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1 Introduction

Financial disasters such as the UK market crash in 1987, the recent �nancial crisis that started in

2007, as well as the fallout of large �nancial institutions such as the Long Term Capital Management

(LTCM) and Lehman Brothers, indicate the need to improve the existing risk management methods.

Value at Risk (VaR) has become a benchmark in measuring �nancial risk and has been widely used

by academics, practitioners and regulators (see for instance Jorion (2000) and Du¢ e and Pan

(1997)). Given the importance of VaR as a risk measure, many approaches have been proposed

for its estimation including parametric methods, semi-parametric methods (e.g. Filtered Historical

Simulation and Extreme Value Theory) and non-parametric (Historical simulation). Kuester et al.

(2006) provide a comparison of the out of sample performance of a large number of VaR models.

VaR has nevertheless some important limitations, since it is not a coherent risk measure (due to

the violation of the subadditivity property) and does not give any information about the potential

losses beyond VaR. Artzner et al. (1999) propose Expected Shortfall (ES) as an alternative measure

of risk, which overcomes these problems. In this paper we consider a forecast combination approach

to both VaR and ES.

Despite the increasing popularity of VaR, the recent �nancial crisis indicated that even sophisticated

VaR models cannot provide accurate forecasts, especially in periods where extreme events occur

frequently. One reason for this is that models often su¤er from various sources of misspeci�cation,

since they sometimes impose wrong assumptions related to the volatility or distribution and

therefore their forecasting performance may vary across assets and periods. The objective of

this paper is to use forecast combinations to provide VaR and ES forecasts that are robust

to these sources of misspeci�cation. Timmermann (2006) underlines the bene�ts of forecast

combinations, which they take into account information from each model�s forecast, they are robust

to misspeci�cation bias and measurement error of individual forecasts and provide diversi�cation

gains.

Forecast combinations have been used successfully in other areas of research, such as forecasting

Real GDP (Stock and Watson, 2004), in�ation (Stock and Watson, 2008), exchange rates (Wright,

2008) and stock returns (Avramov, 2002). Forecast Combinations have also been used in forecasting

variables that are unobserved, such as volatility. For instance, Pesaran et al. (2008) use "thick"

and Bayesian model averaging in the context of multi-asset volatility models and evaluate their

forecasting accuracy based on a VaR diagnostic test. In addition, Liu and Maheu (2009) use

Bayesian model averaging to forecast realized volatility and Patton (2009) combines realized

volatility estimators and uses MSE and QLIKE distance measures for their evaluation. Forecast

Combinations have also been used for testing conditional quantiles (Giacomini and Komunjer,

2005). However, there is no work that uses Forecast Combinations to directly predict VaR and ES.
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Our methodology takes into account other sources of model uncertainty beyond volatility, such as

the distribution of standardized returns and the risk management methods.

In this paper we use Forecast Combinations that have been proposed in the literature, such

as Weighted BIC, Smoothed AIC, Bates-Granger, Granger-Ramanathan and Mallows Model

Averaging to predict VaR. Using major stock market indices, such as S&P 500, NASDAQ

Composite, DAX 30, FTSE 100, CAC 40 and Nikkei 225, we �nd that forecast combinations can

give more reliable forecasts of VaR than individual models. We consider models from three broad

categories, parametric, �ltered historical simulation and extreme value theory and compare their

forecasting performance using the Conditional Coverage test (Christo¤ersen, 2003) and Dynamic

Quantile test (Engle and Manganelli, 2004). We �nd that parametric models based on the t-

distribution perform best, but still they fail to give accurate forecasts when we use the FTSE

100 index. Forecast combinations perform well across all stock market indices and even at high

con�dence levels, where predictability of VaR becomes extremely di¢ cult. We extend our analysis

in the context of ES and �nd that forecast combinations outperform individual models. For the

evaluation of ES forecasts we use alternative loss functions, such as MSE, QLIKE and LINEX and

a more general criterion, maximum regret.

The paper is organized as follows. In Section 2 we discuss the methodology. In Section 3 we

present the methods that we use for the evaluation of the performance of individual models and

forecast combinations. In Section 4 we discuss our empirical �ndings using international stock

market indices and in Section 5 we give our conclusions and future research.

2 Methodology

2.1 Ex-post vs ex-ante VaR

VaR at a con�dence level �; is de�ned as the smallest number l, such as the probability that the

loss L exceeds l is no larger than 1� �, q� = inf fl 2 R : P (L > l) � 1� �g(McNeil et al., 2005).
We classify VaR in two categories: (a) Ex-post VaR, which uses information until time t + 1 and

realized volatility measures to give a proxy of VaR at time t+ 1 and (b) Ex-ante VaR, which uses

information until time t and GARCH volatility models to give a forecast of VaR at time t+ 1.

Let pt denote the logarithmic price of an asset. Then daily returns are given by rt = pt � pt�1:We
assume zero conditional mean of the return process : �t=t�1 = E [rt==t�1] = 0, where =t�1 re�ects
all relevant information through time t� 1. This assumption is accepted empirically, and it is also
consistent with the martingale di¤erence assumption of weak E¢ cient Market Hypothesis. We use
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high frequency volatility measures to construct VaR proxies

qat = �tF
�1
v (a) (2.1)

where �t is an ex-post high frequency volatility measure and Fv is the empirical distribution of

normalized returns vt = rt
�t
.

We consider three realized volatility measures, Realized Volatility (RV), Realized Power Variation

(RPV) and Realized Bipower Variation (RBP) . To de�ne these measures, we normalize the daily

time interval to unity and divide it intom periods. The length of each period is equal to � = 1
m and

the high-frequency log-returns or� period returns are given by rt;j = pt+j��pt+(j�1)�; j = 1; :::;m:
RV is given by the sum of squared high-frequency log-returns and it is a consistent estimator of

Quadratic Variation (QV). Under the assumption of no jumps in the price process it is also a

consistent estimator of Integrated Volatility.

RVt+1 =

mX
j=1

r2t;j
p! QVt+1 =

Z t+1

t
�2sds +

X
t<s�t+1; dqs=1

�2s (2.2)

RV is discussed extensively in Andersen et al. (2001a,b) and Barndo¤-Nielsen and Shephard

(2002a,b). Bardo¤-Nielsen and Shephard (2004) proposed two other measures of volatility, RPV

and RBP, which are robust to jumps and are consistent estimators of Integrated Power Variation

(IPV).

RPVt+1 = �
�1
1 �

1�p=2
mX
j=1

jrt;j j
p! IPVt+1 (1) =

Z t+1

t
�sds (2.3)

RBPt+1 = �
�2
1

mX
j=2

jrt;j�1j jrt;j j
p! IPVt+1 (2) =

Z t+1

t
�2sds (2.4)

In the class of ex-ante VaR forecasts we consider 24 di¤erent model speci�cations using the

parametric, �ltered historical simulation and extreme value theory methods. We consider 4

volatility models, GARCH, GJR-GARCH or Threshold - GARCH (TARCH), EGARCH and

APARCH and 2 distributions the normal and t. The ex-ante VaR forecasts used in this paper

are described in table 2.
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2.2 Forecast Combinations

One of the most important problems in using Forecast Combinations, is that estimating all possible

models is time consuming and sometimes not feasible. Some methods that have been proposed in

the literature, deal with this problem by choosing the best models using model selection and then

combine forecasts (e.g. using the "leaps and bounds" algorithm (Furnival and Wilson, 1974)).

However, this method is subject to the pretesting criticism since it separates the model selection

procedure from the forecasting procedure and treat the conditional estimates as unconditional. In

order to overcome this problem and at the same time save a substantial amount of time we employ

the orthogonalization as discussed in Magnus et al. (2009).

We consider the linear regression model:

q�t = �0 + �1q
�
t�1 +

k+1X
j=2

�jxt;j�1 + "t (2.5)

where qt is ex-post VaR, qt�1 the �rst lag of ex-post VaR and xt;j�1; j = 2; :::; k + 1 the

orthogonalized regressors, which span the same space as the ex-ante VaR forecasts. Following

the terminology of Magnus et al. (2009) qt and qt�1 are called "focus" regressors, since we always

want to include them in the model and xt;j�1; j = 2; :::; k + 1 are the "auxiliary" regressors, since

we are less certain whether they can be useful in predicting the variable of interest.

Following Hansen (2008) we consider forecasting models that are strictly nested. Each model can

be written as:

q�t = �0;m + �1;mq
�
t�1 +

X
j2


�j;mxt;j�1 + "t;m (2.6)

where 
 = f2; :::; k + 1g. The least-squares forecast of q�t given by each model can be written as:

bfT+1;m = b�0;m + b�1;mq�t�1 +X
j2


b�j;mxt;j�1 (2.7)

where b�j;m are the least-squares estimates of �j;m of model m:The residuals of each model are

given by bet;m = q�t � b�0;m � b�1;mq�t�1 �Pj2

b�j;mxt;j�1 and the corresponding variance by:

b�2m = 1

T

TX
t=1

be2t;m (2.8)

We can combine these forecasts given by each model by assigning a weight wm to each forecast
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bfT+1;m. So the forecast of q�T+1 by combining individual forecasts is given by:
bfCT+1 (w) = MX

m=1

wm bfT+1;m (2.9)

For the estimation of the forecast error variance we use recursive estimates of �m = [�1;m; :::�k+1;m]

denoted by b�t�1;m. The recursive least-squares forecasts of q�t given by each model is bft;m =

xt;m
0b�t�1;m , where xt;m = [1; q�t�1; xt;1; :::; xt;k] and the variance of forecast errors:

e�2m = 1

k + 1

TX
t=T�k

�
q�t � bft;m�2 (2.10)

where k is chosen so that the variance is well de�ned1.

Based on the choice of the weights assigned to each forecast, we consider 5 forecast combination

methods, Weighted BIC or WBIC, Smoothed AIC or SAIC (Buckland et al. (1997) and Burnham

and Anderson (2002)), Bates - Granger (1969), Granger-Ramanathan (1984) and Mallows Model

Averaging or MMA (Hansen, 2008). For the WBIC and SAIC methods the weights are given by

WBIC and SAIC : wm = exp

�
�1
2
Cm

�24 MX
j=1

exp

�
�1
2
Cm

�35�1 (2.11)

where Cm is the BIC and AIC, respectively2. The Bates - Granger method uses weights that are

inversely proportional to the variance of forecast errors,

Bates � Granger : bwm = �e�2m��1
24 MX
j=1

�e�2j��1
35�1 (2.12)

In addition, we consider two versions of the Granger - Ramanathan approach, the unconstrained

and constrained, where the weights are determined based on the following regressions:

1 In this paper we use k = T=2.
2Note that the WBIC method has a Bayesian interpretation. Under di¤used priors the Bayesian Model Averaging

(BMA) weights can be approximated by the WBIC weights (2.11).
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Unconstrained Granger �Ramanathan : q�t =

MX
j=1

bwj bft;m + "t
Constrained Granger �Ramanathan : q�t =

MX
j=1

bwj bft;m + "t; s:t:
MX
j=1

bwj = 1 and 0 � wj � 1
(2.13)

Finally, we consider Mallows Model Averaging method which chooses optimal weights by minimizing

the Mallows criterion:

MMA : bw = argminbw
TX
t=1

�
q�t � b�0t bw�2 + 2 MX

m=1

bwmkms2; s:t: MX
j=1

bwj = 1 and 0 � bwj � 1 (2.14)

where b�t = �b�t;1; :::; b�t;M� ; �t;m = b�0;m + b�1;mq�t�1 +Pj2

b�j;mxt;j�1 and s2 = 1

T�kM
PT
t=1 be2t;M

an estimate of the variance of the largest �tted model.

2.3 Expected Shortfall

Despite the popularity of the VaR as a risk measure to academics, practitioners and regulators, it

is not a coherent risk measure, since it does not satisfy the subadditivity property. Artzner et al.

(1999) proposed an alternative risk measure, the Expected Shortfall (ES), which satis�es all the

properties of coherent risk measures and additionally incloses information for the potential size of

the losses beyond VaR. ES is de�ned as

m� =
1

1� �

Z 1

�
qudu (2.15)

For the estimation of ES we use the lemma (McNeil et al., 2005, pp45 ), which says that ES is the

mean of the losses given that the losses exceed VaR

m� = E (L=L � q�) (2.16)

where L are the losses of a portfolio3. Therefore, once we obtain a forecast of VaR, based on an

individual model or a forecast combination method, we can easily �nd the corresponding value of

3We use negative returns as the losses of the portfolio.
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ES using

m�
t+1 =

tX
i=t�k+1

Li1
�
Li > q

�
t+1

	
tX

i=t�k+1
1
�
Li > q�t+1

	 (2.17)

where k is the size of the rolling window.

3 Evaluation Methods

For the evaluation of the out of sample VaR forecasts we use traditional backtesting methods, such

as the Conditional Coverage Test (Christo¤ersen, 2003) and Dynamic Quantile Test (Engle and

Manganelli, 2004). For the evaluation of ES forecasts we consider symmetric (MSE) and asymmetric

(QLIKE and LINEX) loss functions. We also use Maximum Regret to evaluate the performance of

models and combinations across di¤erent con�dence levels.

3.1 Backtesting VaR

While there are many tests that examine the accuracy of VaR, the majority of these tests consider

the event that the loss on a portfolio exceeds its reported VaR. These tests use the hit sequence,

an indicator function, which measures the number of violations of VaR. The hit sequence takes the

value one when negative returns exceed VaR and zero otherwise.

It+1 = 1
�
�rt+1 > q�t+1

	
(3.18)

Christo¤ersen (2003) notes that the problem of assessing the accuracy of VaR can be understood

by studying two properties of the hit sequence (i) unconditional coverage: the average of the hit

sequence (percentage of violations) should be equal to the con�dence level and (ii) independence

property : the hit sequence should be independent over time (VaR forecasts with clustered violations

should be rejected). Although these properties are separate and distinct we employ the Conditional

Coverage test, which combines the two properties in the following null:

H0 : It+1 � i:i:d: Bernoulli (�) (3.19)

We also use an alternative method of backtesting VaR, the Dynamic Quantile test, which is based
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on the following regression:

It � � = �0 +
pX
i=1

�iIt�i + �p+1bq�t + "t (3.20)

The null hypothesis of this test is H0 : �0 = ::: = �p+1 = 0, which indicates that there is no

explanatory power in the lags of the hit sequence and the VaR forecast. For testing the VaR

models and forecast combinations we employ the speci�cation of this test used by Kuester at al.

(2006), in which the constant, four lags of the hit sequence and the contemporaneous VaR forecast

are used as regressors.

3.2 Loss functions and Maximum Regret

For the evaluation of the ES forecasts given by individual models and forecast combinations we

use alternative loss functions to evaluate the robustness of our results, as well as to address the

fact that forecasters may dislike more positive than negative errors. For that reason we consider

both symmetric (MSE) and asymmetric (QLIKE and LINEX) loss functions. Asymmetric loss

functions that penalize under-prediction more heavily than over-prediction are especially useful in

risk management due to the importance of downside risk.

The MSE and QLIKE loss functions are given by

MSE : L
�
m�; cm�

�
=
�
m� � cm�

�2
(3.21)

QLIKE : L
�
m�; cm�

�
= log

�cm�
�
+
m�cm�

(3.22)

wherem� is a proxy of ES using high frequency ex-post volatility measures and cm� is a forecast of ES

based on ex-ante ES forecasts. Patton (2008) showed that MSE and QLIKE loss functions are robust

to noisy volatility proxies. Although MSE is the most popular symmetric loss function, the QLIKE

distance is especially important in risk management since it penalizes under-prediction more heavily

than over-prediction. Another loss function, which has the above property (for appropriate choice

of its parameter) is the LINEX loss function (e.g. Varian (1974), Zellner (1986) and Christo¤ersen

and Diebold (1997)):

LINEX : L
�
m�; cm�; a

�
= exp

n
a
�
m� � cm�

�o
� a

�
m� � cm�

�
� 1; a 6= 0 (3.23)

The choice of the parameter � determines whether under-prediction or over-prediction is more

costly. We use � = 1 so that the LINEX function assigns a higher penalty to errors due to
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under-prediction (as shown in Figure 1), which is essentially more important to policy makers, risk

managers and regulators.

Figure 1: The LINEX loss function

This �gure shows the LINEX loss function for alternative choices of the parameter a.

One approach is to evaluate the performance of ES forecasts using alternative loss functions for

a given con�dence level. However, if we want �nd an ES method that performs well across all

con�dence levels we need to use a more general evaluation criterion, such as Maximum Regret.

The calculation of maximum regret consists of two steps: First, we compute the regret of each

procedure for a given con�dence level, which is given by the di¤erence of the risk (MSE, QLIKE

or LINEX loss function) and the best achievable risk between all methods. Second, we �nd the

maximum regret of each procedure across di¤erent con�dence levels.

4 Empirical Application

4.1 Data

Our database involves 5 minute data of major stock market indices from the US, European and

Asian stock markets. We use the S&P 500 index, NASDAQ Composite for the US stock markets,

the German DAX 30, the UK FTSE 100, the French CAC 40 and the Japanese NIKKEI 225. The

S&P 500 index covers the period January 2, 1991 to August 31, 2009 and it is the relatively longer

historical time series. The rest of the international stock market indices are available from July 1,
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2003 to August 31, 2009. The data source is the Tick Data database. Table 1 shows the descriptive

statistics of these stock market indices at daily frequency. The most important characteristics of

the data are : (a) mean very close to zero, (b) mild skewness and (c) substantial kurtosis. The

latter characteristic indicates that the assumption of Normality may be violated since the data

exhibit fat tails.

Our objective is to forecast daily VaR and ES using 5 minute data for the estimation of ex-post

high frequency volatility measures4. For the empirical applications using the S&P 500 index we use

forecasts of VaR and ES based on a rolling window of 1000 observations. For the other international

stock market indices we use a rolling window of 500 observations, given the smaller sample size.

Table 1: Descriptive Statistics of daily log returns

Index Mean* Variance* Skewness Kurtosis

S&P 500 2:424 1:372 �0:1516 12:003

NASDAQ 1:310 2:131 �0:0494 10:090

DAX 30 3:539 2:080 0:2686 13:295

FTSE 100 1:382 1:570 �0:1023 13:237

CAC 40 1:223 1:919 0:0810 12:266

NIKKEI 225 0:823 2:796 �0:4832 11:703

Table 1 shows the descriptive statistics of daily log returns of international stock market indices. S&P 500 covers

the period from January 1991 to August 2009 and the other stock market indices from July 2003 to August 2009. *

indicates that the actual numbers are multiplied by 10�4:

4.2 Empirical Analysis based on the VaR forecasts

First we use the S&P 500 index and test the performance of VaR forecasts given by individual

models. Model risk is present almost in all methods, especially for parametric GARCH-type models

that are based on the Normal distribution. As shown in table 3, parametric models based on the

Normal distribution pass the Conditional Coverage test (at 1% con�dence level) only for 90% and

95% con�dence levels. Given the exponential tails of the Normal distribution, these models fail to

give accurate forecasts as we move further to the tail from 90% to 99.5%, where extreme events

take place. From the large number of VaR models used in this paper only few perform well across

all con�dence levels. In contrast, parametric GARCH-type models based on the t-distribution turn

out to be the top ranking models, since they can capture the fat tails of the loss distribution.

Generally, models based on the FHS method perform well at lower con�dence levels (e.g. 95%),

4The choice of 5 minute data is based on the empirical �ndings of other studies (e.g. Andersen et al., 2001b)
which report that at this frequency there is no evidence of microstructure noise.
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and models based on the EVT approach perform better at higher con�dence levels (eg. 99.5%).

The above results are also summarized in �gures 3a and 3b, where the relative deviation from the

expected percentage of violations is lower at the 99.5% con�dence level for EVT and at the 97.5%

for FHS. As expected, as we move further to the tail the Normal parametric models deviate from

the expected percentage of violations. An interesting �nding is that this deviation is positive for

all models, which indicates under-estimation of risk, except of the parametric models based on the

t distribution.

On the other hand, forecast combinations provide more accurate VaR forecasts. As shown in table

4, VaR forecasts based on Weighted BIC, Smoothed AIC, Bates-Granger, Granger-Ramanathan,

Constrained Granger-Ramanathan and Mallows Model Averaging, pass the Conditional Coverage

test for all con�dence levels(except in two cases)5. In addition, Figure 4 shows that the

deviations from the expected percentage of violations is close to zero, which indicates that forecast

combinations can provide accurate forecasts of risk. Interestingly, the error of forecast combinations

has the opposite direction than that of most of the individual models, since there is over-estimation

of risk, especially at higher con�dence levels. Here, it is important to mention that under-estimation

of risk is more costly than over-estimation, especially for policy makers, since it can drive a bank to

bankruptcy when the capital holdings are not su¢ cient to satisfy its obligations. Over-estimation

of risk can also be costly for �nancial institutions since large capital holdings would not allow them

to use this capital for investment and this can decrease pro�tability. Nevertheless, we �nd that the

prediction error of forecast combination methods is relatively small.

Our empirical analysis is also extended to international stock market indices, such as the NASDAQ

Composite, DAX 30, FTSE 100, CAC 40 and NIKKEI 225 (tables 5-6). Using the Dynamic

Quantile test we �nd that only 3 models, FHS Normal APARCH, FHS t-APARCH and EVT

Normal APARCH, pass the test for all stock market indices at a 1% con�dence level. The results

are especially interesting for the FTSE 100, since only 7 out of 24 models are not rejected by the

test and even the parametric models based on the t distribution, which generally perform well,

fail to pass the test. On the other hand, the performance of forecast combinations is superior for

all stock market indices, since there are only a few rejections. When we use Realized Bipower

Variation, which is robust to jumps, all forecast combination methods pass the Dynamic Quantile

test at 1% con�dence level. As shown in Figures 2a and 2b, VaR forecasts given by the Mallows

Model Averaging approach respond almost immediately to rapid changes in volatility and can

provide robust forecasts even in the presence of extreme events. This holds for the other forecast

combination methods as well.
5Weighted BIC at the 99% con�dence level when Realized Power Variation is used as ex-post high frequency

volatility measure and Bates-Granger method at the 99% con�dence level when Realized Bipower Variation is used
as ex-post high frequency volatility measure.
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4.3 Empirical Analysis based on the ES forecasts

We now turn to the empirical analysis of one of the most popular coherent risk measures, the

Expected Shortfall (ES). Tables 7 and 8 show the mean 99% ES of the S&P 500 index using

individual models and forecast combinations, respectively. As expected, as we move closer to the

tail of the loss distribution the ES increases. Analyzing the ES forecasts given by the various

models we get similar conclusions to those of the VaR. For example parametric models based on

the Normal distribution give the lowest forecasts of ES, whereas the t-GARCH model gives the

highest ES forecasts for all con�dence levels.

Table 9 presents the bias and the loss of the ES forecasts given by individual models and

combinations. There is positive bias in all models, except the t-GARCH, which indicates under-

estimation of risk. On the contrary, the bias of the ES forecasts given by combinations in

negative (and smaller in absolute value from the t-GARCH). The rankings given by symmetric

and asymmetric loss functions are similar, despite that they penalize positive and negative forecast

errors di¤erently. This can be explained by the fact that the positive bias of individual models is

signi�cantly higher in absolute value from the negative bias of forecast combinations, and therefore

the rankings do not change much when we use asymmetric loss functions instead of symmetric.

The best performing methods using the MSE, QLIKE and LINEX loss function are forecast

combinations. Particularly, when we use the MSE and QLIKE loss functions the best performing

method is the Constrained Granger-Ramanathan and when we use the QLIKE loss function the

Weighted BIC. From the individual models the best performing models are those based on the

t distribution (t-TARCH has the best performance). There is no clear superiority between the

models of the FHS and EVT families. From both FHS and EVT families the model with the

Normal GARCH volatility structure has the highest rank. Parametric Normal models are the

worst performing models. Here it is important to mention that the problem of under-estimation of

risk observed in Normal GARCH-type parametric models is not due to the volatility structure but

to the use of the inverse normal distribution function for the standardized returns. For example

it can be proved that the Normal GARCH volatility model can capture heavy tails. This is the

reason that FHS and EVT methods that use the Normal GARCH volatility model perform well.

In Table 10 we use the maximum regret of the above loss functions across various con�dence

levels (90%, 95%, 97.5%, 99% and 99.5%), which is a more robust evaluation measure. As noted

by Hansen (2008) a forecast with low maximum regret does not perform signi�cantly worse than

the best performing model for each con�dence level. Based on the maximum regret measure (of

the MSE, QLIKE and LINEX loss functions) forecast combinations have the best performance.

The Constrained Granger-Ramanathan is the best performing method among the other forecast

combinations. The parametric t distributed models follow. The models from the EVT family
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generally perform better than those from the FHS family. From the EVT family the model with t-

TARCH volatility structure has superior performance than the other models and from the FHS class

the t-APARCH ranks �rst when we use the MSE and LINEX loss functions and Normal GARCH

when we use the QLIKE loss function. Again the parametric models that assume Normality have

the worst performance.

We now consider two subsamples of the S&P 500 using various forecast combination methods. The

�rst subsample covers the period from January 2, 1996 to September 30, 2002 and the second

subsample from October 1, 2002 to August 31, 2009. The most important �nancial event in the

�rst subsample is the dot-com bubble and in the second the recent �nancial crisis. Figures 5a and

5b show the percentiles of the 95% ES of the two subsamples. The percentiles 0.005, 0.025, 0.25, 0.5

and 0.75 of the conditional ES in the �rst subsample are lower than those in the second subsample.

In contrast, the 0.975 and 0.995 percentiles of the conditional ES in the second subsample are

higher. This implies that the losses during the recent �nancial crisis are more severe than any other

recent �nancial event, re�ected by the upper percentiles of conditional ES.

5 Conclusions and Future Research

In this paper we test the performance of VaR and ES models following three alternative methods,

the parametric, �ltered historical simulation and extreme value theory, using some of the major

stock market indices from the US, European and Asian stock markets. We rank the performance

of these methods using backtesting, alternative loss functions and maximum regret. The results

indicate that parametric GARCH models based on the t distribution rank �rst, models from the

EVT family rank second, followed by models from the FHS family. As expected parametric models

that assume Normality have the worst performance. We �nd that only a handful of models perform

well across all the major stock market indices and across di¤erent con�dence levels. In particular, as

we increase the con�dence level, it becomes more di¢ cult to obtain accurate VaR and ES forecasts

relying only on one individual model.

Instead we �nd that forecast combinations that take into account information from various methods,

provide robust forecasts of VaR and ES across all con�dence levels. The forecast combination

method with the lowest maximum regret of ES forecasts is the Constrained Granger-Ramanathan.

The use of data that involves the recent �nancial crisis, indicates that forecast combinations perform

well even in the presence of extreme events, such as bankruptcies of banks and �nancial institutions

(e.g. Lehman Brothers), where forecasting risk is even more challenging. In a nutshell our empirical

results provide strong evidence that forecast combinations yield more accurate forecasts of risk than

individual models and can deal with the problem of model uncertainty, which is an essential issue
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in modern risk management.

Given that �nancial decisions are often based on multi-period-ahead forecasts of risk, �nding

methods to forecast VaR in longer horizons than one day becomes very important. For example the

Basel Committee on Banking Supervision requires banks to meet market risk capital requirements

based on 10-day VaR estimates. Ongoing work involves using forecast combinations to predict

10-day VaR.
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APPENDIX

Figure 2a: 99% VaR forecasts using the Mallows Model Averaging method.

S&P 500: January 1996 - September 2002 S&P 500: October 2002 - August 2009

NASDAQ: June 2006 - August 2009 DAX 30: June 2006 - August 2009

This �gure shows the 99% VaR forecasts obtained by Mallows Model Averaging for the S&P 500, NASDAQ Composite

and DAX 30 stock market indices. The ex-post volatility measure is Realized Bipower Variation. The VaR forecasts

are based on a rolling window of 1000 observations for the S&P 500 and a rolling window of 500 observations for the

NASDAQ and DAX 30 stock market indices.
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Figure 2b: 99% VaR forecasts using the Mallows Model Averaging method

FTSE 100: June 2006 - August 2009 CAC 40: June 2006 - August 2009

NIKKEI 225: June 2006 - August 2009

This �gure shows the 99% VaR forecasts obtained by Mallows Model Averaging for the FTSE 100, CAC 40 and

NIKKEI 225 stock market indices. The ex-post volatility measure is Realized Bipower Variation. The VaR forecasts

are based on a rolling window of 500 observations.
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Figure 3a: Relative Deviations from the expected percentage of violations of
VaR forecasts of individual models using the S&P 500 index

This �gure shows the relative deviations from the expected percentage of VaR violations across di¤erent con�dence

levels for individual models using the S&P 500 index. These deviations are given by
E(It)��

� and can be estimated

by

1
T

XT

t=1
It��

� , where It is the hit sequence and � the con�dence level. The data sample covers the period from

January 1996 to August 2009 (excluding the estimation window). The VaR forecasts are based on a rolling window

of 1000 observations.

19



Figure 3b: Relative Deviations from the expected percentage of violations of
VaR forecasts of individual models using the S&P 500 index.

This �gure shows the relative deviations from the expected percentage of VaR violations across di¤erent con�dence

levels for individual models using the S&P 500 index. These deviations are given by
E(It)��

� and can be estimated

by

1
T

XT

t=1
It��

� , where It is the hit sequence and � the con�dence level. The data sample covers the period from

January 1996 to August 2009 (excluding the estimation window). The VaR forecasts are based on a rolling window

of 1000 observations.

20



Figure 4: Relative Deviations from the expected percentage of violations of
VaR forecasts of forecast combinations using the S&P 500 index.

This �gure shows the relative deviations from the expected percentage of VaR violations across di¤erent con�dence

levels for forecast combinations using the S&P 500 index. These deviations are given by
E(It)��

� and can be estimated

by

1
T

XT

t=1
It��

� , where It is the hit sequence and � the con�dence level. The data sample covers the period from

January 1996 to August 2009 (excluding the estimation window). Realized Bipower Variation is used as ex-post

volatility measure. The VaR forecasts are based on a rolling window of 1000 observations.
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Figure 5a: Percentiles of the 95% Expected Shortfall of two subsamples of
the S&P 500 index.

Weighted BIC

Smoothed AIC

Bates - Granger

This �gure shows the percentiles of the 95% Expected Shortfall of two subsamples of the S&P 500 index given by

forecast combinations. The �rst subsample covers the period from January 1996 to September 2002 and the second

subsample from October 2002 to August 2009. Realized Bipower Variation is used as ex-post high frequency volatility

measure. The size of the rolling window is 1000 observations.
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Figure 5b: Percentiles of the 95% Expected Shortfall of two subsamples of
the S&P 500 Index.

Granger - Ramanathan

Constrained Granger - Ramanathan

Mallows Model Averaging

This �gure shows the percentiles of the 95% Expected Shortfall of two subsamples of the S&P 500 index given by

forecast combinations. The �rst subsample covers the period from January 1996 to September 2002 and the second

subsample from October 2002 to August 2009.Realized Bipower Variation is used as ex-post high frequency volatility

measure. The size of the rolling window is 1000 observations.
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Table 2: Ex-ante VaR forecasts.

1 Historical Simulation bF�1rt (�) 14 FHS t-GARCH �5;t+1 bF�1"t (�)
2 Normal GARCH �1;t+1�

�1 (�) 15 FHS t-TARCH �6;t+1 bF�1"t (�)
3 Normal TARCH �2;t+1�

�1 (�) 16 FHS t-EGARCH �7;t+1 bF�1"t (�)
4 Normal EGARCH �3;t+1�

�1 (�) 17 FHS t-APARCH �8;t+1 bF�1"t (�)
5 Normal APARCH �4;t+1�

�1 (�) 18 EVT Normal GARCH �1;t+1 bF�1EV T (�)
6 t-GARCH �5;t+1t

�1
v (�) 19 EVT Normal TARCH �2;t+1 bF�1EV T (�)

7 t-TARCH �6;t+1t
�1
v (�) 20 EVT Normal EGARCH �3;t+1 bF�1EV T (�)

8 t-EGARCH �7;t+1t
�1
v (�) 21 EVT Normal APARCH �4;t+1 bF�1EV T (�)

9 t-APARCH �8;t+1t
�1
v (�) 22 EVT t-GARCH �5;t+1 bF�1EV T (�)

10 FHS Normal GARCH �1;t+1 bF�1"t (�) 23 EVT t-TARCH �6;t+1 bF�1EV T (�)
11 FHS Normal TARCH �2;t+1 bF�1"t (�) 24 EVT t-EGARCH �7;t+1 bF�1EV T (�)
12 FHS Normal EGARCH �3;t+1 bF�1"t (�) 25 EVT t-APARCH �8;t+1 bF�1EV T (�)
13 FHS Normal APARCH �4;t+1 bF�1"t (�)
This table consists of the model speci�cations of the ex ante VaR forecasts that are used as regressors in the linear

model.

Let rt+1 = �t+1"t+1:We use 8 di¤erent volatility models,

(1) Normal GARCH(1,1): �21;t+1= ! + �r
2
t+��

2
1;t "t+1� N (0; 1)

(2) Normal TARCH(1,1): �22;t+1= ! + �r
2
t+��

2
2;t+�r

2
t 1frt<0g "t+1� N (0; 1)

(3) Normal EGARCH(1,1): log
�
�23;t+1

�
= ! + �

h
jrtj
�3;t

� E
n
jrtj
�3;t

oi
+ � log

�
�23;t

�
+ � rt

�3;t
"t+1� N (0; 1)

(4) Normal APARCH(1,1): ��4;t+1= ! + � (jrtj � �rt)
� +���4;t "t+1� N (0; 1)

(5) t-GARCH(1,1): �25;t+1= ! + �r
2
t+��

2
5;t "t+1� tv

(6) t-TARCH(1,1): �26;t+1= ! + �r
2
t+��

2
6;t+�r

2
t 1frt<0g "t+1� tv

(7) t-EGARCH(1,1): log
�
�27;t+1

�
= ! + �

h
jrtj
�7;t

� E
n
jrtj
�7;t

oi
+ � log

�
�27;t

�
+ � rt

�7;t
"t+1� tv

(8) t-APARCH(1,1): ��8;t+1= ! + � (jrtj � �rt)
� +���8;t "t+1� tv

We also use the inverse of the following distribution functions for each method

(1) Parmatric (Normal) � (x)=
R x
�1

1p
2�
exp

�
�u2

2

�
du

(2) Parametric (t) tv (x)=
R x
�1

�( v+12 )
�( v2 )

1p
v�

1�
1+
�
u2

v

��(v+1)=2du
(3) Filtered Historical Simulation (FHS) bF"t (�)= 1

k

Xt

s=t�k+1
1f"s�ag

(4) Extreme Value Theory (EVT) bFEV T (x) = 1� Tu
T

�
x
u

��1=�
where T is the total number of observations, Tu is the number of observations beyond the threshold u and � is the

shape parameter of the Generalized Pareto Distribution.
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Table 3: P-values of the Conditional Coverage Test for individual VaR models
using the S&P 500 index across di¤erent con�dence levels

Model � = 90% � = 95% � = 97:5% � = 99% � = 99:5%

Normal GARCH 0.4050 0.1016 0 0 0

Normal TARCH 0.1599 0.0342 0 0 0

Normal EGARCH 0.1031 0.0013 0 0 0

Normal APARCH 0.1645 0.0466 0 0 0

t-GARCH 0.0001 0.0113 0.0265 0.1439 0.8087
t-TARCH 0.0924 0.3689 0.1040 0.4005 0.8894
t-EGARCH 0.5872 0.4625 0.2760 0.4733 0.8202
t-APARCH 0.1578 0.4905 0.2675 0.5429 0.8926
FHS Normal GARCH 0.2808 0.1736 0.0242 0.1499 0.0452
FHS Normal TARCH 0.0077 0.0928 0.0060 0.0124 0.0736
FHS Normal EGARCH 0.0130 0.0144 0.0004 0.0050 0.0045

FHS Normal APARCH 0.0202 0.0637 0.0026 0.0080 0.0023

FHS t-GARCH 0.3355 0.1249 0.0371 0.4416 0.0736
FHS t-TARCH 0.0085 0.1549 0.0234 0.0588 0.3511
FHS t-EGARCH 0.0118 0.0198 0.0010 0.0189 0.0452
FHS t-APARCH 0.0420 0.1279 0.0234 0.0411 0.0084

EVT Normal GARCH 0.0498 0.0533 0.0026 0.4416 0.8087
EVT Normal TARCH 0.0006 0.0302 0 0.0472 0.8894
EVT Normal EGARCH 0.2076 0.0039 0 0.0050 0.0736
EVT Normal APARCH 0.0191 0.0533 0 0.0411 0.7144
EVT t-GARCH 0.0924 0.0678 0.0020 0.6693 0.8087
EVT t-TARCH 0.0022 0.0917 0.0003 0.0472 0.8087
EVT t-EGARCH 0.1083 0.0122 0 0.0282 0.5914
EVT t-APARCH 0.0110 0.0533 0.0003 0.0822 0.7144

This table consists of the p-values of the Conditional Coverage test of 99% VaR forecast of individual models using

the S&P 500 Composite Index. The bold numbers are the p-values greater than 0.01, which indicate that the VaR

forecasts pass the test at 1% con�dence level. The data sample covers the period from January 1996 to August

2009 (excluding the estimation window). The out of sample VaR forecasts are based on a rolling window of 1000

observations.
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Table 4: P-values of the Conditional Coverage test for forecast combinations
using the S&P 500 index across di¤erent con�dence levels.

� = 90% � = 95% � = 97:5% � = 99% a = 99:5%

Ex post VaR Realized Volatility (RV)

Weighted BIC 0.4321 0.0796 0.0550 0.0142 0.0908
Smoothed AIC 0.1816 0.0389 0.0758 0.0142 0.0450
Bates-Granger 0.4154 0.0604 0.1053 0.0249 0.0196
Granger-Ramanathan 0.1426 0.0743 0.2215 0.0994 0.0196
Constrained Granger-Ramanathan 0.5809 0.0487 0.1591 0.0249 0.0196
Mallows Model Averaging 0.2301 0.0389 0.0502 0.0249 0.0450

Ex post VaR Realized Power Variation (RPV)

Weighted BIC 0.8257 0.1838 0.0265 0.0077 0.0908
Smoothed AIC 0.5359 0.1838 0.1053 0.0414 0.0196
Bates-Granger 0.8518 0.1560 0.0653 0.0249 0.0196
Granger-Ramanathan 0.7345 0.3262 0.0653 0.0994 0.0908
Constrained Granger-Ramanathan 0.9439 0.2148 0.1304 0.0249 0.0908
Mallows Model Averaging 0.5775 0.1838 0.0653 0.0249 0.0196

Ex post VaR Realized Bipower Variation (RBP)

Weighted BIC 0.8513 0.2159 0.0344 0.0657 0.0908
Smoothed AIC 0.9630 0.0777 0.0989 0.0657 0.0196
Bates-Granger 0.9647 0.1361 0.0680 0.0039 0.0196
Granger-Ramanathan 0.6864 0.3949 0.0836 0.1439 0.0450
Constrained Granger-Ramanathan 0.8837 0.1148 0.0827 0.0249 0.0196
Mallows Model Averaging 0.9069 0.1361 0.2929 0.0414 0.0196

This table consists of the p-values of the Conditional Coverage test of 99% VaR forecast of forecast combinations

using the S&P 500 Composite index. The bold numbers are the p-values greater than 0.01, which indicate that the

VaR forecasts pass the test at 1% con�dence level. The data sample covers the period from January 1996 to August

2009 (excluding the estimation window). The out of sample VaR forecasts are based on a rolling window of 1000

observations.
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Table 5: P-values of the Dynamic Quantile Test for individual VaR models
using international stock market indices for a 99% con�dence level.

Model NASDAQ DAX 30 FTSE 100 CAC 40 NIKKEI 225

Normal GARCH 0.0691 0.0817 0 0.1146 0.0155
Normal TARCH 0.0302 0.0204 0 0.0328 0.0034

Normal EGARCH 0 0.0002 0 0 0

Normal APARCH 0.0003 0.0024 0 0 0.0001

t-GARCH 0.9699 0.9527 0.0076 0.0298 0.0826
t-TARCH 0.8780 0.9630 0.0028 0.1597 0.7250
t-EGARCH 0.7131 0.8624 0.0043 0.3808 0.1173
t-APARCH 0.8480 0.7001 0 0 0.1111
FHS Normal GARCH 0.6807 0.9029 0.0075 0.1006 0.0661
FHS Normal TARCH 0.7452 0.1726 0.0079 0.1341 0.9257
FHS Normal EGARCH 0.0028 0.1469 0.1117 0.0019 0.1602
FHS Normal APARCH 0.0529 0.4628 0.0170 0.1373 0.5041
FHS t-GARCH 0.6952 0.9214 0.0075 0.1032 0.0817
FHS t-TARCH 0.6850 0.1757 0.0078 0.1366 0.9769
FHS t-EGARCH 0.0056 0.0446 0.0885 0.0234 0.0137
FHS t-APARCH 0.3673 0.5010 0.0171 0.1449 0.4642
EVT Normal GARCH 0.4909 0.9763 0.0081 0.1011 0.0881
EVT Normal TARCH 0.7656 0.2350 0.0089 0.1380 0.1093
EVT Normal EGARCH 0.0999 0.3127 0.1261 0.0077 0.0485
EVT Normal APARCH 0.6060 0.3263 0.0221 0.0321 0.0603
EVT t-GARCH 0.9407 0.9786 0.0083 0.1041 0.0835
EVT t-TARCH 0.9652 0.1704 0.0089 0.1411 0.3997
EVT t-EGARCH 0.1002 0.1287 0.1208 0.0800 0.0763
EVT t-APARCH 0.7816 0.8682 0.0085 0.0328 0.0832

This table consists of the p-values of the Dynamic Quantile test of 99% VaR forecast of individual models using

international stock market indices. The bold numbers are the p-values greater than 0.01, which indicate that the

VaR forecasts pass the test at 1% con�dence level. The data sample covers the period from June 2006 to August

2009 (excluding the estimation window). The out of sample VaR forecasts are based on a rolling window of 1000

observations.
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Table 6: P-values of the Dynamic Quantile test for forecast combinations
using international stock market indices at 99% con�dence level.

NASDAQ DAX 30 FTSE 100 CAC 40 NIKKEI 225

Ex post VaR Realized Volatility (RV)

Weighted BIC 0.7636 0.8892 0.0047 0.8455 0.9853
Smoothed AIC 0.7730 0.8900 0.0283 0.8207 0.0018

Bates-Granger 0.7693 0.9760 0.0237 0.8294 0.9739
Granger-Ramanathan 0.7709 0.0256 0.9883 0.0013 0.8843
Constrained Granger-Ramanathan 0.7682 0.9742 0.0236 0.9623 0.9378
Mallows Model Averaging 0.7711 0.9772 0.0233 0.8281 0.9921

Ex post VaR Realized Power Variation (RPV)

Weighted BIC 0.7616 0.9823 0.1048 0.9651 0.9838
Smoothed AIC 0.7731 0.9670 0.0651 0.9623 0.9576
Bates-Granger 0.7684 0.8888 0.1026 0.9633 0.9537
Granger-Ramanathan 0.0001 0.0295 0.0170 0.8919 0.9872
Constrained Granger-Ramanathan 0.7667 0.9391 0.0537 0.9642 0.9209
Mallows Model Averaging 0.7708 0.9671 0.0261 0.9632 0.9626

Ex post VaR Realized Bipower Variation (RBP)

Weighted BIC 0.7624 0.9811 0.1356 0.9639 0.9956
Smoothed AIC 0.7735 0.9831 0.0283 0.9609 0.9738
Bates-Granger 0.7690 0.9813 0.1307 0.9624 0.9821
Granger-Ramanathan 0.9130 0.0297 0.0470 0.7056 0.8331
Constrained Granger-Ramanathan 0.7659 0.9819 0.1061 0.8924 0.9747
Mallows Model Averaging 0.7710 0.9832 0.0560 0.9620 0.9769

This table consists of the p-values of the Dynamic Quantile test of 99% VaR forecasts of forecast combinations using

international stock market indices. The bold numbers are the p-values greater than 0.01, which indicate that the

VaR forecasts pass the test at 1% con�dence level. The data sample covers the period from June 2006 to August

2009 (excluding the estimation window). The out of sample VaR forecasts are based on a rolling window of 1000

observations.
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Table 7: Mean 99% ES forecasts of individual models using the S&P 500
index.
Model � = 90% � = 95% � = 97:5% � = 99% � = 99:5%

Normal GARCH 22059 26186 29641 33911 36624

Normal TARCH 21812 25636 28825 32579 34895

Normal EGARCH 21138 24888 28218 32197 34619
Normal APARCH 21508 25399 28691 32709 35015

t-GARCH 23644 29119 34399 41649 45700
t-TARCH 23163 27977 32440 38534 41754

t-EGARCH 22429 27259 31932 38068 41454

t-APARCH 22688 27565 32100 38099 41388

FHS Normal GARCH 21209 25986 31193 37380 42836

FHS Normal TARCH 21199 25916 30003 35405 40865

FHS Normal EGARCH 20510 25159 29188 34830 41385

FHS Normal APARCH 21003 25756 29882 35272 41637

FHS t-GARCH 21326 25942 31102 37390 43096

FHS t-TARCH 21298 26011 30258 35967 41440

FHS t-EGARCH 20668 25343 29344 35161 41820

FHS t-APARCH 21135 25855 30111 35679 42042

EVT Normal GARCH 22497 25813 30058 38107 44533

EVT Normal TARCH 22897 25766 29301 35696 40776

EVT Normal EGARCH 22249 25048 28563 34794 39858

EVT Normal APARCH 22775 25626 29115 35462 40562

EVT t-GARCH 22545 25767 30048 38178 44818

EVT t-TARCH 22948 25858 29456 36104 41487

EVT t-EGARCH 22348 25194 28781 35175 40431

EVT t-APARCH 22861 25726 29347 35885 41186

This table consists of the mean of the conditional 99% Expected Shortfall of individual models using the S&P 500

index. The data sample covers the period from January 1996 to August 2009 (excluding the estimation window).

The out of sample forecasts are based on a rolling window of 1000 observations. The bold numbers show the lowest

and highest mean ES for each con�dence level.
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Table 8: Mean 99% ES forecasts of forecast combinations using the S&P 500.

� = 90% � = 95% � = 97:5% � = 99% a = 99:5%

Ex post VaR Realized Volatility (RV)

Weighted BIC 22315 27811 32979 41651 46072

Smoothed AIC 22668 27979 32918 41609 45712

Bates-Granger 22444 27812 32883 41787 46104
Granger-Ramanathan 22540 27968 32719 41426 45212

Constrained Granger-Ramanathan 22377 27809 32958 41817 45983

Mallows Model Averaging 22574 27921 32932 41622 45848

Ex post VaR Realized Power Variation (RPV)

Weighted BIC 22103 27616 33241 41400 45717

Smoothed AIC 22279 27746 32922 41251 45287

Bates-Granger 22125 27636 32889 41403 45646

Granger-Ramanathan 22239 27687 32966 41253 45234

Constrained Granger-Ramanathan 22065 27522 32963 41385 45576

Mallows Model Averaging 22226 27691 32955 41313 45403

Ex post VaR Realized Bipower Variation (RBP)

Weighted BIC 21851 27429 33098 41294 45360

Smoothed AIC 22142 27580 32750 41177 44949

Bates-Granger 21940 27440 32662 41441 45373

Granger-Ramanathan 22015 27454 32765 41163 44891
Constrained Granger-Ramanathan 21850 27307 32795 41400 45317

Mallows Model Averaging 22060 27528 32757 41241 45043

This table consists of the mean of the conditional 99% Expected Shortfall of forecast combinations using the S&P

500 index. The data sample covers the period from January 1996 to August 2009 (excluding the estimation window).

The out of sample forecasts are based on a rolling window of 1000 observations. The bold numbers show the lowest

and highest mean ES for each con�dence level.
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Table 9: Evaluation of the 99% ES forecasts using the S&P 500 index.

Model Bias* MSE* Rank QLIKE Rank LINEX* Rank

Normal GARCH 5.9347 0.1583 27 -2.2751 27 0.0798 27

Normal TARCH 7.2364 0.1746 29 -2.2642 29 0.0880 29

Normal EGARCH 7.6422 0.1838 30 -2.2608 30 0.0927 30

Normal APARCH 7.1126 0.1722 28 -2.2653 28 0.0868 28

t-GARCH -1.8182 0.1034 11 -2.2953 8 0.0516 11

t-TARCH 1.2937 0.0940 7 -2.2957 7 0.0471 7

t-EGARCH 1.7732 0.0997 9 -2.2931 12 0.0500 9

t-APARCH 1.7267 0.0962 8 -2.2948 9 0.0483 8

FHS Normal GARCH 2.4861 0.1074 13 -2.2929 13 0.0539 13

FHS Normal TARCH 4.4207 0.1246 21 -2.2836 21 0.0627 21

FHS Normal EGARCH 5.0029 0.1309 26 -2.2801 26 0.0659 26

FHS Normal APARCH 4.5425 0.1252 22 -2.2828 22 0.0630 22

FHS t-GARCH 2.4679 0.1083 14 -2.2927 14 0.0544 14

FHS t-TARCH 3.8444 0.1161 17 -2.2867 17 0.0584 17

FHS t-EGARCH 4.6634 0.1260 24 -2.2817 24 0.0634 24

FHS t-APARCH 4.1244 0.1188 18 -2.2854 19 0.0597 18

EVT Normal GARCH 1.7477 0.1028 10 -2.2940 10 0.0516 10

EVT Normal TARCH 4.1274 0.1195 19 -2.2855 18 0.0601 19

EVT Normal EGARCH 5.0432 0.1297 25 -2.2811 25 0.0653 25

EVT Normal APARCH 4.3557 0.1226 20 -2.2842 20 0.0617 20

EVT t-GARCH 1.6619 0.1045 12 -2.2938 11 0.0524 12

EVT t-TARCH 3.7086 0.1125 15 -2.2885 15 0.0566 15

EVT t-EGARCH 4.6556 0.1255 23 -2.2823 23 0.0632 23

EVT t-APARCH 3.9242 0.1156 16 -2.2869 16 0.0581 16

Weighted BIC -1.1587 0.0799 4 -2.3019 1 0.0398 4

Smoothed AIC -1.0413 0.0810 5 -2.3009 6 0.0405 5

Bates-Granger -1.3059 0.0787 2 -2.3018 3 0.0392 2

Granger-Ramanathan -1.0274 0.0820 6 -2.3010 5 0.0409 6

Constrained Granger-Ramanathan -1.2646 0.0783 1 -2.3018 2 0.0391 1

Mallows Model Averaging -1.1052 0.0794 3 -2.3014 4 0.0396 3

This �gure shows the Bias, MSE, QLIKE and LINEX (a=1) loss functions of the 99% ES forecasts using the S&P

500 Index from January 1996 to August 2009. The size of the rolling window is 1000 observations. Realized Bipower

Variation is used as ex post high frequency volatility measure. * means that the actual numbers are multiplied by

1000.
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Table 10: Maximum Regret of the 99% ES forecasts using the S&P 500 index.

Model MSE* Rank QLIKE Rank LINEX* Rank

Normal GARCH 1.1825 27 0.0343 27 0.6003 27

Normal TARCH 1.6722 29 0.0555 29 0.8488 29

Normal EGARCH 1.7423 30 0.0576 30 0.8840 30

Normal APARCH 1.6165 28 0.0530 28 0.8204 28

t-GARCH 0.3499 9 0.0097 7 0.1741 8

t-TARCH 0.3201 7 0.0098 8 0.1653 7

t-EGARCH 0.4147 15 0.0136 12 0.2109 15

t-APARCH 0.3664 10 0.0116 9 0.1868 10

FHS Normal GARCH 0.4239 16 0.0132 10 0.2147 16

FHS Normal TARCH 0.5537 25 0.0189 21 0.2817 25

FHS Normal EGARCH 0.5253 24 0.0218 26 0.2681 24

FHS Normal APARCH 0.4685 19 0.0191 22 0.2392 19

FHS t-GARCH 0.4630 17 0.0141 13 0.2343 17

FHS t-TARCH 0.5152 23 0.0175 19 0.2621 23

FHS t-EGARCH 0.4768 21 0.0201 24 0.2434 21

FHS t-APARCH 0.4041 14 0.0164 18 0.2065 14

EVT Normal GARCH 0.3923 13 0.0150 15 0.1986 13

EVT Normal TARCH 0.4700 20 0.0163 17 0.2398 20

EVT Normal EGARCH 0.5660 26 0.0208 25 0.2880 26

EVT Normal APARCH 0.4631 18 0.0177 20 0.2361 18

EVT t-GARCH 0.3915 12 0.0153 16 0.1984 12

EVT t-TARCH 0.3437 8 0.0134 11 0.1757 9

EVT t-EGARCH 0.5120 22 0.0195 23 0.2605 22

EVT t-APARCH 0.3792 11 0.0150 14 0.1935 11

Weight ed BIC 0.0197 4 0.0005 3 0.0096 4

Smoothed AIC 0.0368 5 0.0013 5 0.0185 5

Bates-Granger 0.0151 2 0.0002 2 0.0075 2

Granger-Ramanathan 0.0579 6 0.0021 6 0.0289 6

Constrained Granger-Ramanathan 0.0023 1 0.0002 1 0.0012 1

Mallows Model Averaging 0.0189 3 0.0006 4 0.0095 3

This �gure shows the Maximum Regret based on the MSE, QLIKE and LINEX (a=1) loss functions of the 99%

ES forecasts using the S&P 500 index from January 1996 to August 2009. The size of the rolling window is 1000

observations. Realized Bipower Variation is used as ex-post high frequency volatility measure. * means that the

actual numbers are multiplied by 10000.
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