
Can Market Risk Perception Drive to Inefficient Prices?
Theory and Evidence

Matteo Formenti∗
Università di Roma Tor Vergata.

Dipartimento di Economia e Istituzioni
e-mail: formenti.matteo@uniroma2.it

November 10, 2010

Abstract

This work presents an asset pricing model of informed investors with constant absolute-
risk aversion (CARA) utility functions who trade with liquidity investors when prices and
dividends are normally distributed. Adopting a competitive rational expectation equilib-
rium perspective, we find that the model shows two types of unique linear equilibrium
price: the informationally semi-strong efficient price, similar to the original model of
Campbell and Kyle (1993), and the completely informationally inefficient prices. We
argue that the former Pareto dominates (is dominated by) the latter in the presence of
low (high) market risk perception measured by risk aversion and market microstructure
variance. The estimates of the model using real data confirm our theoretical findings.
The S&P 500 Index is informationally efficient during 1871–2009, and inefficient in the
sub-period 1995–2000.
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1 Introduction

This work presents a model that uses a rational expectation equilibrium perspective to show
that financial markets are efficient when informed rational investors have a low market risk
perception, and are inefficient when investors’ risk perception is high. The work is innovative
because the result is obtained without the need to invoke in the model short-sale constraints
(Harrison and Kreps, 1978), subjective prior (Tirole, 1982), ex ante inefficiency (Allen, Morris,
and Postlewaite, 1993), bounded rational investors or individual irrationality (DeLong et al.,
1990), diverse belief (Kurz, 1994, 1997, and 2007), overconfidence (Scheinkman and Xiong,
2003), or heterogeneous investors (Gulko, 2005), which is normally done.

In the finance literature the issue of efficiency versus inefficiency of prices, and the assump-
tion of rational versus irrational markets, have been thoroughly investigated, theoretically and
empirically, since the efficient markets hypothesis formulated by Fama (1970).1 Indeed, they
are still open to criticism. The hypothesis is that financial prices efficiently incorporate all
public and private information and that prices can be regarded as the optimal estimates of
true investment value at all times. In turn, it incorporates the notion of rational investors, who
are able to use all the available information to solve their investment problems, maximizing
the expected utility of consumption.2

The model assumes the structure of the economy used in the celebrated work by Campbell
and Kyle (for convenience C.K.) (1993). There are two type of investors who trade one risky
asset: the informed risk-averse investors, who choose the optimal mumber of shares of the
asset that solve the expected-utility problem, and some noise traders who come to the market
for liquidity reasons. Investors observe the dividend process and have private information
regarding the dividend growth rate. The price is written as the fundamental value of public
and private information with a discount term, accounting for investors’ risk aversion, and a
linear term expressing the sensitivity of the price to supply shocks. According to this setting
we depart from the ex ante assumption that the equilibrium price is fully informative as in
C.K. Our model lets the informed investors determine their optimal demands by postulating
an equilibrium price that is not a priori informative. Thus investors solve the investment
problem and determine their asset’s demand that make price optimal. This procedure let us
obtain several candidate equilibrium prices that always include the fully informative one. We
select from the candidate equilibrium prices the one with the highest utility for the informed
investors and we consider it as the equilibrium price of the model. Finally, the equilibrium
price depends on market parameters.

Our main result is that inefficient prices are determined by the investors’ market risk
perception. In case of high risk aversion and/or high market microstructure volatility, the
efficient equilibrium price is Pareto dominated by the inefficient one. The inefficiency is
observed when neither public information nor private information are correctly revealed in
the asset price. As a consequence of this inefficiency, investors ask a higher risk premium
with respect to the efficient price. This reaction is an observed anomaly in real markets called
the equity premium. Moreover, when a stock price does not equal the present value of future
expected dividend streams, and its changes in price should not be attributable to news about
dividends or discount factors, the higher discount in price leads to high variability in price
dynamics. This is the observed excess volatility in real stock prices.

We estimate the model using real financial market data. We compare the estimates when
the model assumes the efficient price versus the inefficient price. The S&P 500 Index reflects
the fundamental values, and it validates the efficient market hypothesis during the long period

1The term was originally coined in an unpublished working paper by Harry Roberts (1967), whereas the
history of the efficient market hypothesis begins with Cardano in 1564 as reported by Sewell (2008).

2Note that having agents with rational expectations implies that on average the population (even if no one
person does) updates its expectations appropriately.
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1871–2009, while in the sub-period 1995–2000, characterized by high market volatility, we
obtain an opposite result. The likelihood ratio test, used to compare the fit of the two models,
rejects at 1% the null hypothesis of the efficient market. Furthermore, the estimates seem to
confirm the theoretical results that focus on the role of market volatility and investors’ risk
aversion to determine inefficient prices.

The paper is organized as follows. Section 2 reviews the literature on efficient markets,
bubbles, and empirical anomalies. The economy of the model is spelled out in Section 3. In
Section 4 we derive the rational expectation equilibria of the full model, the efficient price
model (Model A), the inefficient price model (Model B), and the utility criteria used to
compare different candidate equilibrium prices. Section 5 calibrates the model and shows the
theoretical results. Section 6 provides the estimates of the model and shows that real data
are close to our theoretical results. Section 7 concludes.

2 Literature Review

The works of Grossman (1976), Grossman and Stiglitz (1976), and later Kyle (1985, 1989),
C.K. (1993), Wang (1994) are the first to include the efficient market hypothesis and the
presence of informed investors and noise traders in a contest of competitive markets to analyze
the role of information in price dynamics.3 In these models the rational informed investors
are those active traders who know everything and their trading is perfect. Noise traders
model the irrationality in the market assuming that such investors do not collect information
and whose trading activity is informative for others. In such models, prices can deviate
from fundamental values due to the action of the noise traders and the desire of the rational
agents to exploit them as much as possible. Equilibrium prices are achieved in the Walrasian
auctioneer scenario: each agent solves her optimization problem treating the market-clearing
price in that period as parametric, the auctioneer announces a price and receives from all
market participants what their demand/supply would be at that price. The auctioneer then
determines the excess demand at that price and keeps announcing prices until a price is arrived
at that sets excess demand to zero.4 This rational expectation equilibrium perspective has
great success in capturing the dynamics and informativeness of asset prices, mainly because
of the easy tractability of the equilibrium price. The main result of these models is that there
exists a unique equilibrium price in the semi-strong form. Further, noise traders play a key
role in clearing the market and avoiding breakdown of the market.5

Despite these important theoretical results, and some critiques for the induced “schizophre-
nia” of the informed investors (Hellwig, 1980; Kyle, 1989; Back, 1992), these models do not
capture some important market empirical anomalies (see Siegel, 2002 for an extensive review
of all anomalies). The financial literature of last twenty years reviewed these apparent anoma-
lies, taking the efficient markets hypothesis as a benchmark. They include the equity premium
puzzle (Mehra and Prescott, 1985), the excess volatility in stock returns and price-dividend
ratios (Grossman and Shiller, 1981; LeRoy and Porter, 1981; Shiller, 1981), the predictability
of stock returns (Poterba and Summers, 1988; Fama and French, 1989; Campbell and Shiller,
1988). According to Shiller (1998) these anomalies suggest that the underlying principles of
rational behavior, and the efficient markets hypothesis, are not entirely correct and that we
need to look at other models of human behavior.

Economic theory defines the asset price bubble as any situation in which the price of an
3See Brunnermeier, 2001 for an extended literature review.
4See the book by Hens and Schenk-Hoppe (2009) for a wide discussion of different theoretical, analytical,

and empirical techniques that explain the market dynamics of asset prices.
5Without the presence of noise traders, the no-trade theorem of Milgrom and Stokey (1982) applies and

there is no exchange.
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asset deviates from its fundamental value. Hence an asset price bubble is an inefficient price.
On the other hand, the presence of bubbles and market anomalies discussed above have not
been investigated together. This is due to the empirical difficulties related with the measure
of expected dividends that have yet to be realized. For this reason economists sought to
determine the conditions that allow a bubble to arise. Tirole (1982) adds the assumption of
infinite trading by finitely many traders.6 Different works demonstrate the validity of these
assumptions and show how a bubble arises when the assumptions are relaxed. Harrison and
Kreps (1978) assume that traders start with different initial beliefs, De Long et al. (1990)
exploit the possibility of trading with rational and irrational traders, Tirole (1985) shows
different examples of the presence of bubbles with infinite traders, and Townsend (1980)
describes a model with inefficient allocated resources as a reason for having money (interpreted
as a bubble).

Literature on financial bubbles shows that differences of opinion among investors and short
sales constraints are sufficient to generate a price bubble. See Miller (1977), Harrison and
Kreps (1978), Chen, Hong, and Stein (2002), Scheinkman and Xiong (2003), and the extensive
empirical works confirming this results such as Lamont and Thaler (2003) and Ofek and
Richardson (2003). These works stand in contrast to the rational bubble literature (Blanchard
and Watson, 1982; Allen, Morris, and Postlewaite, 1993) in which these two ingredients are
not crucial to generating a rational bubble in a finite or infinite horizon setting. We are
in line with these latter works when we show inefficient prices without assuming short-sale
constraints or investors’ subjective prior, but we depart from these works when we do not
assume ex ante inefficiency or the finite horizon.

The seminal work of C.K. (1993) shows that the price of a risky asset can deviate from
the expected present value based on public and private information by a discount term,
accounting for investors’ risk aversion, and a linear term expressing the sensitivity of the price
to the supply shocks. According to this setting they estimate the efficient equilibrium price
on real market data. Their main findings suggest that prices are noise affected, risk aversion
is captured by the constant term, and the S&P 500 reflects the price written in this linear
form.

Our theoretical findings are similar to Monte et al. (2009) who show, under asymmet-
ric information, that markets admit equilibria with inefficient prices. They show that a low
investors’ perception of market risk induces investors to trade as perfect competitors, and
consequently informationally efficient equilibria are achieved, while a high investors’ percep-
tion of market risk leads investors to prefer strategic trading, and informationally inefficient
equilibria result. This work does not assume any asymmetry in the information structure, and
any difference among informed or uninformed investors. As a consequence, we interpret the
presence in the market of inefficient prices not in terms of perfect or imperfect competition
but only as a possible explanation of some market anomalies rationally determined by the
informed investors.

3 The Economy

Consider an economy composed of completely informed risk-averse rational investors and noise
traders exchanging a risky asset. Assume that dividend and price are normally distributed and
that changes in the level of dividend and stock price have constant variance. As a consequence

6The assumption of efficient allocation guarantees that any investor who agrees to buy an overvalued
(undervalued) asset must believe that he will benefit from reselling it at a future time. The assumption of
common priors is discussed in Morris (1995). In case of finitely many traders, bubbles simply do not arise
because the last traders refuse to purchase an overvalued asset knowing there will be not any opportunity to
resell it.

4



the variance of percentage returns and dividend growth rate increases (decreases) when the
level of price and dividends decreases (increases). Let us de-trend dividend and stock prices
by an exponential growth trend ξ obtained by market data as the dividend growth mean.
Therefore we have

D(t) ≡ Du(t)e−ξt P (t) ≡ P u(t)e−ξt (1)

where the variables Du and P u are the observed dividend and price of our stock, and D(t)
and P (t) are the de-trended dividend and price. We assume that changes in Dt and Pt are
homoskedastic and normally distributed. We also assume that both have one unit root, but a
particular combination of levels of prices and dividends is stationary, that is we assume they
are cointegrated.

Let r be the time-invariant risk-free interest rate. Then a permanent one-dollar change in
the de-trended dividend has a discounted value of 1/(r−ξ) dollars, such that the cointegrating
stationary vector is D(t)− (r − ξ)P (t). We call the unconditional mean of this variable γ =
E[D(t)− (r − ξ)P (t)]. As in C.K. the investors expect the price can be decomposed into the
sum of a “fundamental” value, a constant term, and a noise term:

P (t) =
γ

(r − ξ)
+ V (t) + Θ(t) (2)

= p0 + V (t) + Θ(t) (3)

where p0 captures the constant risk premium per share of stock demanded by risk-averse
informed investors, V (t) represents the expected future dividend (i.e., public information)
and the nondividend component (interpreted as the investors’ private information), and Θ(t)
is the noise component. This price’s form is convenient because (i) it is linear, (ii) it does not
require any assumption about the discount rate, and (iii) the noise trading component, given
by a random supply of the stock, captures the presence of liquidity traders. Finally, note that
noise trading influences the stock price because the informed investors are risk-averse and ask
a risk premium that is captured by the constant term. A special case of Equation (2) is our
benchmark case (Model A) that is the efficient price derived in the work of C.K. in which the
fundamental value V (t) is the present expected value of dividend and nondividend discounted
at the risk-free rate r.

Dividend structure. There are continuous dividend announcements to the market. The
dividend (de-trended) is the sum of permanent and temporary components, independently
distributed and not directly observed by the informed investors:

D(t) = D0(t) +D1(t).

The permanent component is a brownian motion process, and the temporary component is a
mean reverting process, a continuous-time AR(1), given by

dD0(t) = αII(t) + σ0dw0(t), dD1(t) = −αDD1(t)dt+ σDdwD(t) (4)

where dw0(t) and dwD(t) are two standard independent brownian motions, σ0 and σD con-
stitute the innovations in D0(t) and D1(t), and the quantities σ2

0 and σ2
D are the innovation

variance of D0(t) and D1(t) respectively. The idea that dividends have a private hidden in-
formation content is an old one (see Lintner, 1956; Miller and Modigliani, 1961; Watts, 1973)
and it has been tested empirically by several works (Shiller, 1981; DeAngelo et al., 1992). The
parameter αI captures this hidden private information content in the dividend process and
is useful for scaling the unit of I. I(t) measures how much D0(t) is expected to increase in
the future. The positive parameter αD measures the speed mean reversion of the transitory
component and −αDD1(t) is the expected growth rate of dividends.7

7The scaling parameter does not change the final results (see C.K., Appendix A).
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Information structure. Informed investors receive private information I(t) (a private sig-
nal) about the asset price. It is convenient to interpret it as the unknown part of the dividend
process, i.e., the “nondividend information” component.8 The information is modeled as a
mean reverting process:

dI(t) = −αII(t) + ρIσ0 dw0(t) + (2ρI − ρ2
I)

1/2σ0 dwI(t) (5)

in which dwI(t) is a standard brownian motion independent of dw0(t), and σI constitutes the
innovation in I(t). Investors receive new information about the traded stock captured by the
two random components of the process, measured by the standard deviations σ0 and σI . The
parameter αI captures the mean-reverting speed at which the new information is updated
into the price. As αI increases (decreases), private information decays faster (slower) and it
is short lived in the price dynamics. The correlation structure between dD(t) and dI(t) is
given by χ = − ρI√

2ρI
, which ensures that

E {I(t+ s) | D[−∞, t]} = 0, s ≥ 0 (6)

and the history of the dividend process cannot forecast the future of I(t). A technical condition
is imposed on the parameter 0 ≤ ρI ≡ σ2

I/2σ
2
0 ≤ 2 to guarantee that D does not forecast I,

that is the variables D(t) and I(t) are independently distributed. C.K. show that Equation
(6) uniquely determines the diffusion term in the D(t), I(t) processes.

Noise trading. Following the noisy rational expectational models,9 we assume that the
total amount of risky asset supply is 1 + Θ(t). The process Θ(t) models the deviation of the
current risky asset supply from its long-run stationary level normalized to 1. This assumption
implies that noise traders—those passive players buying and selling either for liquidity reasons
or as tax-related trading—have inelastic demand of 1 − Θ(t) shares of the stock at time t,
such that Θ(t) is the number of remaining shares available to the market, i.e., to the informed
investors. The noise process has a non-null mean reverting dynamics

dΘ(t) = −αΘΘ(t) dt+ σΘ dwΘ(t), (7)

in which dwΘ(t) is a standard Brownian motion independent by [dwD0(t), dwD1(t), dwI(t)],
the positive parameter αΘ is the constant mean speed of reversion of the process Θ(t) towards
its long-run null level, and σΘ is the variance of market noise. The stochastic supply of the
risky asset in the aggregate market makes the market incomplete.

The informed investors’ information set at time t is given by the (public) dividend and
(private) nondividend processes

F(t) ≡ σ[D0(s), D1(s), I(t),Θ(t), P (t); s ≤ t] = σ[D(t), I(t), P (t); s ≤ t],

where the σ-field of F(t) is generated by two observed variables, D(t) and P (t), and the latent
variable I(t) is extracted with the Kalman-Filter procedure. Finally, note that informed
investors are able to extract the missing variable Θ(t) from price and dividend, therefore they
have complete information in equilibrium.

8C.K. defines I(t) as the measurement error on the transitory component. The information process is
defined as I(t) ≡ D̂1(t) − D1(t) = D0(t) − D̂0(t), where [D̂0(t); D̂1(t)] are the investors’ estimates of D0(t)
and D1(t) respectively.

9See Diamond and Verrecchia, 1981; C.K., 1993; Wang, 1993; He and Wang, 1995; Vives, 1995; Foster and
Viswanathan, 1996; Brunnermeier, 2001; Allen Morris Shin, 2006.
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CARA-Utility. We assume that informed investors have a constant absolute-risk aversion
(CARA) utility function

u[t, c(t)] = −e−[βt+ϕc(t)], (8)

where β is the time-impatience parameter and ϕ is the coefficient of the absolute risk aversion.
The use of the CARA utility function, and the assumption of normality of dividend and stock
prices, let the expected future dividends be discounted at the riskless rate of interest. This is
equivalent to saying that an increase in the expected future dividend, given by a higher value
of investors’ private information, is captured by a change in the variable V (t) in Equation (2),
while an increase (decrease) in the informed investors’ risk aversion causes a lower (higher)
value of the constant term. Investors choose consumption and inventory of risky assets to
maximize their utility given the information set

max
Ψ(t), c(t)

E
[
−
∫ +∞

t=0
u[t, c(t)] dt |F(t)

]
The use of CARA preferences implies that the investors’ optimal asset demand, and thus the
optimal equilibrium price, are independent of their wealth distribution as well as the level
of aggregate wealth. This greatly simplifies our optimization problem.10 The model has a
closed-form solution according to that preference.

4 Equilibrium

In this section we solve for the equilibrium of the economy described in Section 3. We use the
rational expectation equilibrium perspective developed by Lucas (1972), Green (1973), Gross-
man (1976), and Kreps (1977). Informed investors conjecture the form of the equilibrium price
and maximize the expected utility functions subject to the budget dynamic constraint and
conditioned on their own private information, as well as the information that the equilibrium
prices generate. Market clearing is imposed to verify the conjectured price function. We
remark that the investors’ optimization problem determines the optimal demand at the stock
price conditioned on the conjecture price function. Hence the equilibrium price is optimal
because it is the price that make the optimal demand.

Following the equilibrium price described in (2), the investors write the price’s form linearly
depending on the state variables of the economy:

P (t) = p0 + pD0D0(t) + pD1D1(t) + pII(t) + Θ(t) (9)

in which p0 is assumed to be negative because it is the discount on price given by the investors’
risk aversion, the state variables [D0(t), D1(t)] account for the observed dividend D(t), I(t)
is the hidden stationary private information, and Θ(t) is the aggregate supply shock of the
stock. The variance of the stock price is given by σP = p2

D0
σD0 + p2

D1
σD1 + p2

IσI + σΘ. If
we assume a constant variance of price this implies that the variance of percentage of returns
increases as the price of the stock decreases and vice versa. This phenomenon has been studied
since the works of Black (1976) and Nelson (1987). Our benchmark case Model A assumes a
constant variance of price because the price coefficients are constant. Model B will not assume
a constant variance of price because it lets free the price coefficients.

Investment opportunity. Given the processes of [D(t), I(t),Θ(t)] described in Equations
(4–7), the stock price follows the process

dP (t) = [−pD1αDD1(t) + (pD0αI − pIαI)I(t)− αΘΘ(t)] dt+H dw(t) (10)
10We know that the CARA utility allows negative consumption and negative wealth, so we prefer to avoid

these problems by not imposing non-negative constraints.
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where H = {pD0σ0 + pIρ σ0, pD1σD, pI
√

2ρI − ρ2σ0, σΘ} and dw(t) is the (1 × 4) vector
of brownian motions. Our investment opportunity is given by Q(t), the instantaneous excess
return on one share of risky asset, governed by the process

dQ(t) = [D(t)− rP (t)] dt+ dP (t) (11)

where the risk-free rate r is assumed to be constant. According to Wang (1993), dQ(t) is
interpreted as the return on a zero-wealth portfolio long one share of stock fully financed
by borrowing at the risk-free rate. Q gives the undiscounted cash flow from the zero-wealth
portfolio.

Given the process (10), Q(t) satisfies the stochastic differential equation

dQ(t) = [D(t)− rP (t)] dt+ dP (t) (12)
= [e0 + eD0D0(t) + eD1D1(t) + eII(t) + eΘΘ(t)] dt+H dw(t)

where e0 = −rp0, eD0 = 1 − rpD0 , eD1 = 1 − pD1(r − αD), and eΘ = −(r + αΘ). The
conditional expectation of the excess return on one share of stock is Et[dQ] = [e0 + eD0D0 +
eD1D1 + eII+ eΘΘ] dt. The expected excess return is affected by all the state variables of the
economy, while σΘ, the market microstructure variance, directly influences the price volatility
but does not affect the investment opportunity. As in Wang (1993), the level of aggregate
stock supply affects dQ because it determines the total risk exposure of the economy.

The optimization problem. Let us denote by Ψ(t) the holding of the risky asset at time
t: that is, the investors’ inventory. The investors’ wealth W (t) has the following dynamics:

dW (t) = [rW (t)− c(t)] dt+ Ψ(t) dQ(t), (13)

where c(t) is the investor’s consumption policy and dQ is given by Equation (12). The investors
maximize the expected value of their exponential utility over the infinite time horizon, subject
to the wealth dynamics and given the information set at time t, by controlling their inventory
Ψ(t) and their consumption c(t). The investor’s optimization problem is

max
Ψ(t), c(t)

E
[
−
∫ +∞

t=0
e−[βt+ϕc(t)] dt |F(t)

]
(14)

s.t. dW (t) = [rW (t)− c(t)] dt+ Ψ(t) dQ(t)

where E[ · |F(t)] is the conditional expectation operator given the information set F(t). Let
V (Z,W, t)11 be the value function, where (Z,W ) are the state variables moving the investment
opportunities and Z = (1, D0, D1, I, Θ)>. The variables of the economy can be written in
compact form as

dZ(t) = AZ(t) dt+B1/2 dw(t) (15)

where

A ≡


0 0 0 0 0
0 0 0 αI 0
0 0 −αD 0 0
0 0 0 −αI 0
0 0 0 0 −αΘ

 , B1/2 ≡


0 0 0 0
σ0 0 0 0
0 σD 0 0

−ρIσ0 0 (2ρI − ρ2
I)

1/2σ0 0
0 0 0 σΘ

 .

(16)

11We assume that V (Z,W, t) is twice differentiable in each of the state variables.
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As in C.K. we consider the Z(t) process as a Vector Autoregression (VAR). The value function
J(Z,W, t) satisfies the Bellman equation

0 = maxΨ(t), c(t)

{
−
∫ +∞
t=0 e−[βt+ϕc(t)] + E [dJ(Z,W, t)] ds

}
dZ(t) = AZ(t) dt+B1/2dw(t)
dW (t) = [rW (t)− c(t) + Ψ(t)SZ(t)] dt+ Ψ(t)T 1/2dw(t)

0 = lims→∞E [J(Z,W, t+ s)] .

(17)

The solution of this problem is given in Theorem (1).

Theorem 1 We solve the investors’ optimization problem conjecturing the following form of
the value function

J(Z,W, t) = −e−βt−rϕW+Φ(Z)−λ, (18)

where Φ(Z) = 1
2Z
>LZ. The optimal share of the stock is a linear function of Z(t)

Ψ̃(t) = −
T 1/2

(
B1/2

)>
L− S

rϕT
Z(t) (19)

and the optimal consumption is given by

c̃(t) =
1
2Z
>(t)LZ>(t) + rϕW (t) + λ− ln(r)

ϕ
, (20)

where L ≡ (li,j)5
i,j=1 is a symmetric real matrix and λ is a real number satisfying

r[1 + λ− log(r)]− β − 1
2
tr
[(
B1/2

)>
LB1/2

]
= 0. (21)

The investors’ demand and consumption are optimal when the matrix L has the coefficients
that are solutions of the algebraic Riccati equation

LUL− LX −X>L− Y = 0, (22)

for
U ≡ B1/2

[
TI4 −

(
T 1/2

)>
T 1/2

] (
B1/2

)>
X ≡ T

(
A− 1

2rI5

)
−B1/2

(
B1/2

)>
S

Y ≡ S>S
(23)

and In is the identity matrix with dimensions n.

Proof. 1 See Appendix A.

Market clearing. Market clearing is the condition that ensures that the conjectured price
in Equation (9) is the equilibrium price. The condition implies that investors’ demand is
constrained to respond to the stochastic risky asset supply. In other words, when the market
clears investors’ demand must sum to 1 + Θ. Thus

Ψ̃(t) = 1 + Θ(t). (24)

According to Equation (24) the coefficients of Ψ̃(t) satisfy the equalities

ψ0 = 1, ψD0 = 0, ψD1 = 0, ψDI = 0, ψΘ = 1 (25)
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that we impose in our optimization problem (19–23) to determine the coefficients [p0, pD0 , pD1 , pI ].
Note that Equation (23) verifies that the conjectured form of the equilibrium price (9) is op-
timal. On this account the investors’ optimization problem should be more appropriately
interpreted as the determination of the risky asset price that makes the rational investors’
equilibrium demand for the risky asset optimal.

Theorem (1) and market clearing condition (24) determine two types of candidate equi-
librium prices: the informationally semi-strong efficient price and the inefficient prices. We
obtain two types of candidates because we assume the price coefficients are misspecified when
investors solve the optimization problem. The efficient candidate equilibrium price is our
benchmark case and is in line with the efficient market hypothesis. We call this efficient price
Model A. The inefficient candidate equilibrium prices are those that deviate from the efficient
one and in which public and private information are incorrectly reflected in the market price.
We call these inefficient prices Model B.

4.1 Model A: Efficient Equilibrium Price

Our benchmark case is the efficient equilibrium price; i.e., the fundamental value V (t) is the
present expected value of dividend and nondividend discounted at the risk-free rate r.

Proposition 1 The economy defined in Equations (4–8) has a stationary rational expecta-
tions equilibrium in which price is efficient:

P̃ (t) = Ṽ (t) + p̃0 + Θ(t) (26)
= p̃0 + p̃D0D0(t) + p̃D1D1(t) + p̃II(t) + Θ(t)

where

Ṽ (t) = Et

∞∫
s=0

e−rsDu(t+ s) ds = Et

∞∫
s=0

e−(r−ξ)sD(t+ s) ds

and price P̃ (t) has the following coefficients:

p̃0 = −
(

[(r − ξ + αI)2 − 2(r − ξ)αIρI ]σ2
0

(r − ξ)2(r − ξ + αI)2
+

σ2
D

(r − ξ + αD)2

)
r

r − ξ
ϕ (27)

p̃D0 ≡
1

r − ξ
, p̃D1 ≡

1
r − ξ + αD

, p̃I ≡
1

r − ξ
− 1
r − ξ + αI

(28)

Proof. 2 See Appendix B.

The constant term is obtained when informed investors maximize their objective function
(14) using the price coefficients in the form of Equation (27). Note that p̃0 depends on the
fundamental risk parameters (αD, αI , ρI , σ0, σD) and on the investors’ risk aversion ϕ that
increases the expected return on the stock by increasing risk premium with a higher negative
term. As shown in C.K. and Wang (1993), this is a simple discount on the price to account
for the increasing discount rate. Note that it is possible to extract from (27) the algebraic
form of γ given in Equation (2) and a measure of investors’ risk aversion once we estimate
Model A using real data (see Section 6).

4.2 Model B: Inefficient Equilibrium Prices

Economic theory defines an asset price bubble as an asset price deviating from its fundamental
value, that is the discounted expected value of all dividends yielded by the asset. A bubble
is an inefficient price. Model B shows the equilibrium prices, which are not the present value
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of the expected discounted dividend and nondividend flow. These equilibria arise from the
informed investors’ optimal demand (19) and market clearing condition (24) when we let the
price coefficients be misspecified.

Proposition 2 The economy defined in Equations (4–8) has a stationary rational expecta-
tions equilibrium in which the price has the following forms:

P̂ = p̂0 + p̂D0D0(t) + p̂D1D1(t) + p̂II(t) + Θ(t) (29)

in which at least one of the price coefficients is not defined as in Equation (27).

Proof. 3 Proof of Proposition 2 is possible only via numerical solution due to the high com-
plexity of matrices (23). See Section 5.

4.3 Utility Function

Model A and Model B describe two types of equilibria: the semi-strong efficient equilibrium
price and the inefficient prices. For any given set of exogenous parameters we have a multiple
candidate equilibrium, which corresponds to Model A or Model B. This is due to the high
nonlinearities of Equations (19–23). We remark that each candidate is a mathematical solu-
tion of the infinite-horizon optimization problem and only one is the equilibrium price that
maximizes the investors’ utility. We Pareto rank all these candidate equilibrium prices accord-
ing to the utility criteria and we consider the one with the highest utility as the equilibrium
price. Here we show the form of the value function (18) when Theorem (1) is verified:

J(Z,L, λ, t) = λ+
1
2
l1,1 + f [D0(t), D1(t), I(t),Θ(t)] (30)

where the constant term λ + 1
2 l1,1 is different for each candidate equilibrium price and rep-

resents the “essential utility part” of the value function. We replace the investors’ expected
utility with the “essential utility part” to choose among different equilibrium candidates the
equilibrium price, thus

J̃(L, λ) ≡ λ+
1
2
l1,1 (31)

Since we are in a suitable neighborhood of the origin of the Euclidean space of the states of
the economy (D0, D1, I,Θ) we have

ZLZ ' l1,1,

such that it follows that

−e−βt−rϕY+ 1
2
Z>LZ−λ ' βt+ rϕY + J̃(L, λ).

We conclude that the higher is the “essential utility part” of the expected utility, the higher
is the expected utility itself in the considered neighborhood.

5 Numerical Solutions

This section shows with numerical routines the candidate equilibrium prices and the corre-
spondent “essential utility part.” We fix the exogenous parameters of the model as follows:

r = 0.05; ξ = 0.011; β = 0.30; ϕ = 0.50;
αD = 0.50; αI = 0.40; αΘ = 0.05;

σ0 = 0.50; σD = 0.10; σI = 0.40; σΘ = 0.50.
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Table 1 shows different candidate equilibrium prices for these parameters. The candidate
equilibrium price with the highest “essential utility part” is the equilibrium price. In Ta-
ble 1, the equilibrium price obtained via numerical solution is the same equilibrium derived
algebraically in Model A:

p̃0 =− 91.773, p̃D0 =
1

r − ξ
= 25.641,

p̃D1 =
1

r − ξ + αD
= 1.855, p̃I =

αI
(r − ξ)(r − ξ + αI)

= 18.446.

We observe that this efficient price is the one giving the highest utility for the informed in-
vestors with respect to the other inefficient candidate equilibrium prices. On this account we
conclude that the efficient equilibrium price Pareto dominates the other candidates, charac-
terized by some extent of inefficiency. Note that the constant term p̃0 = −91.773 is negative
as suggested by theory, which subtracts a constant term from the price to account for the
expected return on the stock for risk-averse informed investors, instead of increasing the dis-
count rate. Note what are the other candidate equilibrium prices. These candidate prices
are inefficient because they have a lower (higher) value of pI or pD0 with respect to the full-
informative equilibrium price. As a consequence of this inefficiency they have a higher (lower)
value of p0. This is correct from the investors’ point of view because investors ask a higher
(lower) discount term as a compensation for inefficiency and price moves downward (upward)
as a consequence of this higher (lower) discount.12

Table 2 shows the candidate equilibrium prices when there is a positive change in investors’
risk aversion, i.e., ϕ is unity.13 Among the candidate equilibrium prices, the one with the
highest “essential utility part” (λ + 1

2 l1,1 = 43.96) is an inefficient price with the following
coefficients:

p̂0 = −2664.632, p̂D0 = −89.311, p̂D1 = 1.855, p̂I = −13.384

in which p̂D0 = −89.311 and p̂I = −13.384, the coefficients associated with the permanent
component of dividend and with private information, deviate from their efficient values given
by p̃D0 = 1

r−ξ = 25.641 and p̃I = αI
(r−ξ)(r−ξ+αI) = 18.446. We interpret these negative

coefficients as the investors’ willingness to anti-correlate the private and public information
flows with price. As a consequence of this inefficiency, investors ask a higher discount: p̂0 =
−2664.632 as a compensation for the inefficient price.

Table 3 confirms the previous result when market microstructure variance increases, i.e.,
σΘ is unity. The equilibrium price obtained as a solution of the investment optimization
problem for the informed investors has the following coefficients:

p̂0 = −465.202, p̂D0 = −80.445, p̂D1 = 1.855, p̂I = −87.639

in which the coefficients of the permanent component of dividend process p̂D0 = −80.445
and of private information p̂I = −87.639 deviate from the efficient values. We remark that
a negative value of pD0 means that the permanent part of dividend is anticorrelated with
price without implying that price moves downward when dividend increases. The coefficients
measure only the price reaction to dividend and nondividend news. The movement of price
is driven by the constant part. The inefficient price described above has a negative constant
term that is five times the discount requested in the benchmark case. This higher discount
term leads us to conclude that the above price has a downward dynamics as a consequence of
the market microstructure volatility increase.

12The direction of price movement is directly linked with the value of p0 so a higher negative discount implies
a fall in the price dynamics, and a lower value implies a price increase.

13We double the risk aversion parameter with respect to Table 1.
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According to numerical results, an increase (decrease) in the informed investors’ risk per-
ception determines an informational inefficient (efficient) equilibrium price. We measure an
increase in the market risk perception with an increase in the investor’s risk aversion and in
the market microstructure volatility. These two parameters determine inefficient prices and
as a consequence of this inefficiency investors demand a higher discount for the risky asset.
We interpret this result as the need of the informed investors to protect themselves from
the high risk perception with a noninformative price, and noninformative prices are the opti-
mal response when there is high market risk perception. Finally, we consider this inefficient
equilibrium price a rational bubble, that is a price that optimally solves the infinite-horizon
investors’ optimization problem and deviates from the correspondent fundamental value.

Our inefficient equilibrium price captures some “market anomalies” in a real financial
market. When price is not equal to the present value of future expected dividend streams,
and changes in price are not attributed to news about dividends or discount factors, we
observe a higher constant term, that is a higher discount requested by the informed investors.
This phenomenon is observed in real financial markets under the name of the equity premium
puzzle. Secondly, when price is inefficient we observe higher price coefficients so the variance
of price

σP = p2
D0
σD0 + p2

D1
σD1 + p2

IσI + σΘ

is higher with respect to the variance of the efficient price. This phenomenon is called excess
volatility and it arises from fears of risk that, in our model, are measured by the investors’
risk aversion and the market noise volatility.

Figure 1 shows the “essential utility part” of the efficient (Model A) and inefficient (Model
B) prices as functions of risk aversion and noise volatility. For ϕ = 0.1 and σΘ = 0.1 the
equilibrium price is the efficient one as confirmed by the red area. Increasing noise volatility
up to ϕ = 3.0, the efficient one is still Pareto dominating the inefficient one. For ϕ = 0.5 we
observe that the equilibrium price depends on noise volatility’s value. Thus, an increase in the
investors’ risk aversion and/or noise volatility leads the inefficient price to having the highest
utility. Further, risk aversion has a stronger effect on determining the inefficient equilibrium
price with respect to noise volatility.

Robustness check. Numerical results are obtained letting the machine search for math-
ematical solutions using the Newtonian method. We initialize the research letting the price
coefficients and each element of Equation (23), which guarantee the solution of the optimiza-
tion problem, range over (−10; 10). All equations and starting values are real, thus our search
is only for real roots. We control our results by expanding the range and using the method
of secant. We obtain the same results. We change the exogenous parameters of the model
without a significant change in the result. Tables are available upon request. Finally, we
prove that only risk aversion and noise volatility determine the inefficiency of the equilibrium
price. This implies that neither dividend (σ0, σD) nor information variances (σI) affect the
final result.

6 Econometric Method and Empirical Results

6.1 Preliminary Data Analysis

We estimate the model described in previous sections on annual U.S. time-series data for real
stock prices and dividends. Stock market data are taken from Shiller (2000) and are similar
to the dataset used by C.K. and Campbell and Shiller (1987, 1988). The dataset consists of
monthly stock price, the corresponding dividend data, and a price index during the period
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January 1871–December 2009.14 Our real stock price is the Standard and Poors Composite
Stock Price Index multiplied by the CPI-U (Consumer Price Index-All Urban Consumers)
in June 2010, and divided by the corresponding CPI. We apply the same procedure to the
corresponding S&P Stock Price dividend per share to obtain a real dividend series. The
procedure is used in Shiller (2000) to allow raw nominal data to be real.

We call the real unadjusted price and dividend P ut and Du
t , to distinguish them from the

de-trended real price and dividend, Pt and Dt, in the manner of Equation (1), in which we
choose ξ = 0.0115 as the average mean dividend growth rate over the sample. The de-trended
operation aims to remove exponential growth from the ex ante mean of data, without forcing
data to revert to a trend line, and to get rid of exponential growth from the variance of data,
a rescaling effect similar to a logarithm transformation. Finally, we normalize Dt and Pt such
that the mean of price equals one by dividing each time series with the mean of price. Figure
1 plots the de-trended real price and dividend × 10.

Table 4 presents the main statistics of the data. We consider January of each year as our
annual data point to avoid problems with time aggregation. Table 5 presents the results of
ADF, PP, and KPPS tested for stationarity both for Pt and Dt, and for P ut and Du

t . For
comparison we compute the test for ln(P ut ) and ln(Du

t ). Unit root tests show that price and
dividend have unit roots in the first level. The results for ADF, with five lags, and PP test for
Pt, P ut , and ln(P ut ) do not always reject the null hypothesis of nonstationarity, while KPPS
always rejects stationarity. The ADF test for Dt, Du

t , and ln(Du
t ) does not reject the null

in presence of a trend at the 5% level. KPSS confirms the unit root of the dividend series
in the level. The PP test accounts for autocorrelation of the error term and shows that the
dividend series is stationary with trend.15 In light of the results above, we assume a unit root
in the stock price and dividend time series, in line with C.K. and Campbell and Shiller (1987,
1988). Finally note that the de-trended operation given by the sample mean growth rate of
dividends does not have any effect on the unit root assumption.

Table 6 reports other time series properties of data such as the sample correlation of
the integrated process ∆Pt, ∆Dt until the fifth lags and, in the bottom of the table, the
sample standard deviations of ∆Pt and ∆Dt. The correlation analysis suggests that price and
dividend have a mean reverting component: this is due to the positive first autocorrelation
(0.14 and 0.22, respectively) while the other autocorrelations are all negative.16 This can
support the rejection of the null hypothesis in the unit root test for dividends. An interesting
result is given by the cross correlation between the dividend change from the end of one year to
the end of the next, ∆Dt, and the corresponding price change, ∆Pt. A very low value appears
at the contemporaneous level (0.03) and at the third level (0.06), but a high correlation (0.44)
between ∆Dt and ∆Pt−1. It means that only price change between Pt and Pt−2, the difference
between one year and the two previous years, helps to explain the change in actual dividend.
These findings support the idea that an hidden variable called “private information” It might
help to explain the relationship between price and dividend.

This work assumes that price and dividend each have one unit root, so they are integrated
14The dataset was retrieved from Robert Shiller’s website at http://www.econ.yale.edu/shiller/. More de-

tails on the dataset are available in Shiller’s book (2000). In this note we report his analysis: monthly dividend
data are computed from the S&P four-quarter tools for the quarters since 1926, with linear interpolation to
monthly figures. Dividend and earnings data before 1926 are from Cowles and associates, interpolated from
annual data. Stock price data are monthly averages of daily closing prices through January 2010. The CPI-U
(Consumer Price Index-All Urban Consumers) published by the U.S. Bureau of Labor Statistics begins in
1913; for years before 1913 it is spliced to the CPI Warren and Pearson’s price index, by multiplying it by the
ratio of the indexes in January 1913. December 1999 and January 2000 values for the CPI-U are extrapolated.

15Assuming a unit root in dividends implies that noise does not help to explain the stock price volatility (as
first shown by Kleidon, 1986; Marsh and Merton, 1986; and Timmermann, 1996).

16The autocorrelation sample in 1871–1988 supports the mean reverting component only for dividends, as
C.K. show in their work.
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processes of order one I(1), and that a linear combination is stationary [they are I(0)]. We test
the existence of cointegration with the Engle-Granger two-step method (where the null is no
cointegration, so the residual is a random walk). Table 7 shows the regression result and the
ADF test on the residuals. We estimate Dt = 0.073 + 0.012Pt using the heteroskedasticity-
robust standard error, thus two-thirds of the dividend’s mean are explained by the constant
that accounts for the unconditional expected excess return per share of stock demanded by
risk-averse investors. The ADF test rejects the unit root hypothesis at 5%. We conclude
that there exists a linear combination of Pt and Dt that is I(0) so price and dividend are
cointegrated. In our model the coefficient regressor (0.012) equals (r − ξ), the interest rate
less the dividend growth rate (ξ = 0.011), hence the implied interest rate is 2.4%, a very low
level justified by the high constant. If we regress dividend on price without a constant we
estimate Dt = 0.022Pt, which implies an interest rate of 3.3%. If we reverse the estimate we
obtain Pt = −3.113 + 57.003Dt, such that (r − ξ) = 0.017 and r = 2.9%. This value is very
close to the mean rate of return on our stock index (3.4%). We fix in our model r = 3% and
for comparison we also fix r = 6%. Finally we let r be free and we estimate it.

6.2 Estimates of the Model

Our model is set up in continuous time but we estimate it using discrete-time data. We
estimate it via an exact discrete analog according to the procedure originally introduced by
Bergstrom (1966, 1983) and recently discussed in McCrorie (2009). This is in contrast to
C.K. who estimate a discrete-time transformation of their original model showing that the
stacked vector of point-sampled and time-averaged transformation of the continuous-time
variables follows a discrete-time AR(1) process, with a transition matrix that is related to the
underlying continuous-time parameters. We find it more suitable to estimate the model using
the state space approach. Price and dividend are two observed variables, the measurement
equation of the state space model, and Z(t) is the vector of state variables representing the
transition equation. We write the state space dynamics in compact form as

Yt = C(µ)Zt (32)

dZt =A(θ)Ztdt+B1/2(θ) dw(t)

where the vector Yt = [Pt, Dt], the matrix C(µ) contains the price coefficients [p0, pD0 , pD1 , pI , 1],
{A(θ), B(θ)} are matrices containing the unknown parameters θ = [αD, αI , αΘ, σ0, σD, σI , σΘ]
to estimate, and dw(t) is the vector of independent brownian motions.

Appendix B reports the exact discrete matrices of our continuous time model and the like-
lihood function. We use the Kalman filter to extract the hidden information and to compute
the estimates for any variables. Our data are nonstationary hence we use a noninformative
(diffuse) prior distribution for the corresponding parameters under a Bayesian paradigm. We
initialize the filter assuming that the unconditional mean of each state variables is zero and a
arbitrarily large covariance matrix as suggested by de Jong (1991).17

Data 1871–2009. Table 8 shows the Maximum Log-Likelihood (ML) values for model
A, where we impose the informationally efficient form as given in Equation (27), and Model B,
in which price is assumed informationally inefficient. Each row of the table presents different
assumptions about the interest rate, while the columns report the absence or the presence
of market noise. The first result is that Model A has higher MLs for any assumption about
interest rate even when we assume there are no noise traders in the market. Secondly, noise
traders strongly improve the goodness of this model, as in C.K., when we assume interest rate
equals 3% and 6%, but not when the model estimates r (ML = 837.62).

17Our variance covariance matrix is a diagonal matrix with 106 on the diagonal.
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Table 8 shows that assuming full noise and interest rate equals 3% we estimate an ML
equals 834.88 for Model A and ML equals 830.65 for Model B. This great difference supports
the goodness of Model A with respect to Model B. A similar result is confirmed when we
assume r = 6% or when we estimate it separately. Table 9 shows the estimated price coef-
ficients; the two results are straightforward. The constant term p0 is negative as shown by
the theoretical model to account for the risk aversion of the investors. The estimate of the
interest rate equals 3.09% (with ML = 831.62), which is in line with the interest rate implied
by the estimated regression given in the previous section.

According to our estimates we conclude that the S&P 500 Index reflected the fundamental
values, and the efficient-market-hypothesis prevailed during the long period 1871–2009. It is
important to emphasize that we are aware that during in the long period there were at least
two structural breaks that are not considered in the estimates of the model. These estimates
were important to confirm the efficiency of the S&P 500 Index, to have a benchmark for
following estimates, and to compare our results with those of C.K.

Dot-Com Bubble Our main goal of this work is to verify whether theoretical results
given in Section 5 have some correspondence on real financial data. We take monthly prices
and dividends of the S&P 500 Index during 1995–2000 in order to have 72 data points in
our estimation procedure. Table 10 shows unit root tests values at 5% level: price and
dividend have unit roots in level and they are stationary if differenced by order one. In
the bottom of Table 10 we test the cointegration using Johansen’s methodology. The values
of λmax = 30.55 (15.67) and λtrace = 31.79 (19.96) reject the null hypothesis at 5% level
of zero cointegrating vector and they accept the hypothesis of one vector of cointegration.
We estimate Dt = 0.049+0.0017Pt using the heteroskedasticity-robust standard error.18 The
average dividend growth rate over the five-year period is low: ξ = 0.0011. Hence the coefficient
on Pt equals (r − ξ), the interest rate minus the trend growth rate, so the implied interest
rate is r = 0.0028. As C.K. have shown, this low interest rate value is justified by the high
value of λ. When we impose no constant in the regression we find r = 0.015. On the other
hand, to take account of the real interest rate, which was not so low during the Dot-Com
bubble, we find it suitable to assume in our estimations different values of the interest rate:
r = 1.5%, 3%, or we let it run free in the model and we estimate it. Finally, we assume there
is noise in the market when we estimate Model A or Model B and we carefully compute the
maximum of the log-likelihood function, changing the initial values of the Kalman Filter and
the ones in the optimization routine. However, the overall result does not change.

Table 11 shows that the Maximum Log-Likelihood of Model B is always higher than that
of Model A. We know the model with more parameters (Model B) will always fit at least as
well (have a greater log-likelihood) as Model A. Whether it fits significantly better and should
thus be preferred can be determined by deriving the probability or p-value of the obtained
difference given by LR = −2(MLA − MLB). The LR-test used to compare the fitting ability
of the two models rejects at 1% the null hypothesis of Model A, in favor of Model B, for any
assumptions of the interest rate. Finally, note that with the assumption of r = 1.5% we have
the best fitting ability when Model A is assumed, as shown by ML= 540.96, but this is much
lower with respect to ML= 636.39 when we estimate Model B.

Table 12 reports the price coefficients of Model A and Model B for different assumptions
about interest rate. We still find evidence of the negative term of p0 as suggested by theory.
On the other hand, the estimate of r when we let it run free is very low (r = 0.002). This
is in line with the preliminary analysis but it is not as reasonable as when we consider the
results when r is assumed equal to 0.015.

18Recall that the constant term equals λ, the unconditional expected excess return per share of stock
demanded by risk-averse investors.
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The estimates of the parameters given in Table 13b are in line with our theoretical results.
We have direct support from real data about what theory says about inefficient prices for
three reasons. The constant term of the estimate of Model B is lower (p0 = −0.061) with
respect to the constant term of Model A (p0 = −0.177); that is, risk-averse investors demand
a lower risk premium and as a consequence price increases. This is in line with the positive
asset bubble that Figure 2 shows during the period 1995–2000.

Secondly, we observe that the permanent component of the dividend process is correctly
estimated (pD0 = 71.942 and pD0 = 71.944 in Model A and Model B, respectively) while
investors estimate a lower value of their private information (pI = 0.001) and the permanent
component of dividendd (PD1 = 1.089). This is in line with our numerical results and conforms
with the investors’ behavior during the asset bubble: they know what are the real dividends
and they do not trade according to their private information. Moreover, the low value of
pI is correctly estimated because private information decays very fast (αI = 0.905); that is,
investors cannot exploit their private information for a long period.

Thirdly, we find that the inefficient price has the highest Maximum Log-Likelihood when
investors estimate a high value of market microstructure volatility with respect to dividends
and information: σΘ = 0.124 (see Table 13b). This evidence supports our theoretical re-
sults according to which the market microstructure volatility plays a key role in determining
inefficient prices.

Finally, we test that price estimated in Table 13b is inefficient as shown by the differences
between p̂D1 with p̃D1 and p̂I with p̃I .

7 Conclusion

The main result of this paper is that, still adopting a competitive rational equilibrium perspec-
tive, there exist two types of equilibrium price solutions of the optimal investment problem:
the semi-strong efficient one, in which price reflects fundamental values, and the inefficient
ones. The equilibrium price, defined as the one with highest utility for the informed investors,
is determined by investors’ risk perception. The efficient price Pareto dominates (are dom-
inated by) the inefficient ones when risk aversion is low (high) and/or when noise volatility
is low (high). According to our findings the risk averse investors, who maximize their invest-
ment opportunities and formulate consistent beliefs according with their public and private
information, rationally determined an asset bubble when they perceived high market risk. We
proved this result numerically. Moreover, when the equilibrium price is inefficient we observe
some market anomalies such as higher risk premium and the excess volatility, common in real
markets.

The second result of this work is that using real data, the estimates of the model seem to
confirm our theoretical findings. The S&P 500 Index reflects the fundamental values, given
by dividends and hidden private information, during the long period 1871–2009. On the
other hand, it has not supported the market efficiency hypothesis in the sub-period 1995–
2000. The higher maximum log-likelihood of the model under inefficient price assumption
leads us to reject, using the likelihood ratio test, the null hypothesis of an efficient market at
1%. The result is confirmed under different assumptions of interest rate. Furthermore, the
estimated inefficient price shows that investors demand a lower risk premium, which according
to our theory leads to a price increase; investors estimate a very fast decay of their private
information on price, which leads to lower sensitivity of their private information on the price
dynamics; and there is a high value of the market microstructure volatility, one of the main
driving factors of inefficient prices according to our theory. These three stylized facts are
discussed in our theoretical model.

In conclusion, the model sheds light on the role of market risk perception, such as the risk
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aversion and the market microstructure volatility, to determined efficient or inefficient prices.
Further research in this direction might help to understand whether market risk perception
uniquely characterized the inefficients equilibrium prices. This is because the model does not
uniquely identify whether risk aversion or market volatility caused the bubble in the 2000s;
nor does it show whether these variables determine positive or negative bubbles. A second
direction of research is to obtain a nontrivial situation where there are two informed investors
and two optimal equilibrium prices: an efficient one that is strictly preferred by the former
investor, and inefficient one preferred by the latter, with no one that is strictly preferred by
both. We aim to reproduce and to study the prisoner dilemma game applied to financial
markets.
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Appendix A. Solution to Investors’s Optimization Problem

Proof of Theorem 1. We solve the investor’s optimization problem showing that the
conjectured value function (18) is the investor’s objective function (14). We assume the value
function has the following form

J(Z,W, t) = −e−(βt+rϕW−Φ(Z)+λ),

where Φ(Z) = 1
2Z
>LZ, Z = (1, D0, D1, I, Θ)> is defined as the (5x1) vector of the state

variables and L ≡ (lj,k)5
j,k=1. The dynamics of Z(t) are written in compact form as in

equation (46). We write the excess return per one share of stock in terms of the state vector
P (t) = P̄Z(t), such that

dQ =(D(t)− (r − ξ)P (t))dt+ dP (t) = (D(t)− (r − ξ)P̄Z(t))dt+ P̄AZ(t)dt+ P̄B1/2dw(t)

=SZ(t)dt+ T 1/2dw(t)

where

S(t) ≡M−P̄ (r−ξ)+P̄A, M ≡ (0, 1, 1, 0, 0), P̄ ≡ (p0, pD0 , pD1 , pI , 1), T 1/2 ≡ P̄B1/2

We need to prove that

(i) the function (14) is a solution to the Bellman equation

∂tJ(Z,W, t) + max
Ψ,c
{GJ(Z,W, t)− e−(βt+ϕc)} = 0, (33)

where G is the infinitesimal generator of the diffusion process (Z(t),W (t));

(ii) the control (Ψ̊(t), c̊(t)) satisfies

(Ψ̊(t), c̊(t)) ∈ arg max{GJ(Z̊(t), W̊ (t), t)− e−(βt+ϕ̊c(t))} = 0,

where (Z̊(t), W̊ (t)) is a solution to

dZ(t) =AZ(t)dt+B1/2dw(t) (34)

dW (t) =(rW (t)− c(t) + Ψ(t)SZ(t))dt+ Ψ(t)T 1/2dw(t)

corresponding to the choice of (Ψ̊(t), c̊(t));

(ii) the trasversality condition

lim
T→+∞

EZ,W,t

[
J(t+ T, Z̊(t+ T ), W̊ (t+ T ))

]
= 0, (35)

where (Z̊(t), W̊ (t)) is a solution to (34) corresponding to the choice of(Ψ̊(t), c̊(t)), holds
true.

To show that J(Z,W, t) = −e−(βt+Φ(Z)+ϕrW+λ) is a solution of (33), we start by deter-
mining the operator G. A straightforward computation yields

G ≡ 1
2

∑5
j,k=1Bj,k ∂

2
Zj ,Zk

+ Ψ
∑5

j=1 T
1/2
(
B1/2

)>
j
∂2
W,Zj

+ 1
2Ψ2 T ∂2

W,W

+
∑5

j=1(AZ)j ∂Zj + (rW − c−ΨSZ) ∂W .
(36)
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On the other hand, using J as a shorthand for J(Z,W, t), we have

∂ZjJ = −(Z>L)jJ, ∂WJ = −rϕJ, ∂2
Zj ,Zk

J =
(
LZZ>L− L

)
j,k
J,

∂2
Zj ,WJ = rϕ(Z>L)j J, ∂2

W,WJ = r2ϕ2 J.

Therefore we can write

GJ = 1
2

(∑5
j,k=1Bj,k

(
LZZ>L− L

)
j,k

)
J + 1

2r
2ϕ2TΨ2 J+

rϕ

(∑5
j=1

(
T 1/2

(
B1/2

)>)
j

(Z>L)j

)
ΨJ −

(∑5
j=1(AZ)j (Z>L)j

)
J − rϕ (rW − c− SZΨ) J.

(37)
Now, thanks to the properties of the trace functional, we have

5∑
j,k=1

Bj,k

(
LZZ>L− L

)
j,k

J = tr
(

(B1/2)>(LZZ>L− L)B1/2
)

= Z>LBLZ−tr
((

B1/2
)>

LB1/2

)
.

(38)
Moreover,

5∑
j=1

(
T 1/2

(
B1/2

)>)
j

(Z>L)j = T 1/2
(
B1/2

)>
LZ, (39)

and
5∑
j=1

(AZ)j (Z>L)j = Z>LAZ. (40)

Hence, combining (37) with (38)-(40), it follows

GJ = 1
2Z
>LBLZ − 1

2tr
((
B1/2

)>
LB

1/2
u

)
J + rϕT 1/2

(
B1/2

)>
LZ ΨJ + 1

2r
2ϕ2T Ψ2J

−Z>LAZ J − rϕ (rW − c− SZΨ) J.
(41)

The latter, on account of

∂tJ = −βJ, Z>LAZ =
1
2

(Z>A>LZ + Z>LAZ)

we rewrite Equation (33) in the form(
−β +

1
2
Z>LBLZ − 1

2
(Z>A>LZ + Z>LAZ)− 1

2
tr
((

B1/2
)>

LB1/2
u

)
− ϕr2W

)
J (42)

+ max
Ψ,c
{rϕ((T 1/2

(
B1/2

)>
L+ S)ZΨ +

1
2
rϕTΨ2)J + ϕrcJ − e−(βt+ϕc)}

= 0.

Hence, setting

J ≡ J(t, Z,W,Ψ) ≡
(

(T 1/2
(
B1/2

)>
L+ S)ZΨ +

1
2
rϕTΨ2

)
J,

and
K ≡ K(t, Z,W, c) ≡ rϕcJ − e−(βt+ϕc),

we can write

max
Ψ,c
{rϕ((T 1/2

(
B1/2

)>
L+ S)ZΨ +

1
2
rϕTΨ2)J + ϕrcJ − e−(βt+ϕc)}

= rϕmax
Ψ
{J(t, Z,W,Ψ)}+ max

c
{K(t, Z,W, c)}
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Maximizing J [resp. K] with respect to Ψ, the first conditions are

dJ

dΨ
=((T 1/2

(
B1/2

)>
L+ S)Z + rϕΨT )J = 0

dK

dc
= rϕJ + ϕe−(βt+ϕcu) = 0

that yields

Ψ̃ = −
(T 1/2

(
B1/2

)>
L+ S)

rϕT
Z c̃ =

1
2Z
>LZ + rϕW + λ− log(r)

ϕ

which is the desired optimal strategy (19) and optimal consumption (20). Moreover, the
second order condition

d2J

dΨ2
= rϕTJ ≤ 0

d2K

dc2
= −e−ϕc ≤ 0

guarantees that Ψ is optimal for J and, similarly, c is optimal for K. As a consequence,

max
Ψ
{J(t, Z,W,Ψ)} = − 1

2rϕT

(
Z>
(
LB1/2(T 1/2)> + S>

)(
T 1/2

(
B1/2

)>
L+ S

)
Z

)
J

and

max
c
{K(t, Z,W, c)} = r

(
1
2
Z>LZ + rϕW + λ− log(r) + 1

)
J.

In light of what shown above, the Bellman equation (42) takes the form(
−β +

1
2
Z>LBLZ − 1

2
(Z>A>LZ + Z>LAZ)− 1

2
tr
((

B1/2
)>

LB1/2
u

)
− ϕr2W

)
J

− 1
2T

(
Z>(LB1/2(T 1/2)> + S>

)(
T 1/2

(
B1/2

)>
L+ S

)
ZJ

+ r

(
1
2
Z>LZ + rϕW + λ− log(r) + 1

)
J = 0

that is

1
2
Z>
(
LBL− 1

T

(
L>B1/2(T 1/2)> + S>

)(
T 1/2

(
B1/2

)>
L+ S

)
−A>L− LA+ rL

)
ZJ

(43)

+
(
rλ+ r(1− log(r))− β − 1

2
tr
((

B1/2
)>

LB1/2

))
J = 0.

On the other hand,

LBL− 1
T

(
LB1/2(T 1/2)> + S>

)(
T 1/2

(
B1/2

)>
L+ S

)
−A>L− LA+ rL (44)

=
1
T

(
LB1/2

(
TI5 −

(
T 1/2

)>
T 1/2

)(
B1/2

)>
L

)
− 1
T

(
L

(
B1/2

(
T 1/2

)>
S + T

(
A− 1

2
rI5

))
+
(
S>T 1/2

(
B1/2

)>
+ T

(
A> − 1

2
rI5

)
L

)
+ S>S

)
.

Therefore, combining (43) with (44), it clearly follows that J(t, Z,W ) is a solution of the
Bellman equation (33), provided that the matrix L and the parameter λ are chosen to fulfill
(22) and (21), respectively.
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We are left with proving that the trasversality condition (35) holds true. To this goal, we
apply Itô’s formula to the identity

J(t+ ∆t, Z̊(t+ ∆t), W̊ (t+ ∆t))− J(t, Z̊(t), W̊ (t)) =
∫ t+∆t

t
dJ(s, Z̊(s), W̊ (s))

which allows to write

J(t+ ∆t, Z̊(t+ ∆t), W̊ (t+ ∆t))− J(t, Z̊(t), W̊ (t)) =
∫ t+∆t

t
(∂sJ(s, Z̊(s), W̊ (s)) + GJ(s, Z̊(s), W̊ (s))) ds

+
∫ t+∆t

t
B

1/2
Z,W∇Z,WJ(s, Z̊(s), W̊ (s)) dw̃(s),

where B1/2
Z,W stands for the diffusion matrix of the process (Z̊(s), W̊ (s)) and ∇Z,W denotes the

gradient operator in the state space of (Z̊(s), W̊ (s)). On the other hand, since J (t, Z,W ) is
a solution of the Bellman equation (17) and (Z̊(s), W̊ (s)) corresponds to an optimal control,
we have ∫ t+∆t

t
(∂sJ(s, Z̊(s), W̊ (s)) + GJ(s, Z̊(s), W̊ (s))) ds =

∫ t+∆t

t
e−(βs+ϕ̊c(s)) ds.

On account of the latter, applying the expectation operator on both the sides of (??), we
obtain

Et,Z,W

[
J(t+ ∆t, Z̊(t+ ∆t), W̊ (t+ ∆t))

]
−Et,Z,W

[
J(t, Z̊(t), W̊ (t))

]
∆t

=
1

∆t
Et,Z,W

[∫ t+∆t

t
e−(βs+ϕ̊c(s)) ds

]
,

and, passing to the limit as ∆t→ 0, it follows

dEt,Z,W

[
J(t, Z̊(t), W̊ (t))

]
dt

= Et,Z,W

[
e−(βt+ϕ̊c(t))

]
.

On the other hand, by virtue of c-first order condition,

e−(βt+ϕ̊c(t)) = −βJ(t, Z̊(t), W̊ (t)).

Hence, Et,Z,W

[
J(t, Z̊(t), W̊ (t))

]
satisfies the differential equation

dEt,Z,W

[
J(t, Z̊(t), W̊ (t))

]
dt

= −βEt,Z,W

[
J(t, Z̊(t), W̊ (t))

]
,

and the desired trasversality condition clearly follows.
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Appendix B. Proof of Proposition 1

We know that price is efficient when it is the expected future discounted dividends

P (t) = E

 ∞∫
s=0

e−rsDu(t+ s)ds | Ft

 = E

 ∞∫
s=0

e−(r−ξ)sD(t+ s)ds | Ft

 (45)

where the process D(t), the continuos-time dividend yield of a risky asset, is defined as
D(t) = D0(t) +D1(t) and

dD0(t) =αII(t) + σ0dw0(t),
dD1(t) =− αDD1(t)dt+ σDdwD(t),

dI(t) =− αII(t) + ρIσ0dw0(t) + (2ρI − ρ2
I)

1/2σ0dwI(t)

Let us rewrite the dividend and informative signals as a trivariate Ornstein-Uhlenbeck process
with Z = (D0, D1, I)>

dZ(t) = A1Z(t)dt+B
1/2
1 dw(t) (46)

where

A1 ≡

 0 0 αI
0 −αD 0
0 0 −αI

 , B
1/2
1 ≡

 σ0 0 0
0 σD 0

−ρIσ0 0 (2ρI − ρ2
I)

1/2σ0

 , dw(t) ≡

 dw0

dwD
dwI

 .

(47)

Now Z(t) can be expressed in an integral form as

Z(t+ s) = B(s)Z(t) +

s∫
τ=0

eA(s−τ)B1/2dw(t+ τ),

where B(s) = eAs. Solving differential equation dB(s)/ds = AB(s), with boundary condition

B(0) =

 1 0 0
0 1 0
0 0 1

 yields

B(s) =

 1 0 1− e−αIs
0 eαDs 0
0 0 e−αIs

 .

Since E(D(t) | Ft) = D(t) we have

E [D(t+ s) | Ft] = D0 + eαDsD1 + (1− e−αIs)E [I(t) | Ft] ,

thus

E

 ∞∫
s=0

e−(r−ξ)sD(t+ s)ds | Ft

 = Et

∞∫
s=0

e−(r−ξ)s {D0 + eαDsD1 + (1− e−αIs)E [I(t) | Ft]
}
ds

=
1

r − ξ
D0(t) +

1
r − ξ + αD

D1(t) +
1

r − ξ
− 1
r − ξ + αI

Î(t),

and the coefficients are

p̃D0 ≡
1

r − ξ
, p̃D1 ≡

1
r − ξ + αD

, p̃I ≡
1

r − ξ
− 1
r − ξ + αI

23



The constant term is obtained from Equation (19) imposing the efficient price described above
and the market clearing condition (24)

Ψ̃ = −
T 1/2

(
B1/2

)>
L− S

rϕT
= 1

where
T 1/2 =

(r − ξ − αI(ρ− 1))σ0

(r − ξ)(r − ξ + αI)
; B1/2 = 0; S = −(r − ξ)p0

T =

(
−

α2
I (−2 + ρI) ρIσ2

0

(r − ξ)2 (r − ξ + αI)
2 +

(
1

r − ξ
− αIρI

(r − ξ) (r − ξ + αI)

)2

σ2
0 +

σ2
D

(r − ξ + αD)2 + σ2
Θ

)
that implies

p̃0 = −
(

((r − ξ + αI)2 − 2(r − ξ)αIρI)σ2
0

(r − ξ)2(r − ξ + αI)2
+

σ2
D

(r − ξ + αD)2

)
r

r − ξ
ϕ,

solution of the proof.
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Appendix C. From Continuous Time Model to Discrete Time
Data

Our model is in continuous-time while our data are discrete. We use Bergstrom’s (1984,
Thm. 3, p. 1167) solution to reformulate our model such that the discrete version, called the
exact discrete solution, satisfies the discrete-time data. As underlined by McCrorie (2009), the
exact discrete model differs from conventional discrete-time VAR models in that the coefficient
matrix and the covariance matrix are functions of the exponential of a matrix. This leads to
the problem of identifiability that it was discussed in Appendix A of C.K.’s work. The exact
discrete form is obtained from the solution of the continuous-time model (46) given by

Z(t) = F (θ)Z(t− 1) + εt (t = 1, ..., T ), (48)

where
F (θ) = eA(θ), (t = 1, ,̇T ), (49)

and the variance-covariance of the independent Gaussian white noise is the solution of the
following integral

E(εt ε>t ) =
∫ 1

0
erA(θ)Σ(µ)

(
erA(θ)

)>
dr = Ω(θ, µ) (50)

where we assume zero mean and covariance matrices: E(εt) = 0, and E(εtε>s ) = 0 with
(s 6= t).

The exact discrete form (48-49) gives the following matrices

F (θ) =


1 1− eαI 0 0
0 eαI 0 0
0 0 eαD 0
0 0 0 eαΘ



Ω(θ, µ) =


−σ2

0(e−2αI (−1+eαI )2ρ−αI)
αI

−σ2
0e
−2αI (−1+eαI )2ρ

αI
0 0

−σ2
0e
−2αI (−1+eαI )2ρ

αI
−σ2

0(−1+e−2αI )ρ
αI

0 0

0 0 − (−1+e−2αD )σ2
D

2αD
0

0 0 0 − (−1+e−2αΘ )σ2
Θ

2αΘ


(51)

that we use to estimate the parameters θ = [αI , αD, αΘ, σ0, σD, σΘ, ρ] in our likelihood
function. The exact discrete model (3)–(7) differs from conventional discrete-time VARmodels
in that the coefficient matrix and the covariance matrix are functions of the exponential
of a matrix. We obtain the estimates of the unobservable state vector Z(t) based on the
information available to time I(t), where I(t) contains the observation y until y(t). We use
Kalman filter to obtain a recursive procedure for calculating the estimates of the parameters
θ in the state vector. The Kalman filter procedure needs initial values. We use the method
of diffuse prior such that we assume zero mean for the all state variable and for the variance-
covariance an identity matrix with 106 on the diagonal.19

The likelihood function of our state-space time series is calculated using the Kalman filter
technique. The joint density of {y1, y2, . . . , yT } is L =

∏T
t=1 p(yt | It−1) where p(yt | It−1) =

N(ŷt|t−1, ft|t−1) and ft|t−1 = E(yt − ŷt|t−1)(yt − ŷt|t−1)>. The log-likelihood is given by

lnL = −1
2

T∑
t=1

ln|ft|t−1| −
1
2

T∑
t=1

(yt − ŷt|t−1)>f−1
t|t−1(yt − ŷt|t−1). (52)

and we estimate our parameter θ maximizing equation (52).
19Other methods to initialize the Kalman filter are taken in consideration but they do not change the finale

estimations. See Harvey, 1989)
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Figures

Figure 1. Market Risk Perception and Utility of Equilibrium Price: Model A and Model B.
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Tables

Parameter Set: r = 0.05;
β = 0.30; αD = 0.50; αI = 0.10; αΘ = 0.05; σ0 = 0.50; σD = 0.10; σI = 1.00; ξ = 0.011.

Table 1. Low risk aversion and noise volatility: σΘ = 0.50; ϕ = 0.50.

Candidate Equilibrium Price
Equilibrium Utility p0 pD0 pD1 pI

Model A 2.90 -91.773 25.641 1.855 18.446
Model B 0.97 -94.218 25.641 1.855 -30.080
Model B 0.95 -93.148 25.641 1.855 -30.897
Model B 0.65 -82.902 25.641 1.855 51.713
Model B 0.62 -81.688 25.641 1.855 52.479
Model B 0.41 -93.635 25.641 1.855 5.775

Table 2. High risk aversion and low noise volatility: σΘ = 0.50; ϕ = 1.00.

Candidate Equilibrium Price
Equilibrium Utility p0 pD0 pD1 pI

Model B 43.96 -2664.632 -89.311 1.855 -13.384
Model A 4.08 -183.546 25.641 1.855 18.446
Model B 3.87 -188.435 25.641 1.855 -30.080
Model B 3.79 -186.296 25.641 1.855 -30.897
Model B 3.16 -187.271 25.641 1.855 5.775
Model B 2.60 -165.804 25.641 1.855 51.713
Model B 2.50 -163.376 25.641 1.855 52.479

Table 3. Low risk aversion and high noise volatility: ϕ = 0.50; σΘ=1.00.

Candidate Equilibrium Price
Equilibrium Utility p0 pD0 pD1 pI

Model B 8.65 -465.202 -80.445 1.855 -87.639
Model B 8.39 -675.844 -89.311 1.855 -13.384
Model A 2.90 -91.773 25.641 1.855 18.446
Model B 1.39 -91.633 25.641 1.855 18.446
Model B 0.98 -94.733 25.641 1.855 -29.615
Model B 0.94 -92.594 25.641 1.855 -31.252
Model B 0.67 -83.506 25.641 1.855 51.274
Model B 0.42 -93.688 25.641 1.855 5.775

31



Table 4. Descriptive Statistics of data.

Variable Mean Std. Dev. Skewness Kurtosis

Pt 0.994 1.002 2.067 6.745

Dt 0.032 0.014 0.730 2.837

P ut 376.379 379.342 2.067 6.745

Du
t 12.127 5.642 0.725 2.83

ln(P ut ) -0.362 0.798 0.650 2.607

ln(Du
t ) -3.548 0.466 0.047 1.912

Table 5. Unit Root Test.

ADF PP KPSS
drift trend drift trend drift trend

Pt 0.29 -1.11 -0.99 -2.29 1.15* 0.26

Dt -1.06 -3.46* -1.04 -3.34* 1.65** 0.24

P ut 0.29 -1.11 -1.00 -2.28 1.15** 0.26

Du
t -1.06 -3.46* -1.12 -3.34 1.65* 0.24

ln(P ut ) -0.82 -2.29 -1.08 - -2.63 1.48* 0.20*

ln(Du
t ) -2.04 -4.81** -1.74 -4.07** 1.69** 0.09

Note: * rejects the at 5 %, ** rejects at 1%
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Table 6. Time Series Properties of the data.

Correlations: ∆Dt ∆Pt ∆Dt ∆Pt

∆Dt 1.00 0.03 ∆Pt 0.03 1.00

∆Dt−1 0.22 -0.00 ∆Pt−1 0.44 0.14

∆Dt−2 -0.16 -0.00 ∆Pt−2 0.06 -0.11

∆Dt−3 -0.17 -0.06 ∆Pt−3 -0.19 -0.09

∆Dt−4 -0.15 -0.08 ∆Pt−4 -0.15 -0.16

∆Dt−5 -0.11 -0.02 ∆Pt−5 -0.06 -0.19

σ(∆Dt) =0.003, σ(∆Pt) = 0.246 σ(∆Dt)/σ(∆Pt) = 0.013

Table 7. OLS Regression with heteroskedasticity-robust standard error.

dividend
price 0.0126∗∗∗

(11.13)

_cons 0.0730∗∗∗

(18.81)
N 140
ADF-test residuals: -2.64*
Portmanteau (Q) statistic = 448.82
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8. Mapping the Maximum Log-Likelihood function 1871-2009, Model A and Model B.

Model A Model B
Interest rate assumption NoNoise Full Noise NoNoise Full Noise

3% 807.42 834.88 811.99 830.65

6% 810.82 833.15 808.49 831.47

Free r 814.75 831.62 814.96 828.92

Table 9. Data 1871-2009: Price Coefficient of Model A and Model B.

Assumption: Interest rate = 0.03, Full Noise

p0 pD0 pI pD1 ML

Model A -0.001 68.965 65.980 2.985 834.00

Model B -0.061 39.809 39.803 0.007 830.65

Assumption: Interest rate = 0.06, Full Noise

p0 pD0 pI pD1 ML

Model A -0.001 22.471 20.657 1.814 833.15

Model B -0.006 73.246 73.236 0.004 831.47

Assumptions: free r and free γ, Full Noise

p0 pD0 pI pD1 ML

Model Aa -0.000 64.888 52.342 12.546 831.62

Model Bb -0.016 4.963 4.892 0.071 828.92

Note: a) interest rate estimated is 0.0309
Note: b) interest rate estimated is 0.0686
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Table 10. Preliminary Data Analysis 1995-2000

ADF PP KPSS
drift trend drift trend

Price -1.39 -1.43 -1.41 -1.17 0.14

Dividend -2.51 0.37 -2.06 2.05 0.26

D.Price -5.70 -5.83 -7.06 -7.17 0.15

D.Dividend -3.18 -4.54 -3.63 -4.72 0.17

Cointegrating regression: Dt = 0.049 + 0.0017Pt + εt
Johansen test: rank(r) = 1: λmax = 1.23 (3.76 at 5%)

rank(r) = 1: λtrace = 1.23 (3.76 at 5%)

Table 11. Mapping the Maximum Log-Likelihood function 1995-2000, Model A and Model
B.

Model A Model B
Interest rate assumption Full Noise Full Noise LR-test

1.5% 540.96 636.39 190.86∗∗∗

3% 487.17 638.58 302.08∗∗∗

Free r 489.31 638.43 298.83∗∗∗

LR-test: -2 (Model A-Model B)
χ3 = 7.82 (5% =∗), 11.35 (1% =∗∗), 16.27 (0.1% =∗∗∗)
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Table 12. Data 1995-2000.: Price’s Coefficient of Model A and Model B.

Assumption: Interest rate = 0.015, Full Noise

p0 pD0 pI pD1 ML

Model A -0.177 71.942 67.882 4.060 540.96

Model B -0.061 71.944 0.001 1.089 636.39

Assumption: Interest rate = 0.03, Full Noise

p0 pD0 pI pD1 ML

Model A -0.124 34.602 31.147 3.455 487.17

Model B -0.430 34.604 0.002 0.002 638.58

Assumptions: free r and free γ, Full Noise

p0 pD0 pI pD1 ML

Model Aa -0.506 210.13 70.755 139.23 489.31

Model Bb -0.883 0.004 1089.196 118.025 638.43

Note: a) interest rate estimated is 0.006
Note: b) interest rate estimated is 0.002
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Table 13a. Data 1995-2000. Parameter Estimation Model A.

Assumption: Interest rate = 0.015, Full Noise.
Maximum Log-Likelihood = 540.96

p̃0 p̃D0 p̃I p̃D1

-0.177 71.942 67.882 4.060

αD = 0.232 αI= 0.232 αΘ = 0.001 ϕ = 16.75
(0.11) (0.000) (0.000)

σD= 0.001 σΘ=0.001 ρI=1.299 λ = 0.002
(0.02) (0.001) (0.002) (0.031)

Table 13b. Data 1995-2000. Parameter Estimation Model B.

Assumption: Interest rate = 0.03. Full Noise.
Maximum Log-Likelihood = 636.39

p̂0 p̂D0 p̂I p̂D1

-0.061 71.944 0.001 1.089

p̃0 p̃D0 p̃I p̃D1

-0.071 71.942 70.854 67.114

αD = 0.001 αI= 0.905 αΘ = 0.001
(0.11) (0.000) (0.000)

σD= 0.001 σΘ=0.124 ρI=0.001 λ = 0.001
(0.004) (0.001) (0.002) (0.001)
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