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Abstract 

This paper proposes measures of systematic skewness and systematic kurtosis as 

symmetric measures of risk by extending the work of Kraus and Litzenberg (1976). We examine 

an asset pricing model that incorporates systematic skewness and systematic kurtosis to test the 

cross section of asset returns within the context of the Fama and MacBeth (1973) two-pass 

estimation methodology. However, this estimation suffers from the errors-in-variables (EIV) 

problems that could attenuate the significance of risk premium betas. We propose the Dagenais 

and Dagenais (1997) higher-moment estimators as a solution for the EIV problems. Our results 

suggest that although the EIV correction leads to a diminished role of the market beta, the 

systematic skewness and systematic kurtosis still retain their significance in explaining the cross 

section of expected returns. 
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1. Introduction 

Since the validity of the single-factor CAPM has been questioned (Roll (1977), Gibbons, Ross and 

Shanken (1989), Mills (1995) and Harvey et al. (2004)), numerous researchers have shifted their focus to 

higher-moment models. For example, Samuelson (1970) and Rubinstein (1973) argue that higher 

moments are relevant to the investor’s decision unless the asset returns are normally distributed and the 

investor’s utility functions are quadratic. Kraus and Litzenberger (1976) expand the investor’s utility 

function beyond the second moment in a Taylor series to examine the skewness effect. Campbell and 

Hentschel (1992) find volatility clustering caused by large stock returns followed by stock returns of 

similar magnitude but in the opposite direction leads to fat tail distributions. Harvey and Siddque (2000) 

use the systematic skewness, which is defined as a component of an asset’s skewness related to the 

market portfolio’s skewness, to test whether stocks with large negative systematic skewness can earn a 

higher risk premium.   

Given that the empirical stock return distribution is observed to be asymmetric and leptokurtic, this 

paper seeks to explain how the CAPM model incorporating the systematic skewness and systematic 

kurtosis, the third and fourth moments of the return distribution, helps us understand the cross-sectional 

variation in asset returns. We use the Gibbons, Ross and Shanken (GRS) (1989) test of zero pricing errors 

(i.e. regression intercepts) to examine the validity of the four-moment model.  We find that the pricing 

errors in the traditional CAPM model can be significantly explained by the systematic skewness and 

systematic kurtosis. Furthermore, we are unable to reject the null hypothesis of zero intercepts when the 

systematic skewness and systematic kurtosis are included in the CAPM model, suggesting that the higher 

systematic moments are relevant to the asset pricing. 

The interest of this study is to evaluate the relative importance of systematic skewness and 

systematic kurtosis in explaining the variation of stock returns in cross-section. Usually studies of this 

type adopt the Fama and MacBeth (1973) two-pass regression procedure: In the first pass, beta estimates 

are obtained from time-series regression for each underlying asset, and in the second-pass, gammas are 

estimated cross-sectionally by regressing asset returns on the estimated betas. However, many researches 

(Litzenberger and Ramaswamy (1979), Gibbons (1982), Shanken (1992), Kim (1995), Jaganathan and 

Wang (1996) Kan and Zhang (1997)) have raised serious concerns about the errors-in-variables (EIV) 

problems in the second pass estimation. Criticisms focus on the unobservable market risk factor due to the 

fact that the market beta is estimated with errors in the second pass of the procedure. Dagenais and 

Dagenais (1997) argue that such errors in variables will lead to the inconsistency in the Ordinary Least 



Page | 3  

 

Squares (OLS) estimators, to larger mean-squared errors, and probably, most importantly to larger than 

intended sizes of type I errors of student T-tests. 

Despite the importance of the EIV problems, there has been little attempt to correct for the 

problems. Kim (1995) criticises that the explanatory power of the book-to-market equity ratio for average 

stock returns reported by Fama and French (1992) is exaggerated under the traditional least squares 

estimation since the EIV problems result in an underestimation of the price of market beta risk and an 

overestimation of the other cross-sectional regression (CSR) coefficients associated with variables 

observed without errors (such as the size and the book-to-market-equity). The same criticism applies to 

more general models such as Fama and French (1993), Cahart (1997) and of course, to the CAPM model 

incorporating systematic skewness and systematic kurtosis. 

The traditional approach to correct the EIV is to identify the appropriate instrumental variables if 

one can find these instruments correlated with the true variables but unrelated to the measurement errors. 

However, such variables may often not be readily available (Pal. (1980)). On the other hand, consistent 

estimators based on the original, unaugmented set of observables are  usually available, which motivates 

many researchers (Reisersol (1950), Madansky (1959), Van Montfort and Bikel and Ritov (1987))  to use 

information contained in higher order moments of data to construct consistent estimators. Cragg (1997) 

and Dagenais and Dagenais (1997) argue that if the regressors in the multivariate models exhibit 

skewness and/or kurtosis in their distributions, the estimators based on moments order higher than two 

could help alleviate the EIV problems in the models. Since the financial variables are often found to 

exhibit non-normality, this paper looks at the issue of EIV problems when using the higher-moment 

model to examine the variation of asset returns in cross section and applies the Dagenais and Dagenais 

higher-moment estimators (DDHME) to minimize the problems. 

When using DDHME to correct the EIV problems in the context of the four-moment model, we 

find the significance of the market, systematic skewness and systematic kurtosis premia measured by 

traditional Fama and MacBeth CSR to be overstated. While the systematic skewness and systematic 

kurtosis premia measured in two-pass CSR are significant in some sub-periods of downturn markets, the 

results do not hold for these periods when EIV problems are corrected using DDHME.  Nevertheless, 

although the EIV correction leads to a diminished role of the market beta, the systematic skweness and 

systematic kurtosis still retain their significance in explaining patterns in cross-sectional asset returns with 

the DDHME method for the examined period of 1992 to 2009. 

 The paper is organized as follows. First, we propose a four-moment model in which the 

systematic skewness and systematic kurtosis are estimated as symmetric measures of risk, analogous to 
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the market beta.  We then test the validity of this model using the GRS test of zero pricing errors. To 

further examine the roles of the systematic skewness and systematic kutosis in explaining patterns of 

cross-sectional stock returns, we use the Fama and MacBeth (1973) two-pass procedure applying for the 

four-moment model.  As the EIV problems arise from the second-pass of the estimation, we next present 

the estimation of DDHME to correct for the problems. The results and their discussion follow next. 

Finally, conclusion remarks finish the study. 

2. Methodology 

2.1 The Four-Moment Model 

In the spirit of Kraus and Litzenberger (1976), we define measures of systematic skewness ( iS ) and 

systematic kurtosis ( pK ) risk as follows:  
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Where 
iR  and mR  are the returns of asset i and the market index respectively, and )( iRE and )( mRE are 

the expected returns for the asset and the market index respectively. 

As the systematic skewness and the systematic kurtosis capture positive and negative deviations of market 

portfolio returns from its mean return, these measures are considered as symmetric measure of risk, 

analogous to market beta.  

We expand the traditional two-moment CAPM to the four-moment model to examine the 

variation of asset returns as follows: 

tititfmtfti KSrRrR ,3,21,, )( βββα ++−+=−
     (3)

 

where tiR ,  is the return of asset i at time t, tfr ,  is the risk-free rate of return at time t, 
tmR , is the return of 

the market index at time t, tiS , and tiK ,  are the return premiums of the systematic skewness and 

systematic kurtosis risk respectively. 

One method to understand how the systematic skewness and systematic kurtosis influence asset 

pricing is to analyse the pricing errors from the four-moment model. We use a multivariate test of 
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Gibbons, Ross and Shanken (GRS) (1989) to test whether the pricing errors are jointly equal to zero.  We 

apply GRS test to examine (1) whether adding the systematic skewness and systematic kurtosis to the 

two-moment CAPM model decreases the significance of pricing errors and (2) whether the four-moment 

model is empirically valid (i.e. the pricing errors tend to zero when both of the higher moment factors are 

included). 

Let T be the number of observations, N be the number of underlying assets and L be the number 

of regression parameters including the constant term. We compute the GRS-statistic to test whether the 

intercepts ( i0δ ) from time series regressions are jointly equal to zero: 
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where  i

_

R  is a vector of sample mean for vector  ),...,,( 21 Ntttit RRRR = ; 

 Ω̂  is the sample variance-covariance matrix for iR ; 

 ∑̂ is the variance-covariance matrix of the residuals; 

 )...(ˆ
002,010 Nδδδδ = is the vector of the least squares estimators of the pricing errors where i0δ  is 

the intercept of the regression of asset i on L regression parameters. 

GRS-statistic has a F-distribution with degrees of freedom N and (T-N-L). The interpretation of 

the GRS-statistic is equivalent to that of the usual t-statistic on the single intercept term in a univariate 

regression model. MacKinlay (1985) suggests that the F-test is fairly robust even when the distribution of 

asset returns exhibits skewness and/or kurtosis. This is important since our data is expected to be skewed 

and leptokurtic. 

2.2 The Errors in the Variables (EIV) Problem in the Cross-Section of Expected Stock Returns 

The two-pass procedure of Fama and MacBeth (1973) has been widely used as a standard test for 

the risk estimation in cross section. Although Shanken (1992) argues that the use of the predictive beta , 
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1
ˆ

−tβ , in the CSR (1) avoids the problem of spurious cross-sectional relations arising from statistical 

correlation between returns and the estimated betas and (2) maintains the independence between the 

explanatory variables, 1
ˆ

−tβ , and the regression error term, tε , in the CSR model, the problem of EIV is 

critical and may dispute the significance of the explanatory power of the model. We revisit the second-

pass cross sectional regression model of estimating the risk-return relations at a specific time t: 

NirR iiiifi ,,1,33,22,11 ⋯=++++=− εβδβδβδα
    (5) 

i,1β , i,2β  and i,3β  are the market beta, the systematic skewness and systematic kurtosis betas of 

underlying asset i, which are estimated by the first-pass regression procedure of Fama and MacBeth 

(1973) in equation 3. iε is the idiosyncratic error and fi rR − is the excess return of  underlying asset i 

and N is the total number of underlying assets.
 

Criticisms of Fama and MacBeth (1973) focus on the unobservable estimated tβ  since 1
ˆ

−tβ   is 

used as a proxy for the unknown tβ in the second pass of the estimation. Therefore, the independent 

variable tβ  is measured with an error: 

 11
ˆ

−− += ttt ζββ          (6) 

where 1
ˆ

−tβ  is the beta, which is either the market beta, the systematic skewness beta or the systematic 

kurtosis beta, estimated from the first-pass regression procedure using 30 weeks of data available up to  t-

1. 1−tζ  is the measurement error. 

We next present a simple version of the method of moments developed by Dagenais and 

Dagenais (1997) to minimise the EIV problems. 

2.3 Higher Moment Estimators for Multivariate Linear Models with EIV 

We analyse the Dagenais and Dagenais method of higher-moment estimators, which considers 

the case of non-Gaussian distributions of the regression regressors, to correct the EIV problems. This 

method assumes the normality condition of measurement errors. Let us consider a multivariate model in a 

general matrix form: 

uXiY N ++= βα
~

        (7)
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where X
~

is a N×K matrix explanatory variables measured without  errors where N is the number of 

observations and K is the number of regressors in the model. Y is a N×1 vector of observations of the 

dependent variable. u  is a N×1 vector of normal residual errors, independent of the variables contained 

in X
~

. Ni  is N×1 unit vector. If the matrix X  is observed instead of X
~

 where: 

  VXX +=
~

          (8) 

Equation (7), therefore, can be rewritten as: 

 ηβα ++= XiY N         (9) 

where βη Vu −= and V is a N×K matrix of normally distributed errors in the variables.  

We assume V uncorrelated with u  but allow for the explanatory variables measured with 

errors, X , correlated with the error terms. The
 
Dagenais and Dagenais higher moment estimators (α and 

β  )  is derived from the following orthogonality conditions: 

 ( ) 0/' =
∞→

NZE
n

η          (10) 

Where ),,,,( 4321 zzzziZ N=  

 xxz ∗=1           (11)
 

yxz ∗=2           (12)
 

yyz ∗=3            (13) 

( )[ ]KINxxEXxxxz ∗−∗∗= /'34        (14)
 

Where the symbol * denotes the Hadamard element-by-element matrix multiplication operator
1
 

and variable x  and y  correspond to X and Y expressed in a mean deviation form. 

                                                           
1
 If 

nmRA ×∈  and 
nmRB ×∈  then 

nmRBA ×∈∗ where the elements of BA ∗  are given by ( ) ijijij BABA =∗ . 

Note that if x is a matrix and y  is a vector, ( )yxyxyxyx K ∗∗∗=∗ ,...,, 21  where jx is the j
th

 column of x. 
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Let ŵ is a N×K matrix that represents the difference between the observed X  and the estimated X̂ . ŵ  is 

estimated as: 

XZZZZXXXw ')'(ˆˆ 1−−=−=        (15) 

To correct for the EIV problems in OLS regressions, we add ŵ to the model and re-run the augmented 

regression by OLS: 

εϕβα +++= wXiY N
ˆ

       (16)
 

where ϕ  is a N×1 vector of parameters and ε  is a vector of the regression errors.  

The second-pass CRS model using higher moment estimators to correct the EIV in betas is therefore 

rewritten as: 

NiwwwrR iiiifi ,,1ˆˆˆ
332211,33,22,11 ⋯=+++++++=− εϕϕϕβδβδβδα

 (17)
 

where fi rRY −=  is a N×1 vector of observations of the dependent variable. 

β=X  is a N×3 matrix of explanatory variables 

XXw ˆˆ −=  is measured  as described in (15). 

3. Data 

While daily data contains too much noise and monthly data results in limited observations, 

weekly data is our favored choice. We collect weekly stock returns of more than 2000 companies listed 

on the ASX stock exchange and traded in Australian dollars from January 1992 to May 2009, yielding 

approximately 650,000 observations. The advantage of this data is that it contains most of the largest 

companies that make up more than 95 percent of the Australian market and therefore it is easy to use 

them as building blocks for portfolio construction. The proxy for the market is the ASX300 index which 

is the value weighted average of the 300 largest Australian companies based on their market 

capitalization. A 90-day Bank-Accepted bill rate is used as a proxy for the risk free rate. To accurately 

reflect the performance of stocks and indices, we use return indices, which assume all dividends and 

distributions are reinvested to compute weekly returns by taking the first difference of logarithm of the 

index multiplied by 100.   
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The portfolio formation is in the spirit of Fama and French (1992) and Harvey and Siddique 

(2000). We first compute the systematic skewness and kurtosis of each stock using equation (1) and (2) 

and rank them according to the magnitude of systematic skewness and kurtosis respectively. They are 

then sorted into five quintile skewness and kurtosis portfolios respectively with approximately 446 stocks 

in each quintile. According to the ranking, quintile 1 contains the highest systematic skewness (kurtosis) 

and quintile 5 the lowest. The difference in returns of the highest systematic skewness (kurtosis) 

portfolios minus the returns of lowest systematic skewness (kurtosis) portfolios captures the return 

premium that is related to the skewness (kurtosis) risk. Twenty-five portfolios are subsequently formed by 

the intersection of five systematic skewness and five systematic kurtosis quintiles. The number of stocks 

in each portfolio varies from 20 to 412. These portfolio returns are then used for empirical tests in the 

methodology. 

4. Results and Discussion 

4.1 The existence of skewness and kurtosis in the return data - Summary Statistics 

Table 1 presents the summary statistics of 25 weekly Australian stock portfolios for the period 

January 1992 to May 2009. Consistent with the current literature, the table shows that high skewness or 

kurtosis portfolios exhibit higher standard deviations of portfolio returns than on average. This suggests 

the skewness and kurtosis risk do contribute significantly to the volatility of stock returns overall. 

Controlling for skewness effects, high kurtosis portfolios tend to outperform the low kurtosis ones on 

average, while it is less apparent that low skewness portfolios outperform the high skewness portfolios if 

we control for kurtosis effects. The standard unconditional skewness and excess kurtosis are also reported 

in the table. 14 out of 25 portfolios are negatively skewed while they all exhibit heavy tails. To investigate 

the normality assumption, we apply Jarque-Bera standard normality test. The Jarque-Bera statistic 

measures the differences of skewness and kurtosis of the return series with those of the normal 

distribution. Table 1 shows that the Jarque-Bera statistics of the portfolio returns firmly reject the null 

hypothesis of the normal distribution. The evidence thus supports our subsequent empirical tests of 

whether higher moment factors are significant factors in terms of explaining the return variability. 

Table 2 presents direct estimates of the CAPM beta, the systematic skewness and the systematic 

kurtosis of the 25 portfolios. We define the systematic skewness and kurtosis as standardized estimates of 

the skewness and kurtosis risk respectively, analogous to the CAPM beta. Positive betas in all portfolios 

indicate that the portfolio performance generally follows the market performance. In economic terms, the 

market beta is referred to as a financial elasticity of volatility because it measures the sensitivity of asset 

returns to changes in market returns or market risk. Because the majority of portfolios betas are less than 
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1, the elasticity of volatility is fairly “inelastic”, indicating that the portfolios are less volatile than the 

market over the examined period. Only 4 out of 25 portfolios have the market betas more than 1 and they 

are all high-kurtosis portfolios. Panel B and C of table 2 report direct measures of the systematic 

skewness and systematic kurtosis of the 25 portfolios. In each kurtosis quintile, the estimate of systematic 

skewness increases almost monotonically from the low to the high skewness portfolios.  Similarly, the 

estimate of the systematic kurtosis nearly monotonically increases from the low to the high kurtosis 

portfolios in each skewness quintile. We find that portfolios with high market betas result in high direct 

estimates of the systematic skewness and systematic kurtosis risk. Further, they generally constitute most 

stocks with high systematic skewness and systematic kurtosis. This strongly suggests that downside and 

heavy tails risk do contribute significantly to the volatility of asset returns which is evidenced by high 

market betas on average. 

In summary, the normality assumption for the Australian market from 1992 to 2009 is rejected 

and the impacts of systematic skewness and kurtosis persist strongly in the market. Next we formally test 

the information in the systematic skewness and systematic kurtosis relative to the four-moment pricing 

model. 

4.2 The validity of the four-moment model - Can skewness and kurtosis explain what other factors 

do not? 

 Table 3 provides multivariate tests of intercepts for the two-moment and four-moment models 

respectively. To check the stability of our results to economic impacts in Australia, we divide the 

examined period into four sub-periods of 1992-1996, 1997-2001, 2002-2006 and 2007-2009. The periods 

of 1997-2001 and 2007-2009 are considered as downturn market times as the market experiences  the 

Asian financial crisis, dot-com bubble deflation and global financial crisis while in the remaining periods, 

the economy are in expansionary phases. 

 We find that the null hypothesis of zero intercepts in the two-moment model are rejected at 5% 

in every period examined. This reaffirms and complements the findings of Black, Jensen and Scholes 

(1972), Gibbons, Ross and Shanken (1989) that the market beta alone insufficiently explains the expected 

returns. In this case, we further test whether the additional explanatory variables such as the systematic 

skewness and the systematic kurtosis are able to identify patterns in the asset returns that are not 

explained by the market premium.  We find that the P-value of the GRS-statistic has increased from the 

two-moment model to the four-moment model in almost every period examined, implying the decreasing 

of the statistic significance of the pricing errors when the systematic skewness and kurtosis are added to 

the CAPM model. The test results generally support our argument that if the systematic skewness and 
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kurtosis are relevant in explaining the stock variation, then adding these factors to the two-moment 

CAPM model will reduce the significance level of the GRS-statistic. Most importantly, we find that the 

null hypothesis of zero intercepts in the four-moment model are not rejected at 5% in almost every period 

examined. This empirically supports the validity of our four-moment model and emphasizes the 

importance of the systematic skewness and systematic kurtosis as explanatory variables in identifying 

patterns of asset returns that are not explained by the market returns.  

4.3 Higher-Moment Estimators for the Four-Moment Model with EIV 

As described in the methodology, we use the approach of Fama and MacBeth (1973) two-pass 

procedure to examine whether the systematic skewness and kurtosis factor loadings analogous to the 

CAPM market beta contribute significantly to the return premium in cross section. If the variation in the 

expected returns can be explained by one of the explanatory variables, the average slope of that variable 

should be insignificantly different from zero.  As the EIV problems arise in the second pass, we use 

DDHME to help alleviate these problems. Table 4 compares the significance of the average estimated 

values of the market beta, the systematic skewness and systematic kurotsis premia and the t_statistics of 

zero slope hypotheses using methods of OLS estimators and the higher-moment estimators. 

Without EIV problems, we find strong evidence that systematic skewness and kurtosis factors do 

have the predictive power over average stock returns and there is a significant positive trade-off between 

the return and the skewness and kurtosis risk for the period 1992-2009. On the other hand, we are unable 

to reject the hypothesis that on average the market effect is zero and unpredictably different from zero 

from one period to the next.  This result is consistent to the findings of Brooks and Galagedera (2007) 

who argue that when downside gamma, which is similar to our systematic skewness factor loading but 

only measured in the downside of the return distribution, is included in the two moment pricing model, 

the downside gamma appears to be the dominant explanatory variable and the market factor becomes 

insignificant. Table 4 also presents the Fama-McBeth cross-sectional regressions for 4 sub-periods. It is 

interesting to observe that the two higher moment factors are heavily priced in the periods of 1997-2001 

and of 2007-2009 when the Australian market experiences severe downturns due to the deflation of dot-

com bubble in 2000-2001 and the global financial crisis in middle 2007 to 2009. On the other hand, return 

premia for the systematic skewness and systematic kurtosis effects are not significant when the economy 

experiences expansionary phases in the periods of 1992-1996 and 2002-2006. In term of a risk-return 

relationship, the evidence confirms the findings of Fabozzi and Francis (1977), Kim and Zumwalt (1979), 

Estrada (2002), Post and van Vliet (2006) and Brooks and Galagedera (2007) that the downside risk is 
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considered as an appropriate measure of the security risk.  With Australian stocks, we find that the 

downside risk is captured in both systematic skewness and systematic kurtosis. 

 

When DDHME are used to correct the EIV problems, we found interesting results. First, we confirm 

the findings of Shanken (1992) and Kim (1995) that when traditional CSR ignores the measurement error 

in the market beta, the significance of the market premium is overstated. This is indicated by the 

t_statistic of the null hypothesis of zero iδ  has decreased from the two-pass CSR method to the DDHME 

method in almost every period examined. While the systematic skewness and systematic kurtosis 

measured by two-pass CSR are, on average, significant in both 1997-2001 and 2007-2009 sub-periods , 

their t-statistics reduce substantially  to insignificant when their measurement errors are measured by the 

DDHME. Importantly, the measurement error of the systematic skewness for the 2007-2009 is significant 

at 1% level and that of the systematic kurtosis is marginally significant at 10% level. This explains why 

the t_ statistics of the systematic skewness and systematic kurtosis factors drop to insignificant when the 

measurement errors are taken into account over this period. Overall, although EIV problems may dispute 

the cross-sectional results in sub-periods, we still find that the systematic skewness and systematic 

kurtosis are still important in explaining patterns in the asset returns that are not explained by the market 

beta. In other words, these risk factors should be priced. 

5. Conclusion Remarks 

 We develop the systematic skewness and systematic kurtosis as analogs of the CAPM beta. We 

test the validity of the CAPM incorporating the systematic skewness and systematic kurtosis in asset 

pricing. The results reveal the importance of these higher moment factors in identifying patterns of asset 

returns that are not explained by the market. In cross-sectional analysis using the Fama and MacBeth 

(1973) two-pass estimation, we find strong evidence that the systematic skewness and systematic kurtosis 

factors have the predictive power over the average returns. Importantly, when these factors are 

incorporated in the two-moment pricing model, they appear to be the dominant explanatory variables and 

the market factor becomes insignificant. As the Fama and MacBeth estimation is criticised for the EIV 

problems in the second-pass of the estimation, we suggest Dagenais and Dagenais (1997) higher moment 

estimators as a solution for the EIV problems. Using DDHME to correct the EIV, we find that the 

significance of the market, the systematic skewness and systematic kurtosis premia measured by the two-

pass estimation are overstated. It suggests that the accuracy of linear asset pricing models may diminish in 

the presence of measurement errors. Nevertheless, cross-sectional tests of the four-moment model with 

the DDHME as the EIV correction have shown that systematic risk measured by the systematic skewness 
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and systematic kurtosis maintains its significance in explaining the cross-sectional variation in expected 

returns. 



Page | 14  

 

References 

Bikel, O. J. and Y. Ristov (1987). "Efficient estimation in the errors in variables model." Annals of 

Statistics 15: 513-540. 

Brooks,R. and D. Galagedera (2007), ‘Is co-skewness a better measure of risk in the downside than 

downside beta? Evidence in merging market data’, Journal of Multinational Financial Management 

17(3):214-230. 

Campell, J.Y and L. Hentschel (1992), ‘No new is good news: an asymmetric model of changing 

volatility in stock returns’, Journal of Financial Economic 31, pp. 281-318. 

Carhart, M. (1997). "On persistence in mutual fund performance." Journal of Finance 53: 57-82. 

Cragg, J. (1994). "Making good inferences from bad data." Canadian Journal of Economics 27(4): 776-

800. 

Cragg, J. (1997). "Using higher moments to estimate the simple errors-in-variables model." Journal of 

Economics 28:71-91. 

Dagenais, M. G. and D. L. Dagenais (1997). "Higher moment estimators for linear regression models with 

errors in the variables." Journal of Econometrics 76: 193-221. 

Erickson, T. and T. M. Whited (2000). "Measurement error and the relationship between investment and 

q." Journal of Political Economy 108: 1027-1057. 

Estrada, J. 2002, ‘The Cost of Equity in Emerging Markets: A Downside Risk Approach’, Emerging 

Markets Quarterly 4(1): 19-30. 

Fabozzi, F.J and J.C Francis (1977), ‘Stability tests for alphas and betas over bull and bear market 

conditions’, Journal of Finance 32(4):1093-1099 

Fama, E. F. and K. R. French (1992). "The cross-section of expected stock returns." Journal of Finance 

47(2): 427-465. 

Fama, E. F. and K. R. French (1993). "Common risk factors in the returns on stocks and bonds." Journal 

of Financial Economics 33(1): 3-56. 

Fama, E. F. and J. D. MacBeth (1973). "Risk, Return and Equilibrium: Empirical Tests." Journal of 

Political Economy 81: 607-636. 



Page | 15  

 

Gibbons, M. R. (1982). "Multivariate tests of financial models." Journal of Financial Economics 10: 3-27. 

Gibbons, M. R., S. A. Ross, et al. (1989). "A test of the efficiency of a given portfolio." Econometrica 

57(5): 1121-1152. 

Harvey, C.  and A  Sidddique (2000), “Conditional skewness in asset pricing tests”, The Journal of 

Finance 55(3): 1263-1295. 

Jagannathan, R. and Z. Wang (1996). "The conditional CAPM and the cross-section of expected returns." 

Journal of Finance 53: 3-53.  

Kan, R. and C. Zhang (1997). "Tests of asset pricing models with useless factors”, Working paper, 

University of Toronto.  

Kim, D. (1995). "The errors in the variables problem in the cross-section of expected stock returns." 

Journal of Finance 1(5): 1605-1634. 

Kim, M.K and J.K  Zumwalt (1979), “An analysis of risk in bull and bear markets”, The Journal of 

Financial and Quantitative Analysis  4(5):1015-1025. 

Kraus, A., and R.H Litzenberger (1976), “Skewness preference and the valuation of risk assets”, The 

Journal of Finance 38 (4): 1085-1100. 

Litzenberger, R. H. and K. Ramaswamy (1979). "The effect of personal taxes and dividends on capital 

asset pricing models: Theory and empirical evidence." Journal of Financial Economics 7: 163-196. 

Madansky, A. (1959). "The fitting of straight lines when both variables are subject to error." Journal of 

the American Statistical Association 54: 173-205. 

Mills,T.C. (1995), “Modelling skewness and kurtosis in the London stock exchange FT-SE index return 

distributions”, The Statistician 44(3): 323-332. 

Pal, M. (1980). "Consistent moment estimators of regressors of regression coefficients in the presence of 

errors-in-variables." Journal of Econometrics 14: 349-364. 

Post, T. and P. Van Vliet (2006), “Downside Risk and Asset Pricing”, Journal of Banking and Finance 30 

(3): 823-849. 

Reisersol, O. (1950). "Identifiability of a linear relation between variables which are subjected to error." 

Econometrica 18: 375-389. 



Page | 16  

 

Roll, R. (1977). "A critique of the asset pricing theory's tests-Part1: on past and potential testability of the 

theory." Journal of Financial Economics 4: 129-176. 

Rubinstein, M. (1973), “The fundamental theorem of parameter preference security valuation”, Journal of 

Financial and Quantitative Analysis 8 :61-69. 

Samuelson, P.A  (1970), “The fundamental approximation theorem of portfolio analysis in terms of 

means, variances and higher moments”, The Review of Economic Studies 37(4):537-542. 

Shanken, J. (1992). "On the estimation of beta-pricing models." Review of Financial Studies 5(1): 1-33. 

Van Monfort, K., A. Mooijaart, et al. (1989). "Estimation of regression coefficients with the help of 

characteristic functions." Journal of Econometrics 41: 267-278. 

 



Page | 17  

 

Table 1. Summary statistics of the 25 portfolios formed by systematic skewness and systematic kurtosis: January 1992- May 2009 

The table reports the summary statistics of the 25 portfolios formed from 2234 Australian stocks listed on ASX for the period of January, 1992 to May 2009. Each portfolio is 

constructed by the intersection of 5 systematic skewness and 5 systematic kurtosis quintiles. Portfolio 1-1 contains the low systematic skewness and kurtosis stocks while portfolio 

5-5 contains high systematic skewness and kurtosis stocks. Mean and standard deviation are the first two momens of the return distribution while unconditional skewness and 

kurtosis are the third and the fourth. Excess kurtosis is equal to the unconditional kurtosis of the portfolio minus 3 which is the unconditional kurtosis of the normal distribution. 

t_statistics are reported in the parentheses below the coefficients estimates. * and ** denote  the statistical significance at the 5 and 1 percent levels. 

 Mean Median Maximum Minimum Std. Dev. Uncondition Unconditional Jarque-Bera Probability Number of stocks 

Portfolio 1-1 -0.0022 -0.0017 0.1096 -0.2390 0.0225 -1.4410 19.0557 10022.75 0 390 

Portfolio 1-2 0.0000 -0.0008 0.0785 -0.0575 0.0149 0.7520 6.2759 489.95 0 201 

Portfolio 1-3 -0.0019 -0.0010 0.3964 -1.1519 0.0801 -4.4434 73.9918 135221.80 0 59 

Portfolio 1-4 0.0006 -0.0047 0.4273 -0.3344 0.0772 0.6481 9.0099 776.45 0 28 

Portfolio 1-5 -0.0063 -0.0054 0.6162 -0.3582 0.0681 1.7256 30.7226 9105.26 0 20 

Portfolio 2-1 0.0004 0.0001 0.1610 -0.0895 0.0251 0.4247 6.9663 557.36 0 168 

Portfolio 2-2 0.0005 0.0003 0.0875 -0.1291 0.0164 -0.5437 9.6619 1718.12 0 306 

Portfolio 2-3 0.0012 0.0018 0.1317 -0.1225 0.0165 -0.5476 15.7817 6205.71 0 211 

Portfolio 2-4 -0.0013 -0.0006 0.1427 -0.1472 0.0290 -0.1451 6.5240 223.49 0 39 

Portfolio 2-5 -0.0024 -0.0010 0.4518 -0.7327 0.0685 -1.1502 27.1450 16079.44 0 22 

Portfolio 3-1 -0.0009 -0.0004 0.6381 -0.2411 0.0475 2.4817 41.6672 56548.78 0 68 

Portfolio 3-2 0.0005 0.0008 0.1451 -0.1285 0.0212 -0.0522 8.5311 1154.04 0 190 

Portfolio 3-3 0.0004 0.0018 0.3290 -0.1713 0.0314 1.0253 19.5871 10533.33 0 306 

Portfolio 3-4 0.0002 0.0012 0.3484 -0.1860 0.0307 1.1774 25.2914 18946.65 0 169 

Portfolio 3-5 0.0000 0.0023 0.3449 -0.3074 0.0564 0.2005 11.7306 2663.87 0 55 

Portfolio 4-1 -0.0031 -0.0027 0.3368 -0.3431 0.0645 -0.0719 7.2713 657.54 0 42 

Portfolio 4-2 -0.0044 -0.0031 0.6419 -0.6131 0.1093 -0.0467 13.3482 3230.64 0 44 

Portfolio 4-3 -0.0012 0.0005 0.2125 -0.2171 0.0456 -0.2826 5.9467 339.48 0 151 

Portfolio 4-4 0.0001 0.0016 0.0986 -0.2187 0.0294 -1.1985 10.7159 2461.64 0 357 

Portfolio 4-5 -0.0003 0.0009 0.2722 -0.2257 0.0512 -0.0361 6.1238 367.75 0 154 

Portfolio 5-1 -0.0047 -0.0027 0.3076 -0.4538 0.0684 -0.5941 8.1894 1061.65 0 24 

Portfolio 5-2 -0.0010 -0.0009 0.3017 -0.3716 0.0670 0.0974 6.8451 529.28 0 22 

Portfolio 5-3 0.0019 -0.0076 0.8820 -0.3600 0.1125 1.4343 10.7384 2199.43 0 46 

Portfolio 5-4 -0.0016 0.0017 0.3410 -0.2585 0.0423 -0.3354 12.1648 3184.25 0 153 

Portfolio 5-5 -0.0021 0.0006 0.1957 -0.2663 0.0393 -0.9676 10.4294 2222.55 0 412 
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Table 2. Beta, systematic skewness and systematic kurtosis estimates 

The table reports the estimated market beta, systematic skewness and systematic kurtosis of the 25 portfolios formed by the intersection of 5 

systematic skewness and 5 systematic kurtosis quintiles. The market beta, systematic skewness and systematic kurtosis are computed as follows: 
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Panel A: Market Beta 

 Low Sys Kurtosis 2 3 4 High Sys. Kurtosis 

Low Sys. Skewness 0.311174 0.26816 0.516089 0.711338 1.857418 

2 0.243001 0.30416 0.31601 0.974334 1.163463 

3 0.555916 0.395354 0.554134 0.651293 0.978625 

4 0.567579 0.326248 0.61261 0.741613 1.037039 

High Sys.Skewness 0.382436 0.555464 0.80593 0.865672 1.013571 

 Panel B: Systematic Skewness 

 Low Sys Kurtosis 2 3 4 High Sys. Kurtosis 

Low Sys. Skewness 0.6693 -0.0438 -0.2763 0.2652 -0.2448 

2 0.6354 0.5077 0.4338 0.3883 0.4721 

3 1.5265 0.9333 1.289 1.2552 1.1804 

4 2.2314 2.1372 2.3703 1.8085 1.9682 

High Sys.Skewness 2.8773 3.2358 3.948 2.9127 2.6647 

Panel C: Systematic Kurtosis 

 Low Sys Kurtosis 2 3 4 High Sys. Kurtosis 

Low Sys. Skewness 0.3095 0.1402 0.3916 0.5628 1.2979 

2 0.1733 0.2171 0.2876 0.6197 1.2293 

3 0.4795 0.3488 0.6112 0.8473 1.2702 

4 0.349 0.538 0.7377 0.9571 1.3462 

High Sys.Skewness -0.067 0.7382 0.8243 1.1449 1.4505 
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Table 3.  Multivariate Tests of Intercepts from the Four-Moment Model 

The table reports results of the multivariate tests on zero intercepts from the four-moment model. The test-statistic is the Gibbons-Ross-Shanken 

statistic which follows an F-distribution with degrees of freedom N and T-N-L where T is the total observations, N is the number of portfolios and 

L is the number of regression parameters in the model including the intercept. The GRS-statistic is computed as    
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pR ; ∑̂ is the variance-covariance matrix of the residuals from the time-series regression; )...(ˆ
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the vector of the least squares estimators for the pricing errors of the time-series regressions where i0δ  is the intercept of the regression of 

portfolio i on L regression parameters. P-values are presented in parentheses. * and ** denote the statistical significance at 5 and 1 percent levels.
 
 

 

Period 

 

Two-moment model 

GRS-statistic 

Four-Moment Model 

GRS-statistic 

1992-1996 0.991885** 

(0.0028) 

0.905154 

(0.5983) 

1997-2001 1.663674** 

(0.0022) 

1.764330 

(0.3666) 

2001-2006 2.009365** 

(0.0069) 

0.808158 

(0.7310) 

2007-2009 1.278295* 

(0.0432) 

1.53517 

(0.0721) 

            1992-2009 

 

1.911462** 

(0.0007) 

1.920141** 

(0.0044) 
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Table 4.  Comparison of Risk Premium Estimates using Traditional CSR vs Dagenais and Dagenais Higher-Moment Estimators 

Corrected for EIV Problems  

The table reports the  significance of  average risk estimates of the market , the systematic skewness and  the systematic kurtosis  premia 

using (1) week-by-week CSR model after estimating the betas in rolling regressions using 30 weeks at a time (T=30) and (2) DDHME for 

cross-sectional regressions with EIV. The CSR model is Niiiiif
ripR ,,1,33,22,11, ⋯=++++=− εβδβδβδα  .The equation for 

DDHME cross-sectional regressions with EIV is:
 

NiwwwrR iiiifip ,,1ˆˆˆ
332211,33,22,11, ⋯=+++++++=− εϕϕϕβδβδβδα where 

i,1β  

i,2β  and 
i,3β are obtained from rolling time-series regressions in the first-pass of CRS to estimate risk factor for each week and iŵ are the 

difference between the observed iβ  and the estimated iβ̂ .The null hypotheses of  iδ  =  0 and 0ˆ =iϕ   are tested  and
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are reported respectively. * and ** denote  the statistical significance at the 5 and 1 percent levels.  

 Two-pass CSR  Higher-Moment Estimators 

Period 
1t 
( )Marketβ  

2t  

( )Skewnessβ  

3t  

( )Kurtosisβ  

1t  

( )Marketβ  

2t  

( )Skewnessβ  

3t  

( )Kurtosisβ  

v1 

( )Marketw
 

v2 

( )Marketw
 

v3 

( )Marketw
 

1992-1996 -0.77 0.27 -0.86 0.54 -0.27 1.68
^
 1.24 -0.06 -1.19 

1997-2001 -1.01 2.14** -2.37** 0.85 1.18 1.16 0.49 -0.64 -0.61 

2002-2006 0.62 1.03 1.09 -0.65 0.20 0.37 0.44 0.52 0.43 

2007-2009 1.97** -2.03** -3.77** -1.07 -0.42 0.10 1.03 -2.00** 1.59 

whole period -1.51 2.80** -3.41** -0.66 2.24** 2.23** 0.34 1.16 1.03 
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