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Abstract

This paper studies the effects of multiple investment horizons and
investors’ bounded rationality on the price dynamics. We consider
a pure exchange economy with one risky asset, populated with agents
maximizing CRRA-type expected utility of wealth over discrete invest-
ment periods. An investor’s demand for the risky asset may depend
on the historical returns, so that our model encompasses a wide range
of behaviorist patterns. The necessary conditions, under which the
risky return can be a stationary iid process, are established. The com-
patibility of these conditions with different types of demand functions
in the heterogeneous agents’ framework are explored. We find that
conditional volatility of returns cannot be constant in many generic
situations, especially if agents with different investment horizons op-
erate on the market. In the latter case the return process can display
conditional heteroscedasticity, even if all investors are so-called “funda-
mentalists” and their demand for the risky asset is subject to exogenous
iid shocks. We show that the heterogeneity of investment horizons can
be a possible explanation of different stylized patterns in stock returns,
in particular, mean-reversion and volatility clustering.
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1 Introduction

Up to now, the heterogeneous markets literature almost exclusively focuses
on the expectations of market agents, according to which investors are classi-
fied into “fundamentalists”, “chartists” and “noise traders”. It is shown that
the interaction, herding behavior and strategy switching of heterogeneous
agents transform noise process and create persistent trading volume, excess
volatility, fat tails, clustered volatility, scaling laws (see Hommes [2006] and
LeBaron [2006] for surveys on interacting agents models). Andersen [1996]
interprets the aggregated volatility as the manifestation of numerous het-
erogeneous information arrivals. Limits to arbitrage, market psychology,
heuristics and biases, which are subject of behavioral finance, can also be
helpful to explain empirical evidence [see Barberis and Shleifer, 2003].

A number of analytically solvable models were proposed to explore the
dynamics of financial market with heterogeneity coming from boundedly ra-
tional beliefs of investors about future returns. Brock and Hommes [1998]
proposed a model, where investors switch between a number of strategies
according to expected or realized excess profits. Stylized simple strategies
describe patterns in investors’ behavior that are commonly observed empir-
ically - chartism and trend-following. Chiarella and He [2001] and Anufriev
et al. [2006] studied an artificial market populated with investors, follow-
ing heterogeneous strategies and maximizing the expected CRRA utility.
Compared to earlier studies that use CARA utilities, they make investment
decisions depend on wealth, which is undoubtedly more realistic but techni-
cally more difficult. Vanden [2005] introduces a more sophisticated step-wise
dependence of the risk aversion on wealth and finds that this can have impor-
tant consequences for return dynamics. Recently Weinbaum [2009] showed
that heterogeneous risk preferences and risk sharing can be the source of
volatility clustering.

To our knowledge, all the above-mentioned models of heterogeneity ig-
nore one of its important sources, which is different investment scales. By
investment scales we mean typical periods between two consecutive adjust-
ments of investment portfolio, peculiar to a certain type of investors. The
heterogeneity of the market with respect to agents’ operations frequencies
is further referred to as the Multiple Investment Scales (MIS) hypothesis.
We suppose that investors maximize expected utility of wealth at the end
of some investment period. We call the typical length of this period as
investment horizon (or scale).

Earlier the effect of heterogeneity in investment horizons was studied in
Anufriev and Bottazzi [2004]. They derive a fixed point for the price of the
risky asset dynamics under the assumption that agents maximize expected
CARA utility over different periods in future. But their model disregards
the effect of various frequencies of portfolio adjustments and, due to the con-
straints of the CARA assumption, does not realistically account for the dy-
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namics of wealth. They conclude that heterogeneity of investment horizons
alone is not enough to guarantee the instability of the fundamental price and
the emergence of the non-trivial price dynamics, such as volatility clustering
or serial correlations. In this paper we derive the opposite conclusion, which
is close to that obtained in Chauveau and Topol [2002]. Working in a differ-
ent framework, they explained volatility clustering of OTC exchange rates
by market microstructure effects, unifying intraday and interday dynamics.

Though not examining the MIS hypothesis analytically, several earlier
studies evoke the heterogeneity of investment horizons as a possible expla-
nation of the stylized facts in stock price volatility. The assumption that
price dynamics is driven by actions of investors at different horizons serves
as a micro-economic foundation of the volatility models in Müller et al.
[1997]. They suppose that there exist volatility components, correspond-
ing to particular ranges of stock price fluctuation frequencies, that are of
unequal importance to different market participants. These participants
include intraday speculators, daily traders, portfolio managers and institu-
tional investors, each having a characteristic time of reaction to news and
frequency of operations on the market. So frequencies of price fluctuations
depend on the periods between asset allocation decisions, and/or the fre-
quencies of portfolio readjustments by investors.

An important question, is answered in this paper, is whether the pres-
ence of (i) contrarian and trend-following investors and (ii) heterogeneous
information arrivals on the market are necessary properties for an inter-
acting agents model to reproduce the stylized facts of the return volatility
dynamics. We show that, under some conditions, volatility clustering can
arise even in an economy populated with fundamentalist traders only, given
that they adjust their portfolios with different frequencies. We also pro-
pose a study of the joint effect of the MIS hypothesis and of the bounded
rationality in investment strategies.

The rest of the paper is organized as follows. In the next section we
introduce the general setting of the model. Section 3 describes the equilibria
in the one-scale model with boundedly rational investors, re-examining the
conclusions of Anufriev et al. [2006] and preparing the ground for the study
of the multi-scale case. In section 4 we derive the equilibrium in the MIS
case and establish the properties of the return dynamics. In section 5 we
illustrate our findings with simulation examples. In conclusion the main
results are summarized and possible model extensions are discussed.

2 A Model for Joint Dynamics of Stock Price and

Wealth with Multiple Investment Scales

In this section we formulate the model and then discuss its various pos-
sible specifications and assumptions. The general setup follows the lines
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of Chiarella and He [2001] and Anufriev et al. [2006], to which we add the
MIS hypothesis and some constraints on investors’ behavior, discussed later.
Where possible, we keep the same notation as in Anufriev et al. [2006], to
enable the easy comparison of results.

Consider a two-assets market where N agents operate at discrete dates.
The risk-free asset yields a constant positive interest Rf over each period
and the risky asset pays dividend Dt at the beginning of each period. The
price of the risk-free asset is normalized to one and its supply is absolutely
elastic. The quantity of the risky asset is constant and normalized to one,
while its price is determined by market clearing by a Walrasian mechanism.
The Walrasian assumption means that all agents determine their demand
for the risky asset taking the price of the risky asset Pt as parameter.

The demand of the risky asset is formulated in terms of the shares of
wealth of agents, so that xt,i stands for the share of wealth that investor
i with wealth Wt,i wishes to invest in the risky asset. The corresponding

number of units of the asset is
Wt,ixt,i

Pt
. The market clearing condition im-

poses:
N∑

i=1

xt,iWt,i = 0

The wealth of each investor evolves according to the below equation:

Wt,i = (1 − xt−1,i)Wt−1,i(1 + Rf ) +
xt−1,iWt−1,i

Pt−1
(Pt + Dt) =

(1 − xt−1,i)Wt−1,i(1 + Rf ) + xt−1,iWt−1,i(Rt + εt),

where Dt is a dividend payment, whose ration to price is supposed to be an
iid random variable εt, and Rt is the return on the risky asset. We define
the total return by

Yt =
Pt + Dt

Pt−1
.

Following Anufriev et al. [2006], we rewrite the model in rescaled terms
which allows to eliminate the exogenous expansion due to the risk-free asset
growth from the model:

wt,i =
Wt,i

(1 + Rf )t
, pt =

Pt

(1 + Rf )t
, et =

εt

1 + Rf

, yt =
Yt

1 + Rf

.

By consequence, the rescaled return on the risky asset is defined by:

rt =
pt

pt−1
− 1 =

1 + Rt

1 + Rf

− 1. (1)

In these terms the whole system dynamics simplifies to:

pt =
∑

i

xt,iwt,i,

wt,i =wt−1,i [1 + xt−1,i (rt + et)] . (2)
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Proposition 2.1. The rescaled price dynamics, solving the dynamic system
(2), verifies:

pt = pt−1

∑
i wt−1,i (xt,i − xt−1,ixt,i) + et

∑
i xt,ixt−1,iwt−1,i∑

i wt−1,i (xt−1,i − xt,ixt−1,i)
,

Proof. See Anufriev et al. [2006].

Proposition 2.1 describes the equilibrium price dynamics in the sense
that at each period t Walrasian equilibrium is achieved on our two-asset
market. It is straightforward to see that the equilibrium return must satisfy:

rt =

∑
i wt−1,i (xt,i − xt−1,i + xt,ixt−1,iet)∑

i wt−1,i (xt−1,i − xt,ixt−1,i)
, (3)

if the rescaled return is defined by (1). Note that equation (3) explicitly
specifies the return rt conditionally to the information set at period t − 1,
if and only if we impose additional assumptions: both the demand xt,i and
the dividend yield et must be independent of the current price level pt.

The simplest assumption about dividends one can suggest to make the
model in (2) tractable, is that the dividend yield is an iid non-negative
stochastic process. Following Chiarella and He [2001] and Anufriev et al.
[2006], we stick to this assumption, though we are aware of the constraints
it imposes. Dividends in our economy are deprived of their own dynamic,
but follow the risky asset price. Roughly speaking, the amount of dividends
available is supposed to automatically adapt to the fluctuations of the price
level, so that the mean dividend yield remains unchanged. In real life div-
idends are paid by stock issuers and so depend on companies’ profits and
decided payout ratios. If the supply of the risky asset is fixed, one can hardly
expect a perfectly linear dependence between average dividends and prices,
though a positive relationship between them does exist. However, for the
purposes of our paper, the iid assumption for the dividend yield is sufficient.

So far, nothing was said about the way agents determine the desired
proportions of investment in the risky asset. The MIS hypothesis, studied
in this paper, implies that some investors do not trade at all time periods
and remain passive. During the period, when some investor is out of the
market, his share of investment in the risky asset is no longer a result of his
decisions but a consequence of price and wealth movements, independent
of his will. The following proposition specifies the way investment shares
evolve.

Proposition 2.2. Let x−k
t,i be the share of investment in the risky asset of

investor i, who actually participated in the trade k periods ago, k = 0, . . . , h−
1 with h his investment horizon. The investment share verifies the following
recurrent relationship:

x−k
t,i =

x−k+1
t−1,i (1 + rt)

1 + x−k+1
t−1,i (rt + et)

(4)
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Proof. See Appendix.

At the periods, when investor i readjusts his portfolio, his demand for the
risky asset x0

t,i is determined according to some investment function. In this
paper, we suppose that investment functions are given as the dependence of
the share of wealth, invested in the risky asset, on the beliefs about future
gains. We also suppose that investment functions are deterministic and do
not change over time for the same investor1. The beliefs are based on the
past observations of prices and dividends, without any private information
that could be used to forecast future returns. Moreover, each investment
function is supposed to be independent of the current wealth, which is a
natural assumption in the CRRA framework. So investor i’s function reads:

x0
t,i = fi(rt−1, . . . , rt−Li

, et−1, . . . , et−Li
) (5)

where Li is the maximum lag for historical observations used by the agent
i, which can be finite or infinite.

In particular, we study the case of preferences that corresponds to the
maximization of the mean-variance CRRA expected utility of wealth. Let
us suppose that investors, possibly operating over different time scales, max-
imize a mean-variance expected utility:

max
x0

t,i

{
Et−1,i(Wt+h,i) −

γi

2Wt,i
Vart−1,i(Wt+h)

}
(6)

with operators Et−1,i(·) and Vart−1,i(·) standing for the beliefs of agent i
about the mean and variance given the information at time t − 1. The
information set of period t − 1 includes prices of the risky asset and div-
idends at time t − 1 and earlier. The coefficient γi is a positive constant
that measures the risk aversion of investor i. The time horizon of decision
taking, denoted h, corresponds to the period of time when investor i does
not readjust his portfolio. The number of units of risky asset in investor’s
possession remains constant over [t; t + h], while the share of investment in
the risky asset may evolve. We assume that dividends, paid by the risky
asset during this period, are accumulated on the bank account, yielding the
risk-free rate.

Proposition 2.3. The solution x0∗
t,i of the maximization problem (6) is ap-

proximately given by:

x0∗
t ≈

E t−1,i

[∑h
k=1(et+k + rt+k)

]

γiVar t−1,i

[∑h
k=1(et+k + rt+k)

] (7)

1Note that this does not exclude functions, corresponding to investment strategies that
evolve according to predefined rules.
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Proof. See Appendix.

Chiarella and He [2001] show that the expression, similar to (7) with
h = 1, that we introduced as the solution of the mean-variance optimization
problem (6), also emerges as an approximative solution in the maximiza-
tion problem with the power utility function. This approximation, however,
resides in a discretization of a continuous-time process with Gaussian in-
crements and thus it can be far from the real solution for non-infinitesimal
time units. So we prefer to work with mean-variance maximization directly.
Alternatively, an investment function of the form (7) could be set on an a
priori basis since it describes the behavior of a mean-variance investor with
constant relative aversion to risk.

Notice that if the return process is iid, E t−1 [yt,t+h] = hE t−1 [rt+1 + et+1]
and Var t−1 [yt,t+h] = hVar t−1 [rt+1 + et+1]. This ensures that if, in addi-
tion, the risk aversion is homogeneous for investors at all scales (γi = γ),
the demand for the risky asset does not depend on the investment horizon.
We maintain the assumption of homogeneous risk aversion throughout this
paper.

In equation (7) the portion of wealth to be invested in the risky asset
depends exclusively on the beliefs of agents about future yields. In the
heterogeneous agents literature these beliefs are based on historical prices
of the risky asset upto a certain lag. The trouble comes when at period t
the price pt is considered. In a Walrasian market, current price is taken as
a parameter to determine the demand for the risky asset. So there is no
formal reason to exclude this price from the information set of the agents.

Chiarella and He [2001] posit that, though the current return can be
included in the equation for beliefs, it is not essential, but leads to the losses
in the tractability of the model. If pt is simply to be used by investors
along with other historical prices to estimate some quantities, such as mean
and variance, it can easily be excluded from the information set. This is
an appropriate assumption for a dynamic system, in which dividend yield
is the only source of uncertainty. If the system were also innovated by
information signals, the situation would become more complicated, because
the current price (or, more exactly, the latest return) could be revealing
about the information, perceived by other agents, being a useful complement
to the private information. In this case we expect a non-negligible impact
of the latest return on the current investment decision.

In our model without signals we exclude pt form the information set
in order to avoid unnecessary complexity. Nevertheless, in a MIS case the
aggregate demand on the risky asset naturally depends on the current price
level. Indeed, suppose that the previous date, when investor i participated
in the trade, was t − k and that at this date the share of wealth x0

t−k,i he
invested in the risky asset was determined according to (5). Then it follows
from (4) that his current investment share x−k

t,i depends on the historical
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returns and dividend yields up to the lag Li + k− 1, but also on the current
return and the dividend yield, which are unknown before the trade at date t.
So equation (3) does not explicitly specify the dynamics of the risky return.

In the following section we sudy the dynamics of the price and wealth in
the model with one scale, which is a particular case of the model, introduced
in the previous section. We further refer to it as the benchmark model. We
extend the analysis of Anufriev et al. [2006] in several aspects, also important
in the MIS case, studied later.

3 Equilibria in the One-Scale Model with Bounded

Rationality

As we have mentioned before, in the one-scale case, equation (3) completely
and explicitly describes the dynamics of the return on the risky asset under
the market clearing condition. By specifying the demand function, one
can determine the equilibrium price and return. This equilibrium dynamics
was earlier studied in Anufriev et al. [2006], who replace the actual dividend
yield by its mean and work with the so-called “determenistic skeleton” of the
system. In the deterministic case the (rescaled) return is constant: rt = r∗.
The authors prove that two types of equilibria are possible: either a single
agent survives 2, or many agents survive, but in both cases the equilibrium
share of investment in the risky asset and the steady growth rate of its price
are determined in a similar way. They must satisfy the relationship, which
is easily obtained from (2) for a single-agent case, when we pose xt = xt−1

for all t. This relationship is called the Equilibrium Market Line (EML) and
reads:

x =
r

r + ē
(8)

where ē is the mean dividend yield.
The demand functions of investors depend on a single variable and are

of the form:
x = f(rt−1, . . . , rt−L) = f(r, . . . , r) = f̃(r) (9)

The equilibrium points are determined as the intersections of the demand
curve f̃(r) and the EML. It is shown that, if multiple agents survive, their
demand functions must all intersect the EML at the same equilibrium point.
Stability conditions, depending on the properties of derivatives of fi(·) with
respect to returns at different lags, are established. We refer the reader to
the original paper of Anufriev et al. [2006] for further details.

In our approach, the main difference is that we are interested in the
stochastic properties of the return process. In particular, we establish ana-
lytically, under what conditions the dynamics of returns is “simple” (iid) and

2
i.e. his share in the total wealth does not decrease to zero in infinite time
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when it displays “interesting” dynamic patterns (conditional heteroscedas-
ticity and/or serial correlations). In our view, this type of approach is
appropriate for the study of boundedly rational behavior of agents, whose
investment functions are based on beliefs about mean and variance of the
return process. This point is explained further.

For the case of multiple agents with heterogeneous investment functions,
Anufriev et al. [2006] determine, which form of the demand function “dom-
inates” the others. For example, if a trend-follower (investor who strongly
extrapolates past returns) meets a fundamentalist (investor, whose demand
function is independent of the price history), the second has no chance to
survive. A striking feature of the model is that equilibria are possible for
almost any, and even completely senseless, demand functions and can even
be stable.

The problem here is with bounded rationality. More precisely, it is im-
portant to what extent the rationality is bounded. In Anufriev et al. [2006]
and Chiarella and He [2001], investment functions are given a priori, and
though they formally depend on the beliefs of agents about the mean and
variance of future returns, there are no constraints on how these beliefs
should be related to the true quantities.

Bounded rationality means that agents may not know the true model.
But in equilibrium, when the return on the risky asset is supposed to be
constant, it is hard to admit that the beliefs have nothing to do with reality.
Besides, the stability of such equilibria hardly makes sense from the economic
point of view, since agents would have incentives to change their strategies,
if they were allowed to.

In Brock and Hommes [1998] agents are allowed to switch between strate-
gies, according to the profits they yield in the past. The agents can thus
be claimed to be procedurally rational, because they try to rationally choose
strategies according to some criteria. In our case, a more exact definition of
procedural rationality can be helpful to study the model analytically. We
restrain the class of admissible investment functions, considerably reducing
the possibilities for non-rationality of economic agents, without necessarily
imposing rational expectations.

Definition 3.1. An investment function of the form:

x0
t,i = f̃i (E t−1,i[yt,t+h], Vart−1,i[yt,t+h]) (10)

is called procedurally rational if the beliefs Et−1,i(yt−1,t+h) and Vart−1,i(yt,t+h)
about the mean and variance of the future total returns are unbiased esti-
mates of these quantities with finite error, if the true process yt,t+1 is iid.

This definition is an adaptation of Simon’s procedural rationality 3 to our
context. It basically states that, if previous observations of returns display

3“Behavior is procedurally rational when it is the outcome of appropriate deliberations.
Its procedural rationality depends on the process that generated it” [Simon, 1976, p.131].
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no non-trivial dynamic patterns, the beliefs about mean and variance of
investors should have no systematic error. Note that in no way we state that
returns should actually follow an iid process, we only describe the behavior
of the investment function in this hypothetical case in order to impose some
constraints on the “reasonability” of the decision taking procedure, used by
investors.

Note that our definition does not contradict to the concept of bounded
rationality, but it requires some moderate degree of consistency in investors’
beliefs. Procedurally rational investors can actually be trend followers or
contrarians. Consider, for example, the following specifications for the be-
liefs about the mean of future returns:

Et,i(yt+1) = ci +
di

l

l∑

k=1

yt−k (A)

Et,i(yt+1) =
1 − di

L

L∑

k=1

yt−k +
di

l

l∑

k=1

yt−k (B)

(11)

The function of the type, analoguous to (11A), is used in Chiarella and He
[2001] to represent the behavior of heterogeneous investors. Here ci is some
constant that represents the risk premium, required by the investor, and di

is a behaviorist parameter, which specifies, how investor i extrapolates the
performance of the risky asset over l recent periods. If di = 0, the investor
is fundamentalist, if di > 0 he is a trend-follower, otherwise contrarian
(chartist). It is easy to see that this specification does not correspond to
our definition of the procedural rationality, unless simultaneously ci = 0 and
di = 1. The function (11B) also allows for the extrapolation of the recent
returns via the parameter d. If l < L, positive di corresponds to the trend-
following. But this function verifies our condition for procedural rationality:
in the iid case the expectation of the difference in the short-term and the
long-term mean is null.

In our case of the constant relative risk aversion we suppose that in-
vestors’ preferences are described by the function of the form (7), satisfying
definition 3.1. Having restrained the set of admissible investment functions,
we turn to the study of the price dynamics in the benchmark model. In the
following theorem we establish the conditions that must be verified by the
investment function to ensure “simple” dynamics of the returns, which can
be associated with some steady growth trajectory. Note that, in our con-
text, the study of the deterministic version of the model, makes little sense,
because the variance of returns is one of the key parameters of investment
behavior. Instead we focus on the stochastic model directly. The following
theorem is the first in a series of results, characterizing its properties. It
states that the assumption of investors’ rational expectations is equivalent
to the iid dynamics of returns.
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Theorem 3.2. In the benchmark model with homogeneous procedurally ra-
tional agents the return process can be iid with finite mean and variance
if and only if investors have rational expectations. In this case the mean
and variance of the return process are uniquely defined by the mean dividend
yield and investors’ risk aversion.

Proof. The homogeneity of agents means that they all have the same in-
vestment functions and, in particular, the same risk aversion γi = γ. In the
benchmark model they also use the same information, so xt,i = xt,j ,∀t, i, j
and we can drop the second subscript. Thus this case is analogous to a single-
agent model with a representative agent. Simplifying (2), it is straightfor-
ward to see that the returns do not directly depend on the wealth dynamics,
since we have:

rt =
xt − xt−1 + etxtxt−1

(1 − xt)xt−1
(12)

If rt is an iid process, then rt is independent of the returns’ history
rt−1, rt−2, . . ., but it is also independent of xt, xt−1, . . . since the latter de-
pend only on past returns. Consider the stochastic process rt|t−1 of returns,
conditional to the information at period t − 1, which is defined as the set
It = {rt−1, rt−2, . . . ; xt, xt−1, . . .}. It follows from the above that this process
is also iid.

The quantities xt|t−1 and xt−1|t−1 are both deterministic since the invest-
ment function at time t depends only on returns at time t − 1 and earlier.
So the conditional mean and variance of returns are:

Et−1(rt) =
xt − xt−1 + ēxtxt−1

(1 − xt)xt−1
(13)

Vart−1(rt) = σ2
e

x2
t

(1 − xt)2
(14)

with ē and σ2
e the mean and variance of the dividend yield process respec-

tively (both are supposed to be constant). Note that here the operators Et(·)
and Var t(·) no longer refer to the agent’s beliefs, but to the mathematical
expectation of random variable.

We have shown that the process rt|t−1 is iid. Then it follows from (13)
that xt = xt−1 = x∗ and equation (12) simplifies to:

rt = et
x∗

1 − x∗
(15)

The investment function f(rt−1, . . . , rt−L) takes the value x∗ with probabil-
ity 1 for all values rt−1, . . . , rt−L drawn from an iid process if and only if it
is a constant function in any domain where the vector rt−1, . . . , rt−L takes
values with non-zero probability.
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Since the return dynamics, given by (15), is iid, procedural rationality
implies that the beliefs of investors are unbiased:

E t−1 [rt+1 + et+1] =ē
x∗

1 − x∗
+ ē =

ē

1 − x∗

Var t−1 [rt+1 + et+1] =Var t−1

[
et+1

1 − x∗

]
=

σ2
e

(1 − x∗)2
(16)

Then, according to (7) with h = 1, the investment share satisfies:

x∗ =
ē

1−x∗

γ σ2
e

(1−x∗)2

(17)

From (17) we obtain a unique solution for x∗4:

x∗ =
ē

γ σ2
e + ē

(18)

This proves that if returns are iid, then the investment share x∗, com-
puted from (18), uniquely specifies the mean and variance of the process
rt|t−1 (or, in other words, necessary conditions for iid return dynamics). It
is easy to see that the solution we derived corresponds to the case where
investors have rational expectations.

It can be shown straightforwardly, that these conditions are also suffi-
cient. It suffices to plug the constant x∗ in the equation (12) for returns and
then verify that the expectation and variance of returns are constant and
given by (13) and (14) respectively.

An important consequence of theorem 3.2 is that in the benchmark model
with homogeneous procedurally rational investors, unless the investors have
rational expectations, returns on the risky asset never have simple iid dy-
namics. Note that equation (14) describes conditional volatility dynamics in
the model. It follows from (14) that for 0 < xt < 1, conditional variance al-
ways increases with xt. If the investment function depends positively on the
historical mean of returns and negatively on their historical variance (which
is an appropriate assumption in a procedurally rational context), then the
conditional variance is a decreasing function of historical variance and in-
creasing function of historical returns. At the same time, volatility has the
same “memory” as the squared share of investment in the risky asset, which
is determined by investors’ beliefs. If the latter are adjusted slowly, then
volatility also adjusts slowly.

Now consider the return dynamics in a more general case, when ho-
mogeneous investors are boundedly rational and all have some function

4Analoguous computation in terms of not-rescaled variables gives x∗ =
E t−1[εt+1] (γ Var t−1[εt+1] + E t−1[εt+1])

−1, which is slightly different from (18) because
of the first order approximation. This difference is of no incidence in our context.
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xt = f(rt−1, . . . , rt−L, et−1, . . . , et−L), verifying the properties in definition
3.1. The stochastic process (12) for the return dynamics is non-linear. We
study the properties of its first-order Taylor linearization in the neighbor-
hood of the expected return. We denote ẽt = et − ē and r̃t = rt − r̄ the
deviations of dividend yield and return from their average values. We also
denote f ′

k the first derivative of f(·) with respect to rt−k for k = 1, . . . , L.
The form of the return processs is given by the following thorem.

Theorem 3.3. In the benchmark model with homogeneous procedurally ra-
tional agents, if the return process is covariance stationary, it satisfies:

r̃t =
L+1∑

k=1

akr̃t−k + vtẽt (19)

vt =
x̄

1 − x̄
+

L∑

k=1

bkr̃t−k

with:

a1 =
f ′
1[1 − x̄ (1 − ē )]

x̄ (1 − x̄ )2

ak =
f ′

k[1 − x̄ (1 − ē )] + f ′
k−1(x̄ − 1)

x̄ (1 − x̄ )2
, k ∈ {2, . . . , L}

aL+1 =
f ′

L

x̄ (1 − x̄ )

bk =
f ′

k

(1 − x̄ )2
, k ∈ {1, . . . , L}

Proof. See Appendix.

Equation (19) can be written in the equivalent form:

r̃t =
k+1∑

i=1

ai r̃t−i + σe

(
ut +

x̄

1 − x̄

)
εt (20)

u2
t =

k∑

i=1

b2
i r̃2

t−i + 2
∑

i,j∈{1,...,k}

i6=j

bibj r̃t−ir̃t−j

with εt a standardized independent white noise. This stresses the ARCH-like
nature of the stochastic process.

Now we can turn to the case with heterogeneous agents, i.e. the case
when xt,i are determined in a different way by each investor. Theorem 3.4
shows that the simple iid dynamics does not appear generically if investors
are heterogeneous.
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Theorem 3.4. In the benchmark model with heterogeneous procedurally ra-
tional agents the return process can be iid with finite mean and variance only
if the aggregate share of wealth invested in the risky asset is constant. In
this case the mean and variance of the return process are proportional to the
mean and variance of the dividend yield.

Proof. See Appendix.

Basically this theorem says that if the aggregate share of investment in
the risky asset is subject to stochastic shocks or fluctuations, the return
dynamics is almost surely not trivial and displays dynamic patterns. The
situation, when the aggregate investment function is constant and returns
are iid, can arise only when the dependence of the individual procedurally
rational investment functions on the past returns is not characterized by
prevailing patterns. More precisely, individual deviations νt,i = xt,i − x̄
from some constant investment share x̄ are eliminated by aggregation with
probability one:

P (
N∑

i=1

νt,i = 0) = 1

for all t. For this condition to be true, some form of the law of large numbers
must be satisfied and, moreover, the expectation of νt,i, conditional on past
returns, must be constant. This is improbable in the situation, when all
investors base their expectations on the same vector of realized past returns
and this vector is not constant.

4 Equilibria with Multiple Investment Scales

In the previous section we considered the case when investors have the same
investment horizons, but possibly different investment functions. Now we
come back to th MIS hypothesis and study another source of heterogeneity,
related to investment horizons. Now assume that there exist H investment
scales with portfolio readjustment periods h = 1, . . . , H time units, so that
each agent has a characteristic investment scale that does not change. Sup-
pose that within each investment scale investors are homogeneous, i.e. have
the same specifications of demand function. Finally, suppose that at each
date the wealth of investors, having the same investment scale, is distributed
so that a constant part of this wealth, equal to 1/h belongs to the investors,
rebalancing their portfolios at the current date.

Under these simplifying assumptions, we can aggregate all investors,
acting at the same scale h, and replace them by a representative agent,
whose share of wealth, invested in the risky asset, satisfies:

xt,h =
1

h

h−1∑

k=0

x−k
t (21)
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Equations (2), describing the dynamics of the system, are still true, but
now the subscript i corresponds to the investment scale and the wealth wt,i

is the aggregate wealth of a class of investors, having the same investment
horizon. In section 2 we derived equation (4) that describes the evolution
of the share of investor’s wealth, invested in the risky asset, when he does
not trade. Then the complete system of equations, describing the dynamics
of risky return, reads:

rt =

∑H
h=1 wt−1,h (xt,h − xt−1,h) + et

∑H
h=1 xt,hxt−1,hwt−1,h∑H

h=1 wt−1,hxt−1,h (1 − xt,h)

xt,h =
1

h

h−1∑

k=0

x−k
t,h

x−k
t,h =

x−k+1
t−1,h (1 + rt)

1 + x−k+1
t−1,h (rt + et)

(22)

As noted above, an important feature of (22) is that it describes the return
dynamics only implicitly, because the investment share for all but the short-
est scales inevitably depends on current return. The relation between the
price and the dividend process becomes non-linear and complicated, because
it includes previous dividends. For the general equation of price dynamics,
we can prove that:

Theorem 4.1. Whatever the number of scales H, there always exists at
least one positive market clearing price for which the return rt satisfies (22).

Proof. See Appendix.

It is important to specify conditions, under which the multi-scale dynam-
ics does not degenerate, that is the portions of wealth, held by the agents,
investing at each scale, do not tend to zero as time tends to infinity.

More precisely, denote ξt,h the portion of wealth that belongs to investors
of type h.

Definition 4.2. The MIS dynamics, described by equation (22), is called
non-degenerating, if for any investment scale h such as ξ0,h > 0 we have :

P (ξt,h = 0) = 0,

when t approaches infinity.

In the following theorem we establish the necessary and sufficient con-
ditions that provide for the non-degenerating dynamics in the MIS system.
Denote gt,h the growth rate of wealth of investors of type h at time t:

gt,h =
wt,h

wt−1,h

= 1 + xt−1,h(rt + et).
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We suppose that the stochastic process ln(gt,h) is covariance-stationary. Fur-
thermore, we suppose that it verifies the following conditions on its memory:

N−1||{Cov (ln(gt+i,h), ln(gt+j,h))}{i=1,...,N,j=1,...,N}||2 ≤ C (23)

for all positive N and some finite C. This technical condition, implying
that ln(gt,h) is a stochastic process with bounded spectral density, ensures
that the average growth rates of wealth converge almost surely to their
expectation as time tends to infinity. This result is proved in Ninness [2000].

Theorem 4.3. The multiple investment scales dynamics, described by equa-
tion (22), is non-degenerating if and only if for any h:

E [ln(gt,i)] = E [ln(gt,j)], ∀ i, j ∈ {1, . . . , H}

Proof. See Appendix.

To interpret the theorem, notice that the log growth rate of the wealth
is approximately equal to the product of the total return on the risky asset
and the share of wealth, invested in the risky asset at the previous period.
Thus, for the model to be non-degenerating, investors should either have
the same average share of investment in the risky asset, or lower investment
shares should be compensated by positive correlation of the investment share
with future return. A particular case of the non-degenerating system is non-
predictive equal-in-law investment shares:

xt,i
L
=xt,j ∀ i, j ∈ {1, . . . , H}, ∀ t

Cov (xt−i,h, rt) =0, ∀h ∈ {1, . . . , H}, ∀ i, t. (24)

Note that in MIS system the existence of autocorrelations in returns implies
correlation of the investment shares with the future returns. Moreover, the
latter is higher for investors at longer scales, because at each time period
there are more passive investors, whose investment shares depend on past re-
turns, even if elementary investment functions are constant. Thus condition
(24) is related to the absence of serial correlations in returns.

By analogy with the one-scale case, we analyze the equilibrium dynamics
of the system (22). First lest us study the “mean” dynamics, supposing
et = ē . The following theorem shows that there exists an equilibrium path
rt = r̄ that solves the deterministic analog of (22).

Theorem 4.4. The dynamic system (22) with et = ē has a unique equilib-
rium solution with constant return:

r̄ =
x̄

1 − x̄
ē ,

fh(r̄ , . . . , r̄ ) = x̄ (25)
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Proof. Suppose that the system has some equilibrium solution r = r̄. This
implies: ∑H

h=1 w̄t−1,h [x̄t,h − x̄t−1,h + ēx̄t,hx̄t−1,h]
∑H

h=1 w̄t−1,hx̄t−1,h (1 − x̄t,h)
= r̄ < ∞ (26)

Besides, it is easy to notice that, for any h, investment in the risky as-
set is constant, because the investment functions depend only on the past
realizations of returns and dividend yields, equal to r̄ and ē respectively:

x̄t,h = fh(r̄ , . . . , r̄ , ē , . . . , ē ) = x̄h.

At the same time conditions (24) implies that average investment shares are
equal for all types of investors. Thus the trajectories of wealth satisfy:

w̄t−1,h = w0,h [1 + x̄(r̄ + ē)]t−1 .

Thus equation (26) simplifies to:

ēx̄

1 − x̄
= r̄,

which is equivalent to:

x̄ =
r̄

r̄ + ē
. (27)

We need to verify that (27) is compatible with the multi-horizon dy-
namics of the investment shares, characterized by passiveness of a part of
agents at some time periods. Recall that the investment in risky asset of
each type of agents h is the mean of investments of agents that readjusted
their portfolios with 0, . . . , h − 1 periods ago. But whenever the readjust-
ment takes place, the investment share, depending on lagged returns and
dividend yields, always takes the same value x̄0

h. At the next period after
portfolio readjustment the investment share of the passive investor becomes:

x̄0
h(1 + r̄)

1 + x̄0
h(r̄ + ē)

We define the function g = ℜ → ℜ as:

g(x) =
x(1 + r̄)

1 + x(r̄ + ē)
(28)

and gk(x) as a k-times composition of function g(·), that is g ◦ g . . . ◦ g(x),
with g0(x) defined as g(x) = x. Then for any h we have:

x̄ h =
1

h

h∑

k=0

gk(x̄ 0
h) (29)
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Now notice that

g(
r̄

r̄ + ē
) =

r̄

r̄ + ē
,

which implies that x̄0
h = r̄

r̄+ē
satisfies equation (29). This proves that if the

equilibrium return exists, it satisfies:

r̄ =
ēx̄

1 − x̄
,

and thus is uniquely defined.

We can now study the properties of the stochastic process for the risky
returns and compare the results with those, obtained for the one-scale case.
As before, we will proceed by the linearization of the dynamic system. Define
the following function F : ℜt−1 ×ℜt−1 ×ℜ×ℜ → ℜ:

F (r1, . . . , rt−1, e1, . . . , et−1, rt, et) =
∑H

h=1 wt−1,h [xt,h − xt−1,h + etxt,hxt−1,h]
∑H

h=1 wt−1,hxt−1,h (1 − xt,h)
− rt

(30)

with xt,h defined as in (22). The following theorem describes the equilibrium
dynamics in the neighbourhood of the solution of the deterministic analog
of the system.

Theorem 4.5. In the model with homogeneous rational agents and multiple
investment scale, the return process is approximately described by:

rt = r̄ + r̂ t + V̄ ẽt,

r̂ t =

H−1∑

k=1

Ak r̂ t−k + Vtẽt,

Vt =
H−1∑

k=1

Bkr̂ t−k (31)
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where:

Ak =
ak − bk

(1 − c)(1 + r̄ )k
,

Bk =
x̄ (1 − 2x̄ )(c bk − ak)

(1 − x̄ )(1 + r̄ )k+1(1 − c)
,

V̄ =
x̄

1 − x̄
,

ak =
H∑

h=k+2

h − k − 1

h
ξ0,h ,

bk =
H∑

h=k+1

h − k

h
ξ0,h ,

c =
H∑

h=1

h − 1

h
ξ0,h .

Proof. See Appendix.

The result of theorem 4.5 shows that the return dynamics in the multi-
scale model with rational investors is very close to the one-scale dynamics,
the only difference being the term r̂ t. It represents the deviation from the
hypothetical trajectory of returns, that would be realized in a one-scale
market, and can be interpreted as error correction term. Note that there
is no constant in the volatility of the disturbance term, which means that
the correction term either vanishes or explodes, depending on the values of
coefficients Ak , Bk and the variance of ẽt. We will study its behavior for
plausible values of parameters in the following section.

Note that theorem 4.5 refers to the case, when investors’ demand func-
tions at the times of portfolio readjustment are trivial: investment shares
are constant at the level, corresponding to the rational equilibrium, which
coincides with the one-scale equilibrium. In practice, investment decisions
may depend on the historical returns, so the framework of procedural ratio-
nality would be more adequate for modeling. One can establish a general
analytical representation of the return dynamics in this case. Indeed, equa-
tions (A-9), (A-11) and (A-12) in the proof of theorem 4.5 (see Appendix)
still hold, but instead of (A-10) we need to adopt a general form for the
investment functions, as in theorem 3.3. However, in our view, such general
representation would be of little practical value. Instead, using simulation,
we explore the return dynamics, corresponding to concrete stylized examples
of investment functions. This issue is addressed in the following section.

19



5 Simulation Study

We determined the equations of the risky return dynamics in the case of
the market, populated with rational participants, acting at one and several
investment horizons. We also established the framework for the study of the
procedurally rational investment, that can incorporate behavioral patterns,
such as trend extrapolation and contrarian strategies. Our goal in this
section is to explore the empirical properties of the return series, generated
by different versions of our model, and to associate the properties of the
model with the stylized patterns, observed on real market data: contrarian
returns, trend formation and conditional heteroscedasticity.

From observation of (31) it is clear that introducing multiple scales
changes the way, in which the dynamic system for the risky return reacts to
shocks. These shocks could be of completely exogenous or of behavioral na-
ture. We will first study the case when, along with the “normal” disturbance
term, interpreted as dividend yield, the model is occasionally perturbated
by exogenous shock on returns, unrelated to the investment functions. Such
abnormal returns can reflect deviations from market clearing equilibrium at
some time periods.

Returns trajectories are simulated for a market with five horizons, where
abnormal returns occur at random periods, on average once per 50 trades.
We are interested in the values of coefficients Ak and Bk, that determine
the way the shock at period t is reverberated at future dates. Note that in a
one-scale model such shocks have absolutely no incidence on future returns.
The above-mentioned coefficient depend on ak, bk and c, that characterize
how initial wealth is distributed among investors.

On Figures 1 - 3 we report the results for three characteristic cases,
respectively: ∩-shape density of wealth distribution around the maximum
at horizon 3, ∪-shape with symmetric distribution of wealth with maxima
at the shortest and longest horizons and the case, when the wealth share
linearly increases with investment horizon, so that more wealth is allocated
to long-term investors. The first row of plots on each figure represents the
wealth distribution and coefficients ak, bk, c, Ak and Bk. The second row
represents examples of the trajectory of the error correction term r̂ t for 10
periods after a shock occurs and sample autocorrelation function for r̂ t and
|r̂ t|, estimated over a 10 000 trading periods simulation path. The third row
zooms on the volatility component of the error term, Vt.

Coefficients Ak are always negative at their magnitude deceases with
the lag at the rate that depends on the form of the initial wealth distribu-
tion. In all cases, this leads to significant anticorrelation with lag one. This
result is spectacular because it shows that even without any behavioral or
other hypotheses about investment functions our multiscale model generates
“contrarian returns”.
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Figure 1: Shocks to returns, ∩-shape wealth distribution

(a) Model Parameters
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(b) Reaction to Exogenous Shocks
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Model with H = 5, where initial wealth is distributed according to discretized β(2, 2)

distribution, e ∼ N(0.03, 0.022), x̄ = 0.75. Gaussian shocks with variance x̄ 2

(1−x̄ )2
σ2

ǫ are

applied to the r̃t series at random dates with frequency 1
10 H

, i.e. on average every 50
points. Autocorrelations are estimated on a 10 000 - periods simulation path.
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Figure 2: Shocks to returns, ∪-shape wealth distribution

(a) Model Parameters

0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

 

 

ξ (k)

1 2 3 4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

k

 

 

a(k)
b(k)
c(k) ≡ c

1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

k

 

 

A(k)
B(k)

(b) Reaction to Exogenous Shocks
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ρ(Vtẽt, Vt−l ẽt−l)
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, i.e. on average every 50
points. Autocorrelations are estimated on a 10 000 - periods simulation path.
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Figure 3: Shocks to returns, wealth shares increase with investment horizon

(a) Model Parameters
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points. Autocorrelations are estimated on a 10 000 - periods simulation path.
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The presence of small, but significant serial anticorrelations in the se-
ries of stock returns is one of the stylized facts about stock price dynamics,
known since Fama [1965]. In practice, the presence of statistical arbitrage
can reduce these autocorrelations, but these possibilities are limited by var-
ious transaction costs, so anticorrelations at daily frequencies often remain
noticeable [see Jegadeesh and Titman, 1995]. In more recent studies, anti-
correlations in returns are evidenced for many “other than US” markets [see
Lee et al., 2003]. Our findings add one more possible explanation.

Non-technically, the error-correction effect in our model can be described
as follows. At period t abnormally high (or low) return drives upwards (or
downwards) passive investors’ share of wealth, invested in the risky asset.
At period t + 1 those of them, who participate in the market, readjust their
portfolios to achieve the target allocation. This triggers risky asset return
and wealth of passive investors in the direction, opposite to the initial shock.
At the next period, investors, who were passive in the previous two periods
and currently participate in the trade, readjust their wealth shares with
regards to the composite effect of the two previous fluctuations, an so on.

The conditional heteroscedasticity effect is also present and its impor-
tance depends on the wealth distribution across scales, with more wealth
allocated to longer scales meaning more memory in volatility. However, this
effect is relatively small in magnitude and is only slightly reflected in the
autocorrelogram of the |r̂ t| series, dominated by the anticorrelation effect.
It is almost unnoticeable in the rt series, to which white noise with variance

x̄
1−x̄

σ2
e is added (in our example, the noise standard deviation is 3 × 10−3).

Now consider another type of shock - deviation of the investment function
from the equilibrium level. We simulate models with 1-5 horizons, pertur-
bated by random small and non-persistent fluctuations of x0

t,h, that occur on
average once per 10 h periods. In Table 1 we report the mean and standard
deviation levels for the models with different number of scales. The average
return remaining constant, we observe that the global volatility level drops
down as the number of horizons increases. In a multi-scale model exogenous
shocks are somewhat diluted, because many of the investors do not partic-
ipate in the trades when the shock occurs. They are, however, affected by
the abnormal return, generated at this period.

On Figure 4 we represent the dynamic properties of returns in the models
with different number of scales. For the one-scale case we observe large
abnormal returns at the periods of shocks and large returns at the following
period, explained by the reversion to normality of the risky asset weights
in investors’ portfolios. On the ACF for returns we find strong negative
autocorrelation at the first lag, characteristic to the MA(1) process. Note
that this is not the case for the shocks in returns, unrelated to demand, that
were discussed previously. In the one-scale model, the latter do not trigger
subsequent correction.

In the multi-horizon model with h scales, the shocks to x0
t,h have impact
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Table 1: Volatility of returns in the multi-scale model with shocks to the
investment function

1 scale 2 scales 3 scales 4 scales 5 scales

Mean return 0.009 0.009 0.009 0.009 0.009
Volatility 0.025 0.021 0.017 0.015 0.014

Models with H = 1, . . . , 5, where initial wealth is distributed according to discretized
β(2, 2) distribution, e ∼ N(0.03, 0.022), x̄ = 0.75. Gaussian shocks with variance 0.012

are applied to the demand functions series at random dates with frequency 1
10 H

, i.e. on
average every 10 − 50 points, depending on investment scale. Parameters are estimated
on a 10 000 - periods simulation path.

on the aggregated investment function xt,h during h − 1 periods, the time
necessary to rebalance all portfolios after a shock. This causes a lasting
impact on the volatility term xt

1−xt
and creates deviations from the equilib-

rium trajectory, defined by theorem 4.5 with r̂ t = 0. The deviation, in its
turn, “activates” the error correction mechanism, described above in details.
We find that, in the case of shocks to the demand function, the conditional
heteroscedasticity effect is no longer negligible. It manifests itself by the
emergence of the significant autocorrelations in absolute returns up to h− 1
lags. For illustration, we calibrate an MA(1) - GARCH(1,1) model of the
form rt = µ + εt + αεt−1, εt ∼ T (0, σt, k), σt = c + φ rt−1 + θ σt−1 (see Table
2) and find significant moving average and autoregressive components in the
conditional volatility process.

For the moment we assumed that disturbances to the system were purely
exogenous. We did not suppose any particular type of behavior, such as
trend-following or contrarian, and we did not make the shocks depend on the
past history of returns. It is important that even in this simple case we find
that the MIS model can generate interesting dynamic patterns in returns.
Certainly, deviations from rational equilibrium in investment functions can
be associated to investors’ behavior and can be present at every period,
unlike our stylized example, designed for illustration purposes.

On Figure 5 we present the results of simulation of a five-scale model
with procedurally rational investors that have investment functions, corre-
sponding to definition 3.1 and the equation of the mean expected returns is
of the form (11B). For simplicity, we suppose that L = ∞, so that the “long
term” estimate of average return is the rational equilibrium mean return.
We choose l to be equal to h, so that the short-term estimate is in fact the
last return, observed on each scale. The parameter d, if the behavior of
investor is contrarian (d < 0) or trend-following (d > 0). Note that d > 0
can also correspond to the case, when investors are fundamentalists, but
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Table 2: Estimation of GARCH(1,1) in a 5-scale model

Value Standard
Error

T-Statistic

µ̂ 0.0091 6 × 10−5 165.0157
α̂ -0.4103 0.0102 -40.1992
ĉ 6 × 10−5 4 × 10−6 14.7496

θ̂ 0.2684 0.0314 8.5379

φ̂ 0.3702 0.0290 12.7593

k̂ 4.2249 0.2228 18.9672

Log-likelihood: 31 025

Data generating process: models with 5 horizons, where initial wealth is distributed ac-
cording to discretized β(2, 2) distribution, e N(0.03, 0.022), x̄ = 0.75. Gaussian shocks
with variance 0.012 are applied to the demand functions series at random dates with fre-
quency 1

10 H
, i.e. on average every 10 − 50 points, depending on the investment scale.

10 000 simulations. Estimated model specification: rt = εt + αεt−1, εt T (0, σt, k),
σt = c + φ rt−1 + θ σt−1.

estimate expected returns on a short historical sample.
Also for simplicity, we assume that agents’ strategies are switching, so

that the coefficient d can take three values: dTF = 3 × 10−3
√

h, dC =
1.5× 10−3

√
h and dR = 0. The value dTF is chosen higher than dC because

the trend-following behavior seems to be more common, but also because this
specification ensures insignificant autocorrellations of returns, making the
simulation results more realistic. The normalization factor

√
h corresponds

to the speed of convergence of the empirical mean estimate to the true value
and ensures that the magnitude of noise in investment function is the same at
all scales. The strategies are chosen independently by investors at each scale
according to a Markovian transition matrix. At each period the probability
to continue using the same strategy, as in the previous periods, is 1 − 1

10 h

and the probability to switch to one of the other two states is 1
20 h

5.
The resulting dynamics is characterized by insignificant autocorrelations

in returns and low, but lasting and significant autocorrelations in absolute
returns, which is very characteristic of real stock markets (see, for example
Subbotin et al. [2010] or Cont [2001]).

5We could make the switching endogenous and depending on the success of the corre-
sponding strategy in the past, as in Brock and Hommes [1998]. This would be theoretically
more justified but more complicated, while the effect on the return dynamics is barely the
same. Our focus being on the multiple scales and not on the behaviorist patterns, we
prefer the simpler option.

26



Figure 4: Shocks to the investment functions
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Models with H = 1, . . . , 5, where initial wealth is distributed according to discretized
β(2, 2) distribution, e N(0.03, 0.022), x̄ = 0.75. Gaussian shocks with variance 0.012

are applied to the demand functions series at random dates with frequency 1
10 H

, i.e. on
average every 10 − 50 points, depending on the investment scale. Autocorrelations are
estimated on a 10 000 - periods simulation path.
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Figure 5: Multiscale model with switching between contrarian and trend-
following investment
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Model with H = 5, where initial wealth is distributed according to β(2, 2)-distribution,
e ∼ N(0.03, 0.022), x̄ = 0.75. Switching rules are described in the text. 10 000
simulations.

Figure 6: One-scale model with switching between contrarian and trend-
following investment
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Model with H = 1, e ∼ N(0.03, 0.022), x̄ = 0.75. Switching rules are described in the
text. Simulation until the market “explodes” (no market clearing possible) - 96 periods.
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Recall that the ARCH-effect can also be obtained in a one-scale model
with the same type of investment strategies switching. The important fea-
ture of the multi-scale case is that is smooths and mutually mitigates the
effects that are present on different scales, so that important deviations from
the rational behavior do not lead to explosions of the risky asset price. For
illustration, consider the one-scale model with the same investment func-
tion, as in our five-scales example. The system is unstable and explodes, as
shown on Figure 6. Thus, introducing multiple scales we extend the set of
available strategies and add stability to the dynamic system.

6 Conclusion

We have shown that the risky return process in the rational equilibrium
for investors with constant relative risk aversion is similar for the case of
one and multiple investment scales. However, this result does not hold if
the system is subject to shocks, exogenous or related to deviations from
rational behavior. In fact, the main difference between the multi-scale and
the one-scale models is the way the resulting dynamic system reacts to
shocks.

We first demonstrated that the multi-scale model with exogenous shocks
to returns displays serial anticorrelations, which is in line with empirical
evidence on the so-called contrarian profits. Popular explanations of rever-
sion in the stock returns include overreaction to firm specific information
[Jegadeesh and Titman, 1995], measurement errors, related to the bid-ask
spread [Boudoukh et al., 1994, Conrad et al., 1997], lead-lag effect, suppos-
ing that some stocks react to news faster than others [Lo and MacKinlay,
1990, Chou et al., 2007], time varying systematic risk [Chan, 1988] and some
others. Our model contains no overreaction, but includes error correction
that consists in temporarily passive market participants’ tendency to adjust
their portfolios back to the target weights, after the latter have deviated
because of price fluctuations. Our theoretical findings contribute to the
mean reversion literature, offering one more plausible explanation for the
anticorrelation in returns.

More importantly, we demonstrate that the multi-scale model with shocks
to investment functions generates conditional heteroscedasticity. Up to
now, explanations of conditional heteroscedasticity in the theoretical lit-
erature were almost exclusively based on the switching between contrarian
and trend-following strategies [Brock and Hommes, 1998, Chiarella and He,
2001, Anufriev et al., 2006, Weinbaum, 2009] or on wealth-dependent rela-
tive risk aversion [Vanden, 2005] . Unlike the first class of models, we do
not need to stipulate any special patterns in investment behavior. Even ex-
ogenous iid disturbances to demand functions generate the GARCH effects.
The mechanics of this effect is methodologically close to the relative risk
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aversion step function model in Vanden [2005]. In both models volatility
depends on the demand for the risky asset, expressed as portion of wealth.
In Vanden [2005] volatility changes due to the step-wise dependence of the
relative risk aversion on wealth. Thus the relation between price of the risky
asset and the value of investment in it cannot remain constant. In our model
the demand does not perfectly follow price fluctuations, because some of the
agents remain passive at each trading date.

Our multi-scale framework is perfectly compatible with the analysis of
the contrarian and the trend-following behavior. Our analysis is restricted
to the so-called procedurally rational investment strategies, ensuring that,
in the case of the iid returns, market participants do not make systematic
errors in estimating mean and variance. We prove that in the one-scale
case, which was earlier studied in Anufriev et al. [2006], equilibrium returns
are never iid, unless procedurally rational investment functions degenerate
to the truly rational (constant) investment functions. Naturally, this result
also holds for the multi-scale case. One of the consequences of introducing
the multiple scales is that the behavioral shocks to investment functions are
smoothed in time and lessened in magnitude, which adds stability to the
system.

We notify the reader that, though our results are rather general, they
are nevertheless based on a series of strong assumptions. The most impor-
tant of them include (i) the absence of information signals, related to future
returns, other than contained in historical prices; (ii) constant and exoge-
nous frequencies of market participants’ interventions in the market; (iii)
the assumption that the dividend yield is and iid random variable. These
assumptions, whose implications on our model are briefly discussed below,
can be subjects of further model extensions.

Introducing signals in our model would lead to further heterogeneity of
market agents, that will have different times of reaction to news. Obviously,
investors acting at large scales would react to news with some delay, which
can reinforce the effects, already observed in the multi-scale model. Techni-
cally, the model with signals can be close to the one studied in this paper.
Our dynamic system is innovated with one variable interpreted as dividend
yield. It could be replaced by agents’ expectation of expected futures div-
idends, with one noteworthy difference that this expectation would not be
immediately accounted in wealth.

We supposed that frequencies of trading are fixed and exogenous, but
they could be made dependent on market conditions. It would be natural
to assume that, in a high volatility market, investors tend to readjust their
portfolios more often. Trading frequency could be made completely endoge-
nous by introducing implicit transaction costs. In particular, this approach
could be helpful in explaining the patterns in trading volume.

Finally, our model, similarly to Chiarella and He [2001] and Anufriev
et al. [2006], suggests that the average dividend yield is proportional to
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price. In economic terms, this means that corporate profits exhibit constant
returns to scale, which implies that the equilibrium return can be deter-
mined endogenously by the risk-return preferences of the market agents. It
would be interesting to study the impact of heterogeneity in the investment
behavior in a more consistent macroeconomic setting, where dividend yields
are limited by the real economies’ productivity.

All the three extensions can be based on the dynamic model with multi-
ple investment scales, studied in this paper. The importance of the results,
presented here, is that they establish a general framework, which can be
used for further research on more specific problems.
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Appendix

Proof of proposition 2.2

Proof. Consider an investor, who does not operate on the market in current
period. He has a portion xt of his wealth invested in the risky asset. In the
next period the wealth he detains in the risky shares becomes (we omit the
subscript i for simplicity):

xtWtPt+1

Pt
=

xtwtpt+1(1 + Rf )t+1

pt
= xtwt(1 + rt+1)(1 + Rf )t+1

His wealth invested in the risk-free asset reads:

Wt(1 − xt)(1 + Rf ) +
Dt+1Wtxt

Pt
= wt(1 − xt)(1 + Rf )t+1+

+et+1wtxt(1 + Rf )t+1 = (1 + Rf )t+1wt[1 − xt(1 − et+1)]

Therefore, the share of investment in the risky asset satisfies:

x−1
t+1 =

xtwt(1 + rt+1)(1 + Rf )t+1

xtwt(1 + rt+1)(1 + Rf )t+1 + (1 + Rf )t+1wt[1 − xt(1 − et+1)]
=

=
xt(1 + rt+1)

1 + xt(rt+1 + et+1)

Equation (4) is obtained if instead of xt the same argument is applied to
x−k+1

t−1 .

Proof of Proposition 2.3

Proof. The evolution of an investor’s wealth between t and t + h reads (we
drop the subscript i to ease the notation):

Wt+h = xt
Wt

Pt

(
Pt+h +

h∑

k=1

Dt+k(1 + Rf )h−k

)
+ (1 − xt)Wt(1 + Rf )h.

Let Yt,t+h be the total return on the risky asset for the passive investor
between t and t + h. Then we have:

Yt,t+h =
Pt+h

Pt
+

h∑

k=1

Dt+k

Pt
(1 + Rf )h−k − 1 =

h∏

k=1

(1 + Rt+k) +

h∑

k=1

εt+k

k−1∏

i=1

(1 + Rt+i)(1 + Rf )h−k − 1.

The solution of the maximization problem (6) reads:

x∗
t =

1 + E t−1 [Yt,t+h] − (1 + Rf )h

γVar t−1 [Yt,t+h]
. (A-1)
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For small returns, (A-1) can be approximated by:

x∗
t,i =

1 + E t−1 [Yt,t+h] − hRf

γiVar t−1 [Yt,t+h]
,

so that in terms of rescaled variables the total riksy return can be written:

1 + Yt,t+h
def
= (1 + Rf )h(1 + yt,t+h) =

(1 + Rf )h

[
h∏

k=1

(1 + rt+k) +
h∑

k=1

et+k

k−1∏

i=1

(1 + rt+i)

]
,

or with the first order precision:

1 + Yt,t+h ≈ 1 + yt,t+h ≈ hRf +

h∑

k=1

rt+k + et+k.

For the optimal investment share, this gives approximative solution:

x∗
t,i ≈

E t−1[yt,t+h]

γiVar t−1 [yt,t+h]

Proof of Theorem 3.3

Proof. Equation (12) can be written in the form:

rt =
xt − xt−1 + ē xtxt−1

xt−1 − xtxt−1
+

xtxt−1

xt−1 − xtxt−1
ẽt.

We define the function:

F (rt−1, . . . , rt−L−1) =
xt − xt−1 + ē xtxt−1

xt−1 − xtxt−1
.

The function F depends on the history of returns upto the lag L+1 because
it the term xt−1, determined by investors from L observations of returns
prior to t − 1. Denote F ′

k the derivative of F with respect to its argument
number k, evaluated in the point (r̄ , . . . , r̄ ). Then we have:

F ′
1 =

(f ′
1 + f ′

1x̄ ē )[x̄ (1 − x̄ )] + x̄ f ′
1(x̄ − x̄ + x̄ 2ē )

x̄ 2(1 − x̄ )2
=

f ′
1[1 − x̄ (1 − ē )]

x̄ (1 − x̄ )2

For k = 2, . . . , L we obtain:

F ′
k =

x̄ (1 − x̄ )[f ′
k − f ′

k−1 + x̄ ē (f ′
k + f ′

k−1)] − x̄ 2ē [f ′
k−1(1 − x̄ ) − x̄ f ′

k]

x̄ 2(1 − x̄ )2
=

f ′
k[1 − x̄ (1 − ē )] + f ′

k−1(x̄ − 1)

x̄ (1 − x̄ )2
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Finally, for the last term:

F ′
L+1 =

x̄ (1 − x̄ )(−f ′
L + x̄ ē f ′

L) − x̄ 2ē (1 − x̄ )f ′
L

x̄ 2(1 − x̄ )2
= − f ′

L

x̄ (1 − x̄ )

In a similar way, define

G(rt−1, . . . , rt−k−1) =
xtxt−1

xt−1 − xtxt−1
.

and compute its derivatives:

G′
1 =

x̄ (1 − x̄ )x̄ f ′
1 + x̄ f ′

1x̄
2

x̄ 2(1 − x̄ )2
=

f ′
1

(1 − x̄ )2

For k = 2, . . . , L :

G′
k =

[x̄ f ′
k + x̄ f ′

k−1]x̄ (1 − x̄ ) − x̄ 2[f ′
k−1(1 − x̄ ) − x̄ f ′

k]

x̄ 2(1 − x̄ )2
=

f ′
k

(1 − x̄ )2

The last term reads:

G′
L+1 =

x̄ f ′
Lx̄ (1 − x̄ ) − x̄ 2f ′

L(1 − bx)

x̄ 2(1 − x̄ )2
= 0

Using these results, we can rewrite the stochastic process (12) for returns
in a linearized form:

r̃t = −r̄ + F (r̄ , . . . , r̄ ) +
L+1∑

k=1

F ′
i r̃t−k + vtẽt

vt = G(r̄ , . . . , r̄ ) +
L∑

k=1

G′
ir̃t−k

Since r̃t is a zero-mean process, we impose:

r̄ = F (r̄ , . . . , r̄ ) =
x̄ ē

1 − x̄

which immediately gives (19).

Proof of Theorem 3.4

Proof. The equilibrium dynamics of returns can be derived from (2) in a
way similar to the homogeneous case:

rt =

∑
i wt−1,i (xt,i − xt−1,i) + et

∑
i xt,ixt−1,iwt−1,i∑

i wt−1,i (xt−1,i − xt,ixt−1,i)
(A-2)
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If rt is iid, the same is true for rt|t−1. For the mean of rt|t−1 to be constant,
it is necessary that:

∑

i

φt−1,i (xt,i − xt−1,i) = c1

∑

i

φt−1,i (xt−1,i − xt,ixt−1,i)

∑

i

φt−1,ixt,ixt−1,i = c̃2 (xt−1,i − xt,ixt−1,i)
(A-3)

with c1 and c̃2 two constants and φt,i =
wt,i∑
i wt,i

. Then Et−1(rt) = c1 + c̃2ē

and Vart−1(rt) = c̃2
2σ

2
e . Simplifying (A-3) and setting c2 = c̃2

1+c̃2
, we get:

∑

i

φt−1,ixt,i = [1 − c1(1 − c2)]
∑

i

φt−1,ixt−1,i

∑

i

φt−1,ixt,ixt−1,i = c2

∑

i

φt−1,ixt−1,i

(A-4)

with c1 and c2 are two constants. The case of constant average investment
function is a particular case of (A-4) when we chose c1 = 0. Note that the
quantity

∑
i φt−1,ixt,ixt−1,i must also be constant in this case.

On the other hand, if returns are iid, procedurally rational investors
must have investment functions, based on unbiased beliefs. Thus, for any t
the latter can be written in the form:

xt,i =
E (rt) + υt,i

γiVar (rt) + ζt,i
(A-5)

with υt,i and ζt,i are centered random variables. But (A-5) implies that in (A-
4) the growth rate of the aggregate investment share 1−c1(1−c2) cnanot be
deterministic and different from one. Thus the case of the constant average
investment function, where c1 = 0, is the only one compatible with the
iid dynamics of returns in the heterogeneous case. The mean and variance
of returns in this case are proportional to the mean and variance of the
dividend yield, but are not defined uniquely and depend on the parameter
c2.

Proof of Theorem 4.1

Proof. Let us denote

Ξ(r) =r −
∑H

h=1 wt−1,h (xt,h − xt−1,h) + et

∑H
h=1 xt,hxt−1,hwt−1,h∑H

h=1 wt−1,hxt−1,h (1 − xt,h)

xt,h =
1

h

h−1∑

k=0

x−k
t,h

x−k
t,h =

x−k+1
t−1,h (1 + r)

1 + x−k+1
t−1,h (r + et)
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We prove that continuous function Ξ(r) at least once takes the value zero in
the interval ] − 1;∞[ (the lower bound for r ensures that stock price stays
positive). It is easy to show that:

lim
r→−1

Ξ(r) < 0

First, notice that limr→−1 x−k
t,h = 0, ,∀k, and so the right side of the expres-

sion for Ξ(r) does not depend on r. Then, using that 0 ≤ xt,h ≤ 1 and by
consequence

H∑

h=1

wt−1,hxt−1,h (1 − xt,h) > 0,

we can show that the statement limr→−1 Ξ(r) > 0 is equivalent to:

−
H∑

h=1

wt−1,hxt−1,h (1 − xt,h) −
H∑

h=1

wt−1,h (xt,h − xt−1,h) − et

H∑

h=1

xt,hxt−1,hwt−1,h > 0.

The latter inequality simplifies to:

−
H∑

h=1

wt−1,hxt−1,hxt,h −
H∑

h=1

wt−1,hxt,h −
H∑

h=1

wt−1,hxt,h, xt−1,het > 0

which is evidently absurd.
On the other hand, one can show that:

lim
r→∞

Ξ(r) = ∞

This follows from limr→∞ x−k
t,h = 1, ∀k, which implies that:

lim
r→∞

=

∑H
h=1 wt−1,h (xt,h − xt−1,h) + et

∑H
h=1 xt,hxt−1,hwt−1,h∑H

h=1 wt−1,hxt−1,h (1 − xt,h)
< ∞.

The result of the theorem is obtained by continuity.

Proof of Theorem 4.3

Proof. Denote ξt,i,j the ratio between the wealth of investors at scale i and
at scale j, taken at time t, that is:

ξt,i,j =
wt,i

wt,j

It is evident that definition (23) is equivalent to

ξ0,i,j > 0 => P (ξt,i,j = 0) = 0, ∀ i, j ∈ {1, . . . , H}, when t → ∞ (A-6)
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The ratio of wealth can be written as:

ξt,i,j = ξ0,i,j

∏t
k=1 gk,i∏t
k=1 gk,j

or equivalently in logarithmic terms:

ln(ξt,i,j) = ln(ξ0,i,j) +
t∑

k=1

[ln(gk,i) − ln(gk,j)] . (A-7)

It follows from (23) that, as t → ∞, the sum in (A-7) converges almost
surely to:

∞∑

k=1

(E [ln(gk,i)] − E [ln(gk,i)]),

which is finite if and only if

E [ln(gk,i)] = E [ln(gk,i)].

This condition is evidently equivalent to:

ln(ξt,i,j)
a.s.−→ ln(ξ0,i,j),

which proves the theorem.

Proof of Theorem 4.5

Proof. Consider equation F (r1, . . . , rt−1, e1, . . . , et−1, rt, et) = 0 that implic-
itly defines the equilibrium return dynamics. In order to study conditional
volatility of returns, we will linearize the function F in the neighborhood of

the point Mǫ
def
= (r̄, . . . , r̄, ē, . . . , ē, r̄, et) rather than the point M (recall that

et is the source of innovation in the system). A first-order series expansion
yields:

F (Mǫ )+
t∑

i=1

∂F

∂rt−k

(Mǫ )r̃t−k +
t∑

k=1

∂F

∂et−k

(Mǫ )ẽt−k +
∂F

∂rt
(Mǫ )r̃t = 0. (A-8)

This implies that the return satisfies:

r̃t = − F (Mǫ )
∂F
∂rt

(Mǫ )
−

t∑

k=1

∂F
∂rt−k

(Mǫ )

∂F
∂rt

(Mǫ )
r̃t−k −

t∑

k=1

∂F
∂et−k

(Mǫ )

∂F
∂rt

(Mǫ )
ẽt−k. (A-9)

The share of investment in the risky asset is a function of returns and divi-
dend yields, given by the last two equations of (22). We denote:

x̄ = xt−1,h(Mǫ ),

xh,ǫ = xt,h(Mǫ ) =
1

h

[
x̄ + (h − 1)

x̄ (1 + r̄ )

1 + x̄ (r̄ + et)

]
,

xǫ =
H∑

h=1

ξ0,h xh,ǫ .

(A-10)

39



Now let us obtain the explicit expressions for all elements of equation
(A-9):

F (Mǫ ) =
xǫ − x̄ + x̄ xǫ et

x̄ (1 − xǫ )
− r̄ .

The partial derivative of F with respect to the past return rt−k, k = 1, . . . , t
reads:

∂F

∂rt−k

(Mǫ ) =

{[
H∑

h=1

∂wt−1,h

∂rt−k

(Mǫ )(xh,ǫ − x̄ + x̄ xh,ǫ et)+

H∑

h=1

w̄t−1,h

(
∂xt,h

∂rt−k

(Mǫ ) − ∂xt−1,h

∂rt−k

(Mǫ ) +
∂(xt−1,hxt,h)

∂rt−k

(Mǫ )et

)]
×

[
H∑

h=1

w̄t−1,hx̄ (1 − xh,ǫ )

]
−
[

H∑

h=1

∂wt−1,h

∂rt−k

(Mǫ )x̄ (1 − xh,ǫ )+

H∑

h=1

w̄t−1,h

(
∂xt−1,h

∂rt−k

(Mǫ ) − ∂(xt−1,hxt,h)

∂rt−k

(Mǫ )

)]
×

[
H∑

h=1

w̄t−1,h(xh,ǫ − x̄ + x̄ xh,ǫ et)

]}
×
[

H∑

h=1

w̄t−1,hx̄ (1 − xh,ǫ )

]−2

=

{
H∑

h=1

ξ0,h

(
∂xt,h

∂rt−k

(Mǫ ) − ∂xt−1,h

∂rt−k

(Mǫ ) +
∂(xt−1,hxt,h)

∂rt−k

(Mǫ ) et

)
×

H∑

h=1

ξ0,h x̄ (1 − xh,ǫ ) −
H∑

h=1

ξ0,h

(
∂xt−1,h

∂rt−k

(Mǫ ) − ∂(xt−1,hxt,h)

∂rt−k

(Mǫ )

)
×

H∑

h=1

ξ0,h (xh,ǫ − x̄ + x̄ xh,ǫ et)

}
×
[

H∑

h=1

ξ0,h x̄ (1 − xh,ǫ )

]−2

=

1

x̄ 2(1 − xǫ )2

{
H∑

h=1

ξ0,h

[
∂xt,h

∂rt−k

(Mǫ ) (x̄ (1 − xǫ ) + x̄ (x̄ et + xǫ − x̄ )) +

∂xt−1,h

∂rt−k

(Mǫ ) (xǫ (x̄ et + xǫ − x̄ ) − (−x̄ xǫ + xǫ + x̄ xǫ et))

]}
=

∑H
h=1 ξ0,h

[
∂xt,h

∂rt−k
(Mǫ )

(
x̄ + x̄ 2et − x̄ 2

)
+

∂xt−1,h

∂rt−k
(Mǫ )

(
xǫ

2 − xǫ

)]

x̄ 2(1 − xǫ )2
.

(A-11)
The derivative of F with respect to the current return reads:

∂F

∂rt
(Mǫ ) =

∑H
h=1 ξ0,h

∂xt,h

∂rt
(Mǫ )

(
x̄ + x̄ 2et − x̄ 2

)

x̄ 2(1 − xǫ )2
− 1.

In a similar way, we find the derivative of F with respect to the past dividend
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yield et−k, k = 1, . . . , t:

∂F

∂et−k

(Mǫ ) =

∑H
h=1 ξ0,h

[
∂xt,h

∂et−k
(Mǫ )

(
x̄ + x̄ 2et − x̄ 2

)
+

∂xt−1,h

∂et−k
(Mǫ )

(
xǫ

2 − xǫ

)]

x̄ 2(1 − xǫ )2
.

(A-12)

Now let us compute
∂xt,h

∂rt−k
(Mǫ ). The derivative of the multi-horizon

demand function (h > 1) with respect to the contemporaneous return reads:

∂xt,h

∂rt
(Mǫ ) =

1

h

∂

∂rt

[
x̄ +

x̄(1 + rt)

1 + x̄(rt + et)
+

g(x̄)(1 + rt)

1 + g(x̄)(rt + et)
+

g2(x̄)(1 + rt)

1 + g2(x̄)(rt + et)
+ . . . +

gh−2(x̄)(1 + rt)

1 + gh−2(x̄)(rt + et)

]
=

1

h

∂

∂rt

[
x̄ + (h − 1)

x̄(1 + rt)

1 + x̄(rt + et)

]
=

h − 1

h

x̄ − x̄2 + x̄2et

[1 + x̄(r̄ + et)]
2 .

(A-13)

The derivative with respect to the lagged return is 0 if the lag k is larger or
equal to h − 1. To compute it for the case 0 < k < h − 1 let us denote:

x̃ =
x̄(1 + rt−k)

1 + x̄(rt−k + ē)
=

gm(x̄)(1 + rt−k)

1 + gm(x̄)(rt−k + ē)
, ∀m > 0

and

gǫ(x) =
x(1 + r̄)

1 + x(r̄ + et)
.

Then using the property that g(x̃(Mǫ )) = g(x̃(x̄)) = x̄, we obtain:

∂xt,h

∂rt−k

(Mǫ ) =
1

h

∂

∂rt−k

[
x̄ + gǫ(x̄) + gǫ(g(x̄)) + gǫ(g

2(x̄)) + . . .+

gǫ(g
k−1(x̄)) + (h − k − 1) gǫ

(
gk−1(x̃)

)]
=

h − k − 1

h

∂

∂x
gǫ(Mǫ )

∂

∂x
gk−1(Mǫ )

∂

∂rt−k

x̃ =

h − k − 1

h
g′ǫ(x̄ ) [g′(x̄ )]k−1 ∂

∂rt−k

x̃.

(A-14)

Computing derivatives in (A-14) yields:

∂

∂x
g(Mǫ ) =

(1 + r̄) [1 + x̄(r̄ + ē)] − (r̄ + ē)(1 + r̄)x̄

[1 + x̄(r̄ + ē)]2
=

1 + r̄

[1 + x̄(r̄ + ē)]2
,

41



∂

∂x
gǫ(Mǫ ) =

1 + r̄

[1 + x̄(r̄ + et)]
2

and
∂

∂rt−k

x̃(Mǫ ) =
x̄[1 + x̄(r̄ + ē)] − x̄2(1 + r̄)

[1 + x̄(r̄ + ē)]2
=

x̄ − x̄2 + x̄2ē

[1 + x̄(r̄ + ē)]2
.

So finally for k = 1, . . . , h − 2 we have:

∂xt,h

∂rt−k

(Mǫ ) =
h − k − 1

h

1 + r̄

[1 + x̄(r̄ + et)]
2

[
1 + r̄

[1 + x̄(r̄ + ē)]2

]k−1 x̄ − x̄2 + x̄2ē

[1 + x̄(r̄ + ē)]2
.

(A-15)
Then, using the fact that:

∂

∂et−k

x̃(Mǫ ) = − x̄ 2(1 + r̄ )

[1 + x̄(r̄ + ē)]2
,

we obtain:

∂xt,h

∂et−k

(Mǫ ) = −h − k − 1

h

1 + r̄

[1 + x̄(r̄ + et)]
2

[
1 + r̄

[1 + x̄(r̄ + ē)]2

]k−1 x̄ 2(1 + r̄ )

[1 + x̄(r̄ + ē)]2
.

(A-16)
Using previous results, it is easy to notice that for k = 1, . . . , h − 1:

∂xt−1,h

∂rt−k

(Mǫ ) =
h − k

h

[
1 + r̄

[1 + x̄(r̄ + ē)]2

]k−1 x̄ − x̄2 + x̄2ē

[1 + x̄(r̄ + ē)]2
,

∂xt−1,h

∂et−k

(Mǫ ) = − h − k

h

[
1 + r̄

[1 + x̄(r̄ + ē)]2

]k−1 x̄ 2(1 + r̄ )

[1 + x̄(r̄ + ē)]2
. (A-17)

Expressions (A-13),(A-15) - (A-17) can be simplified using the relation:

x̄ =
r̄

r̄ + ē

This gives:

∂xt,h

∂rt
(Mǫ ) =

h − 1

h

x̄ − x̄2 + x̄2et

[1 + x̄(r̄ + et)]
2 ,

∂xt,h

∂rt−k

(Mǫ ) =
h − k − 1

h

x̄ − x̄ 2 + x̄ 2ē

(1 + r̄ )k [1 + x̄ (r̄ + et)]
2 , k = 1, . . . , h − 2,

∂xt−1,h

∂rt−k

(Mǫ ) =
h − k

h

x̄ (1 − x̄ )

(1 + r̄ )k
, k = 1, . . . , h − 1,

∂xt,h

∂et−k

(Mǫ ) = −h − k − 1

h

1 + r̄

[1 + x̄(r̄ + et)]
2

x̄ 2

(1 + r̄ )k
, k = 1, . . . , h − 2,

∂xt−1,h

∂et−k

(Mǫ ) = −h − k

h

x̄ 2

(1 + r̄ )k
, k = 1, . . . , h − 1. (A-18)
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We can now replace expressions (A-18) in the equations for partial deriva-
tives. Let us denote

ak =
H∑

h=k+2

h − k − 1

h
ξ0,h ,

bk =
H∑

h=k+1

h − k

h
ξ0,h ,

c =
H∑

h=1

h − 1

h
ξ0,h .

It is straightforward that 0 < ak < bk < c < 1. In these terms:

∂F

∂rt−k

(Mǫ ) =
ak

x̄−x̄ 2+x̄ 2ē

(1+r̄ )k[1+x̄ (r̄ +et)]
2

(
x̄ + x̄ 2et − x̄ 2

)
+ bk

x̄ (1−x̄ )
(1+r̄ )k

(
xǫ

2 − xǫ

)

x̄ 2(1 − xǫ )2
=

ak x̄ 2(1 − x̄ + x̄ ē )(1 − x̄ + x̄ et) − bk x̄ xǫ (1 − x̄ )(1 − xǫ ) [1 + x̄ (r̄ + et)]
2

x̄ 2(1 − xǫ )2(1 + r̄ )k [1 + x̄ (r̄ + et)]
2 ,

∂F

∂rt
(Mǫ ) =

H∑

h=1

ξ0,h
h − 1

h

x̄ − x̄2 + x̄2et

[1 + x̄(r̄ + et)]
2

(
x̄ + x̄ 2et − x̄ 2

)

x̄ 2(1 − xǫ )2
− 1 =

c (1 − x̄ + x̄ et)
2 − (1 − xǫ )2 [1 + x̄(r̄ + et)]

2

(1 − xǫ )2 [1 + x̄(r̄ + et)]
2 ,

∂F

∂et−k

(Mǫ ) =

−ak (1 + r̄ ) x̄ 2(x̄ + x̄ 2et − x̄ 2) + bk x̄ 2xǫ (1 − xǫ ) [1 + x̄(r̄ + et)]
2

x̄ 2(1 − xǫ )2(1 + r̄ )k [1 + x̄(r̄ + et)]
2 .

We can now give explicit expressions for all the terms of equation (A-9):

− F (Mǫ )
∂F
∂rt

(Mǫ )
= −

[
xǫ − x̄ + x̄ xǫ et

x̄ (1 − xǫ )
− r̄

]
×

(1 − xǫ )2 [1 + x̄(r̄ + et)]
2

c (1 − x̄ + x̄ et)2 − (1 − xǫ )2 [1 + x̄(r̄ + et)]
2 ,
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−
∂F

∂rt−k
(Mǫ )

∂F
∂rt

(Mǫ )
=

−ak x̄ 2(1 − x̄ + x̄ ē )(1 − x̄ + x̄ et) − bk x̄ xǫ (1 − x̄ )(1 − xǫ ) [1 + x̄ (r̄ + et)]
2

x̄ 2(1 − xǫ )2(1 + r̄ )k [1 + x̄ (r̄ + et)]
2 ×

(1 − xǫ )2 [1 + x̄(r̄ + et)]
2

c (1 − x̄ + x̄ et)2 − (1 − xǫ )2 [1 + x̄(r̄ + et)]
2 =

−ak x̄ (1 − x̄ + x̄ ē )(1 − x̄ + x̄ et) − bk xǫ (1 − x̄ )(1 − xǫ ) [1 + x̄ (r̄ + et)]
2

x̄ (1 + r̄ )k
[
c (1 − x̄ + x̄ et)2 − (1 − xǫ )2 (1 + x̄(r̄ + et))

2
] ,

−
∂F

∂et−k
(Mǫ )

∂F
∂rt

(Mǫ )
=

−−ak (1 + r̄ ) x̄ 2(x̄ + x̄ 2et − x̄ 2) + bk x̄ 2xǫ (1 − xǫ ) [1 + x̄(r̄ + et)]
2

x̄ 2(1 − xǫ )2(1 + r̄ )k [1 + x̄(r̄ + et)]
2 ×

(1 − xǫ )2 [1 + x̄(r̄ + et)]
2

c (1 − x̄ + x̄ et)2 − (1 − xǫ )2 [1 + x̄(r̄ + et)]
2 =

ak (1 + r̄ ) (x̄ + x̄ 2et − x̄ 2) − bk xǫ (1 − xǫ ) [1 + x̄(r̄ + et)]
2

(1 + r̄ )k
[
c (1 − x̄ + x̄ et)2 − (1 − xǫ )2 (1 + x̄(r̄ + et))

2
] .

Now let us linearize the terms of (A-9) with respect to the disturbance
term et. We will need to use the relation:

∂xǫ

∂et
= −

H∑

h=1

ξ0,h
h − 1

h

x̄ 2(1 + r̄ )

(1 + x̄ (r̄ + ē ))2
= − c x̄ 2

1 + r̄
. (A-19)

The first term of (A-9) corresponds to the part of volatility that is inde-
pendent of past realizations of the returns and dividend yields:

− F (Mǫ )
∂F
∂rt

(Mǫ )
≈ V̄ ẽt

with

V̄ =
c x̄ 2(1 − ē ) − c x̄ + x̄ (1 − x̄ )(1 + r̄ )

(1 − c )(1 + r̄ )(1 − x̄ )2
=

x̄ (1 − x̄ )(1 + br)(1 − c)

(1 − c )(1 + r̄ )(1 − x̄ )2
=

x̄

1 − x̄

The second term gives both the autoregression coefficients in the equation
for returns and the dependency of the volatility on past returns:

−
∂F

∂rt−k
(Mǫ )

∂F
∂rt

(Mǫ )
≈ Ak + Bk ẽt
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with

Ak =
ak − bk

(1 − c)(1 + r̄ )k
,

Bk =
x̄ (1 − 2x̄ )(c bk − ak)

(1 − x̄ )(1 + r̄ )k+1(1 − c)
.

In the same way we find:

−
∂F

∂et−k
(Mǫ )

∂F
∂rt

(Mǫ )
≈ Ck + Dk ẽt

with

Ck = − x̄

1 − x̄
Ak,

Dk = − x̄

1 − x̄
Bk.

The equation for returns thus reads:

r̃t =
H−1∑

k=1

(Ak + Bk ẽt) r̃t−k − V̄
H−1∑

k=1

(Ak + Bk ẽt)ẽt−k + V̄ ẽt,

which can also be written as:

r̃t − V̄ ẽt =
H−1∑

k=1

Ak

(
r̃t−k − V̄ ẽt−k

)
+

H−1∑

k=1

Bk

(
r̃t−k − V̄ ẽt−k

)
ẽt.

Introducing the notation:
r̂ t = r̃t − V̄ ẽt,

we re-write the dynamics in terms of the error correction with respect to
the one-scale rational equilibrium path, for which r̂ t = 0, as follows from
theorem 3.2. In these terms we obtain:

r̂ t =
H−1∑

k=1

Ak r̂ t−k +

(
H−1∑

k=1

Bkr̂ t−k

)
ẽt, (A-20)

which closes the proof of the theorem.
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