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1. Introduction

Researchers use event study methods to measure stock price reactions to

events and many event studies rely on parametric test statistics. Standard-

ized parametric event study tests presented by Patell (1976) and Boehmer,

Musumeci and Poulsen (BMP) (1991) have been more popular than conven-

tional nonstandardized tests in testing abnormal security price performance,

because of their better power properties. Harrington and Shrider (2007) have

argued that, in short-horizon testing of mean abnormal returns, tests that are

robust against cross-sectional variation in the true abnormal return should

always be used. They have found that the BMP test statistic is a good

candidate for a robust parametric test in conventional event studies.1 Al-

though many event studies rely on parametric test statistics, a disadvantage

of parametric statistics is that they embody detailed assumptions about the

probability distribution of returns. Nonparametric statistics do not usually

require as stringent assumptions about return distributions as parametric

tests. [e.g. Cowan (1992)].

The sign tests are nonparametric tests often used in event studies. Also

nonparametric procedures like the sign tests can be misspeci�ed, if an in-

correct assumption about the data is imposed. For example Brown and

Warner (1980) and (1985), and Berry, Gallinger and Henderson (1990) have

1Conventional event studies are de�ned as those focusing only on mean stock price

e�ects. Other types of event studies include (for example) the examination of return

variance e�ects [Beaver (1968) and Patell (1976)], trading volume [Beaver (1968) and

Campbell and Wasley (1996)], accounting performance [Barber and Lyon (1997)] and

earnings management procedures [Dechow, Sloan, and Sweeney (1995) and Kothari, Leone,

and Wasley (2005)].
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demonstrated that a sign test assuming an excess return median of zero is

misspeci�ed. Corrado and Zivney (1992) have introduced a sign test based

on standardized excess returns that does not assume a median of zero, but

instead uses a sample excess return median to calculate the sign of an event

date excess return. The results of simulation experiments presented in Cor-

rado and Zivney (1992) indicate that their sign test provides reliable and

well-speci�ed inferences in event studies. They have also reported that their

version of the sign test is better speci�ed than the ordinary t-test and has a

power advantage over the ordinary t-test in detecting small levels of abnormal

performance.

The parametric tests derived by Patell and BMP can be applied to testing cu-

mulative abnormal returns (CARs) over multiple day windows. Corrado and

Zivney (1992) have derived the sign test only for testing one-day abnormal

returns (ARs). Kolari and Pynnönen (2010b) have derived a nonparamet-

ric rank test of CARs, which is based on generalized standardized abnormal

returns (GSARs). They have found that their rank test has superior (em-

pirical) power relative to popular parametric tests both at short and long

CAR-window lengths. Their test statistic has also been shown to be robust

to abnormal return serial correlation and event-induced volatility. Kolari

and Pynnönen (2010b) have also suggested that GSARs derived by them can

be used to extend the sign test in Corrado and Zivney (1992) for testing

CARs. Hence, in an e�ort to overcome previous pitfalls in the test statis-

tics, and thereby provide more powerful test methods for common practice

in event studies, this paper presents new sign test statistics (SIGN-GSAR-T

and SIGN-GSAR-Z) based on GSARs. These statistics can be used equally

well for testing simple day ARs and CARs.
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Cowan (1992) has also derived a sign test for testing CARs and his test is

called generalized sign test. The generalized sign test compares the propor-

tion of positive ARs around an event to the proportion from a period unaf-

fected by the event. In this way the generalized sign test takes account of

a possible asymmetric return distribution under the null hypothesis. Cowan

(1992) has reported that the generalized sign test is well speci�ed for event

windows of one to eleven days. He has also reported that the test is power-

ful and becomes relatively more powerful as the length of the CAR-window

increases.

In empirical simulations, the new sign test statistics presented in this paper

are compared with the generalized sign test derived by Cowan (1992), the

rank test derived by Kolari and Pynnönen (2010b) as well as the paramet-

ric tests derived by Patell and BMP, and the ordinary t-test. The results

of the current paper show that especially the test statistic SIGN-GSAR-T

has several advantages over previous testing procedures. First, it is robust

against a certain degree of cross-correlation caused by event day clustering.

For example, according to Kolari and Pynnönen (2010a) it is well known

that event studies are prone to cross-sectional correlation among abnormal

returns when the event day is the same for sample �rms. For this reason

the test statistics cannot assume independence of abnormal returns. They

have also shown that even when cross-correlation is relatively low, event-

date clustering is serious in terms of over-rejecting the null hypothesis of

zero average abnormal returns, when it is true. Also in this paper it is re-

ported that when the event-dates are clustered, all test statistics, except the

the test statistic SIGN-GSAR-T and the rank test derived by Kolari and

Pynnönen (2010b), over-reject the null hypothesis both for short and long
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CAR-windows. Second, the test statistic SIGN-GSAR-T seems to be robust

to the event-induced volatility. Third, it proves to have also good empirical

power properties. Thus, the SIGN-GSAR-T test procedure makes available a

nonparametric test for general application to the mainstream of event studies.

The paper is organized as follows. Section 2 introduces the distribution

properties of the sign of the GSAR. Section 3 presents the test statistics

SIGN-GSAR-T and SIGN-GSAR-Z together with the asymptotic distribu-

tions for both of the test statistics. Section 4 describes the simulation design

and summarizes the test statistics against which the new sign tests are com-

pared with. The empirical results are presented in Section 5, and Section 6

concludes.

2. The Sign of the GSAR

In forthcoming theoretical derivations, the following explicit assumption is

made:

Assumption 1 Stock returns rit are weak white noise continuous random

variables with

E[rit] = µi for all t,

var[rit] = σ2
i for all t,

cov[rit, ris] = 0 for all t ̸= s,

(1)

where i refers to the ith stock and t and s are time indexes.

Let ARit represent the abnormal return of security i on day t, and let day
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t = 0 indicate the event day.2 The days t = T0 + 1, T0 + 2, . . . , T1 represent

the estimation period days relative to the event day, and the days t = T1 +

1, T1+2, . . . , T2 represent event window days, again relative to the event day.

Furthermore L1 represents the estimation period length and L2 represents

the event period length. Standardized abnormal returns are de�ned as

AR′
it = ARit/S(ARi), (2)

where S(ARi) is the standard deviation of the regression prediction errors in

the abnormal returns computed as in Campbell, Lo and MacKinlay (1997,

Sections 4.4.2�4.4.3).

The cumulative abnormal return (CAR) from day τ1 to τ2 with T1 < τ1 ≤

τ2 ≤ T2 is de�ned as

CARi,τ1,τ2 =

τ2∑
t=τ1

ARit, (3)

and the time period from τ1 to τ2 is often called a CAR-window or a CAR-

period. Then the corresponding standardized cumulative abnormal return

(SCAR) is de�ned as

SCARi,τ1,τ2 =
CARi,τ1,τ2

S(CARi,τ1,τ2)
, (4)

where S(CARi,τ1,τ2) is the standard deviation of the CARs adjusted for fore-

cast error [see Campbell, Lo and MacKinlay (1997, Section 4.4.3)]. Under the

2Abnormal returns are operationalized in Section 4.
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null hypothesis of no event e�ect both AR′
it and SCARi,τ1,τ2 are distributed

with mean zero and (approximately) unit variance.

In order to account for the possible event-induced volatility Kolari and Pyn-

nönen (2010b) re-standardize the SCARs like BMP (1991) with the cross-

sectional standard deviation to get re-standardized SCAR

SCAR∗
i,τ1,τ2

=
SCARi,τ1,τ2

S(SCARτ1,τ2)
, (5)

where

S(SCARτ1,τ2) =

√√√√ 1

n− 1

n∑
i=1

(SCARi,τ1,τ2 − SCARτ1,τ2)
2 (6)

is the cross-sectional standard deviation of SCARi,τ1,τ2s and

SCARτ1,τ2 =
1

n

n∑
i=1

SCARi,τ1,τ2 . (7)

Again SCAR∗
i,τ1,τ2

is a zero mean and unit variance random variable. The

generalized standardized abnormal returns (GSARs) are de�ned similar to

Kolari and Pynnönen (2010b):

De�nition 1 The generalized standardized abnormal return (GSAR) is de-

�ned as

GSARit =

 SCAR∗
i,τ1,τ2

, in CAR-period

AR
′

it, otherwise,
(8)
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where SCAR∗
i,τ1,τ2

is de�ned in equation (5) and AR
′

it is de�ned in equation

(2).

Thus the CAR-window is considered as one time point in which the GSAR

equals the re-standardized cumulative abnormal return de�ned in equation

(5), and for other time points GSAR equals the usual standardized abnormal

returns de�ned in equation (2).

The time indexing is rede�ned such that the CAR-window of length τ2−τ1+1

is squeezed into one observation with time index t = 0. Thus, considering the

standardized cumulative abnormal return as one observation, in the testing

procedure there are again L1 + 1 observations of which the �rst L1 are the

estimation period (abnormal) returns and the last one is the cumulative

return.

Kolari and Pynnönen (2010b) have suggested that the GSARs can be used

to extend the sign test in Corrado and Zivney (1992) for testing CARs. This

can be achieved by de�ning the sign of the GSAR like:

De�nition 2 The sign of the generalized standardized abnormal return GSARit

is

Git = sign[GSARit −median(GSARi)], (9)

where sign(x) is equal to +1, 0, -1 as x is > 0, = 0 or < 0.

If T = L1 + 1 is even, the corresponding probabilities for the sign of the

GSAR for values +1, 0 and -1 are
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Pr[Git = 1] = Pr[Git = −1] =
1

2
(10)

and

Pr[Git = 0] = 0. (11)

If T = L1+1 is odd, the corresponding probabilities for the sign of the GSAR

for values +1, 0 and -1 are

Pr[Git = 1] = Pr[Git = −1] =
T − 1

2T
(12)

and

Pr[Git = 0] =
1

T
. (13)

The expectations, variances and covariances of the sign of GSAR are pre-

sented in Appendix A for even and odd T , and summarized in Proposition

1.

Proposition 1 The expectation for the sign of the GSAR de�ned in (9) is

E[Git] = 0 (14)

for T being even or odd. Furthermore the variance and covariance of the sign

of the GSAR are

var[Git] =

 1, for even T

T−1
T

, for odd T
(15)
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and

cov[Git, Gis] =

 − 1
T−1

, for even T

− 1
T
, for odd T .

(16)

Furthermore i=1,...,n and t̸=s.

3. The Test Statistics SIGN-GSAR-T and SIGN-GSAR-Z

The null hypothesis of no mean event e�ect, reduces to

H0 : µ = 0, (17)

where µ is the expectation of the (cumulative) abnormal return. Like Ko-

lari and Pynnönen (2010b) suggested, this paper introduces a new sign test

statistic (called hereafter SIGN-GSAR-T), which can be used for testing the

presented null hypothesis. The test statistic SIGN-GSAR-T is de�ned as

tSGT =
Z1

√
T − 2√

T − 1− Z2
1

, (18)

where

Z1 =
1√
n

n∑
i=1

Gi0/S(G), (19)

with
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S(G) =

√√√√ 1

T

∑
t∈T

(
1

√
nt

nt∑
i=1

Git)2, (20)

in which nt is the number of nonmissing returns in the cross-section of n-�rms

on day t and T = {T0+1, . . . , T1, 0}. The Z1 statistic in equation (19) is the

sign test derived by Corrado and Zivney (1992) for testing single event-day

abnormal returns.

Proofs of the Theorem 1 and Theorem 2 regarding the asymptotic distribu-

tions of Z1 and the test statistic SIGN-GSAR-T de�ned in equations (19)

and (18), respectively, are presented in Appendix B for both cases T being

even and odd.

Theorem 1 (Asymptotic distribution of Z1): For a �xed T, under the as-

sumption of cross-sectional independence, the density function of the asymp-

totic distribution of the test statistic Z1 de�ned in equation (19) when n → ∞,

is

fZ1(z) =
Γ [(T − 1)/2]

Γ [(T − 2)/2]
√

(T − 1)π

(
1− z2

T − 1

) 1
2
(T−2)−1

, (21)

for |z| ≤
√
T − 1 and zero elsewhere, where Γ(·) is the Gamma function.

Thus, Theorem 1 implies that (Z1)
2/(T − 1) is asymptotically Beta dis-

tributed with parameters 1/2 and (T − 2)/2.

Corrado and Zivney (1992) conjecture that for su�ciently large sample size,

the Central Limit Theorem implies that the distribution of Z1 should con-

verge to normality. By Theorem 1 we can conclude that the asymptotic
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normality holds only if also T is large enough. This follows from the fact

that in equation (21) (
1− z2

T − 1

) 1
2
(T−2)−1

→ e−
1
2
z2 (22)

and the normalizing constant

Γ [(T − 1)/2]

Γ [(T − 2)/2]
√

(T − 1)π
→ 1/

√
2π (23)

as T → ∞, implying the limiting N(0, 1)-distribution.

Theorem 2 (Asymptotic distribution of the test statistic SIGN-GSAR-T):

Under the assumptions of Theorem 1,

tSGT = Z1

√
T − 2

T − 1− (Z1)2
d→ tT−2, (24)

as n → ∞, where Z1 is de�ned in equation (19),
d→ denotes convergence in

distribution, and tT−2 denotes the Student t-distribution with T − 2 degrees

of freedom.

Given that the t-distribution approaches the N(0, 1)-distribution as the de-

grees of freedom T −2 increases, also the null distribution of the test statistic

tSGT approach the standard normal distribution as T → ∞.

Remark 1 Using facts about statistics based on signs (see Appendix A), it

is easy to show that

var[G0] =

 1
n
, for even T

T−1
nT

≈ 1
n
, for odd T .

(25)
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where G0 =
1
n

∑n
i=1 Gi0. Thus, under the assumption that var[G0] =

1
n
,

a useful test statistic for the null hypothesis (17) is

tSGZ =
G0√
var[G0]

= G0

√
n, (26)

for which the null distribution converges rapidly to the standard normal dis-

tribution, N(0, 1), as the number of �rms increases. We henceforth refer to

this statistic as SIGN-GSAR-Z.

The simplicity of the test statistic SIGN-GSAR-Z makes it an attractive

alternative to the test statistic SIGN-GSAR-T. This is particularly the case

when the event days across the sample �rms are not clustered. However, in

the presence of event day clustering, which causes cross-sectional correlations

between the returns, the SIGN-GSAR-T can be expected to be much more

robust than the SIGN-GSAR-Z test statistic.

Asymptotic Distributions: Cross-Sectional Dependence (Clustered Event Days)

Cross-sectional dependence due to clustered event days (the same event days

across the �rms) changes materially the asymptotic properties of the test

statistics and in particular those statistics that do not account for the cross-

sectional dependence.

As stated in Lehmann (1999, Sec. 2.8), it is still, frequently true that the

asymptotic normality holds provided that the average cross-correlation, ρn,

tends to zero rapidly enough such that
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1

n

n∑
i=1

n∑
j=1,i ̸=j

ρij → γ (27)

as n → ∞.

In �nancial applications this would be the case if there are a �nite number

of �rms in each industry and the return correlations between industries were

zero. In fact this is a special case of so called m-independence. Generally, a

sequence of random variables X1, X2,..., is said to be m-independent, if Xi

and Xj are independent if |i− j| > m. In cross-sectional analysis this would

mean that the variables can be ordered such that when the index di�erence

is larger than m, the variables are independent. [See Kolari and Pynnönen

(2010b)].

In such a case, we can show in the same manner as in Kolari and Pynnönen

(2010b) that the result in (27) holds. More precisely, assuming that for

any �xed t, Git de�ned in equation (9) are m-independent, i = 1, 2, ..., n,

(n > m), the correlation matrix of G1t, ..., Gnt is band-diagonal such that all

ρij with |i − j| > m are zeros. It is straightforward to see that in such a

correlation matrix there are m(2n−m− 1) nonzero correlations in addition

to the n ones on the diagonal. Thus, in the double summation (27) there are

m(2n−m− 1) non-zero elements, and it can be written such that

1

n

n∑
i=1

n∑
j=1,j ̸=i

ρij =
m(2n−m− 1)

n
ρ̃n → γ, (28)

where ρ̃n is the average of the m(2n−m− 1) cross-correlations in the band-

diagonal correlations matrix and γ = 2mρ̃ is a �nite constant with ρ̃ =

limn→∞ ρ̃n and 2m = limn→∞m(2n−m− 1)/n.
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Thus, under the m-independence the asymptotic distribution of the test

statistic SIGN-GSAR-Z is

tSGZ → N(0, 1 + γ). (29)

This implies that the test statistic SIGN-GSAR-Z is not robust to cross-

sectional correlation of the return series. Typically γ > 0, which means that

tSGZ will tend to over-reject the null hypothesis.

The limiting distributions of the test statistic SIGN-GSAR-T turns out to

apply also under m-independence. This follows from the fact that if the

asymptotic normality holds under the m-independence such that the limiting

correlation e�ect is 1+γ, then using the scaled variables, Git/
√
1 + γ, in place

of the original variables, all the results in Theorem 1 and Theorem 2 follow,

because in Z1 de�ned in (19) and tSGT de�ned in (18) are invariant to the

scaling of the observations (the zero-one sign of the GSARs). Therefore,

the theoretical derivation indicates that when the event-dates are clustered,

the test statistic SIGN-GSAR-T behave better than the test statistic SIGN-

GSAR-Z .

4. Simulation Design

In this section the simulation design, which is used to examine the empirical

behavior of the test statistics SIGN-GSAR-T and SIGN-GSAR-Z, is pre-

sented. Like for example Kolari and Pynnönen (2010b) have concluded, the

optimality of a test can be judged on the basis of size and power. Within a

class of tests of given size (Type I error probability), the one that has the
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maximum power (minimum Type II error probability) is the best. A testing

procedure is robust, if the Type I error rate is not a�ected by real data issues

such as non-normality, event-induced volatility, autocorrelation and cross-

correlation of returns. Consequently, the aim of our simulations is to focus

on the robustness and power properties of the tests. Non-normality, autocor-

relation, and other data issues are captured in the simulation by using actual

return data instead of arti�cially simulated data. Event-induced volatility

e�ects are investigated by introducing volatility change within the event pe-

riod, and the e�ect of cross-sectional correlation is examined by setting the

same event day in the return series for each �rm in the sample.

4.1 Sample construction

The well-known simulation approach presented by Brown and Warner (1980),

and widely used in several other methodological studies [e.g. Brown and

Warner (1985), Corrado (1989), Cowan (1992), Campbell and Wasley (1993),

and Cowan and Sergeant (1996)], is also used in this paper. From the data

base 1,000 portfolios each of 50 stocks are constructed with replacements.

Each time a stock is selected, a hypothetical event date is randomly generated

and the event day is denoted as day "0". The results are reported for event

day t = 0 abnormal return AR(0) and for cumulative abnormal returns

CAR(−1,+1), CAR(−5,+5) and CAR(−10,+10). The estimation period is

comprised of 239 days prior to the event period, hence days from -249 to

-11. The event period is comprised of 21 days, hence days from -10 to +10.

Therefore, the estimation period and event period altogether comprises of

260 days. In order for a return series to be included, no missing returns are

allowed in the last 30 days from -19 to +10.
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In earlier studies [e.g. Charest (1978), Mikkelson (1981), Penman (1982)

and Rosenstein and Wyatt (1990)] it has been found that the event period

standard deviation is about 1.2 to 1.5 times the estimation period standard

deviation. Therefore, the increased volatility is introduced by multiplying

the cumulated event period returns by a factor
√
c with values c = 1.5 for

an approximate 20 percent increased volatility, c = 2.0 for an approximate

40 percent increased volatility and c = 3.0 for an approximate 70 percent

increased volatility due to the event e�ect.3 To add realism the volatility

factors c are generated for each stock based on the following uniform dis-

tributions U [1, 2], U [1.5, 2.5] and U [2.5, 3.5]. This generate on average the

variance e�ects of 1.5, 2.0 and 3.0. Furthermore for the no volatility e�ect

experiment c = 1.0 is �xed.

For investigating the power properties a similar method as for example Camp-

bell and Wasley (1993) is used. Hence, for single-day event period [AR(0)]

the abnormal performance is arti�cially introduced by adding the indicated

percent (a constant) to the day-0 return of each security. While, in the mul-

tiday setting [CAR(−1,+1), CAR(−5,+5) and CAR(−10,+10)], abnormal

performance is introduced by selecting one day of the CAR-period at ran-

dom and adding the particular level of abnormal performance to that day's

return. By this we aim to mimic the real situations, where there can be the

information leakage and delayed adjustment. That is, if the markets are in-

e�cient, information may leak before the event, which shows up as abnormal

behavior before the event day. Delays in the event information show up as

abnormal return behavior after the event day.

3Because
√
1.5 ≈ 1.2,

√
2.0 ≈ 1.4 and

√
3.0 ≈ 1.7.
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Also the e�ect of event-date clustering on the test statistics is studied. The

e�ect of event-date clustering is examined by constructing again from the

data base 1,000 portfolios each of 50 stocks, but all stocks in the portfolio

have exactly the same event date.

4.2 Abnormal return model

The abnormal behavior of security returns can be estimated through the

market model

rit = αi + βirmt + ϵit, (30)

where again rit is the return of stock i at time t, rmt is the market index

return at time t and ϵit is a white noise random component, which is not

correlated with rmt. The resulting ARs are obtained as di�erences of realized

and predicted returns on day t in the event period

ARit = rit − (α̂i + β̂irmt), (31)

where the parameters are estimated from the estimation period with ordinary

least squares. According to Campbell, Lo and MacKinley (1997) the mar-

ket model represents a potential improvement over the traditional constant-

mean-return model, because by removing the portion of the return that is

related to variation in the market's return, the variance of the AR is reduced.

This can lead to increased ability to detect event e�ects.
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4.3 Test statistics

Next the test statistics, which are used in the simulations, are presented.

The ordinary t-test (ORDIN) is de�ned as

tORDIN =
CARτ1,τ2

S(CARτ1,τ2)
, (32)

where

CARτ1,τ2 =
1

n

n∑
i=1

CARi,τ1,τ2 , (33)

in which CARi,τ1,τ2 is de�ned in equation (3) and S(CARτ1,τ2) is the stan-

dard error of the average cumulative abnormal return CARτ1,τ2 adjusted for

the prediction error [see again Campbell, Lo and MacKinlay (1997, Section

4.4.3)]. The ordinary t-test statistic is asymptotically N(0, 1)-distributed

under the null hypothesis of no event e�ect.

Patell (1976) test statistic (PATELL) is

tPATELL =

√
n(L1 − 4)

L1 − 2
SCARτ1,τ2 , (34)

where SCARτ1,τ2 is the average of the standardized CAR de�ned in equa-

tion (7), and L1 is again the length of the estimation period. Also the test

statistic derived by Patell is asymptotically N(0, 1)-distributed under the

null hypothesis.
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The Boehmer, Musumeci and Poulsen (1991) test statistics (BMP) is

tBMP =
SCARτ1,τ2

√
n

S(SCARτ1,τ2)
, (35)

where again S(SCARτ1,τ2) is the cross-sectional standard deviation of SCARs

de�ned in (6), and SCARτ1,τ2 is de�ned in equation (7). Also the test statistic

tBMP is asymptotically N(0, 1)-distributed under the null hypothesis.

We follow Kolari and Pynnönen (2010b) and de�ne the demeaned standard-

ized abnormal ranks of the GSARs as

Uit = Rank(GSARit)/(T + 1)− 1/2, (36)

where i = 1, ..., n and t ∈ T = {T0 + 1, ..., T1, 0} is the set of time indexes

including the estimation period for t = T0 + 1, ..., T1 and to the CAR for

t = 0, with T0 + 1 and T1 the �rst and last observation on the estimation

period, and T = L1 + 1 = T1 − T0 + 1 is the total number of observations

with L1 estimation period returns and the one CAR. Then the generalized

rank test statistic (GRANK) is de�ned as

tGRANK = Z2

√
T − 2

T − 1− Z2
2

, (37)

where

Z2 =
U0

SU

(38)
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with

SU =

√
1

T

∑
t∈T

nt

n
U

2

t (39)

and

U t =
1

nt

nt∑
i=1

Uit. (40)

Furthermore nt is the number of valid GSARs available at time point t,

t ∈ T = {T0 + 1, ..., T1, 0}, T = T1 − T0 + 1 is the number of observations,

and U0 is the mean U t for t = 0 (CAR). According to Kolari and Pynnönen

(2010b) the asymptotic distribution of the test statistic GRANK is Student t-

distribution with T−2 degrees of freedom. Again given that the t-distribution

approaches the N(0, 1)-distribution as the degrees of freedom T−2 increases,

also the null distribution of the test statistic tGRANK approach the standard

normal distribution as T → ∞.

The generalized sign test statistic presented by Cowan (1992) is

tCOWAN =
w − np̂√
np̂(1− p̂)

, (41)

where w is the number of stocks in the event window for which the CAR is

positive and n is again the number of the stocks. Furthermore

p̂ =
1

n

n∑
i=1

1

mi

T1∑
t=T0+1

Sit, (42)

where mi is the number of non-missing returns in the estimation period for

security-event i and
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Sit =

 1 if ARit > 0

0 otherwise.
(43)

According to Cowan (1992) the generalized sign test statistic (SIGN-COWAN)

is asymptotically N(0, 1)-distributed under the null hypothesis.

4.4 The data

The data in this simulation design consists of daily closing prices of 1,500

the U.S. traded stocks that make up the S&P 400, S&P 500, and S&P 600

indexes. S&P 400 covers the mid-cap range of stocks, S&P 500 the large-cap

range of stocks and S&P 600 the small-cap range of stocks. Five percent of

the stocks having the smallest trading volume are excluded. Therefore, 72

stocks from S&P 600, two stocks from S&P 400 and one stock from S&P 500

are excluded. The sample period spans from the beginning of July, 1991 to

October 31, 2009. S&P 400 index was launched in June in 1991, which is

why the sample period starts in the beginning of July, 1991. O�cial holidays

and observances are excluded from the data. By using actual (rather than

arti�cial) stock returns in repeated simulations, a reliable and realistic view

about the comparative real data performance of the test statistics in true

applications is attained.

The returns are de�ned as log-returns

rit = log(Pit)− log(Pit−1), (44)

where Pit is the closing price for stock i at time t.
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5. Empirical Results

This section discusses the results from the simulation study. First, the sam-

ple statistics of the abnormal returns, the cumulative abnormal returns and

the test statistics are presented. Second, the properties of the empirical

distributions of the test statistics are presented. Third, the rejection rates

are reported. The rejection rates are also reported in the cases where the

event-induced volatility is present. Fourth, the power properties of the test

statistics are presented. The power properties are also presented in the cases

where the event-dates are clustered.

5.1 Sample statistics

Table 1 reports sample statistics from 1, 000 simulations for the event day

abnormal returns and for the cumulative abnormal returns: CAR(−1,+1),

CAR(−5,+5) and CAR(−10,+10). It also reports sample statistics for the

test statistics for AR(0), CAR(−1,+1), CAR(−5,+5) and CAR(−10,+10).

Under the null hypothesis of no even e�ect test statistics ORDIN, PATELL,

BMP, SIGN-COWAN and SIGN-GSAR-Z should be approximately N(0, 1)-

distributed. Strictly speaking, the asymptotic distributions of GRANK and

SIGN-GSAR-T should be t-distributions with T−2 degrees of freedom. How-

ever, with T − 2 equal to 238, the normal approximation should be valid and

so the null distributions of the test statistics GRANK and SIGN-GSAR-T

approach the standard normal distribution. Hence, we can conclude that

under the null hypothesis of no event e�ect all the test statistics should have

zero mean and (approximately) unit variance.
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[Table 1]

Considering only on the single abnormal returns AR(0) in Panel A of Table 1,

it can be noted that means of all the test statistics are statistically close to

zero. For example (in absolute value) the largest mean of −0.024 for the

PATELL statistic is only 1.113 standard errors away from zero. In longer

CAR-windows the means of the test statistics, albeit small, start to deviate

signi�cantly away from the theoretical value of zero. Considering on the 3-day

CARs, CAR(−1,+1), in Panel B of Table 1, we see that only the means for

PATELL and BMP deviate signi�cantly away from zero. While, considering

on the 11- and 21-day CARs, CAR(−5,+5) and CAR(−10,+10), in Panels

C and D of Table 1, it can be noticed that means for almost all the test

statistics deviate signi�cantly away from the theoretical value. Nonetheless,

it can be seen that the means of the test statistics PATELL and BMP deviate

more rapidly and clearly from the theoretical value of zero than the means

of the other test statistics. As well, it can be seen that the mean of the test

statistic GRANK seems to deviate more slowly from the theoretical value of

zero than the means of the other test statistics. Importantly, all standard

deviations of the test statistics are close their theoretical values of unity.

5.2 Empirical distributions

Table 2 reports Cramer-von Mises normality tests for ORDIN, PATELL,

BMP, SIGN-COWAN and SIGN-GSAR-Z, and Cramer-von Mises tests for

GRANK and SIGN-GSAR-T against a t-distribution with 238 (= T − 2)

degrees of freedom. Departures from normality (t-distribution for GRANK
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and SIGN-GSAR-T) of the statistics are typically not statistically signi�cant

for the AR(0) and CAR(−1,+1), i.e., in the short CAR-windows. Only the

normality of the test statistic PATELL is rejected for CAR(−1,+1) and the

test statistic SIGN-GSAR-Z for both AR(0) and CAR(−1,+1). In the long

CAR-windows (11 and 21 days) the normality is rejected for almost every

test statistic. The results indicate that particularly for short CAR-windows

a sample size of n = 50 series seems to be large enough to warrant the

asymptotic t-distribution for SIGN-GSAR-T.

[Table 2]

In Figure 1 empirical quantiles of test statistic SIGN-GSAR-T are displayed

from 1,000 simulations against theoretical quantiles of test statistic SIGN-

GSAR-T for AR(0), CAR(−1,+1), CAR(−5,+5) and CAR(−10,+10). Only

the test statistic SIGN-GSAR-T is considered, because it is derived in this

paper and because Cramer-von Mises tests reject the normality of the test

statistic SIGN-GSAR-Z for both short and long CAR-windows. In Figure

1 on vertical axis are the Student t quantiles with T − 2 = 238 degrees of

freedom and on horizontal axis are the test statistics SIGN-GSAR-T. If the

statistic follow the theoretical distribution depicted on the vertical axis, the

plots should be close to the 45 degree diagonal line. According to Figure 1

the empirical distributions of the test statistics SIGN-GSAR-T and Student

t-distributions seem to match quite well, because the plots lie quite well on

the straight line.

[Figure 1]

25



5.3 Rejection rates

Columns 2�4 in Table 3 report the lower tail, upper tail and two-tailed rejec-

tion rates (Type I errors) at the 5 percent level under the null hypothesis of no

event mean e�ect with no event-induced volatility. Almost all rejection rates

are close to the nominal rate of 0.05 for short CAR-windows of AR(0) and

CAR(−1,+1). Only PATELL statistic tends to over-reject the null hypoth-

esis for the two-tailed tests and SIGN-GSAR-Z statistics tends to over-reject

for left and right tail tests as well as two-tailed tests. For the longer CAR-

windows of CAR(−5,+5) and CAR(−10,+10) again all the other test statis-

tics except PATELL, BMP, SIGN-COWAN and SIGN-GSAR-Z reject close

to the nominal rate with rejection rates that are well within the approximate

99 percent con�dence interval of [0.032, 0.068]. For the longer CAR-windows

the PATELL tends to over-reject in addition of the two-tailed tests also on

the lower tail. The BMP statistic tends to somewhat over-reject the null

hypothesis for two-tailed test for CAR(−10,+10) and the SIGN-COWAN

statistic tends to over-reject the null hypothesis for CAR(−10,+10) for the

upper tail test. The SIGN-GSAR-Z statistic over-rejects the null hypothesis

again for left and right tailed tests as well as two-tailed tests. It seems that

the tails of the test statistic SIGN-GSAR-Z are fat, which may be the rea-

son why the Cramer-von Mises test rejects the normality of the test statistic

SIGN-GSAR-Z in every case.

[Table 3]

Columns 5�13 in Table 3 report the rejection rates under the null hypoth-

esis in the cases where the event-induced variance is present. ORDIN and
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PATELL tests over-reject when the variance increases, which is a well-known

outcome. At the highest factor of c = 3.0 the Type I errors for both ORDIN

and PATELL are in the range from 0.2 to 0.3 in two-tailed testing, that is,

�ve to six times the nominal rate. The SIGN-GSAR-Z statistic over-rejects

the null hypothesis again for left and right tail tests as well as two-tailed tests.

Note that because test statistic SIGN-COWAN takes only account to the sign

of the di�erence between AR and zero, and not for example the sign of the

di�erence between AR and its median, the event-induced volatility does not

have an impact on the rejection rates of the test statistics SIGN-COWAN.

Hence, the test statistics BMP, GRANK, SIGN-COWAN and SIGN-GSAR-

T seem to be the best options in the cases where the event induced volatility

is present.

5.4 Power of the tests

5.4.1 Non-clustered event days

The power results of the test statistics for two-tailed tests are shown in

Panels A to D of Table 4 and graphically depicted in Figures 2 to 5. The

zero abnormal return line (bold face) in each panel of Table 4 indicates the

Type I error rates and replicates the Column 4 in each panel of Table 3. The

rest of the lines of Table 4 indicate the rejection rates for the respective ARs

shown in the �rst column.

[Table 4]
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[Figures 2�5]

There are four outstanding results. First, at all levels of ARs (positive or neg-

ative), ORDIN, which is based on non-standardized returns is materially less

powerful than the other test statistics that are based on standardized returns.

Second, the test statistic GRANK seems to be one of the most powerful tests

for shorter CAR-windows as well as for the longer CAR-windows. Third,

both the test statistic SIGN-GSAR-T and SIGN-GSAR-Z seem to have good

power properties, but SIGN-GSAR-Z seems to be somewhat more powerful

than the test statistic SIGN-GSAR-T in every case. However, it should be

noted that test statistic SIGN-GSAR-Z also over-rejects the null hypothesis.

Fourth, SIGN-COWAN seems to be more powerful than SIGN-GSAR-T, but

less powerful than SIGN-GSAR-Z.

5.4.2 Clustered event days

Table 5 reports the Type I error and power results of the tests with clustered

event-days. The zero abnormal return line (bold face) in each panel again

indicates the Type I error rates at the 5 percent level under the null hypoth-

esis of no event mean e�ect. Consistent with earlier results [e.g., Kolari and

Pynnönen (2010a)], test statistics like ORDIN, PATELL and BMP are prone

to material over-rejection of the true null hypothesis of no event e�ect. The

results reported in Table 5 indicate that also the test statistic SIGN-COWAN

and SIGN-GSAR-Z are prone to material over-rejection of the true null hy-

pothesis of no event e�ect. According to Table 5 test statistics GRANK and

SIGN-GSAR-T are much more robust to cross-correlation caused by event

day clustering. However, a notable distinction of the power results in Table 5
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of these statistics compared to those in Table 4 is that the powers tend to

be discernibly lower in the clustered case. This is due to the information

loss caused by cross-correlation. The problem is discussed in more detail in

Kolari and Pynnönen (2010a).

[Table 5]

In summary, the derived test statistic SIGN-GSAR-T as well as the test

statistic GRANK statistic are quite robust to clustered event days. In ad-

dition the well established asymptotic properties of SIGN-GSAR-T, its ro-

bustness against event-induced volatility, and competitive power properties

make it a recommended robust testing procedure in event studies.

6. Conclusion

This paper has proposed the nonparametric sign tests SIGN-GSAR-T and

SIGN-GSAR-Z based on GSARs. These tests extend the single day sign test

statistic presented by Corrado and Zivney (1992) to e�cient testing of CARs.

Also, the theoretical asymptotic distributions of the statistics have been de-

rived when the estimation period is �nite. The proposed testing procedure

based on SIGN-GSAR-T, in particular, has advantages of being well speci�ed

under the null hypothesis of no event mean e�ect and being robust to event-

induced volatility and cross-correlation (clustered event days) of the returns.

Simulation results with actual stock returns also show that the SIGN-GSAR-

T test statistic has good empirical power properties. The results of this paper

suggest the use of the test statistic SIGN-GSAR-T particularly in the cases

where the event days are clustered.
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A Appendix: The Properties of the Sign of the

GSAR

We derive the theoretical expectation and variance of Git as well as the

theoretical covariance between Git and Gis, t ̸= s, t, s = 1, . . . , T , in both of

the cases T = L1 + 1 being even and odd.

Using equations from (10) to (13) it is straightforward to see that

E[Git] = 0 (A.1)

and

var[Git] =

 1, for even T

T−1
T

, for odd T .
(A.2)

Again, if t ̸= s, it is straightforward to verify the following probabilities

Pr[GitGis = 1] =


T
2
−1

T−1
, for even T

T−3
2T

, for odd T ,
(A.3)

Pr[GitGis = 0] =

 0, for even T

2
T
, for odd T

(A.4)
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and

Pr[GitGis = −1] =


T
2

T−1
, for even T

T−1
2T

, for odd T .
(A.5)

Furthermore for T being even

cov[Git, Gis] = E[GitGis] = − 1

T − 1
(A.6)

and for T being odd

cov[Git, Gis] = E[GitGis] = − 1

T
. (A.7)

B Appendix: The Asymptotic Distributions of

Z1 and SIGN-GSAR-T

The following Lemmas are utilized in the proofs of Theorem 1 and Theorem 2.

Proofs of these Lemmas can be obtained as special cases from Pynnönen

(2010).

Lemma 1 De�ne

x = Qy, (B.1)
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where Q is a T × T idempotent matrix of rank r ≤ T and y = (y1, . . . , yT )
′

is a vector of independent N(0, 1) random variables, such that y ∼ N(0, I),

where I is a T × T identity matrix. Furthermore, let m be a T component

column vector of real numbers such that m′Qm > 0. Then

zm =
m′x/

√
m′Qm√

x′x/r
(B.2)

has the distribution with density function

fzm(z) =
Γ(r/2)

Γ [(r − 1)/2]
√
r π

(
1− z2

r

) 1
2
(r−1)−1

, (B.3)

where |z| <
√
r, and zero otherwise, and where Γ(·) is the gamma function.

Lemma 2 Under the assumptions of Lemma 1

tm = zm

√
r − 1

r − z2m
(B.4)

is distributed as the Student t-distribution with r − 1 degrees of freedom.

Proof of the Theorem 1: The proof of the theorem is adapted from Kolari

and Pynnönen (2010b). In order to derive the asymptotic distribution of the

Z1 de�ned in equation (19), the Gits de�ned in (9) are collected to a column

vector Gi = (Gi,T0+1, Gi,T0+2, . . . , Gi,T1 , G0)
′ of T = T1 − T0 + 1 components,

where the prime denotes transpose and i = 1, . . . , n with n the number of

series. Then by assumption the random vectors Gis are independent and, by

Proposition 1, identically distributed random vectors with zero means and

identical equicorrelation covariance matrices such that

E [Gi] = 0 (B.5)
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and

cov [Gi] =

 (1− ϱ)I+ ϱιι′, for even T

T−1
T

[(1− ϱ)I+ ϱιι′], for odd T .
(B.6)

Again i = 1, . . . , n, where ι is a vector of T ones, I is a T ×T identity matrix,

and

ϱ = − 1

T − 1
. (B.7)

Thus, the covariance matrix in (B.6) becomes

Σ = cov [Gi] =

 T
T−1

(
I− 1

T
ιι′

)
, for even T(

I− 1
T
ιι′

)
, for odd T .

(B.8)

It should be noted that the matrix I − T−1ιι′ is an idempotent matrix of

rank T − 1 , which implies that Σ is singular in both of the cases for T being

even or odd.

However, because Gis are independent with zero means and �nite covariance

matrices (B.8), the Central Limit Theorem applies such that

√
n Ḡ

d→
(

T

T − 1

) 1
2

x, (B.9)

when T is even and
√
n Ḡ

d→ x, (B.10)

when T is odd, as n → ∞, where

x ∼ N(0,Q) (B.11)
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with the (idempotent) singular covariance matrix

Q = I− 1

T
ιι′, (B.12)

and in (B.9) and (B.10), Ḡ = (ḠT0+1, . . . , ḠT1 , Ḡ0)
′ with

Ḡt =
1

n

n∑
i=1

Git, (B.13)

where t ∈ {T0 + 1, . . . , T1, 0}. Note that the sum of Gi,t over the time index

t is zero for all i = 1, . . . , n, i.e., ι′Gi = 0 for all i = 1, . . . , n, which implies

that ι′Ḡ = 0.

Let ι0 be a column vector of length T = T1 − T0 + 1 with one in position

in the event day t = 0 and zeros elsewhere. In terms of the T -vector Ḡ and

under the assumption that nt = n for all t ∈ {T0+1, . . . , T1, 0}, we can write

the Z1-statistic in equation (19) as

Z1 =
ι′0Ḡ√
Ḡ

′
Ḡ/T

=
ι′0Ḡ/

√
(T − 1)/T√

Ḡ
′
Ḡ/(T − 1)

. (B.14)

De�ning in Lemma 1

m = ι0 (B.15)

and

Q = I− 1

T
ιι′, (B.16)

we obtain

m′Qm =
(T − 1)

T
, (B.17)

such that the ratio zm in (B.2) becomes

zm =
ι′0x/

√
(T − 1)/T√

x′x/(T − 1)
, (B.18)
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the distribution of which, after arranging term, has the density function,

fzm(z) =
Γ [(T − 1)/2]

Γ [(T − 2)/2]
√
(T − 1)π

(
1− z2

T − 1

) 1
2
(T−3)

(B.19)

for |z| <
√
T − 1 and zero elsewhere.

Because of the convergence results in (B.9) and (B.10) and that the function

h(Ḡ) =
ι′0Ḡ/

√
(T − 1)/T√

Ḡ
′
Ḡ/(T − 1)

(B.20)

is continuous, the continuous mapping theorem implies h(Ḡ)
d→ h(x). That

is,

Z1 =
ι′0Ḡ/

√
(T − 1)/T√

Ḡ
′
Ḡ/(T − 1)

d→
ι′0x/

√
(T − 1)/T√

x′x/(T − 1)
= zm, (B.21)

which implies that the density function of the limiting distribution of Z1 for

�xed T , as n → ∞, is of the form de�ned in equation (B.19), completing the

proof of Theorem 1.

Proof of the Theorem 2: By the proof of Theorem 1, Z1
d→ zm, where zm is

de�ned in equation (B.18) with r = T−1. Again because the function g(z) =

z
√

(T − 2)/(T − 1− z2) is continuous, for |z| <
√
T − 1, the continuous

mapping theorem implies ZSGT = g(Z1)
d→ g(zm). That is,

ZSGT
d→ zm

√
T − 2

T − 1− z2m
, (B.22)

where the distribution of the right hand side expression is by Lemma 2 the t-

distribution with T−2 degrees of freedom, completing the proof of Theorem 2.
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Table 1: Sample statistics
The table reports sample statistics from 1,000 simulations for the event day

abnormal returns and for the cumulative abnormal returns: CAR(−1,+1),

CAR(−5,+5), and CAR(−10,+10). It also reports the sample statistics for the

test statistics ORDIN [Eq. (32)], PATELL [Eq. (34)], BMP [Eq. (35)], GRANK

[Eq. (37)], SIGN-COWAN [Eq. (41)], SIGN-GSAR-T [Eq. (18)] and SIGN-GSAR-

Z [Eq. (26)] for AR(0), CAR(−1,+1), CAR(−5,+5) and CAR(−10,+10). The

data is based on 1,000 simulations for portfolios of size n = 50 securities with an

estimation period of 239 days and event period of 21 days. The event day is de-

noted as t = 0. Cumulative abnormal returns CAR(−d,+d) with d =0, 1, 5 and

10 are computed around the event day. The data consist of securities belonging to

S&P 400-, S&P 500- and S&P 600-indexes from July, 1991 to October, 2009. The

returns are calculated with the help of the market model presented in equation

(30). Superscripts a, b and c correspond to the signi�cance levels 0.10, 0.05 and

0.01.

Test statistics

Panel A: Mean Med. Std. Skew. Kurt. Min. Max.
AR(0)
AR(0), % 0.004 -0.008 0.413 -0.082 1.018 -1.688 1.641
ORDIN 0.008 -0.019 1.053 -0.079 0.701 -3.878 3.694
PATELL -0.024 -0.036 1.113 -0.193 1.170 -6.178 3.837
BMP -0.013 -0.033 1.000 -0.013 0.146 -4.000 3.777
GRANK 0.002 -0.010 0.974 0.056 0.071 -3.518 3.375
SIGN-COWAN -0.002 -0.042 0.958 0.059 -0.120 -3.475 2.999
SIGN-GSAR-T -0.016 0.000 0.990 0.041 -0.206 -2.630 2.997
SIGN-GSAR-Z -0.016 0.000 1.082 0.037 -0.226 -2.828 3.111
Panel B: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(−1,+1)
CAR(−1,+1), % -0.010 -0.029 0.671 -0.019 0.146 -2.288 2.096
ORDIN -0.018 -0.040 0.988 -0.028 0.306 -3.759 3.329
PATELL -0.067b -0.085 1.077 0.133 0.113 -3.380 4.059
BMP -0.054a -0.088 1.023 0.159 0.083 -3.208 3.856
GRANK -0.001 0.011 1.021 0.088 0.189 -3.332 3.963
SIGN-COWAN 0.042 0.108 1.020 0.063 0.127 -3.475 3.832
SIGN-GSAR-T 0.028 0.000 1.036 0.050 0.082 -3.225 3.610
SIGN-GSAR-Z 0.031 0.000 1.128 0.038 0.045 -3.677 3.960

(Continued)
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Table 1, continued.

Test statistics

Panel C: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(−5,+5)
CAR(-5,+5), % -0.076 -0.027 1.269 -0.114 0.346 -5.178 4.455
ORDIN -0.060b -0.020 0.959 -0.183 0.433 -3.977 3.441
PATELL -0.132c -0.108 1.107 -0.034 0.363 -4.005 3.992
BMP -0.113c -0.117 1.036 0.088 0.157 -3.417 3.603
GRANK 0.016 0.062 1.038 0.011 0.113 -3.073 3.334
SIGN-COWAN 0.085b 0.102 0.973 -0.028 -0.081 -2.764 3.334
SIGN-GSAR-T 0.065b 0.000 0.993 0.018 -0.005 -2.804 3.284
SIGN-GSAR-Z 0.071b 0.000 1.084 0.030 0.034 -3.111 3.677
Panel D: Mean Med. Std. Skew. Kurt. Min. Max.
CAR(−10,+10)
CAR(-10,+10), % -0.056 -0.029 1.800 -0.136 0.018 -5.442 4.845
ORDIN -0.038 -0.015 0.967 -0.225 0.149 -3.332 2.749
PATELL -0.130c -0.108 1.105 -0.287 0.852 -5.208 4.129
BMP -0.100c -0.117 1.042 0.011 0.033 -3.092 3.759
GRANK 0.071b 0.063 1.053 -0.049 0.282 -3.645 3.942
SIGN-COWAN 0.180c 0.162 1.013 -0.052 0.295 -3.296 3.536
SIGN-GSAR-T 0.148c 0.241 0.997 -0.059 0.370 -3.275 3.423
SIGN-GSAR-Z 0.158c 0.283 1.090 -0.088 0.413 -3.677 3.677
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Table 2: Cramer-von Mises tests of the distributions
The table summarizes the results of Cramer-von Mises tests for testing the good-

ness of �t for di�erent test statistics for AR(0), CAR(−1,+1), CAR(−5,+5)

and CAR(−10,+10). Test statistics ORDIN [Eq.(32)], PATELL [Eq.(34)], BMP

[Eq.(35)], SIGN-COWAN [Eq.(41)] and SIGN-GSAR-Z [Eq. (26)] are tested against

the standard normal distribution and test statistics GRANK [Eq.(37)] and SIGN-

GSAR-T [Eq.(18)] are tested against the Student t-distribution with 238 (= T −2)

degrees of freedom. Superscripts a and b correspond to the signi�cance levels 0.05

and 0.01. See Table 1 for details of the simulation setup.

AR(0) CAR(-1,+1) CAR(-5,+5) CAR(-10,+10)

ORDIN 0.054 0.218 0.350 0.196
PATELL 0.164 0.795b 1.488b 1.104b

BMP 0.066 0.625 1.277b 0.985b

GRANK 0.074 0.029 0.143 0.541a

SIGN-COWAN 0.136 0.270 0.916b 2.994b

SIGN-GSAR-T 0.361 0.387 0.855b 2.400b

SIGN-GSAR-Z 0.918b 1.006b 1.288b 2.871b
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Figure 1: The Q-Q plots of the test statistic SIGN-GSAR-T
The �gure illustrates the theoretical quantile-quantiles (Q-Q) for the test statis-
tic SIGN-GSAR-T [Eq. (18)] in cases AR(0), CAR(−1,+1), CAR(−5,+5) and
CAR(−10,+10). In vertical axes there are Students t-distributions with 238
(= T − 2) degrees of freedom and in horizontal axes there are the test statis-
tics SIGN-GSAR-Ts. The data is based on 1,000 simulations for portfolios of size
n = 50 securities with non-clustered event days, and with an estimation period of
239 days and event period of 21 days. The event day is denoted as t = 0. The
data consist of securities belonging to S&P 400-, S&P 500- and S&P 600-indexes
from July, 1991 to October, 2009. The returns are calculated with the help of the
market model presented in equation (30).
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Figure 2: The power results for AR(0)
The �gure illustrates the power results of the test statistics for two-tailed tests for
testing AR(0) with an AR ranging from −3 percent to +3 percent. General details
of the simulation setup are given in the Figure 1.

Figure 3: The power results for CAR(−1,+1)
The �gure illustrates the power results of the test statistics for two-tailed tests for
testing CAR(−1,+1) with an AR ranging from −3 percent to +3 percent. General
details of the simulation setup are given in the Figure 1.
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Figure 4: The power results for CAR(−5,+5)
The �gure illustrates the power results of the test statistics for two-tailed tests for
testing CAR(−5,+5) with an AR ranging from −3 percent to +3 percent. General
details of the simulation setup are given in the Figure 1.

Figure 5: The power results for CAR(−10,+10)
The �gure illustrates the power results of the test statistics for two-tailed tests
for testing CAR(−10,+10) with an AR ranging from −3 percent to +3 percent.
General details of the simulation setup are given in the Figure 1.
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