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Abstract

In this paper, we analyze the role played by market liquidity and trading-related vari-
ables in forecasting downside risk. In particular, we analyze the empirical relevance
of spreads and volume variables to forecast one-day ahead Value-at-Risk (VaR) of the
value-weighted market portfolio in the US market using the Quantile Regression. This
methodology allows us to appraise directly and in a natural way the e¤ects of these pre-
dictive variables on the tail distribution of returns. The usual backtesting VaR analysis,
based on unconditional and conditional coverage tests, reveals that liquidity and trading
variables seem to considerably enhance the VaR performance.
Key words: Value at Risk, CAViaR, Quantile Regression, Bid-Ask Spreads,

Volume.



1 Introduction

Implementing risk control and monitoring systems requires quantitative procedures
to appraise the level of underlying uncertainty and construct accurate predictions.
The Basel Committee on Banking Supervision has largely contributed to popu-
larize certain international standards, known as Basel I and II Accords, in the
�nancial services industry. This regulatory setting entitles �nancial institutions to
use internal models based on the Value-at-Risk (VaR) measure for meeting market
risk capital requirements. VaR is simply a statistical estimate on how much a port-
folio can lose, within a certain horizon, and given an arbitrary con�dence level.
Despite the limitations of the VaR paradigm, it is widely agreed that, without
the e¤orts made to comply with the Basel standards, the �nancial industry would
likely be facing an even deeper crisis. Nevertheless, the economic turmoil has risen
the convenience of developing alternative procedures for quantifying market risk,
or revising the methods already existing, particularly, the VaR. The present paper
is motivated by this concern.
The existing literature on VaR modelling and forecasting has suggested a num-

ber of procedures to forecast VaR. The methods di¤er mainly in the degree of
sophistication: From the simple EWMA approach to the more advanced settings
based on the Extreme Value Theory. Previous research has shown that most of
these methods do not seem to perform successfully in practice, which underlines the
practical complexity that lies behind the simple notion of VaR; see, for instance,
the empirical evidence in Kuester et al. (2006). In spite of the large methodological
di¤erences involved, all these methods share a common characteristic: They rely
almost exclusively on the information conveyed by historical returns to forecast the
conditional loss distribution of a portfolio. For practical purposes, this may turn
out to be unnecessarily restrictive. The implicit belief that returns subsume all
the relevant information to determine market risk may be originated in a conserv-
ative interpretation of the E¢ cient Market Hypothesis (EMH). The EMH forbids
the systematic predictability of returns on the basis of the available information,
i.e., posits an orthogonal condition on the �rst-order conditional moment of re-
turns. However, it remains silent about higher-order moments, such as conditional
volatility, or other distributional features of the returns time-series process, like
conditional percentiles. Moreover, in practice �nancial markets largely departure
from the complete-market and symmetric-information hypotheses that, as in the
case of the EMH, underlie most of the theoretical models in asset pricing. Returns
may exhibit non-trivial links with the endogenous variables that characterize the
market environment and the trading process. Whereas most of the existing litera-
ture is devoted to the modelling and forecasting of downside risk based on returns
and their volatility, observable variables which are related to liquidity, trading
activity, and private information arrivals may exhibit forecasting power as well.
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This paper analyzes empirically whether there exist predictive relations be-
tween certain endogenous variables and the conditional loss function of a portfolio.
More speci�cally we study if di¤erent measures related to bid-ask spreads volume
contain relevant information to forecast daily VaR of the market portfolio return
at the usual levels of con�dence. Like returns, these variables are available on the
trading-basis and are highly sensitive to the information �ow. Like volatility, trad-
ing activity and liquidity are believed to re�ect and subsume market sentiments,
collective expectations and market conditions, and so they have a major in�u-
ence on the decisions of investors. In contrast to returns and volatility, however,
these variables seem to have been relegated to a secondary plane, if not ignored,
in the existing literature related to modelling and forecasting downside risk. The
main aim of this paper is to address empirically the premise that market-risk fore-
casts may be improved by using available information which is not necessarily
constrained to returns.
We compare the performance of several potential predictors using daily mar-

ket data from the US Stock Exchange in the period 01/1988 through 12/2002.
This data set includes value-weighted market portfolio returns as well as di¤erent
measures of market bid-ask spreads (quoted and e¤ective bid-ask spread in both
absolute and relative terms) and market volume (trading volume in thousand of
shares, number of trades, number of sell trades, shares sold in thousands and vol-
ume in dollars). Three main reasons prompted us to consider this speci�c sample
in our study: i) market-portfolio data allow us to eliminate the idiosyncratic noise
that may a¤ect the main conclusions drawn from the analysis on individual stocks,
ii) the period sample is particularly interesting for risk management purposes, as
it includes a stress scenario of great volatility originated in the burst of the tech-
nological bubble in 2000, and iii) we can analyze in this sample the aggregate
measures of liquidity and volume that have been used previously in several stud-
ies (see Chordia et al., 2001; 2002; 2008) and which are freely available, thereby
enabling further research on the same sample for comparative purposes.1

Paralleling the literature devoted to the analysis of predictability in returns, the
most simple and direct way to appraise the forecasting ability of a set of variables is
through predictive linear regressions in a least-squares analysis; see, for instance,
Cochrane (2005) and references therein. The main di¢ culty in our context is
that the actual level of VaR (i.e., the dependent variable in such an analysis) is
unobservable and has to be modelled as a latent process, which makes it infeasible
the least-squares analysis. Alternatively, the Quantile Regression theory provides
us with the appropriate methodology to analyze the dynamics of the conditional

1The data are graciously provided by Prof. A. Subrahmanyam on his website,
http://www.anderson.ucla.edu/x1921.xml. Update are not avalaible. In any case, we are in-
terested in this period to analyze the performance of the models in the dot-com crisis.
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percentiles directly and without departing signi�cantly from the intuitive spirit
that characterizes predictive regressions; see Koenker and Bassett (1978). We can
model directly the tail of the conditional distribution of returns by specifying a
functional form that relates the time-varying dynamics of VaR to its own past and
lagged values of the variables used as predictors, building on the so-called CAViaR
setting in Engle and Manganelli (2004). A restricted version of this model, which
considers solely returns-related information (so-called Symmetric Absolute Value
CAViaR model, see Section 3.1), can be taken as a proper benchmark to assess
the incremental value of liquidity- and volume-related variables. Furthermore, the
asymptotic theory for quantile regression models is well established and allows us to
address formally the statistical signi�cance of the estimated coe¢ cients. Even more
importantly, the CAViaR setting is speci�cally designed to construct conditional
VaR forecasts, so we can use standard backtesting techniques (e.g., Christo¤ersen
1998) to analyze the actual out-of-sample performance of the models extended
with lagged endogenous variables. Our main empirical conclusions largely support
the suitability of the liquidity- and volume-related variables in forecasting daily
VaR.
The remaining of the paper is organized as follows. Section 2 surveys the

main literature related to the topic and discusses the empirical �ndings and the
theoretical settings that support the main hypothesis in this paper. Section 3
reviews the basic elements in VaR modelling and brie�y describe the quantile
regression approach. Section 4 describes the main features in the data set and
develops the empirical analysis. Finally, Section 5 summarizes and concludes.

2 Literature review and previous considerations

The paper is related to the stream of literature that has used the quantile regres-
sion approach in the context of VaR modelling and forecasting; see, for instance,
Taylor (1999), Kouretas and Zarangas (2005), Bao et al. (2006), Kuester et al.
(2006), and Huang et al. (2010). The distinctive feature of our analysis is the
special focus given to the predictable role of certain variables related to liquidity
and trading activity. As a consequence, this paper can also be related to the lit-
erature in risk management focused on modelling liquidity risk. It is argued that
the maximum expected loss in a portfolio or a �nancial instrument should not ig-
nore the transaction costs and, more generally, the liquidity costs that stem from
closing the positions of a portfolio. Liquidity costs depend on the future market
conditions and, hence, has to be estimated, which introduces an additional source
of non-diversi�able risk for investors. Remarkably, the liquidity costs can be par-
ticularly sizeable in stress conditions, so neglecting this source of uncertainty can
result in substantial underestimates of the VaR measures (Lawrance and Robinson,
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1996). This consideration has given rise to so-called liquidity-adjusted VaR models
aimed to take adequate account of the expected liquidity costs; see, among others,
Jorion (2007), Zheng and Shen (2008) and Jarrow and Protter (2005). As in this
literature, our study acknowledges that the variables which are widely accepted
to be related to liquidity risk are likely relevant to estimate VaR measures. In
contrast with this literature, however, we do not attempt to appraise the expected
cost due to liquidity risk as an incremental, di¤erent component in the total risk
of the portfolio (which is an interesting topic left for future research), but rather
use both liquidity- and volume-related information to forecast market risk itself.
The implied belief, therefore, is that there exists an interaction between these risk
factors (e.g., Zheng 2006) such that the variables that characterize liquidity risk
may be used to predict market risk.
This conjecture may be formalized heuristically as follows. Consider that the

price of a �nancial asset at time t, St, obeys a general jump-di¤usion process:

dSt = � (St; t) dt+ � (St; t) dBt + [St � dQt] (1)

where Bt is a standard Brownian motion that captures the arrival of �normal�
information, and

Qt =
NtX
i=1

Ji;t (2)

is a jump process, independent of Bt; that characterizes the �abnormal��ow of
information and which may cause large movements in prices; see, for instance,
Merton (1976). The jump component is de�ned on a Poisson counter process, Nt;
that controls the arrival rate of jumps, each of one causing a random shock Ji;t
with mean E (Ji;t) = �J and variability V ar (Ji;t) = �J . The likelihood of arrivals
is governed by a certain intensity parameter �t � 0; which may generally obey
time-varying dynamics (Maheu and McCurdy, 2004). Since prices are prone to
large movements when liquidity dries up, the expected size of an extraordinary
shock and/or its additional variability in the price are expected to be dynami-
cally related to state variables that re�ect market conditions, such as those that
characterize the liquidity risk. For instance, the parameters (�; �J ; �J)

0 that con-
trol the probabilistic distribution of jumps likely obey time-varying dynamics as a
function, among other potential drivers, of liquidity costs, because of the impact
of the same piece of news cannot be expected to be the same independently of
the market conditions: When liquidity costs are large, the total variability due to
abnormal news should be expected to be larger as well, everything else constant.
As a result, liquidity and volume variables, which are highly related to the �ow
of information and are widely considered as natural proxies for the liquidity risk,
may exhibit predictive power on the standard measures of market risk.
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Our paper can also be related to the empirical literature in market microstruc-
ture and asset pricing devoted to the analysis of the joint dynamics of volatility
and the main variables related to the information �ow. This literature gives us an
alternative, but closer view on how and why certain variables, such as liquidity and
volume, may be able to forecast downside market risk. In particular, a number
of studies have underlined the predictive role of volume and volume-related vari-
ables on volatility. Since market risk measures are tightly linked to the standard
desviation of the distribution, these variables may have predictive power on the
latent VaR process via volatility. The information content in trading volume has
been emphasized in Campbell et al. (1993), Blume et al. (1994), Wang (1994)
and Suominen (2001) yet, as remarked by Jondeau et al. (2007), little research
e¤ort has been made to use forecasting models of volume or trading activity to
help predicting the future variance of an asset. This paper contributes to this
literature by providing empirical evidence on the forecasting suitability of these
variables from the perspective of downside risk.
More speci�cally, the mixture of distributions hypothesis in Clark (1973) alleges

that some of the stylized features in returns (such as non-normality and time-
varying volatility) are generated through a persistent mixing process that measures
the rate at which new information is transmitted into the markets. The information
arrival rate may be seen as a latent process that may also a¤ect volume and
other observable variables related to trading activity (Tauchen and Pitts, 1983).
Given that the trading volume exhibits a strong degree of serial correlation, the
implication of this theory is that lagged volume is also correlated to volatility and
could anticipate market movements; see, among others, Lamoureux and Lastrapes
(1990), Andersen (1996) and Gerlach et al. (2006). Predictability may also be
supported in terms of the sequential information arrival hypothesis by Copeland
(1976) and Smirlock and Starks (1988). These authors argue that investors react
to new information di¤erently such that the price adjustment is not instantaneous,
which eventually generates causality relationships between volume and volatility.
Although the adjustment process is expected to occur over a short-period of time
during the trading session, the stock market may take longer periods to adjust
prices when massive shocks arrive, or in periods of particular instability. The
recent events in the �nancial markets during, with prices changing wildly from
one day to another, perfectly exemplify this statement.
The literature on market microstructure has also raised connections between

bid-ask spreads and volatility. It is widely accepted that bid-ask spreads re�ect
inventory, order processing, and adverse selection costs, so they can proxy for in-
formation asymmetry (Glosten and Milgrom, 1985 and Stoll, 1989). The adverse
selection and inventory risk components imply a positive correlation between the
spread and the volatility of the traded asset according to the evidence shown in,
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among others, Roll (1984) and Black (1991) and Admati and P�eiderer (1988).
Previous empirical studies supporting this positive relationship include Hasbrouck
(1999), Bollerslev and Melvin (1994) and Kalimipalli and Warga (2002), who show
that this phenomenon exists in common stocks, foreign exchange rates and cor-
porate bonds, respectively; see also Easley et al. (1997), Geo¤rey and Gurun
(2008).

3 Modelling and forecasting downside risk: Value
at Risk

We start out our analysis by introducing some notation and several assumptions.
Let frtg be the daily return time-series of a �nancial asset. Also, let Ft be the
natural �ltration including all the available information at time t; such as any
measurable transformation on the past observations of rt as well as any other
observable variable. The VaR of a �nancial asset is the maximum loss over a
horizon of h periods (in days) which is expected at the (1� �)% con�dence level
given Ft, i.e., the �-quantile of the conditional loss distribution of a portfolio, with
� 2 (0; 1). Formally, we denote:

V aR�;t+h = �fx 2 R : Pr (rt+h � xjFt) = �g (3)

= �fQ�;t(rt+h)g

with Q�;t(rt+h) de�ned implicitly and where, typically, h ranges from 1 to 10 days
and � = f0:01; 0:05g. For instance, the �nancial �rms Bank Trust and JP Morgan
report 1% and 5% daily VaRs, respectively. For simplicity but no loss of generality,
we assume in the sequel that returns behave as a stationary martingale di¤erence
sequence such that E (rtjFt�1) = 0; with bounded moments E

�
jrtjk

�
< 1 for

some k � 2:2
The �nancial econometrics literature has suggested very di¤erent procedures

to forecasts VaR. Throughout the following subsection, we discuss the main char-
acteristics of the quantile regression approach. Appendix A sketches the main
features of several alternative procedures that shall be used later in Section 4 for
comparative purposes.

2In practice, it is costumary to demean returns previously so that the resultant series behaves
as a martingale di¤erence sequence. In the empirical analysis carried out in Section 4, we will
�lter out the predicatable pattern in the market portfolio by �tting an AR(1) process.
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3.1 Quantile regression: CAViaR models

The conditional �-quantile of the return time series rt, say Q�;t�1(rt ); can formally
be de�ned as Pr(rt � Q�;t(rt )jFt�1) = �: Given (3), and considering a one-day
holding period, h = 1, it follows immediately that

V aR�;t = �Q�;t�1(rt ) (4)

Following Koenker and Bassett (1978) and Basset and Koenker (1982), the con-
ditional quantile could be written as a linear function of a set of k explanatory
variables, Xt = (x1t; :::; xkt)

0 ; and a (k � 1) vector of unknown coe¢ cients �� that
depends on the �-quantile, namely, Q�;t�1(rt ) = X 0

t�1��. This formulation is
equivalent to assume the Quantile Regression model

rt = X
0
t�1�� + ut;�; (5)

where ut;� is an error term satisfying E (ut;�jXt�1) = 0: Note that we do not impose
any particular restriction on the distribution of the data.
Model (5) is highly reminiscent of the standard linear regression model. Whereas

the least-squares setting attempts to characterize the conditional mean of the dis-
tribution, the quantile regression allows us to model directly the dynamics of the
�-quantile of the conditional distribution. A well-known particular case arises for
� = 1=2; i.e., the median of the distribution. The so-called Least Absolute De-
viation regression model is intended to provide estimates of the slope coe¢ cients
for the median of the process (rather than the mean in the OLS context) seeking
to robustify estimates against outliers. In this case, the regression coe¢ cients can
be estimated consistently by minimizing the sum of the absolute values of the
residuals. More generally, given an arbitrary value of �; the unknown �� vector of
parameters can be estimated consistently as:

b�� : arg min
��2Rk

(
TX
t=1

� jut;�j I(rt�X0
t�1��)

+
TX
t=1

(1� �) jut;�j I(rt<X0
t�1��)

)
: (6)

where I(�) is an indicator function.
Engle and Manganelli (2004) proposed a family of models belonging to this gen-

eral setting particularly intended to infer the dynamics of the VaR of a portfolio.
The distinctive feature is that the conditional quantile is seen as a latent autore-
gressive process which may also depend on a number of covariates, the so-called
Conditional Autoregressive Value at Risk (CAViaR). Thus, recalling (4) ; and fol-
lowing Engle and Manganelli (2004), we consider that the conditional quantile
obeys dynamics given by:

V aR�;t = ��;0 + ��;1V aR�;t�1 + ��;2jrt�1j+ ��� f
�
X�
t�1
�

(7)
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with �� =
�
��;0; ��;1; ��;2; �

�
�

�0
; where X�

t is a certain variable used as a predictor,
and f (�) is a measurable function, such as f

�
X�
t�1
�
= j log

���X�
t�1
��� j:3 Under the

parametric restriction ��� = 0; the resultant model is the called Symmetric Ab-
solute Value CAViaR (SAV-CAViaR henceforth) in Engle and Manganelli (2004).
The restricted model is fed solely with the information conveyed by the returns
time-series, so testing the null hypothesis H0 : �

�
� = 0 in the unrestricted speci-

�cation (7) provides formal evidence on the empirical suitability of the predictor
X�
t to forecast the �-quantile of the conditional loss distribution.

4 The extent of
predictability may vary on the particular value of �. We are particularly interested
in � 2 f0:01; 0:05g ; as these quantiles are the most relevant cases for empirical
purposes on risk modelling and management. Finally, it should be remarked that
CAViaR models are speci�cally intended to generate VaR forecasts owing to its
autoregressive nature, so we can further analyze the predictive ability of the re-
gressor in the more interesting context of the out-of-sample performance. We shall
discuss both issues in greater detail later on in Section 4.
Some further comments on this speci�cation follow. First, the functional form

of CAViaR-type models attempts to explode parsimoniously the statistical infor-
mation conveyed by the past of the conditional quantile and a set of predeter-
mined variables. The autoregressive structure ensures that the conditional quan-
tile changes smoothly over time. Since VaR dynamics are expected to be highly
persistent, the lag of the dependent process could be seen as an instrumental vari-
able that proxies for the true latent process. Second, the variable jrt�1j proxies
for the unobservable volatility of the returns, as we can expect a major in�uence
of this latent process on the VaR dynamics owing to the persistence nature of
the latent process. Furthermore, this process introduces short-term variation in
the VaR dynamics which is related to the arrival of news or shocks in the return
process. At this point, the similitudes of the SAV-CAViaR and the GARCH-type
models used to model conditional variance are totally evident. Finally, we could
consider a set of N > 1 potential predictors to extend the basic SAV-CAViaR
equation, although we should note that the existing literature has not discussed
yet which variables should be included in such an analysis. The model in which
the simple SAV-CAViaR speci�cation is extended with lagged values of a single

3In our analysis, all the series are strictly positive. The conventional logarithmic transfor-
mation on the absolute value of the series can be used to smooth the process and reduce the
statistical problems related to outlying observations and heteroskedasticity. Furthermore, be-
cause such a transformation yields either a strictly positive or negative series in our empirical
setting, (see Section 4.1 for details), we shall consider f

�
X�
t�1
�
= j log(

��X�
t�1
��)j:

4The empirical analysis in Kuester et al., (2006) shows that the SAV model has a good perfor-
mance in relation to more sophisticated CAViaR-type speci�cations that include asymmetries.
Hence, we shall use the SAV model in the current paper as a baseline speci�cation. Note that
the model can be generalized as V aR�;t = ��;0 +

P
i=1;p ��;iV aRt�i +

P
j=1;q �

�
�;jXt�1;j :
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predictive variable can be seen as a low-order individual autoregressive distributed
lag model, which is particularly useful in the forecasting analysis; see, for instance,
Stock and Watson (2003) and Rapach and Strauss (2009). This strategy allows us
to examine how a variety of liquidity and volume-related e¤ects perform relative
to the restricted SAV model.
Under suitable regularity assumptions and as the sample size is allowed to grow

unbounded, it can be shown (cf. Engle and Manganelli 2004, Thms. 1 and 2) that:

p
T (b�� � ��) d! N (0; V�) (8)

i.e., b�� is a pT -consistent estimate of the unknown vector ��, and the (suitably
re-scaled) estimation bias is asymptotically distributed as a normal distribution
with zero mean and �nite covariance matrix V�. In order to estimate consis-
tently the asymptotic covariance matrix, Engle and Manganelli (2004) propose
a robust estimator which is de�ned as the matrix product of the sample analog
of the outer product of the gradient of the objective function and an estimator
that combines kernel density estimation (e.g., k-nearest neighbor estimators) with
the heteroskedasticity-consistent covariance matrix estimator of White (1980); see
Engle and Manganelli (2004, Thm. 3) for details. We shall use this approach to
compute the covariance matrix and the standard errors in our analysis.

4 Empirical analysis

4.1 Data

Our data set comprises continuously compounded returns from the value-weighted
portfolio in the US market over the period 01-04-1988 to 12-31-2002, totalling
3782 daily observations. These data are available from CRSP. In addition, we
observe daily data for the aggregate liquidity and volume-related variables which
are constructed from individual �rm bid-ask spreads and volume data; see Chordia
et al. (2001) for details. This data set includes:
i) Trading-related variables: Trading Volume (V) measured in thousand of shares;
Number of Trades (NT) calculated as the sum of sell and buy trades; Number of
Sell trades (NS); Number of Shares Sold in thousands (NSS) and Traded Volume
in Dollars (TVD).
ii) Liquidity variables: Quoted Spread (QS) measured as the dollar di¤erence
between ask and bid prices; E¤ective Spread (ES) given by the signed di¤erence
between trade price and bid-ask midpoint; Relative Quoted Spread (RQS), de�ned
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as QS=MP , and Relative E¤ective Spread (RES), de�ned as ES=MP .5

[Insert Table 1 around here]

Table 1 displays the descriptive statistics for the demeaned returns and all the
explanatory variables (in logarithms) used in our analysis. Returns exhibit the
characteristic stylized features in daily samples: Excess of kurtosis, mild degree
of skewness and negligible autocorrelation, whereas the most salient feature of
the predictors is the strong degree of persistence as measured by the �rst-order
autocorrelation coe¢ cient. Returns are contemporaneously correlated to all the
variables analyzed (correlations are not shown for saving space but are available
upon request). In particular, returns are positively correlated with the variables
in the volume group (the average correlations are around 39%) and negatively
correlated to liquidity-related variables (the average correlations are around -25%).
The variables within each group are strongly correlated among themselves, and
largely and negatively correlated with the variables in the other group. The cross-
correlations range from -79%, for TVD and QS, to -88%, for TVD and QS.

[Insert Figure 1 around here]

It is interesting to note that the total sample spans di¤erent periods in terms of
market activity and volatility, as depicted in Figure 1 (note that this �gure displays
the sample used later in the out-of-sample analysis; see Section 4.3 for further
details). The beginning of this sample corresponds to the period that followed the
market crash in October 1987. After the extraordinary crash, the volatility of the
market decreased progressively and reverted to much lower values. In 1998, the
Long-Term Capital Management (LTCM) failure in the hedge fund industry led
to a massive bailout by other major banks and investment houses that generate an
excess of volatility in the market and that preceded the burst of the dot-com �rms
in 2000. Finally, the data from 2000 on show the large excess of volatility that
characterized the market after the burst of the technological bubble. It should be
noted that the �nal part of the sample roughly matches the out-of-sample period
analyzed in this paper.

5In addition to these variables, we considered alternative variables which did not led to qual-
itative changes over those reported in the next section. For instance, considering the logarithm
transformation of the volume or the unexpected volume �measured as the residuals from an
AR(1) model�does not seem to have a major change in the out-of-sample ability of the model.
These results are not presented to save space but are available from the authors upon request.
MP refers to the midpoint.
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4.2 Estimation results

We estimate model (7) considering � 2 f0:01; 0:05g for any of the predictive
variables described previously using the entire sample. Our main aim is to address
the statistical signi�cance of the estimated coe¢ cients.6 The objective function (6)
is optimized using the Simulated Annealing optimization algorithm (Go¤e, Ferier
and Rogers, 1994). This is a local random-search search algorithm which exploits
the analogy between the way a metal cool and freezes to obtain a minimum energy
crystalline structure (annealing process) and the search for a minimum in real-
valued problems. The search process can accept values that increase the objective
function (rather than lower it) with a probability that decreases as the number
of iterations increases. The main purpose of this routine is to prevent the search
process from becoming trapped in local optima, which in addition provides low
sensibility to the choice of the initial values. To minimize the possibility of getting
convergence to local optima, the optimization process is repeated 1; 000 times over
the whole sample.7

Tables 2 shows the estimated coe¢ cients together with the one-sided robust
p-values for the variables in the trading activity and liquidity groups. As de-
scribed in Engle and Manganelli (2004), the asymptotic covariance matrix of the
estimate parameter is inferred robustly using a sandwich-type estimator based on
a k-nearest neighbor kernel with k = 40 and k = 60 for the 1% and 5% quantiles,
respectively.

[Insert Table 2 around here]

Several features are worth of commenting. First, the empirical results show
the strong degree of persistence in the VaR estimates as measured by the estimate
of the autoregressive coe¢ cient, b��;1. Not surprisingly, persistence is stronger
for � = 0:05, as extreme percentiles are more likely driven by outliers, i.e., the
jumping-component of the data generating process in returns. This is expected
to exhibit a more random, irregular behavior. In addition, the average in�uence
of the volatility process on the VaR estimates, as measured by the coe¢ cientb��;2; becomes more important as the size of the quantile reduces. These results
completely agree with the qualitative evidence discussed, among others, in Engle
and Manganelli (2004). Turning our attention to the empirical relevance of the
predictive variables, we note that all the variables analyzed have a positive e¤ect on
the conditional distribution of returns. Increments in the volume- or illiquidity-

6Estimation is carried out for � 2 f0:01; 0:025; 0:05; 0:075; 0:1g : Table 4 reports the main
estimates related to the main coe¢ cients in a further analysis. We do not present all these
results for the sake of brevity, but they are available upon request.

7Optimization is carried out using Matlab R2008a in a PC with processor Intel Core 2,
2.40GHz, and 4.00GB RAM.
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related variables tend to generate larger levels of VaR. As discussed previously,
there are several reasons that may explain this feature, including but not limited
to, the correlation of the conditional volatility process with the di¤erent proxies for
liquidity and trading variables. The analysis on the signi�cance of the estimated
coe¢ cients o¤ers mixed results. Whereas the null hypothesis H0 : �

�
� = 0 of no

predictability is strongly rejected for any of the variables analyzed for the 5%
quantile, it cannot be rejected at any of the usual con�dence levels for the 1%
percentile, even though the size of the estimated coe¢ cient increases slightly.
The di¤erences in the degree of statistical signi�cance could be attributed to

heterogeneity in the predictive ability of the model as a function of the partic-
ular quantile involved, suggesting that the actual possibility of forecasting the
conditional quantile may vanish as the size of the quantile reduces. Given that
extreme values are more likely driven by purely idiosyncratic and noisy e¤ects,
the empirical evidence is theoretically plausible. Alternatively, the failure to re-
ject statistically the null hypothesis of no predictability may also be rooted in
statistical problems related to the estimation of the covariance matrix in a �nite
sample, i.e., power distortions stemming from �nite-sample ine¢ ciencies. The po-
tential sources of inne�ciency for a small value of � in this context are twofold.
First, the number of valid observations used to characterize the model decreases
as so does �: Furthermore, the theoretical arguments that support the consistency
of the robust nonparametric estimate of the covariance matrix hold asymptoti-
cally. As in the case of the HAC-type estimators (from the Heteroskedasticity and
Autocorrelation Consistent covariance matrix estimation) used in the standard
regression analysis, the �nite-sample nonparametric estimation of the covariance
matrix is likely to be highly sensitive to the characteristics of the data generat-
ing process and the choice of the bandwidth parameter. For instance, stationary
but strongly-correlated residuals largely bias nonparametric HAC-type estimates.
Since CAViaR models are a relatively novel contribution to the literature, little is
known about the small-sample performance.
In order to shed some light on this issue, we carry out a deeper analysis to

appraise the sensitivity of the results to the choice of k. In particular, we consider
estimates of the parameters and their covariance matrix for a larger set of quantiles
� 2 f0:1; 0:075; 0:05; 0:025; 0:01g, and k 2 f10; 30; 50; 70; 90g. Table 3 sum-
marizes the main results from this analysis, showing the estimated coe¢ cients and
the p-values related to the individual test for signi�cance of the volatility proxy
variable and the predictor X�

t involved in each quantile regression (the complete
analysis is available upon request). Note that changing k only a¤ects the estima-
tion of covariance matrix and, hence, the likelihood of accepting or rejecting the
null hypothesis, but not the estimated parameters. We can observe that, for most
of the variables analyzed, the particular choice of k does not seem to generate
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large di¤erences when it comes to accepting or rejecting the null hypothesis at the
conventional signi�cance levels, so the qualitative evidence is not particularly sen-
sitive to this value. For relatively large values of �, the empirical evidence strongly
supports predictability independently of the value of k in the range analyzed. As
we attempt to predict more extreme quantiles, the statistical evidence weakens and
eventually vanishes out. Whereas the hypothesis could still be marginally rejected
for � = 0:01 for the predictive variables in the volume-related group, the overall
evidence suggests that liquidity-related variables do not seem to play a signi�cant
role to forecast the 1% conditional quantile. Overall, the evidence suggests that,
in this analysis, the main results are not particularly sensitive to the choice of k
in the range considered.
The failure to reject the null hypothesis is likely due to an artifact due to

loss of e¢ ciency when modelling extreme quantiles. For instance, whereas the
estimated coe¢ cient related to the proxy of volatility, �̂�;2; largely increases on
� as expected, paradoxically the level of statistical signi�cance tends to decrease.
As a result, the proxy of volatility is not signi�cant at the conventional levels for
� 2 f0:025; 0:01g. This counterintutive feature strongly suggests the presence
of power distortions in the analysis owing to greater levels of noise inference for
small values of the quantile. Given that the ultimate purpose of computing VaR
estimates is to generate market risk forecasts, the out-of-sample analysis provides
a more appropriate framework to disentangle whether including market-related
information is valuable to predict VaR or not. Even if the in-sample contribution
of a certain variable were marginally signi�cant, it may still play a critical role
in the out-of-sample performance, as a good in-sample performance is neither a
necessary nor su¢ cient condition to ensure a good out-of-sample performance.
This is studied in the following subsection through standard backtesting analysis.

[Insert Table 3 around here]

4.3 Backtesting analysis

We split the total sample into an in-sample and an out-of-sample period to perform
a rolling-window backtesting analysis. Following Alexander and Sheedy (2008), we
consider a relatively large number of observations (2700) to be included in the esti-
mation rolling window, which allows us to construct over 1000 one-day ahead VaR
forecasts (see Figure 1 above). Our main goal is to analyze the forecasting abil-
ity of the covariate-extended model (7) in relation to the restricted SAV-CAViaR
model that imposes ��� = 0: In addition we compare the relative performance of
these models to the VaR forecasts obtained from the EWMA model (RiskMetrics),
the Gaussian GARCH(1,1) model, and the Extreme Value Theory (Appendix A
sketches the main features of these risk models). This analysis does not attempt
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to compare which model performs better in a horse race, but rather provide a
broad framework to appraise the possible gains in the actual forecasting ability of
the models that make use of additional information. Tables 4 reports the average
values of the parameters estimates of equation (7) over the out-of-sample period
for � 2 f0:01; 0:025; 0:05; 0:075g using volume and spread variables. As with the
whole sample, the average estimates reveal a strongly persistent process and the
positive e¤ect of volatility.

[Insert Tables 4 around here]

We follow Christo¤ersen (1998) to gauge the accuracy of out-of-sample VaR
forecasts. For any of the VaR forecasts in the out-of-sample period and any of
the risk models considered, we de�ne the exception variable H�;t as a dummy
variable taking value one if the actual return at time t exceeds the predicted
VaR value, and zero otherwise. Thus, the variable signals whether the market
falls below the expected VaR threshold. The main purpose is to test for the
hypothesis of perfect conditional coverage, i.e., H0 : E (H�;tjFt�1) = �; which
implies that H�:t is uncorrelated with any measurable function of the information
set Ft�1, and that VaR exceptions will approximately occur with the nominal
conditional and unconditional probability. More speci�cally, we account for tests
that address whether, i) the unconditional likelihood of an exception matches the
expected frequency, H0 : E (H�;t) = �; using a test statistic labelled LRUC ; ii)
exceptions are serially uncorrelated, using a test statistic labelled LRIND; and iii)
the conditional likelihood of an exception equals �; using the test statistic labelled
LRCC : These tests statistics and their asymptotic distribution are described in
detail in Appendix B. Table 5 reports the results for the benchmark models (VaR-
GARCH, VaR-EWMA, EVT-BM and SAV-CAViaR).8

[Insert Table 5 around here]

The overall performance of the VaR-GARCH and the SAV-CAViaR models is
very similar in the period analyzed. In general, both models are biased towards
yielding over-conservative VaR forecast (i.e., the estimated exception ratio tends
to be positive biased in relation to the nominal level). This result agrees with the
usual �nding in the literature, which tends to show a relatively large proportion
of exceptions in parametric models due to parameter biases originated in the oc-
casional outliers that typically contaminate the estimation window. As a result,
the backtesting analysis strongly rejects the hypothesis of perfect unconditional
coverage hypothesis for both models when analyzing � = f0:05; 0:075g: Also, both

8We do not report the outcomes from the estimation process of these models for saving space.
They are available upon request.
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the simplest VaR-EWMA and the more sophisticated ETV models seem to pro-
duce better results, although the EWMA model overestimates the true VaR for
the quantiles � = f0:01; 0:025g, and the ETV model tends to underestimate the
VaR process for � = 0:075. Overall, none of the risk models considered in this
analysis seems able to pass simulteneously the backtesting analysis convincingly
and uniformly across the quantiles analyzed.

[Insert Tables 6 around here]

Next, we turn our attention to the results from the backtesting analysis from
the covariate-extended CAViaR models. These are shown in Table 6 (volume
and liquidity extended CAViaR models). The most remarkable �nding is that,
whereas the standard SAV-CAViaR model can be largely biased towards under-
estimate the true Value at Risk, the inclusion of volume-related and liquidity
variables provides a suitable correction such that most of the departures from
the nominal level are corrected. Remarkably, those biases are removed and the
empirical values tend to stabilize around the nominal level. For all the variables
analyzed, this improvement in the unconditional properties of the VaR forecast
time-series is achieved without increasing the degree of serial dependence in the
exceptions variable. As a result, all the extended CAViaR models are able to
pass the backtesting analysis at any of the usual con�dence levels. The p-values
of the decisive LRCC tests statistics are well above the conventional statistical
signi�cance levels for the vast majority of tests, particularly for the set of liquidity-
extended CAViaR risk models. As an example, the mean value of exception for
the baseline SAV-CAViaR model for � = 0:075 is slightly greater than 10%, with
the GARCH(1,1) closely matching this value. In sharp contrast, the largest mean
value for the set of variables analyzed is 8:7%, with some variables yielding even
a larger bias reduction. For instance, including the E¤ective Spread (ES) and
Relative E¤ective Spread (RES) leads to an unconditional coverage around 8%.
Overall, among all the predictors considered, the ES and RES variables in the
liquidity group seem to provide the best results in the backtesting analysis.
Figure 2 plots the one-day forecasts from the standard SAV-CAViaR model

and the RQS-extended CAViaR model for the 5% quantile. We can observe that
the forecasts from the liquidity-extended model tend to be much higher, so the
inclusion of liquidity variables tends to generate large changes in the VaR forecasts.

[Insert Figure 2 around here]

More importantly, the di¤erences in the VaR forecast have the correct sign and,
hence, adding the information conveyed by these variables is able to reduce sig-
ni�cantly the excessive number of exceptions in the baseline SAV-CAViaR model.

15



Similar results arise when analyzing volume-extended models.9 In view of the em-
pirical results from the backtesting analysis, we can conclude that the correction
provided by the inclusion of microstructure variables is useful for VaR forecasting.

5 Concluding remarks

We have analyzed the predictability of downside market risk using di¤erent vari-
ables related to the trading-activity and liquidity categories. Our approach has
mainly built on the CAViaR quantile regression model proposed by Engle andMan-
ganelli (2004). The predictive analysis over the whole sample and the standard
backtesting VaR analysis support the suitability of these variables to forecast one-
day ahead VaR, improving purely returns-based models. The overall evidence is
robust against the inclusion of di¤erent measures of liquidity and trading-activity,
as well as the consideration of di¤erent quantiles.
Our methodological approach can be related to the so-called LVaR (see Jarrow

and Subramanian, 1997 and Jorion, 2007), although we provide a di¤erent per-
spective to the problem of forecasting VaR. In particular, while LVAR determines
the total VaR as the sum of the �traditional� VaR (as termed in Jorion 2007,
pp. 354) plus an additional component related to transaction costs, we use the
information conveyed by bid-ask spreads, trading volume, and other variables to
forecast the market VaR itself. The fundamental premise, therefore, is that these
variables convey useful information to forecast the tail distribution of conditional
returns. Our empirical �ndings strongly support this hypothesis therefore the vol-
ume and liquidity variables contain relevant information in forecasting downside
risk.

9We do not report these results for saving space but they are available from the authors upon
request.
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Appendix A: VaR models

In Section 4.3 we compare the performance of CAViaR model with other stan-
dards procedures to compute VaR. These include the EWMA, GARCH and EVT
(Extreme Value Theory) methods. The common setting in these models assumes
that returns obey dynamics given by

rt = �t�t; �tjFt�1 � iid(0; 1) (A.1)

where �t denotes the conditional volatility of the process. We brie�y discuss the
main settings of these approaches in the sequel.

A. VaR EWMA
RiskMetrics (1996) popularized the Exponential Weighting Moving Average

(EWMA) scheme as an easy way to model the volatility process. The latent
volatility dynamics are assumed to obey the recursive dynamics:

b�2t = � b�2t�1 + (1� �)r2t�1; t = 1; :::; T (A.2)

with the initial condition b�20 = r20 = E (r2t ) : The smoothing parameter � can
be estimated, although RiskMetrics advises to set � = 0:95 for data recorded
on a daily basis. Then, the one-day ahead forecast given FT is simply given byb�2T+1jT = � b�2T + (1� �)r2T :
The RiskMetrics approach assumes the particularly strong assumption that

the innovations �t are conditionally Normal distributed. Then, the EWMA-VaR
forecast would be determined as �Z�b�T+1jT ; with Z� denoting the �-quantile of
the standard normal distribution. In order to ensure robustness against likely
departures from normality, we proceed in a slightly di¤erent way. Let b�t = rt=b�t
be the estimated innovations given the estimates of the EWMA volatility process,
and let Q�(b�t) be the unconditional �-quantile of the empirical distribution. Then,
an alternative VaR forecast that does not make any distributional assumption is:

V aR�;t+1 (EWMA) = �Q�(b�t)b�T+1jT (A.3)

B. VaR GARCH
The simplest GARCH (1,1) model is by far one the most popular approach

to model and forecast market risk due to its impressive performance (Hansen and
Lunde 2005) and simplicity. The standard GARCH(1,1) model assumes that daily
returns obey dynamics given by:

rt = �t�t; �tjFt�1 � iidN (0; 1) (A.4)

�2t = ! + �"2t�1 + ��
2
t�1
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with the restrictions ! > 0; �; � � 0 ensuring that the conditional variance
process is well-de�ned. Although �nancial returns are known to be non-normally
distributed, the Gaussian assumption is particularly convenient because it ensures
parameter consistency (Bollerslev and Woolridge, 1992). We use this assumption
to generate consistent estimates of the conditional volatility process:

b�2T+1jT = b! + b�r2T + b� b�2T ; (A.5)

and, as in the previous case, we avoid the distributional assumption in constructing
the VaR forecast. Given the GARCH estimates of the volatility process b�t and the
resultant standardized innovations, b�t = rt=b�t; the �robust�one-day VaR-GARCH
forecast is determined as:

V aR�;T+1 (GARCH) = �Q�(b�t)b�T+1jT : (A.6)

C. VaR EVT
We also adopt Extreme Value Theory (EVT) to estimate the one-day ahead

VaR using the block maxima (BM) method. This method requires of the choice of
a block length, say n, and previous estimates of the conditional volatility process.
Since it is widely agreed that GARCH estimates tend to overperform other pro-
cedures when it comes to forecast volatility, we determine b�t = rt=b�t use the
GARCH(1,1) estimates as previously discussed.
Let g = [T=n] ; where [�] denotes the integer part of the argument. We divide

the total sample into g = 740 blocks of equal length, n = 5, and record the
maximum value for each block. Then, a Generalized Error Distribution (GEV) is
�tted to the block maxima by optimizing a maximum likelihood procedure that
yields three parameters that characterize �1 (shape), �2 (scale) and �3 (location).
The generalized representation is particularly useful when maximum likelihood
estimates have to be computed, as in general, we do not know in advance the type
of limiting distribution of the sample maxima. Given the resultant estimates, we
determine

V aRblock = �̂3 �
�̂2
�̂1

"
1�

�
� ln

�
1� 1

n�

����̂1#
(A.7)

from which we can obtain the one-day ahead VaR EVT forecast

V aR�;T+1 (EV T ) = �b�T+1jTV aRblock (A.8)

with b�T+1jT determined as in (A:5) : The estimations are unbiased, asymptotically
normal and of minimum variance under proper assumptions; see Embrechts et al.
(1997) and Coles (2001).
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Appendix B: Backtesting analysis

I) Unconditional test:
The most basic assumption is that the market risk model provides a correct

unconditional coverage, i.e., H0 : E [H�;t] = �. The null hypothesis is be rejected
for large values of the Likelihood Ratio (LR) test (see Kupiec, 1995) de�ned as

LRUC = 2(N �N�)
�
log(1� N�

N
)� log(1� �)

�
+ 2N�

�
log

N�
N
� log �

�
� �2(1)
(B.1)

where �2(1) stands for a Chi-squared distribution with one degree of freedom, N� is
the number of exceptions, andN is the total number of out-of-sample observations.
Note that N�=N is simply the sample mean of H�;t, i:e, the sample equivalent of
E [H�;t] :

II) Independence test:
If exceptions are serially correlated, the conditional coverage will be defective

even if the unconditional coverage is correct, because the risk of bankruptcy is
higher if so. If the risk model tends to yield clustered exceptions, then the risk
manager should increase the VaR in order to lower the conditional probability of
an exception to the expected �. Christo¤ersen (1998) proposes the analysis of the
�rst-order serial correlation in H�;t through a binary �rst-order Markov chain with
transition probability matrix

� =

�
1� �01 �01
1� �11 �01

�
; with �ij = Pr(H�;t = j j H�;t�1 = i); i; j 2 f0; 1g (B.2)

The approximate joint likelihood conditional on the �rst observation is

L(�;H�;t j H�;1) = (1� �01)n00�n0101 (1� �11)n10�n1111 ; (B.3)

where nij represents the number of transitions from state i to state j. The
maximum-likelihood estimators under the alternative hypothesis are b�01 = n01= (n00 + n01) ;
and b�11 = n11= (n10 + n11) : Under the null hypothesis of independence, we have
�01 = �11 = �0; with �0 = �; from which the conditional binomial joint likelihood
is

L(�0;H�;t j H�;1) = (1� �01)n00+n10�n01+n1101 : (B.4)

Note that �0 can be estimated as b�0 = N�=N . The likelihood ratio test for the
hypothesis of independence is given by
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LRIND = 2
h
logL(�̂;H�;t j H1)� logL(b�0;H�;t j H�;1)i � �2(1) (B.5)

III) Conditional test:
Finally, we can study simultaneously whether the VaR violations are indepen-

dent and occur with the correct probability. Because b�0 is unconstrained, the test
in equation (B.5) does not impose the correct coverage. We can readily devise a
joint test for independence and correct coverage (i.e., correct conditional coverage)
by combining the previous tests as

LRCC = 2
h
logL(�̂;H�;T j H1)� logL(�;HT j H1)

i
� �2(2) (B.6)

This is equivalent to testing if the sequence of H�;t is independent and the proba-
bilities to observe an exception given the set of information is equal to the nominal
level �, namely, �01 = �11 = �. Therefore, we can write

LRCC = LRUC + LRIND; (B.7)

which provides the suitable test statistic to check whether fH�;tg ful�lls the cor-
rect conditional coverage properties. Since the test involves two restrictions, the
asymptotic convergence to a �2(2) distribution.
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Tables

Table 1: Descriptive Statistics.

X�
t MEAN MEDIAN MAX. MIN. VAR SKEW. KURT. �(1)

rt (�100) 0 0.01 5.54 -6.7 0.98 -0.2 7.78 -0.06
V 7.39 7.21 9.69 5.52 0.73 0.36 1.86 0.96
NT 6.85 6.69 8.76 5.07 0.65 0.3 1.64 0.98
NS 6.09 5.94 8.02 4.24 0.65 0.29 1.67 0.98
NSS 6.51 6.33 8.8 4.5 0.73 0.35 1.86 0.96
TVD 11.1 11.04 13 9.13 0.76 0.17 1.66 0.96
QS -1.89 -1.74 -1.2 -3.4 0.21 -1.64 4.79 0.99
ES -2.29 -2.11 -1.5 -3.8 0.2 -1.53 4.48 0.99
RQS -5.39 -5.39 -4.8 -6.9 0.2 -1.02 3.23 0.99
RES -5.96 -5.76 -5.2 -7.2 0.2 -0.96 3.08 0.99

This table shows the descriptive statistics (mean, median, maximum, minimum, vari-
ance, skewness and kurtosis) of the demeaned returns and all the explanatory variables
involved in the analysis (in logarithms). The last row indicates the �rst-order autocor-
relation of the variables. The variables included are V (trading volume); NT (number
of trades); NS (number of sell trades); NSS (number of shares sold in thousands); TVD
(traded volume in dollars); QS (quoted spread); ES (e¤ective spread); RQS (relative
quoted spread) and RES (relative e¤ective spread).
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Table 2: Inference results from predictive quantile regressions.

� = 5% � = 1%

X�
t �̂�;0 �̂�;1 �̂�;2 �̂

�
� �̂�;0 �̂�;1 �̂�;2 �̂

�
�

V -0.04 0.96 0.05 0.01 0.02 0.92 0.11 0.01
(0.00) (0.00) (0.00) (0.00) (0.37) (0.00) (0.06) (0.16)

NT -0.03 0.96 0.05 0.01 0.03 0.92 0.11 0.01
(0.00) (0.00) (0.00) (0.00) (0.25) (0.00) (0.04) (0.13)

NS -0.02 0.96 0.05 0.01 0.03 0.92 0.11 0.01
(0.00) (0.00) (0.00) (0.00) (0.24) (0.00) (0.04) (0.16)

NSS -0.03 0.96 0.05 0.01 0.03 0.92 0.11 0.01
(0.00) (0.00) (0.00) (0.00) (0.27) (0.00) (0.06) (0.19)

TVD -0.06 0.96 0.05 0.01 -0.01 0.92 0.12 0.01
(0.00) (0.00) (0.00) (0.00) (0.41) (0.00) (0.05) (0.12)

QS -0.01 0.97 0.05 0.01 0.07 0.92 0.14 0.01
(0.01) (0.00) (0.00) (0.00) (0.12) (0.00) (0.08) (0.32)

ES -0.00 0.97 0.05 0.00 0.08 0.91 0.15 0.01
(0.40) (0.00) (0.00) (0.01) (0.14) (0.00) (0.11) (0.31)

RQS -0.04 0.97 0.05 0.01 0.04 0.92 0.14 0.01
(0.01) (0.00) (0.00) (0.00) (0.32) (0.00) (0.08) (0.36)

RES -0.08 0.96 0.05 0.02 -0.03 0.89 0.15 0.03
(0.05) (0.00) (0.00) (0.05) (0.34) (0.00) (0.13) (0.18)

This table shows the estimated parameters and robust p-values (in brackets) for the
entire sample and the quantile regression model (7),

V aR�;t = ��;0 + ��;1V aRt�1 + ��;2jrt�1j+ ��� j log(X�
t�1)j);

given � = 0:05 and � = 0:01: The �rst column shows the volume-related and liquidity
variables X�

t analyzed.
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Table 3: Sensitivity analysis of p-values to di¤erent k-bandwidth.

� V NT NS NSS TVD QS ES RQS RES jrt�1j
10% �̂� 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.06

10 0.04 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.02 0.00
30 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.05 0.00

k 50 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.07 0.00 0.00
70 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.08 0.00 0.00
90 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.01 0.00

7.5% �̂� 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.02 0.06
10 0.00 0.00 0.00 0.00 0.24 0.00 0.02 0.00 0.13 0.00
30 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.07 0.02 0.00

k 50 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.06 0.06 0.00
70 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.04 0.00
90 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.02 0.00

5.0% �̂� 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.05
10 0.02 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.16 0.00
30 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.06 0.00

k 50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00
70 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.07 0.00
90 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.05 0.00

2.5% �̂� 0.02 0.02 0.02 0.03 0.02 0.01 0.00 0.00 0.03 0.07
10 0.04 0.14 0.43 0.00 0.00 0.04 0.34 0.39 0.46 0.01
30 0.03 0.17 0.10 0.04 0.07 0.10 0.29 0.36 0.08 0.11

k 50 0.02 0.08 0.06 0.02 0.04 0.12 0.26 0.35 0.11 0.09
70 0.03 0.03 0.04 0.02 0.02 0.11 0.27 0.35 0.06 0.07
90 0.03 0.03 0.03 0.02 0.02 0.07 0.28 0.35 0.04 0.07

1.0% �̂� 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.14
10 0.04 0.02 0.05 0.11 0.03 0.24 0.03 0.30 0.00 0.03
30 0.15 0.16 0.12 0.15 0.14 0.34 0.33 0.38 0.24 0.05

k 50 0.12 0.12 0.11 0.14 0.11 0.33 0.28 0.38 0.15 0.03
70 0.14 0.15 0.14 0.16 0.10 0.28 0.24 0.30 0.16 0.03
90 0.11 0.13 0.11 0.12 0.10 0.28 0.24 0.32 0.15 0.03

This table shows the estimated coe¢ cients �̂�;2 and �̂
�
� and robust p-values of the test for

individual signi�cance from model (7) and the entire sample when the robust asymptotic
covariance matrix is estimated with a kernel with values of k 2 f10; 30; 50; 70; 90g in
the covariance matrix estimation process for a larger set of quantiles. The �̂�;2 estimates
(last column) are from model (7) with X�

t = V:
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Table 4: Averaged estimates out-of-sample analysis.

VOLUME EXTENDED CAViaR

X�
t � �̂�;0 �̂�;1 �̂�;2 �̂

�
�

V 7.5% -0.047 0.955 0.056 0.009
5% -0.055 0.960 0.046 0.011
2.5% -0.099 0.934 0.076 0.023
1% -0.003 0.822 0.331 0.028

NT 7.5% -0.047 0.955 0.055 0.010
5% -0.034 0.965 0.045 0.008
2.5% -0.052 0.952 0.058 0.015
1% 0.051 0.784 0.399 0.029

NS 7.5% -0.041 0.954 0.056 0.010
5% -0.037 0.962 0.046 0.010
2.5% -0.079 0.937 0.065 0.025
1% -0.060 0.778 0.382 0.056

NSS 7.5% -0.042 0.954 0.056 0.010
5% -0.041 0.963 0.045 0.010
2.5% -0.118 0.920 0.084 0.033
1% -0.167 0.775 0.369 0.073

TVD 7.5% -0.074 0.956 0.054 0.008
5% -0.039 0.969 0.044 0.005
2.5% -0.072 0.956 0.058 0.010
1% 0.059 0.789 0.435 0.015

LIQUIDITY EXTENDED CAViaR

X�
t �̂�;0 �̂�;1 �̂�;2 �̂

�
�

QS -0.018 0.956 0.061 0.016
-0.018 0.970 0.046 0.017
-0.036 0.952 0.068 0.042
0.044 0.836 0.349 0.065

ES -0.032 0.954 0.062 0.020
-0.032 0.968 0.046 0.021
-0.044 0.955 0.064 0.036
0.028 0.844 0.308 0.060

RQS -0.054 0.959 0.059 0.012
-0.053 0.971 0.044 0.012
-0.115 0.960 0.054 0.027
-0.086 0.851 0.300 0.043

RES -0.088 0.954 0.062 0.017
-0.062 0.971 0.043 0.012
-0.079 0.963 0.052 0.019
-0.006 0.838 0.348 0.026

This table shows the average value of the out-of-sample parameters from model (7) esti-
mates with volume-extended and liquidity variables. The column labelled as X�

t denotes
the volume-related and liquidity variables analyzed.
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Table 5: Backtesting analysis. Benchmark models.

MODEL � Exc. LRUC LRIND LRCC FV

EWMA 7.5% 8.9% 2.68(0.10) 0.67(0.41) 3.38(0.18) 1.90
5% 5.5% 0.51(0.47) 0.00(0.99) 0.52(0.77) 2.24
2.5% 1.5% 4.78(0.02) 0.46(0.49) 5.21(0.07) 2.98
1% 0.5% 3.09(0.08) 0.05(0.82) 3.13(0.21) 3.94

GARCH(1,1) 7.5% 11.3% 18.22(0.00) 0.29(0.59) 18.59(0.00) 1.76
5% 7.4% 10.63(0.00) 0.46(0.49) 11.15(0.00) 2.03
2.5% 2.8% 0.35(0.55) 0.08(0.78) 0.44(0.80) 2.68
1% 0.9% 0.10(0.75) 0.16(0.69) 0.27(0.87) 3.57

EVT-BM 7.5% 10.4% 10.85(0.00) 0.58(0.45) 11.49(0.00) 1.76
5% 6.1% 2.36(0.12) 0.51(0.48) 2.89(0.23) 2.16
2.5% 2.4% 0.04(0.83) 0.31(0.58) 0.35(0.84) 2.77
1% 0.5% 3.10(0.08) 0.04(0.84) 3.13(0.21) 3.48

SAV-CAViaR 7.5% 10.1% 8.86(0.00) 0.46(0.49) 8.74(0.01) 1.82
5% 7.4% 10.63(0.00) 0.50(0.48) 11.19(0.00) 2.04
2.5% 3.2% 1.85(0.17) 0.00(0.99) 1.86(0.39) 2.55
1% 1.3% 0.83(0.36) 0.31(0.57) 1.15(0.56) 3.23

This table shows the Backtesting analysis for the one-day forecasts of the VaR given the
EMWA, Gaussian GARCH, EVT and SAV-CAViaR models. The second column shows
the estimated ratio of empirical exceptions. LRUC , LRIND, and LRCC denote the values
of the test statistics for unconditional coverage, independence, and conditional coverage,
respectively, (see Appendix B for details), whereas the p-values of the respective test
statistics are exhibit in brackets. Finally, FV denotes the mean of the forecast VaR over
the out-of-sample period. Bold letters are used to denote statistical rejection at any of
the standard asymptotic nominal levels.
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Table 6: Backtesting VaR analysis for volume and liquidity extended
CAViaR models. See details in table 5.

X�
t � Exc. LRUC LRIND LRCC FV

V 7.5% 8.1% 0.51(0.48) 0.06(0.80) 0.43(0.81) 1.95
5% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 2.21
2.5% 2.2% 0.38(0.53) 0.94(0.33) 1.32(0.51) 2.72
1% 0.7% 1.02(0.31) 0.08(0.77) 1.09(0.58) 3.25

NT 7.5% 8.1% 0.51(0.48) 0.06(0.80) 0.43(0.81) 1.95
5% 6.0% 1.98(0.16) 0.61(0.43) 2.61(0.27) 2.16
2.5% 2.3% 0.17(0.68) 1.03(0.30) 1.20(0.55) 2.68
1% 0.9% 0.10(0.75) 0.14(0.70) 0.25(0.88) 3.27

NS 7.5% 8.2% 0.69(0.41) 0.03(0.85) 0.55(0.76) 1.94
5% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 2.18
2.5% 2.0% 1.10(0.29) 0.78(0.38) 1.87(0.39) 2.69
1% 0.6% 1.89(0.17) 0.06(0.81) 1.94(0.38) 3.35

NSS 7.5% 8.0% 0.35(0.55) 0.01(0.91) 0.25(0.88) 1.95
5% 5.6% 0.73(0.39) 0.28(0.59) 1.03(0.60) 2.21
2.5% 1.9% 1.61(0.20) 0.70(0.40) 2.29(0.32) 2.74
1% 0.6% 1.89(0.17) 0.06(0.81) 1.94(0.38) 3.46

TVD 7.5% 8.3% 0.89(0.34) 0.01(0.91) 0.71(0.69) 1.92
5% 6.1% 2.39(0.12) 1.44(0.23) 3.86(0.14) 2.13
2.5% 2.8% 0.36(0.55) 0.08(0.78) 0.44(0.80) 2.62
1% 1.2% 0.38(0.54) 2.45(0.12) 2.83(0.24) 3.31

QS 7.5% 8.6% 0.51(0.48) 0.06(0.80) 0.43(0.81) 1.92
5% 5.3% 0.18(0.67) 0.55(0.46) 0.75(0.69) 2.27
2.5% 2.1% 0.69(0.40) 0.86(0.35) 1.54(0.46) 2.84
1% 1.0% 0.00(1.00) 0.18(0.67) 0.18(0.91) 3.53

ES 7.5% 8.0% 0.35(0.55) 0.10(0.75) 0.34(0.84) 2.00
5% 5.0% 0.00(1.00) 0.92(0.34) 0.92(0.63) 2.32
2.5% 2.2% 0.38(0.53) 0.94(0.33) 1.32(0.51) 2.85
1% 0.9% 0.10(0.75) 0.14(0.70) 0.25(0.88) 3.44

RQS 7.5% 8.6% 1.67(0.19) 0.09(0.75) 1.50(0.47) 1.92
5% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 2.21
2.5% 2.4% 0.04(0.84) 1.13(0.28) 1.17(0.55) 2.72
1% 0.7% 1.02(0.31) 0.08(0.28) 1.09(0.58) 3.31

RES 7.5% 7.9% 0.23(0.63) 0.00(0.97) 0.13(0.93) 1.97
5% 5.5% 0.51(0.47) 0.36(0.55) 0.88(0.64) 2.22
2.5% 2.4% 0.04(0.84) 1.13(0.29) 1.17(0.56) 2.67
1% 1.0% 0.00(1.00) 0.18(0.67) 0.18(0.91) 3.30
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Figure 1: Returns of the market portfolio.
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Figure 2: One-day forecasts from the SAV-CAViaR vs
RQS-extended CAViaR for the 5% quantile.
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