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Abstract

The ability of the usual factors from empirical arbitrage-free representations of the term

structure—that is, spanned factors—to account for interest rate volatility dynamics has

been much debated. We estimate new arbitrage-free Nelson-Siegel (AFNS) term structure

specifications that allow for stochastic volatility to be linked to one or more of the spanned

AFNS yield curve factors. Our results with three separate daily data sets—U.S. Treasury

yields, U.K. gilt yields, and U.S. dollar swap and LIBOR rates—suggest that much ob-

served stochastic volatility cannot be associated with spanned term structure factors in

terms of time-series correlations at high frequency. However, some of the AFNS models

with stochastic volatility do provide a close fit to our measure of realized yield volatility

in addition to providing a good fit to the yield term structure.
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1 Introduction

Understanding and predicting the variability of interest rates plays a crucial role in derivatives

pricing and portfolio risk management, so creating good empirical models of interest rate

stochastic volatility has been a key research priority. Unfortunately, while the canonical affine

arbitrage-free term structure models have been widely applied to price bonds, the ability of

these popular models to capture the changing volatility of interest rates has been seriously

questioned. Indeed, using U.S. swap rate data, Collin-Dufresne et al. (2009) find that a

standard three-factor affine model, in which one of the factors drives volatility, produces very

poor volatility estimates. They suggest that an unspanned volatility factor (i.e., a factor that

does not influence the model’s conditional mean dynamics under the pricing measure) has

to be added to the affine term structure model in order to capture the stochastic volatility

observed in U.S. dollar swap rates. However, Jacobs and Karoui (2009) argue the conclusions

of Collin-Dufresne et al. (2009) depend in large part on the particular sample period analyzed,

and they strongly recommend further research to examine whether (spanned) factors in an

affine arbitrage-free model can capture the conditional volatility in U.S. Treasury and swaps

data. In this paper, we conduct such research by examining to what extent spanned factors

can generate stochastic interest rate volatility.

In previous work, analysis of multiple factor sources for spanned volatility have been

hampered by problems in estimating the parameters of multifactor affine models.1 To avoid

these difficulties, we incorporate spanned stochastic volatility into the class of affine, arbitrage-

free Nelson-Siegel (AFNS) term structure models developed by Christensen, Diebold, and

Rudebusch (CDR, 2007). These models are characterized by imposing the level, slope and

curvature factors used in the original Nelson-Siegel yield curve model and observed in principal

components analysis of interest rates. This class of models captures both the cross section of

yields and their time-series dynamics quite well and can be readily estimated. We introduce

five new specifications of AFNS models that incorporate stochastic volatility. The first two

specifications allow for one factor—either the level or curvature factor—to generate stochastic

volatility, and these are denoted AFNS1-L and AFNS1-C, respectively.2,3 The third and fourth

specifications allow for two factors to generate stochastic volatility. These are denoted as

AFNS2-L,C when the level and curvature factors generate stochastic volatility, and AFNS2-

1The latent nature of the factors and the over-parameterization of the models make estimation quite difficult.
See Kim and Orphanides (2005) and Duffee (2008).

2As explained in Section 3, it is not possible to specify a stochastic volatility model based on the slope
factor within the AFNS framework.

3Our nomenclature draws on Dai and Singleton (2000). Our AFNSn models are members of their An(3)
class of models, which have three state variables and n square-root processes.
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S,C when the slope and curvature factors generate stochastic volatility.4 Finally, the fifth

specification, denoted AFNS3, allows all three factors to generate stochastic volatility. A

key advantage of our approach to modeling stochastic volatility is that the factors remain

well-defined as level, slope, and curvature and do not change for any admissible parameter

set. This structure makes the results comparable across model classes and allows us to detail

which factors are able to generate stochastic yield volatility most similar to that observed in

the data. This feature distinguishes our approach from the existing literature on affine models

where the optimal parameters for any unconstrained affine model only implicitly reveal which

factor(s) generate(s) stochastic volatility.5

In the existing literature, a few papers have tried to incorporate stochastic volatility into

the dynamic Nelson-Siegel models introduced by Diebold and Li (2006). Hautsch and Ou

(2009) incorporate stochastic volatility into the dynamic Nelson-Siegel model by including

three additional state variables that are the drivers of the stochastic volatility in the level,

slope, and curvature, respectively. They find that the stochastic volatility factors of the slope

and curvature factor, in particular, contain important information that help forecast excess

holding period returns on Treasury bonds. Koopman et al. (2008) incorporate one common

factor driving volatility in the fitted errors across all maturities in their sample. They also try

to allow for a common volatility factor that directly causes stochastic volatility in the three

state variables, but they find limited gains from that specification. Unlike the approach we

detail in this paper, neither of these papers address the problem of eliminating the existence

of arbitrage opportunities inherent in the standard dynamic Nelson-Siegel model.

In the empirical part of the paper, we examine the performance of these new model classes

on three datasets. We first examine daily U.S. Treasury yields from the Gürkaynak et al.

(2007) database over the period from January 2, 1985 to March 1, 2010 for eight maturities.

Focusing on the most parsimonious specification in which the three factors are independent,

we find that the introduction of stochastic volatility does not weaken the models’ in-sample

fit of the term structure relative to the AFNS0 model with constant volatility. With respect

to the models’ fitted stochastic volatility measured in terms of standard deviations, we find

that different magnitudes of variation and correlations with our measure of realized standard

deviations based on the daily data are induced. The correlation between the fitted and realized

bond yield standard deviations is quite low and often negative over the full sample. However,

4The third possible specification in which the level and slope factors generate stochastic volatility is not
compatible with the AFNS framework as detailed in Section 3.

5We only use bond yields in the model estimation and leave the issue of “unspanned stochastic volatility”,
a condition where bond prices are unaffected by changes in interest rate volatility, as per Collin-Dufresne and
Goldstein (2002) and Collin-Dufresne et al. (2009), for future research.
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Jacobs and Karoui (2009) find that, for U.S. Treasury yields, affine term structure models are

much better able to generate stochastic volatility measures that correspond to the observed

data in the period prior to 1992 for as of yet unclear reasons. Our correlations confirm this

result as they increased markedly to roughly 30% for several models in the pre-1992 part

of our sample. If, instead of focusing on time-series correlations at high frequency, we use

the root-mean-squared errors (RMSE) between the fitted and realized standard deviations

as model validation, the results are more favorable to the affine models and the spanned

factors. In particular the AFNS3 model, which exhibits the most variation in the fitted

volatility measure, performs well based on this measure with RMSEs below 15 basis points

at all maturities in addition to providing a good fit to the cross section of yields.

In the second empirical exercise, we examine daily U.K. gilt yields downloaded from the

website of the Bank of England covering the same period and the same eight maturities as

the U.S. Treasury data. In general, the results accord with the findings from the U.S. data.

First, the introduction of stochastic volatility has little effect on the in-sample yield fit as

compared to the Gaussian AFNS0 model. Second, the time-series correlations between the

fitted and realized measures of yield volatility are weak and sample dependent with the 1992-

2002 period exhibiting the largest, positive correlations, but still not exceeding 42%. Third,

and more importantly, the AFNS3 model provides the closest fit to the measure of realized

yield volatility with RMSEs of around 19 basis points for the shortest maturities down to 11

basis points for the longest maturities.

For robustness, our third and last empirical exercise looks at the daily U.S. dollar swap

and LIBOR data examined by Collin-Dufresne et al. (2009). As with the U.S. Treasury and

U.K. gilt data, we do not find important differences between the in-sample performance of the

stochastic volatility models and the AFNS0 model. However, with respect to the models’ fitted

stochastic volatility series, we find again that the AFNS3 model induces a reasonable degree

of variation and provides a close fit to the realized volatility measure with RMSEs ranging

from 16 basis points for the six-month LIBOR down to 10 basis points for the ten-year swap

rate. This advantage does not translate as readily into superior performance with respect to

correlation with the realized standard deviations based on daily data as other models generate

higher correlations than the AFNS3 model. The correlations between the fitted and realized

standard deviations for the full sample are high for the AFNS1-L and AFNS2-L,C models, with

values above 60% for the six-month LIBOR rate and roughly 20% for the ten-year swap rate.

The AFNS3 model generates quite low and even negative correlations over the full period,

but the correlations increase to nearly 50% for the short-term rates in the pre-1992 period
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highlighted by Jacobs and Karoui (2009). Yet, the other two models based on the stochastic

level factor perform quite well with high correlations at the longer maturities. These models

also have relatively high correlations in the post-1991 sample, whereas the AFNS3 model has

negative correlations for seven of the eight maturities considered.

To summarize, our results suggest that, while incapable of matching the high-frequency

time variation of realized yield volatilities, three-factor affine models can be relied upon to

provide a close fit to both the cross section of yields and their realized volatility for U.S. and

U.K. government bond yields as well as U.S. dollar swap and LIBOR rates. In this sense,

spanned yield curve factors can be said to be able to capture a large part of the realized

yield volatility. However, the important question as to whether the non-explained part of

yield volatility can be profitably exploited and hence require the introduction of unspanned

stochastic volatility as advocated by Collin-Dufresne et al. (2009), is beyond the scope of this

paper and we leave it for future research.

The rest of the paper is structured as follows. Section 2 presents a short summary of the

AFNS model of the term structure. Section 3 presents our five classes of modified AFNS

models with volatility dynamics. Section 4 presents empirical results for the daily U.S. Trea-

sury yields data, Section 5 reports results for the daily U.K. gilt yields, and Section 6 presents

the results for the weekly U.S. swaps and LIBOR data. Section 7 concludes. An appendix

contains additional technical details.

2 The AFNS Model with Constant Volatility

In this section, we briefly review the AFNS model with constant volatility (that is, the

AFNS0 specification).6 We start from a standard continuous-time affine arbitrage-free struc-

ture (Duffie and Kan, 1996) that underlies all the models in this paper. To represent an

affine diffusion process, define a filtered probability space (Ω,F , (Ft), Q), where the filtration

(Ft) = {Ft : t ≥ 0} satisfies the usual conditions; see Williams (1997). The state variable

Xt is assumed to be a Markov process defined on a set M ⊂ Rn that solves the following

stochastic differential equation (SDE):

dXt = KQ(t)[θQ(t) −Xt]dt + Σ(t)D(Xt, t)dW
Q
t , (1)

6This model has been shown to exhibit both good in-sample fit and out-of-sample forecast accuracy for
various yield curves. The empirical analysis conducted in Christensen et al. (2007) is based on unsmoothed
Fama-Bliss data for nominal Treasury yields. Christensen et al. (2010) examine yields for nominal and real
Treasuries as per Gürkaynak et al. (2007, 2010). Christensen et al. (2009) examine short-term LIBOR and
highly-rated financial firms’ corporate bond rates, while Christensen and Lopez (2008) examines corporate
bond rates from a broad set of industrial sectors and credit ratings.
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where WQ is a standard Brownian motion in Rn, the information of which is contained in

the filtration (Ft).
7 The drift terms θQ : [0, T ] → Rn and KQ : [0, T ] → Rn×n are bounded,

continuous functions.8 Similarly, the volatility matrix Σ : [0, T ] → Rn×n is assumed to be a

bounded, continuous function, while D : M × [0, T ] → Rn×n is assumed to have the following

diagonal structure:





√
γ1(t) + δ1(t)Xt . . . 0

...
. . .

...

0 . . .
√
γn(t) + δn(t)Xt



 ,

where

γ(t) =





γ1(t)
...

γn(t)




, δ(t) =





δ11(t) . . . δ1n(t)
...

. . .
...

δn
1 (t) . . . δn

n(t)




,

γ : [0, T ] → Rn and δ : [0, T ] → Rn×n are bounded, continuous functions, and δi(t) denotes

the ith row of the δ(t)-matrix. Finally, the instantaneous risk-free rate is assumed to be an

affine function of the state variables

rt = ρ0(t) + ρ1(t)
′Xt,

where ρ0 : [0, T ] → R and ρ1 : [0, T ] → Rn are bounded, continuous functions.

Duffie and Kan (1996) prove that zero-coupon bond prices in this framework are exponential-

affine functions of the state variables

P (t, T ) = E
Q
t

[
exp

(
−
∫ T

t
rudu

)]
= exp

(
B(t, T )′Xt +A(t, T )

)
,

where B(t, T ) and A(t, T ) are the solutions to the following system of ordinary differential

equations (ODEs)

dB(t, T )

dt
= ρ1 + (KQ)′B(t, T ) − 1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,j(δ
j)′, B(T, T ) = 0, (2)

dA(t, T )

dt
= ρ0 −B(t, T )′KQθQ − 1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,jγ
j, A(T, T ) = 0, (3)

7Note that the affine property applies to bond prices; therefore, affine models only impose structure on the
factor dynamics under the pricing measure.

8Stationarity of the state variables is ensured if all the eigenvalues of KQ(t) are positive. If the eigenvalues
are complex, the real component should be positive; see Ahn et al. (2002). However, stationarity is not a
necessary requirement for the process to be well defined.
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and the possible time-dependence of the parameters is suppressed in the notation. These

pricing functions imply that the zero-coupon yields are given by affine functions of Xt

y(t, T ) = − 1

T − t
log P (t, T ) = −B(t, T )′

T − t
Xt −

A(t, T )

T − t
.

In the AFNS model with constant volatility, the instantaneous risk-free rate is defined by

rt = X1
t +X2

t .

In addition, the three state variables in the model Xt = (X1
t ,X

2
t ,X

3
t ) are described by the

following system of SDEs under the risk-neutral Q-measure:





dX1
t

dX2
t

dX3
t



 =





0 0 0

0 λ −λ
0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



−





X1
t

X2
t

X3
t







 dt+ Σ





dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 , λ > 0.

In matrix notation, this system is denoted as

dXt = KQ(θQ −Xt)dt+ ΣQdW
Q
t .

CDR (2007) show that this specification implies that zero-coupon bond yields are given by

y(t, T ) = X1
t +

(
1 − e−λ(T−t)

λ(T − t)

)
X2

t +

(
1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3

t − A(t, T )

T − t
.

Importantly, the factor loadings in this yield function match the level, slope, and curvature

loadings introduced in Nelson and Siegel (1987) with a final yield-adjustment term, which

represents convexity effects due to Jensen’s inequality.

The model is completed with a risk premium specification that connects the factor dynam-

ics to the dynamics under the real-world (or historical) P -measure. It is important to note

that there are no restrictions on the dynamic drift components under the empirical P -measure

beyond the requirement of constant volatility. To facilitate empirical implementation, we use

the extended affine risk premium developed by Cheridito et al. (2007). In the Gaussian

framework, this specification implies that the risk premiums Γt depend on the state variables;

that is,

Γt = γ0 + γ1Xt,

where γ0 ∈ R3 and γ1 ∈ R3×3 contain unrestricted parameters. The relationship between
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real-world yield curve dynamics under the P -measure and risk-neutral dynamics under the

Q-measure is given by

dW
Q
t = dWP

t + Γtdt.

Thus, the P -dynamics of the state variables are

dXt = KP (θP −Xt)dt + ΣdWP
t ,

where both KP and θP are allowed to vary freely relative to their counterparts under the

Q-measure. Following CDR, we identify this class of models by fixing the θQ means under

the Q-measure at zero without loss of generality. Furthermore, CDR show that Σ cannot be

more than a triangular matrix for the model to be identified. Thus, the maximally flexible

specification of the original AFNS model has Q-dynamics given by





dX1
t

dX2
t

dX3
t



 =





0 0 0

0 −λ λ

0 0 −λ









X1
t

X2
t

X3
t



 dt+





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 ,

while its P -dynamics are given by





dX1
t

dX2
t

dX3
t



 =





κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33













θP
1

θP
2

θP
3



−





X1
t

X2
t

X3
t







 dt+





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

The main limitation of the AFNS class of models above is the constant volatility matrix

Σ. The purpose of this paper is to modify the AFNS model in a straightforward fashion in

order to incorporate stochastic volatility. The key assumption to preserving the desirable

Nelson-Siegel factor loading structure in the zero-coupon bond yield function is to maintain

the KQ mean-reversion matrix under the Q-measure. Furthermore, all model classes will be

characterized by an instantaneous risk-free rate defined as the sum of the first two factors

rt = X1
t +X2

t .

3 Five AFNS Specifications with Stochastic Volatility

In this section, we present five AFNS specifications with stochastic volatility that vary de-

pending on whether they contain one, two, or three stochastic volatility factors and on the

7



identity of those factors. For each model class, we derive the maximally flexible specifica-

tion that can be obtained using the extended affine risk premium specification introduced in

Cheridito et al. (2007).

3.1 AFNS Models with One Stochastic Volatility Factor

There are two AFNS stochastic volatility specifications that allow just one factor to exhibit

stochastic volatility. The first, denoted as the AFNS1-L model, allows only the level factor

to exhibit stochastic volatility. The state variables in this specification follow this system of

stochastic differential equations under the risk-neutral Q-measure:





dX1
t

dX2
t

dX3
t



 =





ε 0 0

0 λ −λ
0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



−





X1
t

X2
t

X3
t







 dt

+





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









√
X1

t 0 0

0
√

1 + β21X
1
t 0

0 0
√

1 + β31X
1
t









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 ,

where the X1
t level factor is a square-root process with stochastic volatility that affects the

instantaneous volatility of the two other factors through the β21 and β31 volatility sensitivity

parameters.9

For the factor loadings in the zero-coupon bond prices, B1(t, T ) is the solution to

dB1(t, T )

dt
= 1 + εB1(t, T ) − 1

2
σ2

11B
1(t, T )2 − 1

2
σ2

21B
2(t, T )2 − 1

2
σ2

31B
3(t, T )2

−σ21σ11B
1(t, T )B2(t, T ) − σ31σ11B

1(t, T )B3(t, T ) − σ21σ31B
2(t, T )B3(t, T )

−1

2
β21

[
σ2

22B
2(t, T )2 + σ2

32B
3(t, T )2 + 2σ22σ32B

2(t, T )B3(t, T )
]
− 1

2
β31σ

2
33B

3(t, T )2,

while B2(t, T ) and B3(t, T ) are given by

B2(t, T ) = −
(

1 − e−λ(T−t)

λ

)
,

B3(t, T ) = (T − t)e−λ(T−t) −
(

1 − e−λ(T−t)

λ

)
.

The last two factor loadings match exactly the factor loadings of the slope and curvature

9Note that we cannot set κ
Q
11 to zero as that would eliminate the drift of X1

t and cause this process to
remain at zero once it hits zero, which it will P -a.s. Instead, we fix this parameter at a small, but positive,
ε = 10−6, to get close to the unit-root property imposed in the AFNS0 model.
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factors in the Nelson-Siegel zero-coupon yield function, while the ODE for B1(t, T ) contains

quadratic elements related to the stochastic volatility of X1
t . The A(t, T )-function in the

yield-adjustment term in this class of models must solve the following ODE:

dA(t, T )

dt
= −B(t, T )′KQθQ − 1

2
σ2

22B
2(t, T )2 − 1

2
(σ2

32 + σ2
33)B

3(t, T )2 − σ22σ32B
2(t, T )B3(t, T ).

To estimate this model, we specify the dynamics under the real-world P -measure as the

measure change dWQ = dWP
t + Γtdt. Note that we are limited to the essentially affine risk

premium structure introduced by Duffee (2002) for this particular model class.10 Given this

limitation, the maximally flexible affine P -dynamics are, in general, given by





dX1
t

dX2
t

dX3
t



 =





κP
11 0 0

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33













θP
1

θP
2

θP
3



−





X1
t

X2
t

X3
t







 dt

+





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33









√
X1

t 0 0

0
√

1 + β21X
1
t 0

0 0
√

1 + β31X
1
t









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

For the first factor with stochastic volatility, there is a restriction on the mean parameter θP
1

that we implement as11

θP
1 =

ε · θQ
1

κP
11

.

Furthermore, for this process to be well-defined under both probability measures, we require

that

κP
11θ

P
1 > 0 and ε · θQ

1 > 0.

These two inequalities are satisfied provided κP
11 > 0 and θ

Q
1 > 0. These restrictions ensure

that the X1
t -process will move into positive territory whenever it hits the lower zero-boundary.

Finally, we identify this class of models by fixing θQ
2 = θ

Q
3 = 0, eliminating the Q-means of

the unconstrained processes as in CDR (2007). These restrictions allow the corresponding

means under the P -measure to be determined in the estimation. There are 19 parameters

10We cannot use the extended affine risk premium specification for this particular specification because of
the restriction imposed on κ

Q
11 to obtain a level factor structure as similar as possible to the one in the Nelson-

Siegel model. If we were to do so, the Feller condition for X1
t could not reasonably be expected to be satisfied

under the Q-measure as X1
t approaches a unit-root process. Please see the technical appendix for further

details on this point.
11A similar approach is used in the other model classes with stochastic volatility generated by the level

factor.
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in the maximally flexible specification of this class of models. In contrast, if we assume the

factors are independent for the sake of parsimony, the number of parameters is reduced to 12.

The natural next AFNS one-factor stochastic volatility specification would allow the slope

factor to exhibit stochastic volatility. However, examination of the matrix

KQ =





0 0 0

0 λ −λ
0 0 λ



 ,

shows that X2
t cannot be a square-root process with X3

t as an unconstrained process, if the

important off-diagonal element κQ
23 is to remain equal to −λ, which generates the unique

factor loading of the curvature factor in the AFNS model. Thus, there is no admissible

AFNS1-S model. Instead, we turn to the AFNS1-C model by allowing the curvature factor

to be a stochastic volatility factor. This approach preserves the properties of the level and

slope factors, allows the curvature factor to continue serving as the stochastic mean of the

slope factor under the pricing measure, and designates the curvature factor to be the source

of stochastic volatility in the model.

For the AFNS1-C model, we assume that the state variables Xt are described under the

risk-neutral Q-measure as:





dX1
t

dX2
t

dX3
t



 =





0 0 0

0 λ −λ
0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



−





X1
t

X2
t

X3
t







 dt

+





σ11 σ12 σ13

0 σ22 σ23

0 0 σ33









√
1 + β13X

3
t 0 0

0
√

1 + β23X
3
t 0

0 0
√
X3

t









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 .

The curvature factor here is a square-root process that induces stochastic volatility in the

other two factors through the β13 and β23 volatility sensitivity parameters.

In this model class, the first two factor loadings are identical to those in the A0(3) model,

while B3(t, T ) is the solution to:

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T ) − 1

2
σ2

13B
1(t, T )2 − 1

2
σ2

23B
2(t, T )2 − 1

2
σ2

33B
3(t, T )2

−σ13σ23B
1(t, T )B2(t, T ) − σ13σ33B

1(t, T )B3(t, T ) − σ23σ33B
2(t, T )B2(t, T )

−1

2
β13σ

2
11B

1(t, T )2 − 1

2
β23

[
σ2

12B
1(t, T )2 + σ2

22B
2(t, T )2 + 2σ12σ22B

1(t, T )B2(t, T )
]
.
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The A(t, T )-function in the yield-adjustment term in this class of models solves the ODE:

dA(t, T )

dt
= −B(t, T )′KQθQ − 1

2
(σ2

11 + σ2
12)B

1(t, T )2 − 1

2
σ2

22B
2(t, T )2 − σ12σ22B

1(t, T )B2(t, T ).

We estimate this model using the extended affine risk premium specification such that

the measure change is dWQ = dWP
t + Γtdt. The maximally flexible affine P -dynamics are,

in general, given by
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To keep the model arbitrage-free, X3
t cannot be allowed to hit the zero-boundary. This

outcome is prevented by requiring that the parameters for the X3
t -process satisfy the Feller

condition under both probability measures; i.e.,

κP
33θ

P
3 >

1

2
σ2

33 and λθ
Q
3 >

1

2
σ2

33.

Finally, we identify this class of models by fixing θ
Q
1 = θ

Q
2 = 0, which allows the means

under the P -measure of the unconstrained factors to vary freely and be determined in the

estimation. In total, there are 20 free parameters in the maximally flexible specification of

this model class and 13 for the independent factor specification.

3.2 AFNS Models with Two Stochastic Volatility Factors

Our second class of stochastic volatility models allows for two stochastic volatility factors.

Although there are three potential specifications, the specification with just the level and

slope factors exhibiting stochastic volatility is not admissible because it does not permit the

important off-diagonal element κQ
23 to equal −λ, which is the unique characteristic of the

curvature factor in the original AFNS model. Instead, stochastic volatility is associated with

either level and curvature or slope and curvature. The first of these specifications, denoted

11



AFNS2-L,C, has factor dynamics under the risk-neutral Q-measure given by12
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The X1
t and X3

t factors exhibit stochastic volatility and induce volatility in the X2
t factor via

the β21 and β23 volatility sensitivity parameters.

The factor loadings in the zero-coupon bond price function are the unique solutions to

the following set of ODEs:

dB1(t, T )

dt
= 1 + εB1(t, T ) − 1

2
σ2

11B
1(t, T )2 − 1

2
σ2

21B
2(t, T )2

−σ11σ21B
1(t, T )B2(t, T ) − 1

2
β21σ

2
22B

2(t, T )2,

dB2(t, T )

dt
= 1 + λB2(t, T ),

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T ) − 1

2
σ2

33B
3(t, T )2 − 1

2
σ2

23B
2(t, T )2

−σ23σ33B
2(t, T )B3(t, T ) − 1

2
β23σ

2
22B

2(t, T )2,

where we note that the solution to B2(t, T ) is simply

B2(t, T ) = −1 − e−λ(T−t)

λ
.

Hence, X2
t preserves its role as a slope factor. The A(t, T )-function is the solution to:

dA(t, T )

dt
= −B(t, T )′KQθQ − 1

2
σ2

22B
2(t, T )2.

Using the extended affine risk premium structure, the maximally flexible affine P -dynamics

12Note that, as before, we fix ε = 10−6 to approximate the unit-root property imposed in the standard
AFNS0 model.
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are given by
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For the level factor, the condition ε · θQ
1 = κP

11θ
P
1 must be satisfied. Furthermore, to keep

this model class arbitrage-free, X3
t cannot hit the zero-boundary. This outcome is prevented

by requiring that the parameters for the X3
t process satisfy the Feller condition under both

probability measures; i.e.,13

κP
31θ

P
1 + κP

33θ
P
3 >

1

2
σ2

33 and λθ
Q
3 >

1

2
σ2

33.

Finally, to have a well-defined X3
t process, the effect of the level factor on the drift of the cur-

vature factor must be positive, which we impose with the κP
31 ≤ 0 constraint. This condition

implies that the two square-root processes cannot be negatively correlated. To identify this

model class, we fix the θQ
2 mean at zero. There are 18 parameters in the maximally flexible

specification of this class of models and 13 in the independent factors specification.

The second AFNS specification with two volatility factors allows the slope and curvature

factors to be square-root processes while the level factor remains unconstrained. The factor

dynamics of the AFNS2-S,C model under the Q-measure are
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Note that the X2
t and X3

t square-root processes are positively correlated through the off-

diagonal element κQ
23 = −λ < 0. Beyond generating their own stochastic volatility, these two

13For X1
t , we just need to ensure that the process does not turn negative, which is assured provided that

ε · θQ
1 > 0 and κP

11θ
P
1 > 0.
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factors induce instantaneous volatility for X1
t via the β12 and β13 volatility sensitivities.

For the first factor loading in the zero-coupon bond price function, this structure implies

that

B1(t, T ) = −(T − t),

which preserves the role of the level factor. The next two factor loadings are the unique

solutions to:

dB2(t, T )

dt
= 1 + λB2(t, T ) − 1

2
σ2

22B
2(t, T )2 − 1

2
σ2

12B
1(t, T )2

−σ12σ22B
1(t, T )B2(t, T ) − 1

2
β12σ

2
11B

1(t, T )2,

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T ) − 1

2
σ2

33B
3(t, T )2 − 1

2
σ2

13B
1(t, T )2

−σ13σ33B
1(t, T )B3(t, T ) − 1

2
β13σ

2
11B

1(t, T )2.

The A(t, T )-function in the yield-adjustment term is the solution to

dA(t, T )

dt
= −B(t, T )′KQθQ − 1

2
σ2

11B
1(t, T )2.

Using the extended affine risk premium specification, the maximally flexible affine P -dynamics

can be written as
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To keep this class of models arbitrage-free, the X2
t and X3

t factors must avoid hitting the

zero-boundary. This outcome is ensured by imposing the Feller condition on their parameters

as follows:

κP
22θ

P
2 + κP

23θ
P
3 >

1

2
σ2

22; λθ
Q
2 − λθ

Q
3 >

1

2
σ2

22; κP
33θ

P
3 + κP

32θ
P
2 >

1

2
σ2

33; and λθ
Q
3 >

1

2
σ2

33.

Furthermore, for X2
t and X3

t to be well-defined, the sign of the effect they have on each other

must be positive, which we impose using the constraints κP
23 ≤ 0 and κP

32 ≤ 0. This implies
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that the two square-root processes cannot be negatively correlated. Finally, we identify this

class of models by fixing θ
Q
1 = 0, which allows θP to vary freely. In total, there are 20

free parameters in the maximally flexible specification and 13 for the independent factors

specification.

3.3 AFNS Models with Three Stochastic Volatility Factors

In the fifth and last AFNS3 specification, all three factors exhibit stochastic volatility. The

dynamics of Xt are described under the Q-measure as14
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In this model class, the factor loadings in the zero-coupon bond price function are given by

the unique solution to

dB1(t, T )

dt
= 1 + εB1(t, T ) − 1

2
σ2

11B
1(t, T )2,

dB2(t, T )

dt
= 1 + λB2(t, T ) − 1

2
σ2

22B
2(t, T )2,

dB3(t, T )

dt
= −λB2(t, T ) + λB3(t, T ) − 1

2
σ2

33B
3(t, T )2,

while the A(t, T )-function in the yield-adjustment term is given by the solution to:

dA(t, T )

dt
= −B(t, T )′KQθQ.

14Note that, we again fix ε = 10−6 to approximate the unit-root property imposed in the AFNS0 model.
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Applying the extended affine risk premium specification, the maximally flexible affine P -

dynamics are given by
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For X1
t , the constraint ε·θQ

1 = κP
11θ

P
1 must be satisfied. The limited risk premium specification

due to the near unit-root property of X1
t also implies that X2

t and X3
t cannot impact the drift

of X1
t once κQ

12 and κQ
13 have been fixed at zero. We need these restrictions in order to match

the Nelson-Siegel factor loading structure as closely as possible.

To keep this model class arbitrage-free, X2
t and X3

t must not hit the zero-boundary.

We ensure this by imposing the Feller condition on their parameters under both probability

measures, i.e.,15

κ
P
21θ

P
1 + κ

P
22θ

P
2 + κ

P
23θ

P
3 >

1

2
σ

2
22; λθ

Q
2 − λθ

Q
3 >

1

2
σ

2
22; κ

P
31θ

P
1 + κ

P
32θ

P
2 + κ

P
33θ

P
3 >

1

2
σ

2
33; and λθ

Q
3 >

1

2
σ

2
33.

Furthermore, to have well-defined processes for X2
t and X3

t , the sign of the effect that the fac-

tors have on each of these two factors must be positive, which we impose with the restrictions

κP
21 ≤ 0, κP

23 ≤ 0, κP
31 ≤ 0, and κP

32 ≤ 0. Note that these restrictions imply that the three

square-root processes cannot be negatively correlated. In total, there are 16 parameters in

the maximally flexible specification of this class of models and 10 in the independent factors

specification.16

15For X1
t , we just need to ensure that the process does not become negative, which is assured if ε · θQ

1 > 0
and κP

11θ
P
1 > 0.

16It turns out that θ
Q
3 is difficult to estimate for our data sets. It is consistently estimated at the boundary

of the Feller condition for X2
t under the Q-measure, which must be satisfied in order to use the extended affine

risk premium structure. Our solution is to fix θ
Q
3 so that the Feller condition is satisfied by ε = 10−6. We

impose restrictions such that

θ
Q
3 =

λθ
Q
2 − 1

2
σ2

22

λ
− ε.

We caution that this is a property specific to our data sets and is not necessarily of general validity.
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3.4 Estimation Methodology

The stochastic volatility models described above are estimated using the Kalman filter algo-

rithm. In term structure models, zero-coupon yields are affine functions of the state variables,

such that

yt(τ) = −1

τ
B(τ)′Xt −

1

τ
A(τ) + εt(τ),

where εt(τ) is i.i.d. Gaussian white noise measurement errors. The conditional mean for

multi-dimensional affine diffusion processes is given by

EP [XT |Xt] = (I − exp(−KP (T − t)))θP + exp(−KP (T − t))Xt, (4)

where exp(−KP (T−t)) is a matrix exponential. In general, the conditional covariance matrix

for affine diffusion processes is given by

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds. (5)

Stationarity of the system under the P -measure is ensured if the real components of all

the eigenvalues of KP are positive, and this condition is imposed in all estimations. For this

reason, we can start the Kalman filter at the unconditional mean and covariance matrix17

X̂0 = θP and Σ̂0 =

∫
∞

0
e−KP sΣD(θP )D(θP )′Σ′e−(KP )′sds.

However, the introduction of stochastic volatility implies that the factors are no longer

simply Gaussian. We chose to approximate the true probability distribution of the state

variables using the first and second moments and use the Kalman filter algorithm as if the

state variables were Gaussian.18 Under these assumptions, the Kalman filter only provides

quasi-maximum likelihood estimation. The discretized state equation is given by

Xt = (I − exp(−KP ∆t))θP + exp(−KP ∆t)Xt−1 + ηt, ηt ∼ N(0, Vt−1),

where ∆t is the time between observations and Vt−1 is the conditional covariance matrix

given in Equation (5). Furthermore, the discretization can cause the square-root processes to

17In the estimation, we calculate the conditional and unconditional covariance matrices using the analytical
solutions provided in Fisher and Gilles (1996).

18A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhütter and Lando (2008). Jacobs and Karoui (2009) show that use of the extended Kalman filter, which
allows all yields to be measured with error, does not change their qualitative results. In contrast, Collin-
Dufresne et al. (2009) use Bayesian estimation methods for their stochastic volatility models.
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become negative despite the fact that the parameter sets are forced to satisfy Feller conditions

and other non-negativity restrictions. Whenever this happens, we follow the literature and

simply truncate those processes at zero; see Duffee (1999) for example.

In the Kalman filter estimations, the error structure is given by



 ηt

εt



 ∼ N







 0

0



 ,



 Vt−1 0

0 H







 ,

where H is assumed to be a diagonal matrix of the measurement error standard deviations,

σε(τi), that are specific to each yield maturity in the data set. The linear least-squares

optimality of the Kalman filter requires that the white noise transition and measurement

errors be orthogonal to the initial state; i.e., E[f0η
′

t] = 0 and E[f0ε
′

t] = 0. Finally, the

standard deviations of the estimated parameters are calculated as

Σ(ψ̂) =
1

T

[
1

T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′
]
−1

,

where ψ̂ denotes the optimal parameter set.

4 Empirical Results with Daily U.S. Treasury Yields

We first estimate our AFNS models with stochastic volatility using U.S. Treasury zero-coupon

bond yields from the Gürkaynak et al. (2007) database.

4.1 Data Description

The specific U.S. Treasury bond yields we use are zero-coupon yields constructed by the

method described in Gürkaynak at al. (2007)19 and briefly detailed here. For each business

day a zero-coupon yield curve of the Svensson (1994)-type

y(τ) = β0 +
1 − e−λ1τ

λ1τ
β1 +

[1 − e−λ1τ

λ1τ
− e−λ1τ

]
β2 +

[1 − e−λ2τ

λ2τ
− e−λ2τ

]
β3

is fitted to price a large pool of underlying off-the-run U.S. Treasury bonds. Thus, for each

business day we have the fitted values of the four factors (β0(t), β1(t), β2(t), β3(t)) and the

two parameters (λ1(t), λ2(t)). From this data set zero-coupon yields for any relevant maturity

19The Board of Governors in Washington DC frequently updates the factors and parameters of this method,
see the related website http://www.federalreserve.gov/pubs/feds/2006/index.html
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Figure 1: Time Series of U.S. Treasury Bond Yields.

Illustration of the daily U.S. Treasury zero-coupon bond yields covering the period from January 2,

1985 to March 1, 2010. The yields shown have maturities in three months, two years, five years and

ten years, respectively.

can be calculated. As demonstrated by Gürkaynak et al. (2007), this model fits the under-

lying pool of bonds extremely well. By implication, the zero-coupon yields derived from this

approach constitute a very good approximation to the true underlying Treasury zero-coupon

yield curve. From this data set we construct zero-coupon bond yields with the following

maturities: 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, and 10-year. We use

daily data and limit our sample to the period from January 2, 1985 to March 1, 2010. The

summary statistics are provided in Table 1, while Figure 1 illustrates the constructed time

series of the three-month, two-year, five-year, and ten-year U.S. Treasury zero-coupon yields.

Researchers have typically found that three factors are sufficient to model the time-

variation in the cross section of U.S. Treasury bond yields (e.g., Litterman and Scheinkman,

1991). Indeed, for our daily U.S. Treasury bond yield data, 99.96% of the total variation is

accounted for by three factors. Table 2 reports the eigenvectors that correspond to the first

three principal components of our data. The first principal component accounts for 95.2%

of the variation in the Treasury bond yields, and its loading across maturities is uniformly

negative. Thus, like a level factor, a shock to this component changes all yields in the same

direction irrespective of maturity. The second principal component accounts for 4.5% of the
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Maturity No. Mean Std. dev.
in months obs. in % in %

Skewness Kurtosis

3 6,269 4.59 2.22 -0.22 2.33
6 6,269 4.69 2.26 -0.23 2.30
12 6,269 4.87 2.28 -0.21 2.30
24 6,269 5.16 2.24 -0.13 2.35
36 6,269 5.40 2.17 -0.02 2.41
60 6,269 5.77 2.05 0.20 2.46
84 6,269 6.06 1.94 0.35 2.49
120 6,269 6.38 1.83 0.48 2.55

Table 1: Summary Statistics for the U.S. Treasury Bond Yields.

Summary statistics for the sample of daily U.S. Treasury zero-coupon bond yields covering the period

from January 2, 1985 to March 1, 2010.

Maturity Loading on
in months First P.C. Second P.C. Third P.C.

3 -0.36 -0.45 0.52
6 -0.37 -0.39 0.20
12 -0.38 -0.27 -0.20
24 -0.38 -0.05 -0.47
36 -0.37 0.10 -0.42
60 -0.34 0.31 -0.12
84 -0.32 0.43 0.17
120 -0.29 0.53 0.45

% explained 95.24 4.52 0.18

Table 2: Eigenvectors of the First Three Principal Components in U.S. Treasury

Bond Yields.

The loadings of yields of various maturities on the first three principal components are shown. The

final row shows the proportion of all bond yield variability accounted for by each principal component.

The data consist of daily U.S. Treasury zero-coupon bond yields from January 2, 1985 to March 1,

2010.

variation in these data and has sizable negative loadings for the shorter maturities and sizable

positive loadings for the long maturities. Thus, like a slope factor, a shock to this component

steepens or flattens the yield curve. Finally, the third component, which accounts for only

0.2% of the variation, has a U-shaped factor loading as a function of maturity, which is nat-

urally interpreted as a curvature factor. This motivates our use of the Nelson-Siegel model

with its level, slope, and curvature factor for modeling this sample of U.S. Treasury yields.

4.2 Conditional mean results

We first examine the in-sample estimation results for the five model specifications introduced

in Section 3 in addition to the AFNS0 model. We only present results for the diagonal,

independent-factors specification for each AFNS model class. For example, the AFNS1-L
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Figure 2: Factor Loadings in the AFNSi Models.

The factor loadings on the three state variables in the zero-coupon bond yield function in the AFNSi

models are shown. The parameters for each model are taken from Tables 3 and 4.

model has P -dynamics given by
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We use an independent-factors specification because the AFNS models deliver essentially

identical decompositions of the data into level, slope, and curvature factors independent of

the specification of the P -dynamics. Since it is this factor decomposition that determines the

shape and form of the model-implied stochastic volatility, at least at the short one-month

horizon we focus on in this paper, this restriction comes at a minimal loss of generality.

Furthermore, it makes the results more readily comparable across model classes.20

20Results summarizing the estimation of the maximally flexible specifications of the models are available
upon request.
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Figure 2 illustrates the factor loadings in the zero-coupon bond yield function in all six

AFNSi models. As mentioned in the technical Section 3, the inclusion of stochastic volatility

into the AFNS model prevents us from obtaining the exact Nelson-Siegel factor loadings unlike

what is the case for the AFNS0 model class. Importantly, though, the NS factor loading

structure is approximately preserved in all five new model classes, as desired by construction,

independent of the differences in the models’ ability to generate stochastic volatility.

Tables 3 and 4 present our parameter estimates of the six models. The parameter esti-

mates exhibit similarities across the model specifications, especially for the KP matrix. The

estimated KP parameter for the level factor indicates the most persistence, while the curva-

ture factor is the least persistent, in all specifications. As for both the mean parameters in

θP and the σ volatility parameters, we see some notable differences across the various models

depending on whether the factor in question is generating stochastic volatility or not. In

general, in any of the AFNSi models with stochastic volatility, if a factor is not generating

stochastic volatility, its associated estimated σ value is close to the corresponding estimate

in the AFNS0 model. For the θP parameters, the variation in the estimated values is tied to

differences in the scale at which each factor operates. Since the factors are latent, this level

varies and depends on which factors generate stochastic volatility and therefore have to be

bound away from the zero-boundary. Finally, the β volatility sensitivity parameters suggest

that the level factor plays a role in generating stochastic volatility for both the slope and the

curvature factor, whereas there is little evidence that slope and curvature play a role for the

volatility of the level factor or for the volatility of each other in this sample of U.S. Treasury

yields.

If we turn to a performance comparison of the various AFNSi specifications, we can start

by comparing the obtained maximum log likelihood values reported in Table 4. Even though

all AFNSi models are non-nested and therefore not directly comparable, the relatively large

differences in likelihood values still suggest that the AFNS1-L model provides the overall

best fit to the cross-sectional and time-series variation of the data relatively closely followed

by the AFNS1-L,C model. On the other hand, the AFNS3 model obtains a markedly lower

maximum likelihood value than any of the other models. This model is restricted by the fact

that all three factors have to remain non-negative, and one or more of these restrictions are

binding periodically, not least during the last 18 months of the sample with the low interest

rate environment in the wake of the financial crisis of 2008 and 2009. Duffee (2002), in his

analysis of general affine Ai(3) term structure models, also find that the A1(3) model class

performs the best, and the A3(3) model class the poorest. Note, though, that he only uses
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AFNS models with independent factors
Parameters

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

κP
11 0.0269 0.0503 0.0149 0.0600 0.0097 0.0496

(0.0436) (0.0456) (0.0499) (0.0433) (0.0431) (0.00991)
κP

22 0.0799 0.1830 0.1006 0.1577 0.1349 0.3771
(0.0941) (0.152) (0.0935) (0.141) (0.0974) (0.0556)

κP
33 0.7552 1.0662 0.8649 0.9036 1.3099 1.2717

(0.199) (0.250) (0.102) (0.104) (0.121) (0.135)
θP
1 0.0895 0.0618 0.0746 0.0565 -0.0067 0.0213

(0.0217) − (0.0526) − (0.0649) −
θP
2 -0.0410 -0.0199 -0.0341 -0.0179 0.0533 0.0278

(0.0288) (0.0200) (0.0202) (0.0199) (0.0151) (0.00380)
θP
3 -0.0158 -0.0028 0.0709 0.0824 0.0680 0.0410

(0.00746) (0.00622) (0.00682) (0.00707) (0.00493) (0.00378)
σ11 0.0057 0.0608 0.0054 0.0657 0.0053 0.0362

(0.00004) (0.00012) (0.00006) (0.00023) (0.00015) (0.00038)
σ22 0.0092 0.0111 0.0086 0.0107 0.0351 0.0359

(0.00008) (0.00019) (0.00014) (0.00028) (0.00028) (0.00028)
σ33 0.0294 0.0306 0.0961 0.0914 0.1084 0.1239

(0.00015) (0.00050) (0.00067) (0.00066) (0.00066) (0.00137)
β11 − − − − − −

− − − − − −
β12 − − − − 0.0000 −

− − − − (1.30) −
β13 − − 0.0000 − 0.0000 −

− − (0.451) − (0.555) −
β21 − 6.3275 − 3.5858 − −

− (0.729) − (1.09) − −
β22 − − − − − −

− − − − − −
β23 − − 0.0000 − − −

− − (0.568) − − −
β31 − 0.9532 − 0.0000 − −

− (0.542) − (0.619) − −
β32 − − − − − −

− − − − − −
β33 − − − − − −

− − − − − −

Table 3: Parameter Estimates of the P -Dynamics for AFNSi Models with the

Independent-Factors Specification for U.S. Treasury Data.

The table contains the estimated KP matrix, θP vector, Σ matrix, and β volatility sensitivity param-

eters for the independent-factors specification of the P -dynamics in the AFNSi models. Estimated

standard deviations for the parameter estimates are given in parentheses. The estimations are based

on daily observations from January 2, 1985 to March 1, 2010.

essentially affine risk premium specifications, which are less general than the extended affine

risk premium specifications applied in this paper, in particular for A3(3) models.

Another way to assess the performance of the different AFNS specifications of stochastic
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AFNS models with independent factors
Parameters

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

θ
Q
1 − 3,105 − 3,390 − 1,060

− (0.718) − (11.8) − (2.88)

θ
Q
2 − − − − 0.08 0.0493

− − − − − (0.00022)

θ
Q
3

− − 0.08 0.08 0.0790 0.0478
− − − − (0.00017) −

λ 0.4697 0.6067 0.4757 0.6127 0.6063 0.4381
(0.00121) (0.00104) (0.00138) (0.00119) (0.00139) (0.00080)

Max logL 305,776.3 316,191.6 300,973.5 313,826.0 299,689.1 280,342.7

Table 4: Parameter Estimates of the Q-Dynamics for AFNSi Models with the

Independent-Factors Specification for U.S. Treasury Data.

The table contains the estimated θQ vector and λ parameters for the independent-factors specification

of the P -dynamics in the AFNSi models. Estimated standard deviations for the parameter estimates

are given in parentheses. The estimations are based on daily observations from January 2, 1985 to

March 1, 2010. The maximum log-likelihood values are reported, although the models are non-nested.

RMSE for AFNS models with independent factors
Maturity
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 21.42 19.89 20.69 18.87 8.86 10.78
6 9.53 8.54 9.11 7.90 0.56 2.38
12 0.10 0.00 0.20 0.56 3.86 6.66
24 2.41 1.76 2.62 1.58 1.33 6.79
36 0.00 0.00 1.93 0.66 2.56 5.58
60 2.82 1.58 2.99 1.54 1.96 6.72
84 1.83 0.50 2.09 0.87 7.87 10.15
120 9.79 4.92 9.86 5.16 22.78 15.46

Table 5: RMSE of Fitted Yields for the AFNSi Models for U.S. Treasury Data.

The table presents the root-mean-squared errors for the fitted yields across the 8 maturities under the

independent-factors specification of the AFNS model with different stochastic volatility specifications.

The sample covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in

basis points.

volatility is to examine the cross-sectional fit of the yield curve, as shown in Table 5 using

root-mean-squared-error for the models’ fitted errors. Relative to the AFNS0 specification,

the introduction of stochastic volatility reduces the RMSE of the fitted yields for the short-

term three- and six-month maturities. However, for the remaining maturities, the stochastic

volatility specifications do not necessarily insure a reduction in the RMSE measure with

one exception, the AFNS1-L model does deliver a uniform improvement in model fit over

the AFNS0 model. A more detailed comparison of the five new AFNSi models shows that

three of the models (AFNS1-L, AFNS1-C, and AFNS2-L,C) fit the short-term yields relatively
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poorly, while they deliver a very good fit for the remaining maturities. On the other hand, the

AFNS2-S,C model has the opposite ranking with a very good fit for the first seven maturities,

but a poorer fit of the ten-year yield. Finally, the AFNS3 model falls in between with a decent

fit for all eight maturities. Thus, based on the evidence so far, there is no basis for either

disqualifying or preferring any particular of the five new AFNSi model classes with stochastic

volatility over the others or the original AFNS0 model. Of course, from a mechanical point

of view, the AFNS3 specification has the ability to induce the greatest degree of in-sample

stochastic volatility of all the specifications and thus should be best suited ex ante to closely

match the observed data characteristics in terms of yield volatility in addition to providing a

good in-sample fit to the cross section of yields. However, before analyzing whether that is

the case, we will discuss some identification issues that appear in the estimation of three of

the AFNSi model classes with stochastic volatility.

4.3 Identification Issues Related to θ
Q Parameters

The fact that the θQ parameters are not statistically identifiable and fixed at zero in the

Gaussian AFNS0 model is in itself a warning that the θQ parameters in the AFNS models

with stochastic volatility should be treated with caution. Against this background, it is not all

that surprising that θQ
3 turn out to be hard to identify in the AFNS1-C and AFNS2-L,C models

and a similar problem pertains to the value of θQ
2 in the AFNS2-S,C model. However, as we

will show in the following, the specific value of these θQ parameters significantly affect the size

of the generated stochastic yield volatility. As a result, there is an important identification

problem to address. Here, we exemplify this problem and how we deal with it for the AFNS1-

C model. In the empirical analysis, we apply a similar approach to the other two model

classes mentioned above.

Figure 3 illustrates the fitted one-month standard deviation of the two-year U.S. Treasury

yield in the independent-factors specification of the AFNS1-C model when θ
Q
3 is left uncon-

strained (estimated value of 0.545) and when we fix it at two much lower values, 0.08 and

0.06, respectively. We note that, for the unconstrained model, the generated yield volatility

is almost a flat line for this yield maturity, even though this is the part of the covered matu-

rity range where the curvature factor has its peak effect (see Figure 2) and, by implication,

this particular yield and its conditional volatility should have close to the maximum possible

sensitivity to variation in the curvature factor. On the other hand, when we restrict θQ
3 at the

low values, the variation in the fitted yield volatility is much larger. Also, with θQ
3 restricted

in this way, the estimated values and standard deviations of some of the key parameters, in
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Figure 3: Fitted One-Month Conditional Standard Deviations of the Two-Year

U.S. Treasury Yield from AFNS1-C Models.

particular the KP parameters, look better identified and closer to those obtained in the other

AFNSi models as can be seen in Table 6, which reports the estimated parameters for the

three AFNS1-C models analyzed here.

Thus, based on the above evidence, this appears to be a useful restriction that allows the

AFNS1-C model class to generate more meaningful levels of yield volatility in addition to being

better identified. To analyze whether there are any drawbacks to this kind of restriction, we

first study the impact on the estimated factors. Figure 4 shows the estimated level and slope

factors from the three models. The minimum correlation between the level factors is 99.5%.

For the slope factors the minimum pairwise correlation is 99.9%. Thus, the decomposition into

level and slope is completely unaffected by restrictions on θ
Q
3 . Figure 5 shows the estimated

paths for the curvature factor that generates the stochastic volatility in this model class. We

notice the difference in the estimated value of this factor which changes almost one-for-one

with the size of θQ
3 . However, importantly, the time variation is almost identical. For the

model with θQ
3 fixed at 0.08, its correlation for the affected curvature factor is 99.2% with the

unrestricted model, while it is 99.5% with the model with θ
Q
3 fixed at 0.06. Of course, the

correlation between the unrestricted model and that with θ
Q
3 fixed at 0.06 is lower, but still

high, at 97.8%. In summary, the models deliver qualitatively identical decompositions into

26



Independent-factors AFNS1-C models
Parameters

θ
Q
3 free θ

Q
3 = 0.08 θ

Q
3 = 0.06

κP
11 0.0364 0.0149 0.0128

(0.0543) (0.0499) (0.0568)
κP

22 0.0001 0.1006 0.1284
(0.0873) (0.0935) (0.0945)

κP
33 0.0437 0.8649 0.7531

(0.135) (0.102) (0.119)
θP
1 0.0874 0.0746 0.0624

(0.0837) (0.0526) (0.0931)
θP
2 1.695 -0.0341 -0.0284

(0.0321) (0.0202) (0.0160)
θP
3 0.6237 0.0709 0.0543

(0.00881) (0.00682) (0.00749)
σ11 0.0053 0.0054 0.0054

(0.00009) (0.00006) (0.00006)
σ22 0.0086 0.0086 0.0085

(0.00020) (0.00014) (0.00012)
σ33 0.0408 0.0961 0.1006

(0.00110) (0.00067) (0.00096)
β13 0.3002 0.0000058 0.0000082

(0.208) (0.451) (0.655)
β23 0.1956 0.0000096 0.0000242

(0.282) (0.568) (0.658)

θ
Q
3 0.5453 0.08 0.06

(0.00357) − −
λ 0.4687 0.4757 0.4694

(0.00120) (0.00138) (0.00154)
Max logL 305,679.5 300,973.5 296,667,0

Table 6: Parameter Estimates of AFNS1-C Models for U.S. Treasury Data.

The table contains the estimated dynamic parameters for the independent-factors specification of the

P -dynamics in AFNS1-C models with varying restrictions on θ
Q
3 . Estimated standard deviations for

the parameter estimates are given in parentheses. The estimations are based on daily observations

from January 2, 1985 to March 1, 2010.

level, slope, and curvature independent of restrictions imposed on θQ
3 or lack thereof.

Second, we analyze the yield fit across the three AFNS1-C specifications. Table 7 reports

the mean and RMSEs of the fitted errors for the three specifications. We note that the fit is

identical, despite the large difference in likelihood values, but consistent with the very high

correlation between the three estimated factors. Based on this we conclude that the dramatic

loss in likelihood value is not matched by a corresponding decline in model fit in any of

the restricted models. Also, this suggests that the significant differences in the maximum

likelihood values across the various AFNSi models we observed in the previous section should

be interpreted with caution as they are not necessarily matched by a corresponding decline

in model performance.
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(b) Estimated slope factors.

Figure 4: Estimated Level and Slope Factors from AFNS1-C Models for U.S. Trea-

sury Data.
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Figure 5: Estimated Curvature Factors from AFNS1-C Models for U.S. Treasury

Data.

Ex ante it would be natural to expect that these different specifications of the same model

class should generate about the same stochastic yield volatility. The high correlation between

the respective factor paths in each specification supports this view and also explains the very

similar in-sample fit reported in Table 7. But how does this square with the difference in the

estimated conditional yield volatility in Figure 3? To understand the difference, note that the

range of variation for each factor is the same across the three specifications and about 0.09 for
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AFNS1-C models with independent factors
Maturity

θ
Q
3 free θ

Q
3 = 0.08 θ

Q
3 = 0.06

in months
Mean RMSE Mean RMSE Mean RMSE

3 -6.10 21.43 -5.73 20.69 -5.37 20.68
6 -3.40 9.53 -3.19 9.11 -2.99 9.17
12 -0.01 0.10 -0.02 0.20 -0.02 0.24
24 1.43 2.41 1.25 2.62 1.12 3.36
36 0.00 0.01 -0.20 1.93 -0.30 3.21
60 -1.92 2.82 -2.00 2.99 -2.00 3.28
84 0.11 1.83 0.14 2.09 0.17 2.51
120 7.17 9.83 7.27 9.86 7.25 10.09

Table 7: Mean and RMSE of Fitted Yields for AFNS1-C Models for U.S. Treasury

Data.

The table presents the mean and root-mean-squared errors for the fitted yields across the 8 maturities

for the independent-factors specification of the AFNS1-C model with varying restrictions on θQ
3 . The

sample covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in basis

points.

the curvature factors. This similarity is driven by the fact that these factors affect yields in

the same way due to the imposed Nelson-Siegel factor loading structure. By implication, they

will exhibit approximately the same range of variation in order to deliver approximately the

same fit to the cross section of yields as also documented in Table 7. However, importantly,

the absolute level of this factor is very different across the three specifications, which turns

out to have dramatic consequences for the size of the generated stochastic volatility. For

the AFNS1-C model with θ
Q
3 fixed at 0.08, the curvature factor varies in the range (0, 0.11).

Given the estimated value of σ33, this translates into the following variation of the stochastic

volatility generated by the curvature factor

σ33

√
X3

t ∈ (0, 0.032).

On the other hand, for the unrestricted AFNS1-C model, the curvature factor varies in the

range (0.42, 0.58). This translates into the following variation in the stochastic volatility

generated by X3
t in that model21

σ33

√
X3

t ∈ (0.027, 0.031).

Thus, in the AFNS1-C model with θ
Q
3 fixed at 0.08, the conditional volatility at the largest

values of X3
t is multiples of the conditional volatility at the lowest values of X3

t . In the un-

restricted AFNS1-C model, on the other hand, there is much less variation in the generated

21This is based on an estimate of σ33 of 0.041.
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stochastic volatility as we move from the highest to the lowest values of X3
t . Equally im-

portant, the range of generated stochastic volatility in the restricted specification spans that

of the unrestricted specification. These observations combined leads us to focus on a value

for θQ
3 in the neighborhood of 0.08. At this value, the curvature factor only hits the lower

zero-boundary for a very brief period around the very peak of the financial crisis in 2008.22

Thus, we are close to maximizing the range of generated volatility. If we raise θQ
3 above 0.08,

we will start to approach the unrestricted case that delivered a narrow range of generated

volatility, and if we go below 0.08, we will reduce the top of the range of generated volatility,

while being restricted by zero at the bottom of the range.

The only drawback of this type of restriction appears to be a slight downward bias due to

the lower estimated values of the curvature factor which is only partially offset by a higher

estimated value of σ33 as is evident from Figure 3. However, as we will see later in the analysis

of the U.K. gilt yields, this is not always the case.

We conclude that there is only a very limited downside to imposing restrictions on the

θQ parameters in the three model classes discussed here. Thus, these are, in our view,

very innocent restrictions on parameters that are not all that well identified to begin with.

Furthermore, as the results later will show, even this extra ’helping’ hand of restricting the

θQ parameters to a useful range does not allow any of these three model classes (AFNS1-C,

AFNS2-L,C, and AFNS2-S,C) to generate stochastic yield volatility that is more consistent

with our measure of realized volatility than the competing AFNSi model classes. Thus,

the restrictions discussed here do not affect the conclusions we draw later on, rather they

underscore that these three model classes might suffer both from estimation problems and

relatively poorer fit to the aspects of the yield data that we focus on in this paper.

4.4 Stochastic Volatility Results for the AFNS Model Specifications

Collin-Dufresne et al. (2009) demonstrate that there is a tension in affine models between

fitting the cross section of yields and capturing their stochastic volatility. They further argue

that to allow only one factor to generate stochastic volatility in a three-factor affine model

is too restrictive to fit both aspects of the data. By allowing for more factors to generate

stochastic volatility in our AFNS specification, we hope to mitigate this tension. As indicated

in the discussion of the results above, the AFNS specifications with stochastic volatility do

not differ markedly in terms of fitting the observed U.S. Treasury yield curve. However,

their fitted volatility measures, which we define here as the fitted standard deviation, of

22This happens for a number of days in the period from October 20 to December 16, 2008, but not outside
this very short time window.
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(a) Three-month Treasury yield
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(b) Two-year Treasury yield
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(c) Five-year Treasury yield
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(d) Ten-year Treasury yield

Figure 6: Fitted One-Month Conditional Standard Deviations of U.S. Treasury

Yields from the AFNSi Models.

these specifications do differ greatly from each other and from measures of the data’s realized

volatility.23

Figure 6 shows the fitted one-month conditional yield volatility for four different maturities

based on the six AFNSi models. We note the Gaussian AFNS0 model with its flat fitted

23The fitted one-month conditional volatility measures are given by the square root of

V
P

t [yT (τ )] =
1

τ 2
B(τ )′V P

t [XT ]B(τ ),

where V P
t [XT ] is the conditional covariance matrix of the state variables, T − t = 1

12
, and τ is the yield

maturity in years.
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Three-month U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.440 1.000 -0.221 0.578
AFNS1-C 1 0.457 0.340 0.677
AFNS2-LC 1 -0.212 0.588
AFNS2-SC 1 0.636
AFNS3 1

Two-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.434 0.987 0.149 0.767
AFNS1-C 1 0.569 0.833 0.857
AFNS2-LC 1 0.291 0.856
AFNS2-SC 1 0.722
AFNS3 1

Five-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.431 0.989 0.239 0.810
AFNS1-C 1 0.558 0.906 0.859
AFNS2-LC 1 0.372 0.886
AFNS2-SC 1 0.725
AFNS3 1

Ten-year U.S. Treasury yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.433 0.997 0.250 0.904
AFNS1-C 1 0.492 0.912 0.761
AFNS2-LC 1 0.310 0.931
AFNS2-SC 1 0.598
AFNS3 1

Table 8: Pairwise Correlations of the One-Month Conditional Standard Deviation

of Four U.S. Treasury Yields Across the AFNSi Models.

The table contains the pairwise correlations between the one-month conditional standard deviations

of the three-month, the two-year, the five-year, and the ten-year U.S. Treasury yields estimated by

the AFNSi models. The estimations are based on daily data from January 2, 1985 to March 1, 2010.

volatility lines. All the models where the level factor is allowed to generate stochastic volatility

exhibit a downward trending pattern in the fitted volatility at all maturities until 2005 at

which point a slow upward trend starts. However, in the AFNS3 model, the recent upward

trend is more than offset by the extremely low interest rates we have seen since the credit

crisis of 2008 and 2009. This depresses the slope and curvature in all the AFNSi models

with consequences for the fitted conditional yield volatility in the AFNS1-C, AFNS2-S,C, and

AFNS3 models.

Table 8 reports the pairwise correlations of the fitted conditional yield volatility series
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for four maturities across all six AFNSi models. There is a large dispersion in the corre-

lations across models with some natural clustering. For example, the fitted yield volatility

of the AFNS1-L and AFNS2-L,C models are highly correlated at all maturities. Also, the

AFNS1-C and AFNS2-S,C models tend to produce highly correlated fitted volatilities with

the exception of the very short maturities where the difference in the role of the slope factor

is most pronounced. Overall, though, the AFNS3 model appears as a reasonable compromise

candidate which has a high, positive correlation with the fitted yield volatility from the other

four AFNSi models with stochastic volatility.

To evaluate the in-sample fit of these one-month-ahead conditional standard deviations,

we compare them to a standard measure of realized volatility based on the same daily data

used in the estimations. We generate the realized standard deviation of the daily changes

in the interest rates for the 31-day period ahead on a rolling basis. The realized variance

measure is used by Andersen and Benzoni (2010), Collin-Dufresne et al. (2009), as well as

Jacobs and Karoui (2009) in their assessments of stochastic volatility models. This measure

is fully nonparametric and has been shown to converge to the underlying realization of the

conditional variance as the sampling frequency increases; see Andersen et al. (2003) for

details. The square root of this measure retains these properties. For each observation date

t we determine the number of trading days N during the subsequent 31-day time window

(where N is most often 21 or 22).24 We then generate the realized standard deviation as

RV STD
t,τ =

√√√√
N∑

n=1

∆y2
t+n/N (τ),

where ∆yt+n/N (τ) is the change in yield yt(τ) from trading day (n− 1) to trading day n.25

Figure 7 plots the realized 31-day ahead volatility series over the full sample period for

four maturities: 3 months, 2 years, 5 years, and 10 years. In each chart we include the

corresponding fitted yield volatility from four AFNS models: AFNS0, AFNS1-L, AFNS2-

S,C, and AFNS3. The figure highlights three empirical features of the realized volatilities.

First, the realized volatility series become less volatile as the maturity increases. Table 9

shows that the standard deviation of the realized standard deviation for the changes in the

three-month yield is almost 1.5 times greater than that of the ten-year yield. The degree of

variation declines sharply with the standard deviation of this volatility measure for the one-

24As a consequence, the realized volatility measure can be calculated for the period from January 2, 1985 to
January 29, 2010.

25Note that other measures of realized volatility have been used in the literature, such as the realized
mean absolute deviation measure as well as fitted GARCH estimates. Collin-Dufresne et al. (2009) also use
option-implied volatility as a measure of realized volatility.
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(a) Three-month Treasury yield
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(b) Two-year Treasury yield

1985 1990 1995 2000 2005 2010

0
20

40
60

80
10

0

O
ne

−
m

on
th

 c
on

d.
 s

ta
n.

 d
ev

. 5
−

yr
 y

ie
ld

 in
 b

as
is

 p
oi

nt
s AFNS0     

AFNS1−L     
AFNS2−SC     
AFNS3     
Realized vol.     

(c) Five-year Treasury yield
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(d) Ten-year Treasury yield

Figure 7: Fitted Standard Deviations from Four AFNSi Models for the U.S. Trea-

sury Data.

year series falling to just 1.06 times greater than that of the ten-year series.26 This pattern of

declining variation as maturity increases suggests that the standard deviations generated by

all the model specifications should exhibit better fit as maturity increases, which is, in general,

the pattern observed in Table 10, which contains the summary statistics of the fitted errors

between the model-implied one-month conditional standard deviations and the 31-day-ahead

realized volatility for all eight maturities in the U.S. Treasury data.

26Please note that this pattern is similar to the one presented by Jacobs and Karoui (2009) for monthly
Treasury yields, although their measures decline at a slower rate as maturity increases. The differences may
be due to the longer sample period from 1970 to 2003 that they use.
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Maturity Mean Std. dev. Std. dev.
in months in bps in bps ratio

3 22.56 14.44 1.49
6 19.20 11.57 1.19
12 21.63 10.26 1.06
24 26.05 10.21 1.05
36 27.88 10.25 1.06
60 28.45 10.09 1.04
84 28.00 9.93 1.02
120 27.29 9.71 1.00

Table 9: Summary Statistics for the 31-Day Realized Standard Deviation Series

based on the Daily U.S. Treasury Data.

The summary statistics are for the 31-day rolling realized standard deviations based on the daily U.S.

Treasury data from January 2, 1985 to March 1, 2010. The standard deviation ratio is calculated as

the standard deviation in question divided by the standard deviation for the ten-year maturity.

RMSE for fitted standard deviations
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3in months
Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 7.61 16.32 30.94 34.07 5.63 15.49 30.73 33.93 4.72 15.47 -2.04 14.71
6 10.66 15.73 33.54 35.53 8.55 14.39 33.37 35.43 8.02 14.41 1.47 12.10
12 8.64 13.41 30.62 32.58 6.07 12.00 30.28 32.41 6.50 12.79 0.08 11.73
24 5.78 11.74 25.89 28.26 2.33 10.91 25.19 27.93 3.59 12.00 -2.10 12.84
36 4.52 11.20 23.01 25.64 0.56 10.97 22.32 25.43 1.48 11.70 -2.86 13.40
60 2.27 10.34 19.09 22.08 -1.79 11.03 18.98 22.42 -2.19 11.40 -4.18 13.59
84 -0.18 9.94 16.46 19.73 -3.83 11.23 16.93 20.52 -4.91 11.73 -5.94 13.71
120 -3.22 10.23 13.81 17.35 -6.13 11.78 14.74 18.41 -7.31 12.44 -8.46 14.27

Table 10: Mean and RMSE for the Fitted Errors of the One-Month Conditional

Standard Deviations from the AFNS Models for the U.S. Treasury Data.

The table presents the mean and RMSE values for the fitted error of the monthly model-based fitted

standard deviations relative to the 31-day realized standard deviations based on the daily U.S. Treasury

data over the period from January 2, 1985 to March 1, 2010. All numbers are measured in basis points.

Second, note that the AFNS0, AFNS1-C, and AFNS2-S,C models produce consistently low

RMSE values between fitted and realized standard deviations for all maturities. However, as

shown in Table 11, the degree of variation exhibited by these fitted standard deviations is quite

low relative to the AFNS3 specification. As our objective is to best capture the stochastic

volatility of these interest rate series, the AFNS3 specification stands out as a model that

delivers a reasonable fit to both the cross section of yields as well as to the cross section of

realized yield volatilities.

Third, aside from measures of fit, the correlations between the fitted and realized standard

deviations are important measures of how well the various specifications are able to capture the

stochastic volatility observed in the data. Table 12 presents the correlations across the model

specifications and the maturities we examine over the full sample period. The correlations are
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Ratios of variation for the fitted AFNS standard deviations
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0.00 0.98 0.01 1.06 0.51 1.00
6 0.00 1.01 0.05 1.11 0.50 1.00
12 0.00 1.00 0.14 1.13 0.49 1.00
24 0.00 0.89 0.27 1.05 0.50 1.00
36 0.00 0.83 0.33 1.00 0.48 1.00
60 0.00 0.84 0.34 1.00 0.39 1.00
84 0.00 0.91 0.30 1.06 0.30 1.00
120 0.00 0.99 0.23 1.12 0.21 1.00

Table 11: Ratios of Variation between AFNSi Fitted Standard Deviations.

The table presents the ratios of variation between AFNS fitted standard deviations, which are calcu-

lated as the standard deviation of a model’s fitted standard deviations for a given maturity divided

by the standard deviation of fitted standard deviations from the AFNS3 model.

Maturity Correlations between fitted and realized standard deviation series
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.241 0.039 0.238 0.014 0.194
6 0 0.242 -0.007 0.235 -0.011 0.184
12 0 0.142 -0.079 0.125 -0.124 0.024
24 0 0.082 -0.170 0.039 -0.244 -0.107
36 0 0.085 -0.214 0.027 -0.284 -0.135
60 0 0.111 -0.238 0.055 -0.296 -0.122
84 0 0.137 -0.227 0.095 -0.274 -0.080
120 0 0.176 -0.195 0.148 -0.229 -0.006

Table 12: Correlations Between Fitted and Realized Standard Deviation Series for

the Full Sample of U.S. Treasury Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the

U.S. Treasury yield data over the full sample period from January 2, 1985 to March 1, 2010.

relatively low, reaching a maximum of just 0.242, and often being negative with the lowest

value being -0.296. While these low values suggest that the model specifications are not

capable of capturing the stochastic volatility in the data very well, the subsample correlation

results reported by Jacobs and Karoui (2009) suggest that sample periods play a key, but as

of yet not well understood, role in this analysis. For their monthly and weekly U.S. Treasury

yields, they found that term structure models do not generate stochastic volatility measures

that fit the data well for the post-1991 period.27 For this reason we split our sample into three

periods. The first period covers the seven-year period from January 2, 1985 to December 31,

1991. The second period covers the eleven years from January 2, 1992 to December 31, 2002.

Finally, the third period covers the seven years from January 2, 2003 to January 29, 2010,

which is the last day for which we can calculate the 31-day ahead realized volatility measure.

27Please note that our correlation values are not directly comparable to the correlations reported by Jacobs
and Karoui (2009) as they smooth their logged realized variance series using an ARMA(1,1) filter.
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Correlations between fitted and realized standard deviation series

Maturity January 2, 1985 to December 31, 1991 sample
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.177 0.247 0.175 0.070 0.199
6 0 0.228 0.242 0.231 0.013 0.227
12 0 0.227 0.205 0.236 0.137 0.329
24 0 0.248 0.264 0.272 0.257 0.361
36 0 0.265 0.306 0.296 0.273 0.356
60 0 0.262 0.337 0.288 0.282 0.349
84 0 0.251 0.335 0.268 0.289 0.333
120 0 0.245 0.313 0.252 0.301 0.203

Maturity January 2, 1992 to December 31, 2002 sample
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.074 -0.056 0.071 -0.062 -0.023
6 0 0.130 -0.130 0.122 -0.166 -0.085
12 0 0.084 -0.138 0.059 -0.305 -0.273
24 0 0.081 -0.140 0.029 -0.326 -0.248
36 0 0.097 -0.158 0.035 -0.305 -0.200
60 0 0.069 -0.183 0.015 -0.276 -0.175
84 0 0.003 -0.167 -0.030 -0.228 -0.167
120 0 -0.075 -0.107 -0.089 -0.146 -0.152

Maturity January 2, 2003 to January 29, 2010 sample
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.120 -0.207 0.105 0.039 0.108
6 0 0.035 -0.242 -0.002 0.085 0.117
12 0 0.145 -0.296 0.068 -0.111 -0.057
24 0 0.315 -0.442 0.084 -0.384 -0.327
36 0 0.380 -0.546 0.033 -0.512 -0.461
60 0 0.421 -0.654 0.085 -0.625 -0.573
84 0 0.427 -0.697 0.187 -0.667 -0.605
120 0 0.417 -0.721 0.266 -0.686 -0.595

Table 13: Correlations Between Fitted and Realized Standard Deviation Series for

Three Subsample Periods in the U.S. Treasury Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the

U.S. Treasury yield data over three sample periods. The top panel is based on the period from January

2, 1985 to December 31, 1991 (1747 daily observations). The middle panel is based on the period from

January 2, 1992 to December 31, 2002 (2731 daily observations). The bottom panel is based on the

period January 2, 2003 to January 29, 2010 (1771 daily observations).

Our empirical results for the three subperiods suggest a result close to those of Jacobs and

Karoui (2009). The top panel of Table 13 shows these correlations for the seven years from

January 2, 1985 to December 31, 1991. Clearly, these correlations are all positive and much

higher, reaching a maximum of 0.361. The AFNS1-C and AFNS3 specifications generate the

highest correlations with the realized volatility series, but as mentioned above, the greater

degree of variation in the fitted standard deviations generated by the AFNS3 specification

makes this model preferable over the AFNS1-C model even for this period. However, the
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Maturity Loading on
in months First P.C. Second P.C. Third P.C.

3 -0.41 -0.65 0.46
6 -0.38 -0.38 -0.14
12 -0.36 -0.11 -0.43
24 -0.36 0.13 -0.41
36 -0.36 0.23 -0.26
60 -0.34 0.32 0.07
84 -0.32 0.35 0.30
120 -0.28 0.36 0.50

% explained 73.58 18.94 5.44

Table 14: Eigenvectors of the First Three Principal Components of the 31-Day

Realized Standard Deviation Series in U.S. Treasury Data.

The loadings of yields of various maturities on the first three principal components of the realized

standard deviation series are shown. The final row shows the proportion of all realized volatility

variability accounted for by each principal component. The underlying data consist of daily U.S.

Treasury zero-coupon bond yields from January 2, 1985 to March 1, 2010.

AFNS0 AFNS3Correlation
Lt St Ct Lt St Ct

P.C. 1 -0.212 0.220 0.146 -0.169 0.195 0.048
P.C. 2 0.037 0.349 0.243 0.090 0.331 0.162
P.C. 3 0.151 -0.086 -0.018 0.111 -0.074 0.100

Table 15: Correlations Between Principal Components of the Realized Volatility

Series and the Estimated Factors in the AFNS0 and AFNS3 Models for U.S.

Treasury Data.

The table presents the pairwise correlations between the first three principal components of the eight

31-day realized yield standard deviation series based on daily U.S. Treasury yields and the three

estimated factors in the AFNS0 and AFNS3 models, respectively.

middle and bottom panels of Table 13 presents the low and mainly negative correlations for

the subsequent two subsample periods. Note, though, that the AFNS1-L model stands out

for the most recent seven-year period with correlations above 0.4 for the five- to ten-year

maturity range. Also, these values are reasonable given the low overall correlations reported

in Table 12 for the full sample.

In summary, AFNS models of the term structure can be expanded to incorporate stochastic

volatility, and the empirical results suggest that the AFNS3 specification generates fitted

volatility measures that exhibit a high degree of variation and simultaneously provide a close

fit to the realized volatility measures in this sample of U.S. Treasury data. However, at a daily

frequency, the correlation between any of the AFNSi model-implied yield standard deviations

and the realized yield volatility is rather low and frequently negative. A potential explanation

for this result is suggested by an examination of the realized volatility series. Table 14 reports
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the loadings across yield maturities of the first three principal components in the eight series

of realized yield standard deviations. The analysis shows that three factors are needed to

encompass 98% of the variation in the data. In Table 15, we correlate these three principal

components with the estimated factors from the most diverse AFNSi models, namely the

AFNS0 and AFNS3 models. There is weak positive correlation between the AFNS slope

factors and the second principal component, but beyond that the principal components of

the yield volatility series are close to being uncorrelated with the spanned yield curve factors.

Hence, the relatively diffuse nature of the volatility dynamics observed in the U.S. Treasury

data may require one or more additional factors to model it adequately at the high, daily

frequency.

5 Empirical Results with Daily U.K. Gilt Yields

In this section, we estimate our AFNS models with stochastic volatility using U.K. gilt zero-

coupon bond yields downloaded from the website of the Bank of England.28

5.1 Data Description

The specific U.K. gilt yields we use are zero-coupon yields constructed from the cubic-spline

method described in Anderson and Sleath (1999, 2001).29 The underlying data contain prices

on U.K. gilt securities30 with a significant amount outstanding and at least three months to

maturity.31 Furthermore, only after March 1997, general collateral repo rates with maturities

up to six months are included in the data. As a consequence, the short end of the yield curve

is sparsely populated prior to this date. We use gilt zero-coupon yields with the following

maturities: 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, and 10-year. We use

daily data and limit our sample to the period from January 2, 1985 to March 1, 2010 to have

the sample of U.K. yields match that of the U.S. Treasury yields analyzed in the previous

section. The summary statistics are provided in Table 16, while Figure 8 illustrates the time

series of the three-month, two-year, five-year, and ten-year gilt zero-coupon bond yields.

As we saw in the previous section, three factors are sufficient to model the time variation

28The data is publicly available at the website of the Bank of England at the following link:
http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm

29This method is an adaptation to U.K. yields of the method originally presented in Waggoner (1997) for
U.S. Treasury yields.

30These are securities issued and guaranteed by the U.K. government with fixed coupon rates paid semi-
annually and no embedded options.

31Note that there is no distinction between recently issued on-the-run securities and more seasoned off-the-
run securities, a distinction frequently made in analysis of U.S. Treasury yields.
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Figure 8: U.K. Gilt Yields.

Illustration of the U.K. zero-coupon gilt yields. The sample covers daily data for the period from

January 2, 1985 to March 1, 2010. The yields shown have maturities in three months, two years, five

years, and ten years.

Maturity No. Mean Std. dev.
in months obs. in % in %

Skewness Kurtosis

3 3,377 4.77 1.89 0.15 6.14
6 5,534 6.32 3.00 0.59 3.04
12 6,306 6.71 3.02 0.41 2.65
24 6,323 6.76 2.78 0.33 2.35
36 6,323 6.83 2.65 0.31 2.13
60 6,323 6.92 2.53 0.31 1.88
84 6,323 6.97 2.48 0.31 1.74
120 6,323 6.98 2.42 0.29 1.60

Table 16: Summary Statistics for U.K. Gilt Yields.

Summary statistics of the zero-coupon U.K. gilt yields. The sample covers daily data for the period

from January 2, 1985 to March 1, 2010.

in the cross section of U.S. Treasury bond yields. Here, we make a similar observation for

the sample of U.K. gilt yields. Indeed, for the most recent ten years of our sample of U.K.

gilt yields where all eight maturities are fully represented, 99.95% of the total variation is

accounted for by three factors. Table 17 reports the eigenvectors that correspond to the first

three principal components for this subsample of our data. The first principal component

accounts for 96.4% of the variation in the gilt yields, and its loading across maturities is
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Maturity Loading on
in months First P.C. Second P.C. Third P.C.

3 -0.46 -0.49 0.34
6 -0.47 -0.35 0.10
12 -0.45 -0.08 -0.23
24 -0.39 0.23 -0.42
36 -0.33 0.35 -0.31
60 -0.25 0.41 0.05
84 -0.19 0.40 0.36
120 -0.12 0.36 0.65

% explained 96.40 3.22 0.33

Table 17: Principal Component Analysis of the U.K. Gilt Yields.

The principal component analysis of the U.K. gilts yields with maturities from three months to ten

years. The sample covers daily data for the period from January 4, 2000 to March 1, 2010.

uniformly negative. Thus, like a level factor, a shock to this component changes all yields

in the same direction irrespective of maturity. The second principal component accounts for

3.2% of the variation in these data and has sizable negative loadings for the shorter maturities

and sizable positive loadings for the long maturities. Thus, like a slope factor, a shock to this

component steepens or flattens the yield curve. Finally, the third component, which accounts

for only 0.3% of the variation, has a U-shaped factor loading as a function of maturity, which

is naturally interpreted as a curvature factor. These results motivate our use of the Nelson-

Siegel model with its level, slope, and curvature factor for modeling this sample of U.K. gilt

yields.

5.2 Conditional mean results

We first examine the in-sample estimation results for the five model specifications introduced

in Section 3 in addition to the AFNS0 model. Similar to the analysis of the U.S. yields, we only

present results for the diagonal, independent-factors specification for each AFNS model class.

We use the independent-factors specification because the AFNS models deliver essentially

identical decompositions of the data into level, slope, and curvature factors independent

of the specification of the P -dynamics. Thus, this restriction comes at a minimal loss of

generality.32

Tables 18 and 19 present our parameter estimates of the six models. Similar to what

we observed in the U.S. Treasury yield data, the level factor is the most persistent, and the

curvature factor the least persistent factor in all six AFNS model classes. Also, in both the

32Results summarizing the estimation of the maximally flexible specifications of the models are available
upon request.
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AFNS models with independent factors
Parameters

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

κP
11 0.0666 0.0031 0.0667 0.0033 0.0706 5.7 · 10−6

(0.0831) (0.0215) (0.0827) (0.0204) (0.0810) (0.00090)
κP

22 0.2179 0.1842 0.2095 0.1765 0.1978 0.1196
(0.139) (0.130) (0.136) (0.121) (0.105) (0.0596)

κP
33 1.4522 1.3884 1.6409 1.6941 1.6113 1.6503

(0.392) (0.270) (0.344) (0.257) (0.340) (0.326)
θP
1 0.0828 0.0273 0.0828 0.0297 0.0029 0.00003

(0.0197) − (0.0195) − (0.0185) −
θP
2 -0.0156 -0.0226 -0.0159 -0.0229 0.0613 0.0369

(0.0190) (0.0198) (0.0196) (0.0199) (0.0173) (0.0171)
θP
3 -0.0111 -0.0092 0.0680 0.0680 0.0656 0.0322

(0.00531) (0.00550) (0.00509) (0.00470) (0.00535) (0.00512)
σ11 0.0098 0.0388 0.0097 0.0381 0.0076 0.0447

(0.00005) (0.00018) (0.00017) (0.00019) (0.00022) (0.00025)
σ22 0.0159 0.0013 0.0157 0.0011 0.0581 0.0472

(0.00009) (0.00001) (0.00015) (0.00001) (0.00028) (0.00037)
σ33 0.0338 0.0206 0.1327 0.1376 0.1321 0.1751

(0.00027) (0.00024) (0.00109) (0.00116) (0.00226) (0.00158)
β11 − − − − − −

− − − − − −
β12 − − − − 7.8959 −

− − − − (0.962) −
β13 − − 0.0007 − 0.4398 −

− − (0.497) − (0.767) −
β21 − 2,041 − 2,536 − −

− (0.499) − (0.238) − −
β22 − − − − − −

− − − − − −
β23 − − 0.0009 − − −

− − (0.226) − − −
β31 − 25.00 − 0.0118 − −

− (0.611) − (0.371) − −
β32 − − − − − −

− − − − − −
β33 − − − − − −

− − − − − −

Table 18: Parameter Estimates of the P -dynamics for AFNSi Models with the

Independent-Factors Specification for U.K. Gilt Data.

The table contains the estimated KP matrix, θP vector, Σ matrix, and β volatility sensitivity param-

eters for the independent-factors specification of the P -dynamics in the AFNSi models. Estimated

standard deviations for the parameter estimates are given in parentheses. The estimations are based

on daily observations from January 2, 1985 to March 1, 2010.

U.S. and the U.K. data, the level factor is close to being a unit-root process. The slope factor

has approximately the same rate of mean-reversion in both currency areas, about 0.15, while

the curvature factor is slightly more rapidly mean-reverting in the U.K. data than in the U.S.
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AFNS models with independent factors
Parameters

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

θ
Q
1 − 85.81 − 98.94 − 0.0002

− (0.344) − (0.285) − (0.0371)

θ
Q
2 − − − − 0.08 0.0459

− − − − − (0.00003)

θ
Q
3

− − 0.08 0.08 0.0775 0.0444
− − − − (0.00161) −

λ 0.6736 0.6554 0.6650 0.6495 0.6644 0.7333
(0.00182) (0.00174) (0.00175) (0.00167) (0.00177) (0.00096)

max. log L 283,576.1 284,344.5 283,346.8 284,041.3 283,246.9 269,593.2

Table 19: Parameter Estimates of the Q-dynamics for AFNSi Models with the

Independent-Factors Specification for U.K. Gilt Data.

The table contains the estimated θQ vector and λ parameters for the independent-factors specification

of the P -dynamics in the AFNSi models. Estimated standard deviations for the parameter estimates

are given in parentheses. The estimations are based on daily observations from January 2, 1985 to

March 1, 2010. The maximum log-likelihood values are reported, although the models are non-nested.

data. For the mean parameters in θP , we get close to the same estimated values when we

compare each AFNSi model across the two data sets. However, for the volatility parameters,

we start to see some differences between the U.S. and the U.K. yield curves. If we compare the

results for the AFNS0 models, which provide a proxy for the unconditional volatility of each

factor, the volatility of the U.K. level factor is about twice that of the U.S. level factor, and

the volatility of the U.K. slope factor is about 50% larger than the corresponding estimate for

the U.S. slope factor. These differences could be a reflection of the fact that there has been

several monetary policy regime shifts in the U.K. during this 25-year period, in particular the

U.K. departure from the EMS in 1992 and the independence of the Bank of England in May

1997 come to mind, while events of that nature are absent in the U.S. Treasury data. These

events are likely to have caused uncertainty to be elevated for extended periods of the sample.

Finally, as for the β volatility sensitivity parameters, there is a role for the level factor in the

stochastic volatility of the slope and curvature factor and, possibly, a role for the slope factor

in the stochastic volatility of the level factor. However, as in the U.S. Treasury data, there

does not appear to be any role for the curvature factor in the stochastic volatility of either

the level or the slope factor.

Despite the fact that the AFNSi models with stochastic volatility are non-nested, we can

still use the obtained maximum log likelihood values as a crude measure of model performance

as noted earlier. The ranking of the six AFNSi models for the U.K. gilt data is identical to

the ranking in the U.S. Treasury data with the AFNS1-L and AFNS2-L,C models delivering
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RMSE for AFNS models with independent factors
Maturity
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 23.95 24.72 23.88 24.51 23.76 4.52
6 14.88 15.03 14.84 14.98 14.80 9.46
12 0.42 0.21 0.51 0.31 0.63 10.04
24 2.77 2.81 2.76 2.80 2.76 4.44
36 0.00 0.00 0.00 0.00 0.00 1.22
60 2.62 2.62 2.62 2.61 2.61 3.87
84 0.87 0.88 0.93 0.95 1.04 5.43
120 10.15 9.46 10.15 9.50 10.13 12.02

Table 20: RMSE of the Fitted Errors for U.K. Gilt Yields in the AFNSi Models.

The table presents the root-mean-squared errors for the fitted U.K. gilt yields across the 8 maturities

under the independent-factors specification of the AFNS model with different stochastic volatility

specifications. The sample covers the period from January 2, 1985 to March 1, 2010. All numbers are

expressed in basis points.

the highest maxima, and the AFNS3 model obtaining the lowest maximum likelihood value.

Note, though, that the differences in likelihood value across models are smaller in the U.K.

data.

Another way to assess the performance of the different AFNS specifications of stochastic

volatility is to examine the cross-sectional fit of the yield curve, as shown in Table 20 using

root-mean-squared-error for the models’ fitted errors. Unlike the U.S. Treasury data, we do

not see a clear improvement in model fit from the introduction of stochastic volatility relative

to the AFNS0 specification, rather the contrary, five of the AFNSi models deliver essentially

identical fit to the cross section of yields. It is only the AFNS3 model that produces a

different, more even distribution of the fitted errors across maturities. The relatively poor

fit of the three- and six-month yields in most of the AFNSi models could be a consequence

of the fact that these two maturities are only observed periodically prior to March 1997 and

largely reflect rates on general collateral repo contracts rather than yields on gilt securities.

Overall, though, all AFNSi models deliver a satisfactory fit to the data and no single

model stands out based on either the RMSEs of the fitted errors or the obtained likelihood

values. Thus, like with the U.S. Treasury data, we will be using the fit of the model-implied

yield volatility to the realized yield volatility as a way of model validation. However, before

turning to that task, we will briefly repeat our discussion of the identification issues pertaining

to certain θQ parameters as they appear in the U.K. data.
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Figure 9: Fitted One-Month Conditional Standard Deviations of the Two-Year

U.K. Gilt Yield From AFNS1-C Models.

5.3 Identification Problems Related to θ
Q Parameters

Given that some of the θQ parameters were hard to identify in the U.S. Treasury data, it is not

all that surprising that we encounter similar problems in the U.K. gilt data, i.e., θQ
3 remains

hard to identify in the AFNS1-C and AFNS2-L,C models and a similar problem pertains to

the value of θQ
2 in the AFNS2-S,C model. Also, similar to what we observed in the U.S.

Treasury data, the specific value of these θQ parameters significantly affect the size of the

generated stochastic yield volatility. Figure 9 illustrates this for the AFNS1-C model. Here,

we demonstrate how restrictions on θ
Q
3 affect the results obtained in the AFNS1-C model.

Similar results are obtained, but not reported, for the other two model classes mentioned

above.

In Figure 10, we compare the estimated level and slope factors from four specifications of

the AFNS1-C model one of which is the unrestricted model, while the three other specifications

have θQ
3 fixed at low values. Similar to the U.S. Treasury data, we find that the decomposition

into level and slope is entirely unaffected by restrictions on θ
Q
3 . The minimum correlation

between the estimated level factors is 0.9998, and the minimum correlation between the

estimated slope factors is also 0.9998.

Figure 11 compares the estimated curvature factors with the result of the unrestricted
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(a) Estimated level factors.
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(b) Estimated slope factors.

Figure 10: Estimated Level and Slope Factors in AFNS1-C Models for U.K. Gilt

Data.

1985 1990 1995 2000 2005 2010

1.
10

1.
12

1.
14

1.
16

1.
18

1.
20

1.
22

P
at

h 
of

 C
(t

)

ThetaQ3 free      

(a) θ
Q
3 unrestricted.

1985 1990 1995 2000 2005 2010

0.
00

0.
05

0.
10

0.
15

P
at

h 
of

 C
(t

)

ThetaQ3 = 0.08      
ThetaQ3 = 0.06      
ThetaQ3 = 0.04      

(b) θ
Q
3 fixed.

Figure 11: Estimated Curvature Factors in AFNS1-C Models for U.K. Gilt Data.

model shown in Figure 11(a), while Figure 11(b) illustrates the corresponding results from

the three restricted specifications. We note that the curvature factor in the unrestricted model

has values close to the estimated value of θQ
3 (1.17), and in the restricted models they are

also close to the corresponding restricted values of θQ
3 . Thus, the choice of θQ

3 determines the

level at which the curvature factor operates, which in turn affects the size of the generated

yield volatility through the mechanics explained earlier in the discussion of the U.S. Treasury

data. However, the time series correlation remains very high with the smallest correlation
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AFNS1-C models with independent factors
Maturity

θ
Q
3 free θ

Q
3 = 0.08 θ

Q
3 = 0.06 θ

Q
3 = 0.04

in months
Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 8.58 23.95 8.47 23.88 8.48 23.64 8.95 22.03
6 5.64 14.88 5.60 14.84 5.59 14.77 6.14 15.00
12 -0.06 0.42 -0.07 0.51 -0.10 0.77 -0.11 2.62
24 -0.30 2.77 -0.30 2.76 -0.32 2.75 -0.55 2.66
36 0.00 0.00 0.00 0.00 0.00 0.05 0.00 1.23
60 -0.45 2.62 -0.44 2.62 -0.41 2.61 -0.11 2.42
84 -0.01 0.87 0.00 0.93 0.01 1.09 0.07 1.51
120 0.96 10.15 0.89 10.15 0.69 10.17 -0.32 9.97

Table 21: RMSE of the Fitted Errors for U.K. Gilt Yields in AFNS1-C Models.

The table presents the root-mean-squared errors for the fitted yields across the 8 maturities under the

independent-factors specification of the AFNS1-C model with varying restrictions on θQ
3 . The sample

covers the period from January 2, 1985 to March 1, 2010. All numbers are expressed in basis points.

being 0.9905.

In terms of model fit, Table 21 reports the mean and RMSE of the fitted errors in the four

specifications discussed here. We note that the fitted error statistics are indistinguishable

for the unrestricted model and the two models with θ
Q
3 fixed at 0.08 and 0.06, respectively.

However, for the model with θ
Q
3 fixed at 0.04, we start to see some deviations related to the

fact that the curvature is bound by the lower zero-boundary on several occasions due to the

low value of θQ
3 as can be seen in Figure 11(b). Furthermore, as observed in Figure 9, a very

low value for θQ
3 like 0.04 induces a downward bias in the fitted yield volatility that is not

apparent for values of θQ
3 around 0.08. As in the U.S. data, this makes us fix θQ

3 at 0.08 in

the empirical analysis.

Finally, when θQ
3 is unrestricted and, as a consequence, the general level of X3

t is not that

well identified, the estimation has problems identifying σ11, σ22, θ
P
3 , and θQ

3 . Table 22, which

reports the estimated dynamic model parameters for the four specifications discussed here,

provides evidence of this. On the other hand, when we restrict θQ
3 at the low values, the σ and

θP parameters are better identified. However, there are still uncertainty about the values of

the β parameters, even though in most estimations they are insignificant based on likelihood

ratio tests.33 Thus, overall, it looks like the entire set of parameters is better identified when

we restrict θQ
3 to a reasonable, but low value, at little costs in terms of model fit.

In summary, we fix the relevant θQ parameters at low values in an attempt to maximize

the size of the generated yield volatility in the AFNS1-C, AFNS2-L,C, and AFNS2-S,C models

with essentially no effect on their model fit. Still, as we will see in the next section and as we

33Note, though, the Kalman filter is only a QML estimator in the AFNSi models with stochastic volatility.
As a consequence, the asymptotics of the LR tests are not known.
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AFNS1-C models with independent factors
Parameters

θ
Q
3 free θ

Q
3 = 0.08 θ

Q
3 = 0.06 θ

Q
3 = 0.04

κP
11 0.0696 0.0667 0.0685 0.0746

(0.0834) (0.0827) (0.0804) (0.0709)
κP

22 0.2239 0.2095 0.1945 0.1453
(0.140) (0.136) (0.131) (0.122)

κP
33 1.4758 1.6409 1.979 1.407

(0.403) (0.344) (0.219) (0.249)
θP
1 0.0826 0.0828 0.0805 0.0675

(0.0190) (0.0195) (0.0187) (0.0198)
θP
2 -0.0154 -0.0159 -0.0163 -0.0212

(0.0187) (0.0196) (0.0203) (0.0253)
θP
3 1.1623 0.0680 0.0498 0.0429

(0.645) (0.00509) (0.00425) (0.00670)
σ11 0.0093 0.0097 0.0094 0.0081

(0.00312) (0.00017) (0.00013) (0.00009)
σ22 0.0094 0.0157 0.0151 0.0135

(0.00527) (0.00015) (0.00012) (0.00014)
σ33 0.0314 0.1327 0.1534 0.1424

(0.00872) (0.00109) (0.00111) (0.00132)
β13 0.0902 0.0007418 0.1861 3.333

(0.613) (0.497) (0.532) (0.785)
β23 1.6122 0.000926 0.00000305 0.0000313

(2.085) (0.226) (0.261) (0.471)

θ
Q
3 1.1736 0.08 0.06 0.04

(0.645) − − −
λ 0.6731 0.6650 0.6689 0.6514

(0.00188) (0.00175) (0.00133) (0.000772)
Max logL 283,569.3 283,346.8 283,009.2 278,844.5

Table 22: Parameter Estimates of AFNS1-C Models for the U.K. Gilt Data.

The table contains the estimated dynamic parameters for the independent-factors specification of the

P -dynamics in AFNS1-C models with varying restrictions on θ
Q
3 . Estimated standard deviations for

the parameter estimates are given in parentheses. The estimations are based on daily observations

from January 2, 1985 to March 1, 2010. The maximum log likelihood values are reported in the last

row.

saw for the U.S. Treasury data, this ’helping hand’ does not allow any these three models to

outperform the other AFNSi models in terms of fitting yield volatility. Thus, none of these

restrictions affect the conclusions we draw later on.

5.4 Stochastic volatility results for the AFNS model specifications

Collin-Dufresne et al. (2009) demonstrate that there is a tension in affine models between

fitting the cross section of yields and capturing their stochastic volatility. In this section, we

analyze how severe that tension is in our sample of U.K. gilt yields.

As indicated in the discussion above of the in-sample results, the AFNS model specifica-
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(a) Three-month gilt yield
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(b) Two-year gilt yield
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(c) Five-year gilt yield
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(d) Ten-year gilt yield

Figure 12: Fitted One-Month Conditional Standard Deviations of Bond Yields

from the AFNSi Models for U.K. Gilt Data.

tions with stochastic volatility do not differ markedly in terms of fitting the observed U.K.

gilt yield curve. However, as in the U.S. Treasury data, their fitted volatility measures do

differ greatly from each other.34 Figure 12 shows this for four of the eight maturities in our

sample.

34The fitted one-month conditional volatility measures are given by the square root of

V
P

t [yT (τ )] =
1

τ 2
B(τ )′V P

t [XT ]B(τ ),

where V P
t [XT ] is the conditional covariance matrix of the state variables, T − t = 1

12
, and τ is the yield

maturity in years.
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Three-month U.K. gilt yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 -0.326 1.000 0.111 0.776
AFNS1-C 1 -0.311 -0.054 -0.181
AFNS2-LC 1 0.112 0.778
AFNS2-SC 1 0.688
AFNS3 1

Two-year U.K. gilt yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 -0.331 0.917 -0.078 0.629
AFNS1-C 1 0.071 0.539 0.382
AFNS2-LC 1 0.152 0.831
AFNS2-SC 1 0.634
AFNS3 1

Five-year U.K. gilt yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 -0.331 0.894 -0.150 0.802
AFNS1-C 1 0.124 0.712 0.223
AFNS2-LC 1 0.185 0.954
AFNS2-SC 1 0.405
AFNS3 1

Ten-year U.K. gilt yield
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 -0.329 0.983 -0.033 0.962
AFNS1-C 1 -0.154 0.408 -0.093
AFNS2-LC 1 0.049 0.990
AFNS2-SC 1 0.142
AFNS3 1

Table 23: Pairwise Correlations of the One-Month Conditional Standard Deviation

of Four U.K. Gilt Yields in the AFNSi Models.

The table contains the pairwise correlations between the one-month conditional standard deviations

of the three-month, two-year, five-year, and ten-year U.K. gilt yields estimated by the AFNSi models.

The estimation is based on daily observations from January 2, 1985 to March 1, 2010.

First, the AFNS0 model produces a flat line close to the average across the six AFNSi

specifications. Second, the three models where the level factor is allowed to generate stochastic

volatility exhibits a declining trend in the fitted yield volatility at all maturities throughout the

entire sample. Third, the AFNS3 model stands out in that it produces fitted yield volatilities

that are clearly lower than those in any of the other models.

In Table 23, we calculate the correlations between the fitted yield volatilities from the

six AFNSi models for the same four maturities depicted in Figure 12. Again, we observe

some natural clustering. The fitted measures from the AFNS1-L and AFNS2-L,C models
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are very highly correlated for all maturities. In turn, the AFNS3 model is highly correlated

with both of those models. At the other extreme, the AFNS1-C model exhibits rather low,

and frequently negative, correlations in its generated yield volatility relative to those of the

other models. Finally, the fitted volatility of the AFNS2-S,C model is hardly correlated with

those from the AFNS1-L and AFNS2-L,C models. However, it does exhibit a high degree of

correlation with the AFNS3 model for the short- and medium-term yield maturities, where

the slope and curvature factors have their maximum effect on the yield curve. Thus, as in the

U.S. Treasury data, the AFNS3 model emerges as a strong representative specification whose

fitted yield volatility is highly correlated with those of the other AFNSi models in exactly

the maturity ranges where each of these other AFNSi models can be expected to produce the

closest fit to the actual yield volatility.35

To evaluate the in-sample fit of these monthly standard deviations, we compare them to a

standard measure of realized volatility based on the high-frequency daily data. This measure

is fully nonparametric and has been shown to converge to the underlying realization of the

conditional variance as the sampling frequency increases. The square root of this measure

retains these properties. For a given month t with N trading days (where N is most often 21

or 22), we generate the realized standard deviation as

RV STD
t,τ =

√√√√
N∑

n=1

∆y2
t+n/N (τ),

where ∆yt+n/N (τ) is the change in yield yt(τ) from trading day (n − 1) to trading day n.

Note that, due to the limited availability of the three- and six-month yields in the data, it is

not possible to reliably calculate the realized volatility measure for these two maturities prior

to April 1997.

Figure 13 plots the realized yield volatility measure for four maturities and compares it

to the fitted yield volatility from the four most diverse AFNSi models. We note that, on

average, the realized volatility is below the fitted volatility from the AFNSi models.

Table 24 reports the summary statistics for the realized yield standard deviations based

on the U.K. gilt data. If we compare it to the statistics for the U.S. Treasury data in Table 9,

it follows that the mean realized volatility is about the same in the two datasets for the one-

to ten-year maturities where the sample periods are overlapping. However, the variability in

the realized volatility is larger in the U.K. data as measured by the standard deviation of the

35For example, the AFNS2-S,C model can be expected to fit the volatility of short- and medium-term yields
closely while having little to bear on the volatility of long-term yields due to the decay in the factor loading
of the slope and the curvature factor in the AFNSi models.
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(a) Three-month gilt yield
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(b) Two-year gilt yield
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(c) Five-year gilt yield
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(d) Ten-year gilt yield

Figure 13: Comparison of the Fitted versus Realized One-Month Conditional Stan-

dard Deviations for U.K. Gilt Yields.

realized yield volatilities.

Table 25 reports the mean and RMSE of the erors of the fitted yield volatilities from the

six AFNSi models relative to the measure of realized yield volatility. The AFNS3 model is

the only model that is consistently close to fitting the realized volatility measure. In fact,

it produces the lowest RMSEs amongst the six AFNSi models for all eight maturities in the

data ranging from 20 basis points for the variable short-term maturities down to just 11 basis

points for the longest, less variable maturities.

In terms of the high-frequency time-series correlations between the realized and fitted
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Maturity Mean Std. dev. Std. dev.
in months in bps in bps ratio

3 10.89 8.73 0.87
6 13.03 8.50 0.84
12 25.75 19.43 1.92
24 27.45 16.35 1.62
36 27.32 14.58 1.44
60 26.20 12.23 1.21
84 25.55 10.94 1.08
120 24.98 10.10 1.00

Table 24: Summary Statistics for the 31-Day Realized Standard Deviation Series

based on Daily U.K. Gilt Data.

The summary statistics are for the 31-day rolling realized standard deviations based on the daily U.K.

gilt yield data over the period from January 2, 1985 through March 1, 2010. The standard deviation

ratio is calculated as the standard deviation in question divided by the standard deviation for the

ten-year maturity.

RMSE for fitted standard deviations
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3in months
Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

3 40.09 41.03 32.53 33.72 39.50 40.46 32.03 33.23 39.17 40.44 16.21 19.21
6 36.41 37.39 29.35 30.54 36.01 37.01 29.36 30.57 35.66 36.92 14.53 17.62
12 22.16 29.47 23.26 28.70 21.87 29.41 22.93 28.64 21.39 28.79 8.56 19.66
24 18.72 24.85 20.20 24.93 18.70 25.18 20.34 25.34 18.17 24.70 8.03 18.08
36 16.55 22.05 18.25 22.51 16.62 22.46 18.53 23.01 16.07 22.05 6.82 16.24
60 12.62 17.57 14.40 18.26 12.64 17.82 14.61 18.50 12.14 17.55 3.39 12.74
84 9.54 14.52 11.13 15.10 9.47 14.61 11.23 15.11 9.04 14.49 0.37 11.23
120 7.06 12.32 8.17 12.52 6.89 12.30 8.17 12.43 6.51 12.35 -2.36 11.01

Table 25: RMSE for the 31-Day Fitted Conditional Standard Deviations.

The table presents the RMSE values for the monthly model-based fitted standard deviations relative

to the 31-day realized standard deviations based on the daily U.K. gilt data over the period from

January 2, 1985 to March 1, 2010. Note that the three- and six-month maturities are missing prior to

April 1997.

yield volatility measures, Table 26 reports those for all six AFNSi models for the full sample.

Three models stand out: the AFNS1-L, AFNS2-L,C, and AFNS3 models exhibit consistent

high, positive correlations in the range from 23% to 51% for the one- to ten-year maturity

range.

In Table 27, we study the high frequency time-series correlations between the realized and

fitted yield volatility series for three subperiods: 1985-1991, 1992-2002, and 2003-2010. From

the table it follows that the high correlations are primarily observed during the period from

the beginning of 1992 to the end of 2002, while the early 1985-1991 period is characterized

by positive, but low correlations not exceeding 0.23. For the most recent seven years, most

correlations have been negative in all the models with the exception of the AFNS1-L model.
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Correlations between fitted and realized standard deviation series
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.077 -0.033 0.075 0.009 0.077
6 0 0.163 -0.148 0.129 0.034 0.079
12 0 0.509 -0.189 0.498 0.147 0.415
24 0 0.448 -0.192 0.391 -0.008 0.243
36 0 0.430 -0.162 0.358 -0.067 0.228
60 0 0.409 -0.106 0.376 -0.085 0.289
84 0 0.387 -0.078 0.380 -0.111 0.313
120 0 0.378 -0.081 0.378 -0.165 0.332

Table 26: Correlations between Fitted and Realized Standard Deviation Series for

the Full Sample of U.K. Gilt Yields.

The table presents the correlations between the 31-day fitted and realized standard deviations for the

U.K. gilt yield dataset over the full sample period from January 2, 1985 to March 1, 2010.

This model exhibits systematically positive correlations throughout the entire 25-year sample.

However, from Table 25 it follows that the fitted yield volatilities from this model are not

particularly close to the realized yield volatilities.

We can now summarize our results for the U.K. gilt data. First, based on correlations,

which is a measure widely used in the literature on spanned and unspanned stochastic volatil-

ity, three-factor affine models, in general, have difficulties generating the right time variation

because the three spanned yield factors do not respond to the short-term, or high frequency,

variation in the realized yield volatility measures. This conclusion is independent of the num-

ber of factors that are allowed to generate stochastic volatility, and whichever combination

of the spanned factors is allowed to be the source of the stochastic volatility. However, it is

not obvious that all realized volatility should be priced and therefore reflected in the spanned

yield curve factors. If a brief one-day spike in volatility caused, for example, by the historical

20-minute 700 point drop in the Dow Jones Industrial index on May 6, 2010 is not expected

to repeat itself going forward, should it really be reflected in the fitted volatility measure even

though such shocks surely causes spikes in the realized volatility? If, instead, we rely on the

statistics for the fitted errors between the fitted and realized measures of yield volatility for

the purpose of model validation, the conclusion is much more favorable towards the spanned

factors. Also, given that measures of fitted errors are widely accepted in terms of judging

whether a term structure model is able to fit the cross section of yields, it is not obvious that

we should not also use this kind of model evaluation for judging a model’s ability to fit the

term structure of yield volatilities. Along that dimension, we find that the AFNS3 model,

which allows all three spanned factors to generate stochastic volatility, delivers a reasonable

fit to both the cross section of yields as well as the term structure of yield volatilities for both
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Correlations between fitted and realized standard deviation series

Maturity January 2, 1985 to December 31, 1991
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 n.a. n.a. n.a. n.a. n.a. n.a.
6 n.a. n.a. n.a. n.a. n.a. n.a.
12 0 0.031 0.046 0.051 0.045 0.110
24 0 0.032 0.004 0.037 0.069 0.146
36 0 0.057 0.021 0.071 0.061 0.168
60 0 0.118 0.036 0.139 0.063 0.203
84 0 0.169 0.040 0.196 0.075 0.227
120 0 0.213 0.002 0.225 0.090 0.230

Maturity January 2, 1992 to December 31, 2002
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 -0.255 -0.048 -0.258 -0.066 -0.191
6 0 0.019 -0.206 -0.011 0.129 0.093
12 0 0.277 0.037 0.296 -0.029 0.279
24 0 0.288 0.057 0.319 -0.036 0.204
36 0 0.322 0.088 0.365 -0.034 0.246
60 0 0.340 0.143 0.420 -0.039 0.355
84 0 0.335 0.154 0.412 -0.095 0.377
120 0 0.368 0.110 0.411 -0.223 0.389

Maturity January 2, 2003 to January 29, 2010
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

3 0 0.231 -0.240 0.219 -0.058 0.031
6 0 0.256 -0.298 0.193 -0.039 0.012
12 0 0.280 -0.418 -0.052 -0.218 -0.231
24 0 0.279 -0.538 -0.419 -0.450 -0.485
36 0 0.277 -0.545 -0.466 -0.507 -0.522
60 0 0.236 -0.554 -0.476 -0.577 -0.571
84 0 0.159 -0.547 -0.450 -0.634 -0.613
120 0 0.086 -0.522 -0.340 -0.654 -0.580

Table 27: Correlations between Fitted and Realized Standard Deviation Series for

Three Subsample Periods in the U.K. Gilt Data.

The table presents the correlations between the 31-day fitted and realized standard deviations for the

U.K. gilt yield dataset over three sample periods. The top panel is based on the period from January

2, 1985 to December 31, 1991 (1770 daily observations). The middle panel is based on the period from

January 2, 1992 to December 31, 2002 (2744 daily observations). The bottom panel is based on the

period from January 2, 2003 to January 29, 2010 (1791 daily observations).

U.S. Treasury and U.K. gilt yields during the 25-year sample period analyzed here.

Finally, if we want to refine any of these models, we need to incorporate some of the

structure in the realized yield volatilities. Table 28 reports the results of a principal component

analysis based on the realized volatility for the six maturities in the U.K. gilt data that are

represented throughout the sample period. The analysis reveals that the first three prinicpal

components explain 99.68% of the variation. However, as shown in Table 29, the three

principal components are not particularly highly correlated with the estimated AFNS factors,
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Maturity Loading on
in months First P.C. Second P.C. Third P.C.

12 -0.55 -0.57 0.57
24 -0.49 -0.18 -0.40
36 -0.44 0.06 -0.49
60 -0.35 0.34 -0.17
84 -0.29 0.47 0.19
120 -0.23 0.55 0.46

% explained 86.97 11.46 1.25

Table 28: Eigenvectors of the First Three Principal Components of the 31-Day

Realized Standard Deviation Series in the U.K. Gilt Data.

The loadings of yields of various maturities on the first three principal components of the realized

standard deviation series are shown. The final row shows the proportion of all realized volatility

variability accounted for by each principal component. The underlying data consist of daily U.K. gilt

zero-coupon bond yields from January 2, 1985 to March 1, 2010.

AFNS0 AFNS3Correlation
Lt St Ct Lt St Ct

P.C. 1 0.475 0.068 -0.155 0.473 0.082 -0.174
P.C. 2 -0.171 0.235 -0.017 -0.172 0.218 0.059
P.C. 3 0.243 -0.130 0.039 0.249 -0.129 -0.020

Table 29: Correlations Between Principal Components of the Realized Volatility

Series and the Estimated Factors in the AFNS0 and AFNS3 Models in the U.K.

Gilt Data.

The table presents the pairwise correlations between the first three principal components of the six

31-day realized yield standard deviation series based on daily U.K. gilt yields for which the full sample

period is available and the three estimated factors in the AFNS0 and AFNS3 models, respectively.

only the fairly high positive correlation between the first principal component and the AFNS

level factor appear worth mentioning, but it is still below 50%. Thus, additional factors are

required to match the realized yield volatility series more closely at high frequency.

6 Empirical Results with Daily U.S. Dollar Swap and LIBOR

Rates

Recent research by Collin-Dufresne et al. (CGJ, 2009) as well as Jacobs and Karoui (2009)

have examined the stochastic volatility present in U.S. dollar swap and LIBOR rates. These

studies use weekly data encompassing the period from January 1988 through December 2005.

In this section, we estimate our proposed AFNS models with stochastic volatility on this

dataset, but at daily frequency.36 The data set we examine consists of zero-coupon yields

36We thank Chris Jones for sharing these data with us.
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Figure 14: U.S. Dollar Swap and LIBOR Rates.

Illustration of the U.S. swap and LIBOR rates. The sample covers daily data for the period from

January 4, 1988 to December 29, 2005. The yields shown have maturities in six months, two years,

five years, and ten years.

generated from daily swap and LIBOR rates from January 4, 1988 through December 29,

2005. For each observation date, the yield curves are constructed by bootstrapping all the

available swap and LIBOR rates. The eight maturities in the data set are 6 months and 1-,

2-, 3-, 4-, 5-, 7- and 10-years. These maturities were chosen because actual yield quotes were

observed for each day in the sample, which should ensure that the bootstrapped yields are

particularly accurate. For further details on this data set, please see the description in CGJ

(2009).

As we saw in the previous sections, three factors are sufficient to model the time variation

in the cross section of U.S. and U.K. government bond yields. Here, we make a similar

observation for the sample of U.S. swap and LIBOR rates. For this sample, 99.98% of the total

variation is accounted for by three factors. Table 31 reports the eigenvectors that correspond

to the first three principal components for this data. The first principal component accounts

for 96.5% of the variation in the swap and LIBOR rates, and its loading across maturities

is uniformly negative. Thus, like a level factor, a shock to this component changes all yields

in the same direction irrespective of maturity. The second principal component accounts for

3.3% of the variation of these data and has sizable negative loadings for the shorter maturities
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Maturity No. Mean Std. dev.
in months obs. in % in %

Skewness Kurtosis

6 4,456 5.10 2.27 0.01 2.40
12 4,456 5.34 2.23 0.02 2.43
24 4,456 5.71 2.09 0.03 2.41
36 4,456 6.00 1.98 0.05 2.38
48 4,456 6.23 1.89 0.09 2.33
60 4,456 6.42 1.83 0.12 2.28
84 4,456 6.70 1.72 0.20 2.20
120 4,456 6.98 1.62 0.29 2.16

Table 30: Summary Statistics for U.S. Dollar Swap and LIBOR Rates.

Summary statistics of the U.S. swap and LIBOR rates. The sample covers daily data for the period

from January 4, 1988 to December 29, 2005.

Maturity Loading on
in months First P.C. Second P.C. Third P.C.

6 -0.40 -0.51 0.60
12 -0.40 -0.41 -0.03
24 -0.38 -0.16 -0.41
36 -0.36 0.03 -0.38
48 -0.35 0.17 -0.25
60 -0.33 0.28 -0.10
84 -0.31 0.41 0.17
120 -0.28 0.52 0.47

% explained 96.54 3.28 0.16

Table 31: Principal Component Analysis of U.S. Dollar Swap and LIBOR Rates.

The principal component analysis of the U.S. swap and LIBOR rates with maturities from six months

to ten years. The sample covers daily data for the period from January 4, 1988 to December 29, 2005.

and sizable positive loadings for the long maturities. Thus, like a slope factor, a shock to this

component steepens or flattens the yield curve. Finally, the third component, which accounts

for only 0.2% of the variation, has a U-shaped factor loading as a function of maturity, which

is naturally interpreted as a curvature factor. Again, these results motivate our use of the

Nelson-Siegel model with its level, slope, and curvature factor for modeling this sample of

U.S. dollar swap and LIBOR rates.

6.1 Conditional mean results

Table 32 presents the estimated parameters of our AFNS stochastic volatility models for

the U.S. dollar swap market. As expected, these estimates have important similarities with

the estimated parameters for the U.S. Treasury data presented earlier. In particular, the

persistence of each factor is close to the same across the two data samples. Also, the estimated

mean vector θP in each AFNSi specification is hardly distinguishable from the corresponding

58



AFNS models with independent factors
Parameters

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

κP
11 0.0335 0.0490 0.0370 0.0473 0.0357 0.0610

(0.0737) (0.0477) (0.0769) (0.0526) (0.0759) (0.0338)
κP

22 0.2275 0.2923 0.2424 0.2851 0.4274 0.3218
(0.130) (0.102) (0.147) (0.178) (0.147) (0.0978)

κP
33 1.5156 2.5499 1.5874 2.5508 1.5494 1.8953

(0.247) (0.110) (0.356) (0.475) (0.354) (0.387)
θP
1 0.0825 0.0520 0.0809 0.0536 0.0005 0.0234

(0.0215) − (0.0217) − (0.0231) −
θP
2 -0.0287 -0.0157 -0.0278 -0.0156 0.0493 0.0357

(0.0165) (0.0169) (0.0156) (0.0180) (0.0120) (0.00983)
θP
3 -0.0073 -0.0000 0.0742 0.0805 0.0681 0.0569

(0.00399) (0.00313) (0.00400) (0.00307) (0.00494) (0.00529)
σ11 0.0059 0.0583 0.0060 0.0584 0.0059 0.0392

(0.00006) (0.00013) (0.00020) (0.00012) (0.00023) (0.00046)
σ22 0.0135 0.0036 0.0092 0.0016 0.0688 0.0544

(0.00012) (0.00003) (0.00039) (0.00001) (0.00062) (0.00051)
σ33 0.0264 0.0038 0.0979 0.1097 0.1004 0.1464

(0.00021) (0.00004) (0.00084) (0.00137) (0.00256) (0.00133)
β11 − − − − − −

− − − − − −
β12 − − − − 0.0000 −

− − − − (0.717) −
β13 − − 0.0000 − 0.0000 −

− − (0.878) − (1.03) −
β21 − 303.3 − 1,494 − −

− (0.113) − (0.838) − −
β22 − − − − − −

− − − − − −
β23 − − 15.66 0.0050 − −

− − (2.55) (0.773) − −
β31 − 1,039 − − − −

− (0.0921) − − − −
β32 − − − − − −

− − − − − −
β33 − − − − − −

− − − − − −
θ

Q
1 − 2,547 − 2,537 − 1,425

− (0.0981) − (0.658) − (43.4)

θ
Q
2 − − − − 0.08 0.0509

− − − − − (0.00041)

θ
Q
3 − − 0.08 0.08 0.0737 0.0462

− − − − (0.00271) −
λ 0.3890 0.4925 0.3791 0.4808 0.3760 0.3126

(0.00131) (0.00141) (0.00131) (0.00140) (0.00127) (0.00066)
Max logL 232,737.6 236,659.5 232,592.9 236,509.8 232,165.1 218,807.3

Table 32: Parameter Estimates for AFNSi Models with the Independent-Factors

Specification for U.S. Dollar Swap Data.

The table contains the estimated KP matrix, θP vector, Σ matrix, θQ vector, as well as the estimated

λ parameters for the independent-factors specification of the P -dynamics in the AFNSi models, all

estimated for the U.S. dollar swaps and LIBOR rates. Estimated standard deviations of the parameter

estimates are given in parentheses. The maximum log-likelihood values are reported, although the

models are non-nested.
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Maturity RMSE for fitted standard deviations
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 28.26 27.40 28.29 27.49 28.20 16.02
12 9.99 9.27 10.04 9.34 10.05 0.67
24 0.33 0.08 0.38 0.13 0.46 5.02
36 0.74 0.63 0.74 0.63 0.73 2.72
48 0.00 0.00 0.00 0.00 0.00 0.31
60 0.60 0.42 0.60 0.42 0.60 2.06
84 1.00 0.51 0.98 0.50 0.99 5.04
120 5.21 4.04 5.19 4.00 5.16 10.02

Table 33: RMSE of the Fitted Yields from AFNSi Models for U.S. Dollar Swap

Data.

The table presents the RMSE values for the daily fitted yields from the AFNS models with stochastic

volatility estimated on the U.S. dollar swap dataset.

estimates for U.S. Treasury yields. As for the σ volatility parameters, they are harder to

compare across data sets, even for identical AFNSi specifications, as their estimated value is

impacted by the size of the β volatility sensitivity parameters, which do vary quite a bit across

the two samples although they still indicate that there is no role for the slope or curvature

in the volatility of the level factor, while the level factor does have a role in the volatility

of the other two factors. Finally, the λ parameters have lower estimated values in the U.S.

dollar swap data relative to both the U.S. Treasury and U.K. gilt data. This implies a slower

decay in the factor loading of the slope and curvature factor, which appears reasonable as the

constellation of maturities in the U.S. swaps data is skewed slightly towards longer maturities

relative to the samples of U.S. Treasury and U.K. gilt yields analyzed previously.

With respect to the in-sample fit of the yield curve presented in Table 33, the RMSE

values of the fitted yields across the AFNSi models are not that different from each other.

This result suggests that, as in the U.S. Treasury data, the introduction of stochastic volatility

factors does not affect the overall performance of AFNS models. All six AFNSi models fit the

two- to ten-year range very well, while they all underperform for the six-month LIBOR. Note

also that the fit of the AFNS3 specification preferred in the analysis of the U.S. and U.K.

government bond yields is on par with that of the other models. Hence, the performance of

the models is better judged with respect to their fitted volatility measures.

6.2 Conditional variance results

If we examine the models’ performance with respect to the data’s realized volatility, we again

find that the AFNS3 specification generates reasonable fitted standard deviations, but other

models also perform reasonably.
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(a) Six-month LIBOR rate
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(b) Two-year swap rate
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(c) Five-year swap rate
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(d) Ten-year swap rate

Figure 15: Fitted Standard Deviations from the AFNSi Models for U.S. Dollar

Swap and LIBOR Data.

Figure 15 presents the fitted one-month conditional standard deviations of the six-month

LIBOR rate and the two-, five- and ten-year swap rates calculated based on the full sample

estimation for each of the six AFNSi models.37 We note that the AFNS3 model produces

the lowest fitted yield volatility, while the AFNS1-L and AFNS2-L,C models systematically

37The figure shows the square root of

V
P

t [yT (τ )] =
1

τ 2
B(τ )′V P

t [XT ]B(τ ),

where V P
t [XT ] is the conditional covariance matrix of the state variables, T − t = 1

12
, and τ = 0.5, 2, 5, and

10 years, respectively.
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Six-month LIBOR
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.396 1.000 0.000 0.389
AFNS1-C 1 0.398 0.015 0.195
AFNS2-LC 1 0.000 0.390
AFNS2-SC 1 0.909
AFNS3 1

Two-year swap rate
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.396 0.999 0.016 0.493
AFNS1-C 1 0.428 0.057 0.301
AFNS2-LC 1 0.032 0.508
AFNS2-SC 1 0.867
AFNS3 1

Five-year swap rate
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.398 0.989 0.203 0.787
AFNS1-C 1 0.521 0.529 0.804
AFNS2-LC 1 0.314 0.866
AFNS2-SC 1 0.633
AFNS3 1

Ten-year swap rate
Correlation

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

AFNS0 1 0 0 0 0 0
AFNS1-L 1 0.397 0.996 0.292 0.880
AFNS1-C 1 0.467 0.743 0.764
AFNS2-LC 1 0.365 0.914
AFNS2-SC 1 0.614
AFNS3 1

Table 34: Pairwise Correlations of the One-Month Conditional Standard Deviation

of One U.S. LIBOR and three U.S. Swap Rates in the AFNSi Models.

The table contains the pairwise correlations between the one-month conditional standard deviations

of the six-month LIBOR and two-year, five-year, and ten-year U.S. swap rates as estimated by the

AFNSi models. The estimation is based on daily observations from January 4, 1988 to December 29,

2005.

produce higher fitted yield volatilities than any of the other models.

Table 34 reports the pairwise correlations of the fitted yield volatilities across the six

models for those same four yield maturities. Again, the AFNS1-L and AFNS2-L,C are essen-

tially perfectly correlated. Also, the AFNS2-S,C and AFNS3 models exhibit a higher degree

of covariation between their fitted yield volatilities than in the previous data sets for U.S.

and U.K. government bond yields. Finally, the AFNS1-C model is characterized by fitted

yield volatilities that have a relatively low correlation with the fitted measures from the other
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Ratios of variation for the fitted AFNS standard deviations
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 0.00 0.87 0.20 0.85 0.96 1.00
12 0.00 0.91 0.21 0.88 0.96 1.00
24 0.00 1.02 0.24 0.95 0.97 1.00
36 0.00 1.25 0.32 1.07 0.93 1.00
48 0.00 1.34 0.37 1.10 0.80 1.00
60 0.00 1.30 0.37 1.06 0.57 1.00
84 0.00 1.25 0.34 1.04 0.44 1.00
120 0.00 1.22 0.27 1.07 0.32 1.00

Table 35: Ratios of Variation between AFNSi Fitted Standard Deviations for U.S.

Dollar Swap and LIBOR Rates.

The table presents the ratios of variation between AFNSi fitted standard deviations, which are calcu-

lated as the standard deviation of a model’s fitted yield volatility for a given maturity divided by the

standard deviation of the corresponding fitted yield volatility from the AFNS3 model.

Maturity Mean Std. dev. Std. dev.
in months in bps in bps ratio

6 17.73 10.38 1.16
12 23.95 10.40 1.16
24 28.81 10.44 1.16
36 29.70 9.92 1.11
48 29.74 9.65 1.08
60 29.60 9.48 1.06
84 29.25 9.20 1.03
120 29.04 8.96 1.00

Table 36: Summary Statistics for the 31-Day Realized Standard Deviation Series

based on Daily U.S. Dollar Swap and LIBOR Data.

The summary statistics are for the 31-day rolling realized standard deviations based on daily U.S.

dollar swap and LIBOR rates over the period from January 6, 1988 to December 31, 2002. The

standard deviation ratio is calculated as the standard deviation in question divided by the standard

deviation for the ten-year maturity.

models.

In terms of variation in the generated yield volatility, Table 35 reveals that several of the

AFNSi models produce fitted yield volatilities with at least as much variation as that of the

AFNS3 model. Equally visible is the very low variation in the fitted volatility of the AFNS1-C

model.

Figure 15 also presents the 31-day-ahead realized standard deviations of the six-month

LIBOR rate and the two-, five- and ten-year swap rates calculated from the sample of daily

data. Table 36 contains the summary statistics of the realized volatility measures and shows

that the unconditional volatility of the realized volatility of the swap and LIBOR rates has

a hump-shaped pattern that peaks at the one-year maturity but declines steadily up to the
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Maturity Correlations between fitted and realized standard deviation series
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 0 0.633 0.229 0.633 0.065 0.298
12 0 0.546 0.218 0.546 0.023 0.229
24 0 0.408 0.131 0.406 -0.113 0.078
36 0 0.303 0.048 0.289 -0.201 0.019
48 0 0.230 -0.024 0.202 -0.250 -0.007
60 0 0.191 -0.075 0.154 -0.264 0.015
84 0 0.174 -0.118 0.140 -0.271 0.019
120 0 0.235 -0.093 0.212 -0.235 0.107

Table 37: Correlations between Fitted and Realized Standard Deviation Series for

the Full Sample of U.S. Dollar Swaps Data.

The table presents the correlations between the monthly, fitted and realized standard deviations for

the U.S. dollar swaps dataset over the full sample period from January 4, 1988 through December 29,

2005.

ten-year maturity. Furthermore, we note that the means of the realized volatility measure

are slightly higher for the one- to ten-year maturity, while the mean realized volatility of

the six-month LIBOR is about 1.5 basis points lower than the corresponding number for the

six-month U.S. Treasury yield. Of course, this comparison does not correct for the differences

in sample periods and should be interpreted with caution.

With respect to the correlations between the fitted and realized standard deviations, Table

37 shows that several models, including the AFNS3 model, exhibit low and often negative

values as before. However, the AFNS1-L and the AFNS2-L,C models generate very high

correlations at the short maturities (on the order of 50%) and reasonably high correlations

for longer maturities (on the order of 20%). This good performance suggests that the level

factor plays an important role in the stochastic volatility exhibited by this dataset over the

full sample. Table 38 shows the correlations for three subsample periods: 1988-1991, 1992-

2002, and 2003-2005. As noted by Jacobs and Karoui (2009), most of the models’ correlations

deteriorate for the middle 1992-2002 sample period for as yet unclear reasons. In the early

1988-1991 period, we see correlations as high as 50% for AFNS1-L, AFNS2-L,C, AFNS3

models, and the first two models preserve those high correlations in 2003-2005 period, whereas

the AFNS3 continues to exhibit negative correlations in that period.

If, instead of simple correlations, we focus on how close the fitted yield volatilities are to

the series of realized yield volatility, the results look more favorable for the spanned factors.

Table 39 reports the RMSEs of the fitted yield volatilities in the six AFNSi models. We note

that the AFNS3 model again stands out with the closest fit to the volatility of the short- and

medium-term swap rates with RMSEe starting at 16 basis points for the six-month LIBOR
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Correlations between fitted and realized standard deviation series

Maturity January 6, 1988 to December 31, 1991
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 0 0.024 -0.528 0.021 0.407 0.428
12 0 0.085 -0.551 0.077 0.497 0.523
24 0 0.182 -0.558 0.156 0.431 0.467
36 0 0.261 -0.547 0.192 0.355 0.354
48 0 0.329 -0.551 0.230 0.287 0.180
60 0 0.386 -0.553 0.278 0.117 -0.112
84 0 0.465 -0.532 0.388 -0.072 -0.122
120 0 0.536 -0.477 0.493 -0.291 0.006

Maturity January 2, 1992 to December 31, 2002
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 0 0.338 0.256 0.339 -0.328 -0.238
12 0 0.284 0.290 0.286 -0.351 -0.291
24 0 0.248 0.253 0.253 -0.381 -0.316
36 0 0.213 0.200 0.215 -0.386 -0.239
48 0 0.165 0.147 0.157 -0.376 -0.137
60 0 0.118 0.101 0.103 -0.325 -0.014
84 0 0.056 0.047 0.038 -0.286 -0.014
120 0 0.051 0.047 0.038 -0.247 0.015

Maturity January 3, 2003 to November 28, 2005
in months AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3

6 0 0.338 0.026 0.339 -0.350 -0.324
12 0 0.371 -0.115 0.370 -0.406 -0.415
24 0 0.608 -0.233 0.603 -0.636 -0.610
36 0 0.658 -0.298 0.624 -0.682 -0.540
48 0 0.674 -0.346 0.600 -0.696 -0.371
60 0 0.670 -0.385 0.570 -0.680 -0.099
84 0 0.635 -0.448 0.542 -0.674 -0.033
120 0 0.564 -0.492 0.501 -0.650 -0.009

Table 38: Correlations between Fitted and Realized Standard Deviation Series for

Three Subsample Periods in the U.S. Dollar Swap and LIBOR Data.

The table presents the correlations between the monthly, fitted and realized standard deviations for

the U.S. dollar swap and LIBOR dataset over three sample periods. The top panel is based on the

period from January 4, 1988 to December 31, 1991 (995 daily observations). The middle panel is based

on the period from January 2, 1992 to December 31, 2002 (2721 daily observations). The bottom panel

is based on the period from January 2, 2003 to November 28, 2005 (719 daily observations).

down to 11 basis points for the three-year swap rate. For the longer-term swap rates it

performance is on par with the second best model, the AFNS2-S,C model, both producing

RMSEs around 10 basis points for the five- to ten-year maturity range. On the other hand,

the AFNS1-L and AFNS2-L,C models that had relatively high positive correlations with

the realized volatility series produce disappointingly high RMSEs as they imply fitted yield

volatility that is systematically too high as can be seen in Figure 15

In summary, AFNS models that incorporate stochastic volatility seem able to generate
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RMSE for fitted standard deviations
Maturity

AFNS0 AFNS1-L AFNS1-C AFNS2-LC AFNS2-SC AFNS3in months
Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

6 23.03 25.26 43.81 44.55 22.98 25.11 43.31 44.06 25.63 28.71 11.42 16.16
12 15.61 18.76 36.22 37.30 15.59 18.61 35.79 36.86 18.10 22.24 5.01 12.72
24 9.08 13.83 29.54 31.18 9.08 13.77 29.20 30.81 11.28 17.33 0.56 12.17
36 6.35 11.78 26.56 28.47 6.35 11.84 26.34 28.17 7.96 14.49 1.50 11.41
48 5.07 10.90 24.82 26.93 5.07 11.10 24.71 26.71 6.20 12.96 2.95 11.34
60 2.59 9.83 21.40 23.78 2.61 10.13 21.52 23.76 3.14 11.03 3.67 11.23
84 0.10 9.20 18.45 21.01 0.16 9.52 18.76 21.18 0.39 9.99 2.40 10.56
120 -3.36 9.57 14.79 17.50 -3.27 9.72 15.31 17.88 -3.23 9.96 -1.11 9.66

Table 39: RMSE for the Monthly Fitted Conditional Standard Deviations.

The table presents the RMSE values for the monthly model-based fitted standard deviations relative

to the 31-day realized standard deviations based on the daily U.S. dollar swap and LIBOR rates over

the period from January 4, 1988 to December 29, 2005.

fitted standard deviations that match some part of the realized standard deviations. If we use

simple correlations as a performance measure, the AFNS1-L model performs well with strictly

positive correlations for all maturities for the full sample as well as for the three subsample

periods. For the six-month LIBOR, which was the focus of attention in CGJ (2009), this model

produces a full sample correlation as high as 63.3%. If, instead, performance is measured by

the closeness of the fitted yield volatility to the corresponding realized measure, the AFNS3

model performs well with low RMSEs at all maturities. Thus, it is feasible for spanned factors

to match important aspects of the realized yield volatility in this sample of U.S. dollar swap

and LIBOR rates, and the common element of the best fitting models is the presence of the

level factor as a driver of the volatility dynamics. Further analysis is required to determine

why this factor appears to play a greater role in the swaps data than in the Treasury data.

However, a principal components analysis of the eight realized yield standard deviation series

shows that the first three components account for 99% of the variation in the data, see Table

40, and the AFNS level factor is the spanned factor with the highest correlation with all three

of those principal components as evidenced in Table 41.

7 Conclusion

In this paper, we extend the AFNS model introduced by CDR (2007) to incorporate stochastic

volatility. We do so by proposing five new specifications whose sources of stochastic volatility

are different permutations of the AFNS model’s three spanned factors. Our empirical exercises

show that the introduction of these volatility factors does not have a significant impact on

the models’ fitted yield values relative to the constant volatility AFNS0 model. Furthermore,
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Maturity Loading on
in months First P.C. Second P.C. Third P.C.

6 -0.32 -0.61 0.48
12 -0.37 -0.45 -0.03
24 -0.40 -0.17 -0.39
36 -0.38 0.05 -0.38
48 -0.37 0.21 -0.24
60 -0.35 0.30 -0.05
84 -0.33 0.37 0.27
120 -0.31 0.34 0.58

% explained 83.39 13.02 2.51

Table 40: Eigenvectors of the First Three Principal Components of the 31-Day

Realized Standard Deviation Series for U.S. Dollar Swap and LIBOR Rates.

The loadings of yields of various maturities on the first three principal components of the realized

standard deviation series are shown. The final row shows the proportion of all realized volatility

variability accounted for by each principal component. The underlying data consist of daily U.S. swap

and LIBOR zero-coupon rates from January 4, 1988 to December 29, 2005.

AFNS0 AFNS3Correlation
Lt St Ct Lt St Ct

P.C. 1 -0.387 0.168 -0.046 -0.364 0.147 -0.080
P.C. 2 0.409 0.346 0.357 0.459 0.348 0.133
P.C. 3 0.323 0.031 -0.094 0.343 0.029 -0.125

Table 41: Correlations Between Principal Components of the Realized Volatility

Series and the Estimated Factors in the AFNS0 and AFNS3 Models for U.S.

Dollar Swap and LIBOR Data.

The table presents the pairwise correlations between the first three principal components of the eight

31-day realized yield standard deviation series based on daily U.S. dollar swap and LIBOR rates and

the three estimated factors in the AFNS0 and AFNS3 models, respectively.

our results suggest that certain of these models, particularly the AFNS3 model based on

all three factors exhibiting stochastic volatility, are able to generate a reasonable amount of

volatility dynamics in sample. In particular, for our daily U.S. Treasury and U.K. gilt yields

datasets, the AFNS3 model generates the most variation in its fitted standard deviations and

provides the closest fit to our realized volatility measures in addition to exhibiting the best

correlations for the pre-1992 period. For the daily U.S. dollar swap and LIBOR dataset, the

AFNS3 model also produces the overall closest fit to the realized yield volatility measures.

However, in terms of correlations, the two models with stochastic level factor, the AFNS1-L

and the AFNS2-L,C models, stand out with positive, and frequently high, correlations with

the realized measures. In conclusion, we find evidence that the extended AFNS modeling

framework captures an important fraction of the stochastic volatility observed in all three

data sets in addition to preserving the good in-sample yield fit and ease of estimation that

67



is the advantage of the original Gaussian AFNS0 model class. Still, at daily frequency, parts

of the observed volatility in interest rates is only weakly associated with any of the spanned

term structure factors.
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Appendix

This appendix contains additional details of the five model specifications.

The AFNS1 model with stochastic volatility through the level factor

In this model class, the Q-dynamics are assumed to be
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This structure implies that γ and δ in the system of ODEs provided in Equations (2) and (3) are given by

γ =





0

1
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 and δ =





1 0 0
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 ,

and B1(t, T ), B2(t, T ), and B3(t, T ) are the unique solutions to the following system of ODEs
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To detail the essentially affine risk premium specification first introduced in Duffee (2002) for this class of

models, start by defining the matrices D(Xt) and D−1(Xt) as
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In the essentially affine risk premium specification for the A1(3) class of models considered here, Γt is

given by

Γt = D(Xt)
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By implication, there is a total of 9 free parameters in the essentially affine risk premium specification of Γt
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in this case. From the structure of Γt, it follows that the product D(Xt)Γtdt is given by

D(Xt)Λtdt =
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By deducting the term ΣD(Xt)Γtdt from the SDE for the Q-dynamics and replacing dW
Q
t with dW P

t , we

obtain the SDE for the P -dynamics which, without loss of generality, can be written as
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From the structure of the product D(Xt)Λtdt it is clear that all drift parameters for the last two factors, X2
t

and X3
t , are allowed to vary freely when we move from the Q-dynamics to the P -dynamics detailed above.

However, for the first factor with stochastic volatility there is a restriction on the value of θP
1 given by the

equation

10−6 · θQ
1 = κ

P
11θ

P
1 .

By implication, θP
1 and θ

Q
1 cannot both vary freely when we switch from the Q-measure to the P -measure

under the essentially affine risk premium structure.

If we use the extended affine risk premium specification, the X1
t -process has to satisfy the Feller condition

under both probability measures, i.e.

κ
P
11θ

P
1 >

1

2
σ

2
11 and 10−6 · θQ

1 >
1

2
σ

2
11.

Here, it is obvious that with our requirement of κ
Q
11 = 10−6 needed to obtain a level factor structure as similar

as possible to the one in the Nelson-Siegel model, the Feller condition for X1
t cannot reasonably be expected

to be satisfied under the Q-measure as X1
t is close to a unit-root process. As a consequence, we limit ourselves

to the essentially affine risk premium specification for this model class. Thus, we have to maintain the above

restriction on the value of θP
1 .

The AFNS1 model with stochastic volatility through the curvature factor

In this model class, the Q-dynamics are assumed to be
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This structure implies that γ and δ in the system of ODEs provided in Equations (2) and (3) are given by
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and B1(t, T ), B2(t, T ), and B3(t, T ) are the unique solutions to the following system of ODEs
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To detail the extended affine risk premium specification for this class of models, start out by defining the

matrices D(Xt) and D−1(Xt) by
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For this model class the extended affine specification of Γt is given by

Γt = D(Xt)
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By implication, there is a total of 10 free parameters in this specification of Γt. Now, the product D(Xt)Γtdt

is given by
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By deducting ΣD(Xt)Γtdt from the SDE for the Q-dynamics and replacing dW
Q
t with dW P

t , we obtain the
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SDE for the P -dynamics which, without loss of generality, can be written as
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From the specification of Γt it is clear that if X3
t hits the zero boundary, the term 1√

X3
t

in the extended affine

risk premium specification explodes. In order to keep the model arbitrage-free, this has to be prevented by

requiring that the parameters for the X3
t -process satisfy the Feller condition under both measures, i.e.
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The AFNS2 model with stochastic volatility through the level and curvature factor

In this model class, the Q-dynamics are assumed to be
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This structure implies that γ and δ in the system of ODEs provided in Equations (2) and (3) are given by

γ =
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and B1(t, T ), B2(t, T ), and B3(t, T ) are the unique solutions to the following system of ODEs
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To detail the extended affine risk premium specification for this class of models, start by defining the

matrices D(Xt) and D−1(Xt) by
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The reason why element (1, 1) in D−1(Xt) cannot equal 1√
X1

t

is that this term is only well defined if X1
t is

positive a.s. However, with the near unit-root property κ
Q
11 = 10−6 imposed, X1

t is likely to hit zero under the

Q-measure. Hence, the above is the appropriate specification of D−1(Xt) in this model class.

The maximally flexible extended affine specification of Γt in this class of models is given by
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This implies that D(Xt)Γtdt is given by
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By deducting ΣD(Xt)Γtdt from the SDE for the Q-dynamics and replacing dW
Q
t with dW P

t , we obtain the

SDE for the P -dynamics which, without loss of generality, can be written as
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Note that X1
t can have a different rate of mean-reversion under the P -measure relative to that under the Q-

measure, but it is not possible to change the constant term through the measure change. Thus, the following

equation has to be satisfied

10−6 · θQ
1 = κ

P
11θ

P
1 .

Furthermore, the limited risk premium specification due to the near unit-root property of X1
t also implies that

X3
t cannot impact the drift of X1

t (κP
13 = 0) once κ

Q
13 has been fixed at 0, which we need to get as close as

possible to the desired Nelson-Siegel factor loading structure.38

From the specification of Γt it is clear that, if X3
t hits the zero boundary, the term 1√

X3
t

in the extended

affine risk premium specification will explode. In order to keep this class of models arbitrage-free, such infinite

profit opportunities must be eliminated which is done by requiring that the parameters for the X3
t -process

38Note that κP
12 and κP

32 must be zero under all circumstances as the unconstrained process X2
t cannot be

allowed to impact the drift of any of the two square-root processes.
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satisfy the Feller condition under both measures, i.e.39
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The AFNS2 model with stochastic volatility through the slope and curvature factor

In this model class, the Q-dynamics are assumed to be
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This structure implies that γ and δ in the system of ODEs provided in Equations (2) and (3) are given by
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0 0 1



 ,

and B1(t, T ), B2(t, T ), and B3(t, T ) are the unique solutions to the following system of ODEs





dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt



 =





1

1

0



 +





0 0 0

0 λ 0

0 −λ λ









B1(t, T )

B2(t, T )

B3(t, T )





−
1

2

3∑

j=1









σ11 0 0

σ12 σ22 0

σ13 0 σ33









(B1)2 B1B2 B1B3

B1B2 (B2)2 B2B3

B1B3 B2B3 (B3)2









σ11 σ12 σ13

0 σ22 0

0 0 σ33









j,j

(δj)′.

To detail the extended affine risk premium specification for this class of models start by defining the

matrices D(Xt) and D−1(Xt) by

D(Xt) =





√
1 + β12X2

t + β13X3
t 0 0

0
√

X2
t 0

0 0
√

X3
t



 and D
−1(Xt) =





1√
1+β12X2

t
+β13X3

t

0 0

0 1√
X2

t

0

0 0 1√
X3

t




.

The maximally flexible extended affine specification of Γt in this class of models is given by

Γt = D(Xt)





γ1
1

γ1
2

γ1
3



 + D
−1(Xt)





γ2
11 γ2

12 γ2
13

0 0 γ2
23

0 γ2
32 0









X1
t

X2
t

X3
t



 +





0 0 0

0 1√
X2

t

0

0 0 1√
X3

t









0

γ3
2

γ3
3



 .

39For X1
t we just need to ensure that the process does not turn negative. This is assured provided that

10−6 · θQ
1 > 0 and κP

11θ
P
1 > 0.
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This implies that D(Xt)Γtdt is given by

D(Xt)Γtdt =





γ1
1(1 + β12X

2
t + β13X

3
t )

γ1
2X2

t

γ1
3X3

t



 dt +





γ2
11X

1
t + γ2

12X
2
t + γ2

13X
3
t

γ2
23X

3
t

γ2
32X

2
t



 dt +





0

γ3
2

γ3
3



 dt.

By deducting ΣD(Xt)Γtdt from the SDE for the Q-dynamics and replacing dW
Q
t with dW P

t , we obtain the

SDE for the P -dynamics which, without loss of generality, can be written as





dX1
t

dX2
t

dX3
t



 =





κP
11 κP

12 κP
13

0 κP
22 κP

23

0 κP
32 κP

33













θP
1

θP
2

θP
3



 −





X1
t

X2
t

X3
t







 dt

+





σ11 σ12 σ13

0 σ22 0

0 0 σ33









√
1 + β12X2

t + β13X3
t 0 0

0
√

X2
t 0

0 0
√

X3
t









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

From the specification of Γt it is clear that if either X2
t or X3

t hits the zero boundary the corresponding terms

1√
X2

t

or 1√
X3

t

in the extended affine risk premium specification will explode. In order to keep this class of

models arbitrage-free such infinite profit opportunities must be eliminated. This is done by requiring that the

parameters for the X2
t - and X3

t -processes satisfy the Feller condition under both measures, i.e.

κ
P
22θ

P
2 + κ

P
23θ

P
3 >

1

2
σ

2
22 and λθ

Q
2 − λθ

Q
3 >

1

2
σ

2
22,

and

κ
P
33θ

P
3 + κ

P
32θ

P
2 >

1

2
σ

2
33 and λθ

Q
3 >

1

2
σ

2
33.

Furthermore, to have well-defined processes for X2
t and X3

t , the sign of the effect they have on each other must

be positive. Thus, we need to impose the following non-positive boundaries

κ
P
23 ≤ 0 and κ

P
32 ≤ 0.

This implies that the two square-root processes cannot be negatively correlated.

The AFNS3 model with three stochastic volatility factors

In this model class, the Q-dynamics are assumed to be





dX1
t

dX2
t

dX3
t



 =





10−6 0 0

0 λ −λ

0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



 −





X1
t

X2
t

X3
t







 dt

+





σ11 0 0

0 σ22 0

0 0 σ33









√
X1

t 0 0

0
√

X2
t 0

0 0
√

X3
t









dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 .
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This structure implies that γ and δ in the system of ODEs provided in Equations (2) and (3) are given by

γ =





0

0

0



 and δ =





1 0 0

0 1 0

0 0 1



 ,

and B1(t, T ), B2(t, T ), and B3(t, T ) are the unique solutions to the following system of ODEs





dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt



 =





1

1

0



 +





10−6 0 0

0 λ 0

0 −λ λ









B1(t, T )

B2(t, T )

B3(t, T )





− 1

2

3∑

j=1









σ11 0 0

0 σ22 0

0 0 σ33









(B1)2 B1B2 B1B3

B1B2 (B2)2 B2B3

B1B3 B2B3 (B3)2









σ11 0 0

0 σ22 0

0 0 σ33









j,j

(δj)′.

To detail the extended affine risk premium specification for this class of models, start by defining the

matrices D(Xt) and D−1(Xt) by

D(Xt) =





√
X1

t 0 0

0
√
X2

t 0

0 0
√
X3

t



 and D−1(Xt) =





0 0 0

0 1√
X2

t

0

0 0 1√
X3

t




.

Similar to the previous models with stochastic volatility via the level factor, element (1, 1) in D−1(Xt) cannot

equal 1√
X1

t

since this term is only well defined if X1
t is positive a.s. and with the near unit-root property

imposed via κ
Q
11 = 10−6, X1

t is likely to hit zero under the Q-measure. Hence, the above is the appropriate

specification of D−1(Xt) in this model class.

The maximally flexible extended affine specification of Γt in this class of models is given by

Γt = D(Xt)





γ1
1

γ1
2

γ1
3



 + D
−1(Xt)





0 0 0

γ2
21 0 γ2

23

γ2
31 γ2

32 0









X1
t

X2
t

X3
t



 +





0 0 0

0 1√
X2

t

0

0 0 1√
X3

t









0

γ3
2

γ3
3



 .

This implies that D(Xt)Γtdt is given by

D(Xt)Γtdt =





γ1
1X1

t

γ1
2X2

t

γ1
3X3

t



 dt +





0

γ2
21X

1
t + γ2

23X
3
t

γ2
31X

1
t + γ2

32X
2
t



 dt +





0

γ3
2

γ3
3



 dt.

By deducting ΣD(Xt)Γtdt from the SDE for the Q-dynamics and replacing dW
Q
t with dW P

t , we obtain the
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SDE for the P -dynamics which, without loss of generality, can be written as





dX1
t

dX2
t

dX3
t



 =





κP
11 0 0

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33













θP
1

θP
2

θP
3



 −





X1
t

X2
t

X3
t







 dt

+





σ11 0 0

0 σ22 0

0 0 σ33









√
X1

t 0 0

0
√

X2
t 0

0 0
√

X3
t









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

Note that X1
t can have a different rate of mean-reversion under the P -measure relative to that under the Q-

measure, but it is not possible to change the constant term through the measure change. Thus, the following

equation has to be satisfied

10−6 · θQ
1 = κ

P
11θ

P
1 .

The limited risk premium specification due to the near unit-root property of X1
t also implies that X2

t and X3
t

cannot impact the drift of X1
t once κ

Q
12 and κ

Q
13 have been fixed at 0, which we need to get as close as possible

to the desired Nelson-Siegel factor loading structure.
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