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ABSTRACT 

In this article we analyse the behaviour of guaranteed stop orders on stocks in the German stock 

index DAX. We explain briefly how guaranteed stop orders work and then develop a jump process 

based on a variance gamma process to model the stock prices. We show, through simulations, that 

the pay-off of a guaranteed stop order is foremost governed by the volatility in the underlying stocks’ 

overnight movements. We also demonstrate that the common linear approach to price guaranteed 

stop orders is too general and needs to be refined to represent the differences between stocks 

adequately. We show that the recent turbulence on stock markets around the world has made the 

guaranteed stop order interesting and that, in more tranquil periods, this order type was nearly 

irrelevant. 

 



INTRODUCTION 

There are many different forms of portfolio insurance, all with certain advantages and disadvantages. 

A common one among them is the protective put option. It is a simple tool to avoid losses below a 

certain barrier, but has the drawback of not providing continuous protection (see Bodie, Kane and 

Marcus, 1996). To ensure that a portfolio never drops below a certain level, dynamic insurance tools 

like synthetic puts are used. They have the drawback of requiring continuous trades and, therefore, 

cost the investor a considerable effort to use them. Additionally, Basseer [1991] has found dynamic 

portfolio insurance to work best in orderly markets, but it becomes impractical during periods of high 

volatility. Basic tools to avoid losses are risk management orders, whereby there most comon 

resprentative is the stop or stop loss order (SO). Unlike most other tools, the investor does not pay a 

premium when placing SOs, making it a widespread method. One problem with SOs as protection is 

that they do not guarantee a selling price equal to their barrier. If liquidity is tight and it is, therefore, 

difficult to find a counterparty willing to buy, the selling price may drop significantly. Many studies 

have shown that SOs can reinforce sudden stock price drops, a phenomenon often referred to as 

‘price cascades’ (see Easley and O’Hara, 1991; Genotte and Leland, 1990). These price cascades occur 

when many investors have set stop orders with similar barriers and a price drop triggers them 

simultaneously. These sudden sell orders instigate other market participants to sell or even force 

investors to sell owing to loss limits. To counter this vulnerability to sudden stock price jumps, the 

guaranteed stop order (GSO) was created. It is basically a SO with the additional benefit of 

guaranteeing a selling price equal to the barrier. If an investor uses a GSO instead of a SO, he will still 

contribute to this problem, but he has the distinct advantage of not being affected by it. 

In addition, a GSO is not always superior to a simple SO since the investor pays a premium in order to 

be insured against price jumps. Often, the stock price jumps are neglected when looking at SOs and 

for stocks on major firms this may be adequate in tranquil and orderly times. The recent financial 

crisis, however, has caused considerable turbulence and dramatically increased stock price volatility. 

Under these conditions we deem it necessary to take a closer look at GSOs and evaluate if their 

pricing is justified. 

The purpose of this article is to shed some light on the value of GSOs, an instrument that has 

received very little scientific attention in the past. A jump process is used to account for the 

discontinuities of the stock market, which are the sole reason for the existence of GSOs. We will 

establish through stock price simulations if the method of pricing GSOs as used by CMC Markets 

[2005] is adequate and reflects their true value. We will analyse which factors determine the value of 

a GSO and how to price them accordingly. 

This article is organized as follows: In the next two sections, a model for stock prices and GSOs is 

developed. Then the data is presented and the fitting process described. Afterwards the simulation 

process is explained, followed by its results. The next section provides a closer analysis, determines 

the major influences on GSOs, and outlines a new pricing approach. The following section then 

compares the previous findings to an older time period when the stock market was more tranquil. 

Finally, the last section concludes this article by summarizing the results and giving an outlook on 

possible future research on GSOs. 

 



MODEL 

In order to evaluate GSOs we must first decide on a model for the underlying stocks. The most 

common approach would be to assume that the stock prices follow a Brownian motion. One of the 

characteristics of a Brownian motion is the fact that its paths are almost surely continuous. To put it 

in simpler terms, a Brownian motion does not jump. On the other hand, GSOs are instruments 

specifically developed to protect investors against jumps in stock markets. It would, therefore, be 

desirable to use a stochastic process which focuses on such events. According to Cont and Tankov 

[2004] there are two basic categories of jump processes to choose from: jump-diffusion models and 

infinitely active models. The former consist of a Brownian component and rare jumps, the latter of an 

infinite number of jumps in each interval. In this paper, we will use a Variance Gamma Process (VGP), 

a process of infinite activity, as a starting point for our model. Carr, Geman, Madan and Yor [2003], 

Geman [2002] and Madan [2001] support that this category provides a better representation of 

historical stock price processes. 

In the basic model (compare Schoutens, 2003; Cont and Tankov, 2004; Senata, 2004) the stock price 

St over time t ≥ 0 is given by, 

( )0: expt tS S X=   (1) 

where S0 is the initial stock price and the exponent Xt is defined as: 

( ):t t tX ct G W G= + θ + σ   (2) 

with the parameters c, θ, σ and the Brownian motion W. Gt is a random process independent of the 

Brownian Motion W(∙). Gt follows a Gamma process and can be interpreted as an ‘economically 

relevant measure of time’ (Geman, Madan and Yor, 2001). The expected economically relevant time 

change per calendar time unit is, without loss of generality, normalized to one. 

( )1 1t tE G G −− =   (3) 

This normalization is contained within θ and σ. The change in the exponent Xt over one unit of 

calendar time, denoted by ∆Xt, can be written as: 

( )1 1 1: (1)t t t t t t tX X X c G G G G W− − −∆ = − = + θ − + σ −  (4) 

The model, as it stands now, demands that the expected price change from one time step to the next 

is constant. For GSOs, however, it is important to account for the fact that the expected change 

between the last stock price of any given day and the next, will not be the same as between two 

adjacent intraday prices. This is accounted for by defining St as follows: 

( )0: expt t tS S ID ON= +   (5) 

In this definition, there are two independent stochastic processes IDt and ONt. IDt controls the 

intraday stock movement and ONt the overnight movement. This model has the underlying 

assumption that each jump is independent of previous jumps, especially that overnight jumps are 

independent of intraday jumps. This assumption is not entirely true. There is evidence that an over or 

under performance in the last few stock prices of a day is related to an over or under performance in 

the overnight jumps. This dependence lends itself to further study but will be ignored in this model. 

To be able to formally define IDt and ONt, we create a set T containing all points in time which 

coincide with the first price fixing of each day. The change in IDt is now defined similar to ∆Xt in (4). 
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This definition shows that the intraday movement follows a VGP that does not affect the overnight 

movement. ONt adds a normally distributed jump between the closing and the opening price but 

does not affect intraday movement and is defined as follows: 

  (7) 
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GUARANTEED STOP ORDERS 

As mentioned earlier, GSOs are similar to standard stop orders. The difference is that a GSO 

guarantees a selling price equal to the chosen barrier, while the stop order only provides the next 

selling price after the barrier has been broken. So basically, a GSO can be seen as an insurance that 

pays the difference between the barrier and the next possible selling price. We evaluate GSOs using 

the stock price model (5). The pay-off PB is defined as, 

:B tP B S= −   (8) 

assuming that t is the first point in time for the stock price St to be less or equal to the barrier B or, if 

short selling, to exceed the barrier. The model considers a time frame of one year between GSO 

placement and cancellation. Should the barrier not be reached in this time frame the pay-off PB is 

zero. It is extremely uncommon to place (guaranteed) stop orders for a longer period. Many 

brokerage services do not even permit it. When placing a GSO, unlike a SO, an insurance premium 

has to be paid to reflect the offered protection. This fee is calculated according to CMC Markets 

[2005]. For stocks in the German stock index DAX the premium is set to 0.3% of the GSOs’ barrier by 

CMC and has to be paid immediately. Stocks in other indices have different rates, but follow the 

same structure. The premium R is therefore defined as, 

:R rB=   (9) 

with r = 0.003 in our cases. This definition is intuitive for long positions, but seems counterintuitive 

for short positions, where the premium rises further away from the initial stock price at which the 

barrier is set. This structure is probably due to the fact that the expected relative jump sizes are 

assumed to be constant and the absolute jumps therefore expected to increase at higher stock 

prices. An additional rule is that a GSO cannot be set within 5% of the current price of a stock. So, for 

example, if a stock is listed at 100 one could set a GSO at 95 and pay a premium of 0.285. CMC 

Markets allows its customers to trade in contracts for difference (CFD) instead of directly trading 

stocks, but the CFD prices are adjusted to the underlying stocks. Considering the short time frame 

interest rates are neglected and the GSO value is defined as the difference between pay-off and 

premium. In this paper we will focus on long positions, where the barrier is consequently below the 

initial stock price. 
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DATA 

The next step is to obtain data, to which the model can be fitted. CMC Markets trades in CFDs, for 

which no time series were obtainable. Since these CFDs reflect stock prices nearly 1:1, we will use 

stock prices as a proxy. We fit our parameters to the stock prices of the 30 firms in the Deutscher 

Aktienindex (DAX), the most important German stock index. These stocks are also available as CFDs 

on which GSOs can be placed. Since we intend to simulate stock prices on a tick level, we require 

stock price data on the same level. The exchange in Stuttgart provides us with the necessary time 

series of quotes for each tick on the stock market. 

In order to fit the intraday aspect of our model we collect quotes ranging from 1 April, 2009 to 14 

May, 2009. With only 29 trading days this may seem to be a very brief period of time, but since we 

are using tick data we have an average of 1,701 data points per firm. Commerzbank AG shows the 

highest activity with 7,512 data points. Merck KGaA, the firm with the least activity in this period, still 

provides 206 data points. Therefore, we believe these 29 trading days to be sufficient for the 

intraday fit of our model. This time period leaves us with only 28 overnight returns, which does not 

suffice for an adequate fit of the model’s overnight aspect. Since we assume the overnight returns to 

be independent of the intraday returns, we can extend the time period to gain additional data points. 

We use overnight returns ranging from 3 June, 2008 to 14 May, 2009. This period amounts to 239 

returns, which should allow for an adequate fit. The overnight returns corresponding to dividend 

payment dates are removed from this series leaving one less data point for most firms. Intraday 

returns are not directly affected by the dividend payments, therefore none have to be removed. 

 

FITTING THE PARAMETERS 

After obtaining the data, the next step is to decide on a method to fit the model to the data. 

Following Cont and Tankov (2004), there are two main approaches: the method of moments (MoM) 

and the maximum likelihood estimation (MLE). The MLE approach requires a known distribution 

function. This is the case for a standard VGP, but since we modified the process to account for 

overnight jumps, the distribution function is not easily obtainable. We therefore use a MoM 

approach following Senata (2004) who states: ‘While method of moments is lacking somewhat in 

precision, it compensates in terms of robustness.’ The overnight parameters (µ, σON) and the 

intraday parameters (c, θ, κ, σID) are fitted separately since they use different time series. The 

overnight parameters are fitted to the first two moments, the intraday parameters to the first four. 

The fitting process for the overnight parameters is trivial since µ is simply the first and σA the square 

root of the second moment. 

The first four moments give us following four equations for the intraday parameters (Senata, 2004): 

( )tE X c= + θ    (10) 

2 2var( ) = σ + θ κ
t ID

X   (11) 

( )

3 2 2

3
2 2 2

2 3
( )

θ κ + σ θκ
=

θ κ + σ

ID
t

ID

s X   (12) 



( )

4 2 2 2 4 3

2
2 2

3 12 6
( ) 3

σ κ + σ θ κ + θ κ
= +

θ κ + σ

ID ID
t
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In (12) s represents the skewness and in (13) k the kurtosis. In a first step, we attempt to solve 

equations (10)–(13) using the first four moments estimated from the data. Given the complexity of 

these equations we are not always able to find a solution. In those cases we use equation (10) 

together with a second set of equations (Senata, 2004): 

2var( ) ≈ σ
t ID

X   (14) 

3
( )

θκ
≈

σ
t

ID

s X   (15) 

( )( ) 3 1tk X ≈ + κ   (16) 

Equations (14)–(16) assume that θ is relatively small and therefore θ2, θ3, θ4 can be ignored. Since 

this set of equations only provides an approximation, we need to check their quality. In order to do 

this, we insert our approximated parameters into equations (10)–(13), computing the moments 

implied by our approximations. We then compare these implied moments with the moments 

estimated from the data and evaluated the errors. Exhibit 1 shows the fitted parameters, exhibit 2 

the errors in the implied moments. 

The first moment is omitted from exhibit 2 since parameter c allows for an exact fit leading to an 

error of zero. In this table, for example, a value of -5% means that the estimated moment is 5% 

below the implied moment. We can observe that in all but three cases we stay in a ±5% interval. 

Fresenius Medical Care AG & Co. KGaA (FME) goes up to 5.74%, Salzgitter AG (SZG) up to 8.89% and 

Beiersdorf AG (BEI) even to 19.91%. We remove Beiersdorf and Salzgitter from our further 

observation since the error is too large and simulation results with these parameters cannot be 

trusted. FME remains in our simulations, but we should keep in mind that the results may be 

erroneous. 

 

SIMULATION PROCESS 

Having fitted the parameters of our model to the data, we must now decide on a simulation process. 

In order to simulate the price process (5) a time grid has to be chosen. The pay-off of a GSO is 

determined by the first obtainable CFD price or, in our case, stock price, after the relevant barrier has 

been broken. Therefore, one calendar time unit is defined as one tick. A problem with this definition 

is that the number of ticks per day varies for each stock and day. In this model we will assume that 

for a given stock the number of ticks per day NS is constant but may be different for different firms. 

For every stock S the average number of ticks per day is calculated and defined as NS. To determine 

the value of the GSOs we run 10,000 simulations for each stock in our sample. During these 

simulation runs we evaluate GSOs on ten different barrier levels, ranging from 50% to 95% in 5% 

intervals. We simulate a period of one year, which is assumed to have 250 trading days. If a GSO is 

not triggered in the course of one year, it is cancelled and has a pay-off of zero. The simulation 

algorithm is based on Cont and Tankov [2004, p. 184] and is modified to fit our specific model. 
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SIMULATION RESULTS 

In this chapter we will visualize and examine the simulation results. 

Exhibit 3 shows the GSO pay-off as simulated. Every second GSO barrier was omitted in order to keep 

the table at a reasonable size. Pay-offs that exceed the costs are bold and underlined. One can 

observe that at the highest possible barrier over half of the firms (53.6%) have a pay-off higher than 

the cost. This figure decreases steadily down to 10.7% at the lowest barrier. 

Exhibit 4 takes a closer look at the difference between pay-off and cost of the GSOs. The numbers in 

the table indicate the percentage of firms with a pay-off to cost ratio in the respective interval at a 

certain barrier. We can observe that, at the highest barrier, half the firms have a pay-off to cost ratio 

between 75% and 125%. As the barrier decreases, fewer and fewer firms remain at moderate ratios. 

At the 85% barrier and below, over 20 out of 28 firms have ratios of either less than 50% or over 

150%. This clearly shows that the linear approach to pricing GSOs does not reflect their true value. 

Additionally, we can observe that the pay-off decreases at a significantly higher rate than the cost 

and, with a barrier of 85% or lower, most are at less than 50% pay-off to cost ratio. 

The pay-off of a GSO depends on two factors: the probability that the stock reaches the barrier and 

the amount by which it breaks the barrier. Exhibit 5 shows averages across all firms for the pay-off, 

the pay-off under the condition that the barrier is reached (‘pay-off when triggered’), the trigger 

probability and the percentage of barrier passages caused by overnight jumps. Additionally, the cost 

of the GSO is shown for comparison. When considering the average pay-off over the DAX firms, only 

barriers of 80% or higher have a positive return. This is further evidence that the linear pricing 

structure is not adequate for low barriers. The decline in ‘pay-off when triggered’ is due to the fact, 

that the expected relative jump size is constant, not the expected absolute jump size. Hence the pay-

off when triggered should be proportional to the stock value and, therefore, to the barrier. The 

simulation results reflect this relation with the exception of the two lowest barriers. Here an increase 

is observable. This increase can easily be explained when considering that not all firms reach these 

barriers. Firms with little movement and small jumps will not reach the lower barriers while the ones 

with much movement and the largest jumps will. Therefore, the weights of the most active firms 

increase at low barriers and the average is biased upwards. As expected, the probability to reach a 

barrier goes down as the barrier goes down. The percentages of barrier passages that occur 

overnight are evidently constant at about 28% and seem to be independent of the barrier. Since the 

overnight movements are independent of the intraday movements in our model, they are also 

independent of the stock price. Hence the simulated constant percentage is in accordance with the 

model. 

 

ANALYSIS 

The goal of this chapter is to analyse what determines the value of a GSO and, using this information, 

how to adequately price GSOs on different stocks. Two important questions arise: Is the value driven 

by overnight movement or by intraday movement? Is it more important how likely it is to trigger the 

GSO or how large the price jump will be when it is triggered? Exhibit 6 illustrates the possible cases. 

Exhibit 7 compares two typical ‘pay-off when triggered’ histograms. Volkswagen is a company with a 

very high simulated pay-off, Lufthansa with a very low simulated pay-off. It is obvious that the 



distribution of pay-offs is very different. Volkswagen’s pay-off has much more weight in the tail than 

Lufthansa’s. Lufthansa shows not a single simulation run with a pay-off of more than 4.5%. 

Volkswagen has several runs with over 10% going up to pay-offs of nearly 18%. The variance in these 

pay-offs is 5.01 for Volkswagen and 0.26 for Lufthansa. These results are typical for firms with high 

respectively low pay-off and show that the value of a GSO is strongly driven by the distribution of this 

conditional pay-off. This indicates that cases (II) and/or (IV) from exhibit 6 are the relevant factors. 

Exhibit 8 is an excerpt from a correlation matrix at the 95% barrier that aims to answer the previous 

questions. It uses the simulation inputs and results of all 28 firms. For all correlations with an 

absolute value above 43.72% the hypothesis, that they are zero at the 99% confidence level, can be 

rejected. This was determined using a t-test, which, according to Zimmermann [1986], performs well 

even for small, non-normally distributed samples. When looking at the GSO pay-off, we see that it 

has a relatively high correlation with the trigger probability (57.25%), but an extremely high 

correlation of 99.01% with the ‘pay-off when triggered’. This clearly shows that when calculating the 

value as the product of trigger probability and ‘pay-off when triggered’ the second factor is of much 

greater importance. Therefore, we can state the cases (I) and (III) from exhibit 6 are not of great 

relevance. Columns four to nine of the first line of exhibit 8 show that the overnight moments are 

strongly correlated to the GSO pay-off, while the intraday moments are not. This is an interesting 

observation since on average 60.8 intraday ticks are simulated per overnight tick. A closer look at 

intraday variance and pay-off reveals that larger variances lead to larger pay-offs, but there are 

several outliers. These outliers have higher pay-offs than implied by their intraday variances. Further 

examination shows that these are the firms with exceptionally high overnight variances. Hence we 

can conclude that intraday variance is important as long as the overnight variance is not already 

extremely large. The ‘pay-off when triggered’ and its variance are correlated to the overnight 

moments while the trigger probability is correlated to the overall expected value of the stock returns, 

which is mostly driven by the intraday expected value. This observation explains the dependence of 

the GSO pay-off on overnight moments, since the GSO pay-off is highly correlated to the ‘pay-off 

when triggered’. Additionally, with a correlation of 97.00% the pay-off and its variance are clearly 

influenced by the same factors. This means that when the average jumps are large and the GSO pay-

off therefore high, the risk of very large jumps is also high and vice versa. We can now conclude that 

case (II) from exhibit 6 is the most relevant factor and we are interested in firms with large jumps 

overnight. 

A closer look at the dependency between the simulated pay-off and the overnight expected value 

reveals that negative expected values have greater influence on the pay-off than positive ones. 

Exhibit 9 plots the simulated pay-off against the overnight expected value to visualize their relation. 

It is clear that highly negative expected values increase the pay-off while highly positive ones do not 

necessarily decrease it. The same observation can be made regarding ‘pay-off when triggered’. It has 

to be noted, however, that only 8 out of 28 firms show negative overnight expected values, and this 

observation might, therefore, not be very stable.  

Prior to the simulation one might have expected the kurtosis to play the most significant role instead 

of the variance. The importance is of the variance is due to the variance gamma distribution (VGD) 

used for the intraday stock log returns. Approximations (14) and (16) show that parameter κ basically 

defines the kurtosis and σID the variance. In the VGD the rate of decay at the negative tail (Cont and 

Tankov, 2004) is governed by, Formatiert: Englisch (USA)
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Therefore, an increase in κ or σID leads to a smaller λ-, which means a slower decay at the tail. But an 

increase in κ also means a less rounded peak. When combined this means that an increase in κ, 

which represents an increase of the kurtosis, will increase probabilities near the peak value and in 

the tail, but reduce intermediate values (see also Madan and  Senata, 1990). By contrast, an increase 

in σID, which represents an increase of the variance, will increase probabilities in the tail and increase 

symmetry, and therefore have a dominating influence. 

As mentioned earlier, the pricing using the linear formula (9) does not reflect the pay-off structure of 

GSOs adequately. We have shown that the pay-off decreases more rapidly with decreasing barriers 

and the pay-off is greatly dependent on the underlying stocks’ overnight volatility. An improved 

pricing approach should incorporate these findings. The EUREX Clearing AG factors in historical 

volatilities when determining margin requirements for equity options. The exact formula is not 

revealed, but they use, depending on the case, a 30-day or 250-day historical volatility of the 

underlying stock to create different margining groups. This idea could be used to refine the current 

grouping system used for GSOs, which only takes into account the index the underlying stock belongs 

to. In order to account for the pay-off decay at low barriers, we propose an exponential pricing 

model. A possible formula for the GSO premium for long positions could be, 

( ): expR a b Bσ σ=   (18) 

The stocks in the DAX are grouped according to σON, their overnight standard deviation. Each group 

then has separate values for a and b, denoted as aσ and bσ. While this approach increases the 

complexity it should also strongly improve the precision of GSO pricing. In order to decide on the 

number of groups, the time frame of the overnight volatility, and the selection of parameters, further 

research will be required. 

 

2005/2006 COMPARISON 

In the previous sections, we have shown how GSOs on DAX firm stocks perform in highly volatile 

periods. The question arises: How do they perform in relatively tranquil periods? To answer this 

question we evaluate a second simulation. 

We use the same model, but fit it to data from 2005 and 2006 using the same algorithms. To be 

precise, we use intraday data ranging from 3 April, 2006 to 15 May, 2006, which equals to 28 trading 

days. The overnight movement is fitted to data ranging from 14 June, 2005 to 15 May, 2006, which 

equals 236 trading days. We use all firms that were in the DAX in this time period and are in the 

original data sample. This leaves us with 23 out of 30 possible firms. Everything else stays the same 

as in the 2008/2009 case. 

Exhibit 10 presents the averages that result from the new simulation and can be compared directly 

with exhibit 5. We can see that the average pay-off is far below the cost even at high barriers. This 

shows that, in tranquil periods, the guarantee of the GSO is not necessary. Exhibit 10 also shows that 

the trigger probability is very high, much higher indeed than in the original simulation. This is due to 



the fact that many firms were experiencing a downwards trend during this period. The contrast 

between high trigger probability and low average pay-off supports the finding in the previous chapter 

that the ‘pay-off when triggered’ is the decisive factor in determining the GSO value. 

Exhibit 11 provides further insight into the simulated pay-offs at different barriers and can be 

compared directly with exhibit 4. Even at the highest barrier only two firms (8%) have a positive GSO 

value, and over half the firms have GSO pay-offs of less than half the cost. The only firm that has a 

positive GSO value down to the 75% barrier is Volkswagen, which has both a strong downwards 

trend and a high intraday volatility. Hence the only GSO with a strongly positive value is on a stock 

with a very pessimistic outlook. 

We can, therefore, conclude that in tranquil periods a stop order is sufficient to protect stocks 

against sudden loses, and the guarantee of a GSO is not necessary. In other words, the current 

pricing model renders GSOs uninteresting for investors, since it does not factor in volatilities. 

 

CONCLUSION 

We have analysed the behaviour of GSOs on stocks following our modified variance gamma process. 

We have shown that the pricing of GSOs poorly reflects their expected pay-offs. The pricing performs 

best in turbulent stock markets, as we have been seeing them recently, with GSO barriers close to 

the stock price. Barriers further from the stock price cause a drop in the pay-off greater than the 

drop in the price of GSOs. A closer representation of this decrease would probably make GSOs more 

attractive for investors, which can only be in the interest of the issuing exchange. We have further 

shown that the variance of the underlying stocks’ log-returns, especially its overnight returns, are the 

main factor in order to forecast the pay-off of a GSO and, therefore, to determine an adequate 

premium. Additionally, we have evaluated that in more tranquil times, e.g. 2005 and 2006, the classic 

stop order proves superior, since GSO premiums on average are too high. The pricing, therefore, 

needs to be linked to volatility in order to ensure that GSOs, as a product, remain interesting for 

investors. 

Future research may reveal a pricing approach more precise than the linear one, maybe through σ-

dependant exponential behaviour, as proposed earlier. Additionally, it can be interesting to see how 

GSOs behave under a more flexible model allowing for variable ticks per day or dependencies 

between returns, especially overnight returns dependent on intraday movement. Finally, one could 

take a closer look at the value of GSOs when short selling. 
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Exhibit 1 

Fitted Parameters 

firm Intraday  ON 

 c θ σ κ  µ σ 

  x 10
-5

 x 10
-5

 x 10
-3

 x 1   x 10
-3

 x 10
-2

 

ADS -71.18 85.32 6.55 1.44  -0.20 1.63 

ALV -0.10 6.96 3.54 1.83  1.81 2.48 

BAS -7.71 14.72 3.13 3.57  -2.90 4.87 

BAY -13.12 18.26 2.41 3.15  2.34 1.63 

BEI 33.10 -32.27 4.69 25.97  -0.05 1.44 

BMW 9.05 -6.87 6.76 1.02  -0.91 2.20 

CBK 2.00 -2.32 3.46 2.23  5.08 3.80 

DAI -18.86 22.96 3.32 2.10  3.22 2.33 

DB1 -8.30 20.13 5.71 3.04  1.15 2.39 

DBK -5.17 8.51 2.77 3.11  2.70 2.86 

DPW -18.65 32.43 4.09 4.99  1.30 2.08 

DTE 6.72 -7.27 1.61 15.27  1.82 1.33 

EOAN -6.41 11.61 2.43 2.78  -0.06 2.11 

FME -104.65 105.46 4.22 0.92  1.65 1.10 

FRE3 -5.35 65.96 7.01 1.03  1.02 1.54 

HEN3 -28.76 58.83 4.81 1.33  -0.33 1.72 

HNR1 109.16 -129.13 11.84 2.33  4.35 2.58 

LHA 6.73 0.95 3.17 1.95  -0.08 1.71 

LIN -43.03 59.45 5.51 2.82  0.71 1.49 

MAN 16.13 15.17 6.58 2.28  0.71 2.23 

MEO -67.54 176.83 9.93 1.05  1.43 1.83 

MRK -106.73 69.10 6.75 2.07  1.64 1.48 

MUV2 -80.75 96.92 5.88 1.63  1.14 1.77 

RWE -16.39 23.98 2.71 1.23  0.78 1.61 

SAP -25.53 51.06 4.01 1.21  0.88 1.92 

SDF 13.26 2.64 4.43 1.40  -6.99 9.63 

SIE -16.35 21.72 3.69 1.35  3.07 2.09 

SZG -81.19 107.19 7.27 2.99  0.87 1.61 

TKA -3.60 16.35 4.85 1.97  1.56 2.30 

VOW 37.41 -23.95 8.69 2.28  -2.19 5.29 

 



Exhibit 2 

Errors in Implied Moments 

firm error 

  variance skewness kurtosis 

ADS -2.45% 1.99% -2.79% 

BAS -0.79% 0.65% -1.21% 

BAY -1.81% 1.48% -2.68% 

BEI -12.28% 9.07% -19.91% 

DPW -3.14% 2.53% -5.00% 

DTE -3.12% 2.52% -5.59% 

FME -5.74% 4.51% -5.06% 

FRE3 -0.91% 0.75% -0.91% 

HEN3 -1.99% 1.63% -2.21% 

LIN -3.28% 2.65% -4.62% 

MEO -3.32% 2.67% -3.24% 

RWE -0.96% 0.80% -1.05% 

SAP -1.96% 1.60% -2.09% 

SIE -0.47% 0.39% -0.54% 

SZG -6.51% 5.08% -8.89% 

    

Notes: Firms that do not appear in this table have an 

error below 0.01%. 

 



Exhibit 3 

Simulated GSO Payoff 

firm barrier 

  95% 85% 75% 65% 55% 

ADS 0.435 0.246 0.120 0.050 0.020 

ALV 0.295 0.088 0.025 0.008 0.001 

BAS 1.286 0.860 0.577 0.344 0.199 

BAY 0.151 0.023 0.002 0.001 0.000 

BMW 0.597 0.463 0.343 0.228 0.140 

CBK 0.418 0.332 0.230 0.144 0.084 

DAI 0.233 0.081 0.022 0.005 0.001 

DB1 0.456 0.199 0.080 0.029 0.008 

DBK 0.289 0.107 0.033 0.008 0.003 

DPW 0.273 0.061 0.011 0.001 0.000 

DTE 0.297 0.166 0.089 0.039 0.013 

EOAN 0.247 0.068 0.018 0.004 0.000 

FME 0.193 0.064 0.016 0.004 0.001 

FRE3 0.171 0.017 0.001 0.000 0.000 

HEN3 0.224 0.041 0.006 0.001 0.000 

HNR1 0.985 0.662 0.436 0.261 0.136 

LHA 0.225 0.063 0.016 0.004 0.001 

LIN 0.282 0.088 0.021 0.005 0.001 

MAN 0.322 0.081 0.017 0.002 0.000 

MEO 0.241 0.028 0.002 0.000 0.000 

MRK 0.520 0.407 0.285 0.170 0.081 

MUV2 0.302 0.104 0.032 0.008 0.002 

RWE 0.157 0.030 0.004 0.000 0.000 

SAP 0.172 0.022 0.002 0.000 0.000 

SDF 3.637 2.792 2.185 1.618 1.167 

SIE 0.246 0.072 0.017 0.003 0.000 

TKA 0.295 0.096 0.024 0.007 0.001 

VOW 1.953 1.549 1.276 0.922 0.656 

 



Exhibit 4 

GSO Payoff Buckets 

payoff / cost barrier 

  95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

< 50% 0% 39% 64% 64% 71% 75% 75% 75% 79% 82% 

50% - 75% 18% 25% 4% 11% 4% 0% 4% 7% 4% 7% 

75% - 100% 29% 4% 7% 0% 0% 4% 4% 0% 7% 4% 

100% - 125% 21% 7% 0% 4% 4% 4% 4% 7% 4% 0% 

125% - 150% 4% 0% 4% 4% 4% 4% 4% 4% 0% 0% 

> 150% 29% 25% 21% 18% 18% 14% 11% 7% 7% 7% 

 



Exhibit 5 

Averages over all Simulations 

average Barrier 

  95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

cost 0.285 0.270 0.255 0.240 0.225 0.210 0.195 0.180 0.165 0.150 

payoff 0.532 0.402 0.315 0.256 0.210 0.171 0.138 0.112 0.090 0.071 

payoff when triggered 0.730 0.686 0.646 0.608 0.563 0.544 0.507 0.434 0.474 0.447 

trigger probability 63.97% 45.45% 33.91% 26.42% 21.13% 17.23% 14.16% 11.56% 9.47% 7.66% 

Overnight probability 28.09% 28.30% 28.79% 28.37% 27.13% 26.57% 28.70% 28.33% 29.36% 28.84% 

           

Notes: Averages were calculated in two steps. Step 1: For each firm: average over all simulations. Step 2: 

Average over each firms average. In the case of 'payoff when triggered' and 'overnight probability', only those 

firms where considered that reached the respective barrier in at least one simulation run. 

 



Exhibit 6 

Factors Determining GSO Value 

 



Exhibit 7 

Payoff Histogramm for Volkswagen and Lufthansa at 95 % Barrier 

 



Exhibit 8 

Correlations 

 moments of the log returns 

 intraday  overnight  overall 

 

trigger 

probability

payoff 

when 

triggered

variance of 

payoff 

when 

triggered exp. value variance skewness kurtosis  exp. value variance  exp. value

simulated payoff 57.25% 99.01% 95.79% -8.95% 17.00% -18.70% -6.32%  -73.79% 95.40%  -35.88% 

trigger prob  46.23% 39.65% -59.68% 18.44% -41.69% 19.94%  -23.25% 42.85%  -69.78% 

payoff w.t.   97.00% 2.31% 18.10% -13.48% -9.74%  -76.06% 96.11%  -26.10% 

variance of p.w.t.    0.54% 0.17% -10.82% -8.25%  -75.73% 99.25%  -20.43% 

 



Exhibit 9 

Payoff - Overnight Expected Value 

 



Exhibit 10 

Averages over all Simulations (05/06 Data) 

average barrier 

  95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

cost 0.285 0.270 0.255 0.240 0.225 0.210 0.195 0.180 0.165 0.150 

payoff 0.149 0.127 0.111 0.095 0.081 0.066 0.052 0.040 0.029 0.020 

payoff when triggered 0.188 0.177 0.171 0.163 0.139 0.146 0.121 0.139 0.106 0.102 

trigger probability 78.06% 69.21% 63.22% 57.44% 51.24% 44.54% 37.78% 31.20% 25.12% 19.73% 

Overnight probability 9.67% 9.48% 9.89% 9.93% 12.62% 10.98% 8.06% 8.43% 8.19% 9.46% 

           

Notes: Averages were calculated in two steps. Step 1: For each firm: average over all simulations. Step 2: Average over 

each firm’s average. In the case of 'payoff when triggered' and 'overnight probability', only those firms where 

considered that reached the respective barrier in at least one simulation run. 

 



Exhibit 11 

GSO Payoff Buckets (05/06 Data) 

payoff / cost barrier 

  95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

< 50% 52% 57% 74% 78% 83% 83% 87% 87% 91% 91% 

50% - 75% 30% 26% 9% 4% 4% 4% 4% 4% 0% 4% 

75% - 100% 9% 9% 9% 9% 9% 9% 4% 4% 9% 4% 

100% - 125% 4% 4% 4% 4% 0% 0% 0% 4% 0% 0% 

125% - 150% 0% 0% 0% 0% 0% 4% 4% 0% 0% 0% 

> 150% 4% 4% 4% 4% 4% 0% 0% 0% 0% 0% 

 

 

 


