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Abstract

In this paper we use filtering and maximum likelihood methods to
solve a calibration problem for a multiscale stochastic volatility model.
The multiscale stochastic volatility model considered has been intro-
duced in [10], [11] and describes the dynamics of the asset price using
as auxiliary variables two stochastic variances varying on two different
time scales. The aim of this paper is to estimate the parameters of
this multiscale model (including the risk premium parameters when
necessary) and its two initial stochastic variances from the knowledge,
at discrete times, of the asset price and, eventually, of the prices of
call and/or put European options on the asset. This problem is trans-
lated in a maximum likelihood problem with the likelihood function
defined through the solution of a filtering problem. The estimated val-
ues of the parameters and of the two initial stochastic variances are
characterized as being a constrained maximizer of a likelihood func-
tion. Furthermore we develop a tracking procedure that is able to
track the asset price and the values of its two stochastic variances for
time values where there are no data available. The solution of the
calibration problem and the tracking procedure are used to do the
analysis of data time series. Numerical examples of the solution of the
calibration problem and of the performance of the tracking procedure
using synthetic and real data are presented. The synthetic data time
series is analyzed using data samples made of observations done with
a given time frequency. We consider observation frequencies ranging
from “high” to “low” frequencies and we study the performance of
the calibration procedure as a function of the observation frequency.
The real data studied are two time series of electric power price data
taken from the U.S. electricity market and the 2005 data relative to
the US S&P 500 index and to the prices of a call and a put European
options on the S&P 500 index. In the study of real data we consider
daily data. The results obtained from the analysis of the synthetic
and of the real data are very satisfactory. Moreover in the real data
case we use the estimated values of the parameters and of the initial
stochastic variances obtained solving the calibration problem to pro-
duce through the tracking procedure mentioned above forecasts of the
asset prices (electric power price and S&P 500 index), of the associ-
ated stochastic variances and of the option prices. The forecasts of
the asset prices and of the option prices are compared with the prices
actually observed. This comparison shows that the forecasts are of
very high quality even when we consider “spiky” electric power price
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data. The website: http://www.econ.univpm.it/recchioni/finance/w9
contains some auxiliary material including some animations that helps
the understanding of this paper. A more general reference to the work
of the authors and of their coauthors in mathematical finance is the
website: http://www.econ.univpm.it/recchioni/finance.

Keywords. Multiscale stochastic volatility models, filtering problem, cali-
bration model, option pricing.
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1 Introduction

In this paper the problem of the calibration of a multiscale stochastic volatil-
ity model in mathematical finance is considered. The data used in the calibra-
tion problem are discrete time observations of the asset prices and, eventually,
of the prices of European options on the asset. The calibration problem is
formulated as a constrained optimization problem for a likelihood function.
The likelihood function is constructed using the solution of a filtering prob-
lem. This formulation of the calibration problem has been suggested in [20]
in the study of the Heston model and further developed in [3], [8], [9]. We
solve the filtering problem and the maximum likelihood problem mentioned
above. Moreover, thank to the solution of the filtering problem, we derive
a tracking procedure able to forecast the asset and the option prices and
the values of the stochastic variances of the model for time values where no
observations are available.

The multiscale stochastic volatility model considered has been intro-
duced in [10], [11] where formulae to price European put/call options in the
multiscale model are derived and a calibration problem that uses as data
European call and/or put option prices is formulated as a nonlinear least
squares problem and it is solved. This multiscale stochastic volatility model
generalizes the Heston model [16] and describes the dynamics of the asset
price and of its two stochastic variances using a system of three Ito stochastic
differential equations. The two stochastic variances vary on two different time
scales, in this sense the model is multiscale. Under some hypotheses which
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will be stated later the model proposed is “explicitly” solvable and “easy to
use” in the sense that “explicit and easy to use” formulae for the transition
probability density function of the state variables of the model and for the
price of European vanilla call and put options on the asset can be derived
(see [11]). In this paper using the formulae derived in [11] we state and we
solve a filtering problem that generalizes the filtering problem for the Heston
model studied in [20] and in [9]. The solution of this filtering problem is used
to write a likelihood function and the calibration problem for the model is
formulated as the problem of maximizing the likelihood function subject to
some constraints, see [20], [8], [9], [3] where similar problems for simpler mod-
els are considered. The motivation to study multiscale stochastic volatility
models comes from the fact that recently several statistical studies of market
data have shown that in many circumstances the Black and Scholes model
[2] and the one factor stochastic volatility models, such as the Heston model
[16], are inadequate to capture the volatility smile contained in the option
prices on the underlying asset and the volatility dynamics (see [12], [6], [4]).
In these circumstances models using two factors, one fluctuating on a fast
time scale and the other fluctuating on a longer time scale, to describe the
asset volatility seem to be better equipped to capture the volatility structure
implied by the option prices [1]. As a consequence of this empirical evidence
a substantial effort has been devoted to formulate and to study multiscale
stochastic volatility models expressed by Ito stochastic differential equations
[13], [11], [1], [25]. A substitute to the use of these models is the use of jump
models (see for example [23], [5]). This last type of models can be seen as
an alternative or as a generalization of the one factor stochastic volatility
models. The main disadvantage of using jump models in practical situations
is the fact that their quantitative evaluation is a delicate matter (see for
example [23], [5] and the references therein). We restrict our attention to
the study of the multiscale stochastic volatility model presented in [11] and
in the solution of the corresponding calibration problem we exploit the fact
that the integral representation formulae derived in [11] for the transition
probability density function of the state variables of the model and for the
option prices are one dimensional integrals of explicitly known smooth func-
tions easy to compute numerically. We apply the calibration and tracking
procedures mentioned above to the processing of synthetic and real data.
In the case of synthetic data we generate a “high frequency” data sample
integrating numerically the stochastic differential equations that express the
multiscale model. In particular a working day made of 6 hours is considered
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and 24 equally spaced data points per day are generated numerically, that is
data with a fifteen minutes observation frequency are generated. We consider
a data sample covering a period of one year made of 365 days. The sampled
trajectory is generated with a choice of the model parameters that makes
likely the appearance of spikes in the data generated and the data sample
generated (see Figure 1) contains spikes. We solve the calibration problem
choosing from this set of synthetic data a rolling window of input data made
of 24 (consecutive) observations taken with a given frequency. We show that
when the calibration is made using data windows of high frequency data (ob-
servations taken every fifteen minutes), the calibration procedure employed,
using data windows that do not contain spikes, is able to estimate parameter
values that suggest the possibility of the future appearance of spikes. On the
contrary we show that this is not the case when we consider low frequency
data such as, for example, daily observations. In this last case we note that
when the model calibration is made using as data data windows that do not
contain spikes or is made using as data data windows containing spikes some
of the parameter values estimated change abruptly. These facts suggest the
validity of the calibration procedure adopted. The real data studied are rela-
tive to two time series of electric power prices taken from the U.S. electricity
market and to the time series of the S&P 500 index and of the associated
European vanilla option prices in the year 2005. When we study real data
we consider daily prices and after solving the calibration problem we use
the tracking procedure to forecast asset and (eventually) option prices. In
particular we compare the electric power prices forecasted with the tracking
procedure mentioned above with the prices actually observed. This compar-
ison shows that the forecasted prices are of very high quality. The analysis
of the time series of the electric power prices shows that even in the case
of real data the model is able to handle the presence of spikes in the prices
and to reflect them in the parameter values resulting from the solution of
the calibration problem. Note that in the study of the electric power price
data we do not use option prices as data in the calibration problem. In the
study of the 2005 S&P 500 data (i.e.: S&P 500 index and European option
prices) we use asset and option prices as data and we compare the forecasted
values of the option prices obtained calibrating the multiscale model with the
nonlinear least squares approach used in [11] with those obtained calibrating
the model with the filtering and maximum likelihood approach developed in
this paper. The comparison shows that the maximum likelihood approach
using a much smaller number of data than that used by the least squares

5



approach gives very satisfactory results. In particular the results obtained
for the option prices with the maximum likelihood approach are of substan-
tially of the same quality than those presented in [11]. The quality of the
forecasted option prices is established by comparison with the prices actually
observed. Note that in the forecasting procedure of the option prices with
the maximum likelihood method presented in Section 4 we do not assume
the knowledge of the underlying asset price the day of the forecast. On the
contrary in [11] the knowledge of the asset price the day of the forecast is
assumed. Finally we use the tracking procedure mentioned above to fore-
cast the S&P500 index value and we compare the forecasts with the index
values actually observed. This comparison shows the very high quality of
the forecasts. A more complete study of the 2005 data of the S&P 500 in-
dex and of the corresponding option prices can be found in [10], [11] and
in the website: http://www.econ.univpm.it/recchioni/finance/w7. The web-
site: http://www.econ.univpm.it/recchioni/finance/w9 contains some auxil-
iary material including some animations that helps the understanding of this
paper. A more general reference to the work of the authors and of their coau-
thors in mathematical finance is the website: http://www.econ.univpm.it/rec-
chioni/finance.

The remainder of the paper is organized as follows. In Section 2 we de-
scribe the multiscale stochastic volatility model considered and under some
hypotheses we write an integral representation formula for its transition prob-
ability density function and for the price of European vanilla call and put
options under the risk-neutral measure. In Section 3 we formulate and we
solve the filtering and the calibration problems that are used to do the data
analysis. Moreover we present the tracking procedure, that is we derive some
formulae to forecast the asset price and the values of its two stochastic vari-
ances for time values where no observations are available. In Section 4 we
apply the calibration and tracking procedures presented in Section 3 to the
study of synthetic and real data.

2 The multiscale stochastic volatility model

For the convenience of the reader Section 2 summarizes some results con-
tained in [11] that will be used in the following sections. Let R and R+

be the sets of real and of positive real numbers respectively and t be a real
variable that denotes time. Let St, t ≥ 0, be a stochastic process describing

6



the asset (stock, commodity, index) price at time t ≥ 0 and xt = log(St/S0),
t > 0, be the corresponding log-return. We associate to the asset price two
stochastic variances described by the stochastic processes v1,t, v2,t, t > 0,
one fluctuating on a fast time scale and the other fluctuating on a long time
scale. The dynamics of the stochastic process xt, v1,t, v2,t, t > 0, is defined
by the following system of stochastic differential equations:

dxt = (µ̂ + a1v1 + a2v2)dt + b1
√

v1,tdW 0,1
t + b2

√
v2,tdW 0,2

t , t > 0, (2.1)

dv1,t = χ1(θ1 − v1,t)dt + ε1
√

v1,tdW 1
t , t > 0, (2.2)

dv2,t = χ2(θ2 − v2,t)dt + ε2
√

v2,tdW 2
t , t > 0, (2.3)

where the quantities ai, bi, χi, εi, θi, i = 1, 2, are real constants satisfying the
following conditions: χi ≥ 0, εi ≥ 0, θi ≥ 0, i = 1, 2. These conditions are due
to the financial meaning of the constants. We add to the previous conditions
the following constraints: 2χiθi

ε2
i

> 1, i = 1, 2, in order to guarantee that when

vi,t, i = 1, 2, are positive with probability one at time t = 0, vi,t, i = 1, 2,
solution of (2.2), or of (2.3), remain positive with probability one for t > 0.
The fact that v1,t, v2,t, t > 0, are stochastic variances on different time scales
is translated in the condition: χ1 << χ2. Finally W 0,1

t , W 0,2
t , W 1

t , W 2
t , t > 0,

are standard Wiener processes such that W 0,1
0 = W 0,2

0 = W 1
0 = W 2

0 = 0,
dW 0,1

t , dW 0,2
t , dW 1

t , dW 2
t , t > 0, are their stochastic differentials. We assume

that:

< dW 1
t dW 2

t > = 0, t > 0, (2.4)

< dW 0,1
t dW 1

t > = ρ0,1dt, t > 0, (2.5)

< dW 0,1
t dW 2

t > = 0, t > 0, (2.6)

< dW 0,2
t dW 1

t > = 0, t > 0, (2.7)

< dW 0,2
t dW 2

t > = ρ0,2dt, t > 0, (2.8)

< dW 0,1
t dW 0,2

t > = 0, t > 0, (2.9)

where < · > denotes the expected value of ·, and ρ0,1, ρ0,2 ∈ [−1, 1] are con-
stants known as correlation coefficients. We remind that the autocorrelation
coefficients of the stochastic differentials are equal to one (see [11] for further
details).

The equations (2.1), (2.2), (2.3) are equipped with the initial condition:

x0 = x̃0, (2.10)

v1,0 = ṽ1,0, (2.11)

v2,0 = ṽ2,0, (2.12)
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where x̃0, ṽi,0, i = 1, 2, are random variables that we assume to be concen-
trated in a point with probability one. For simplicity we identify the random
variables x̃0, ṽi,0, i = 1, 2, with the points where they are concentrated.
Without loss of generality we choose x̃0 = 0, and we assume ṽi,0 ∈ R+,
i = 1, 2. Equations (2.1), (2.2), (2.3), the initial condition (2.10), (2.11),
(2.12), the conditions on the correlation coefficients (2.4)-(2.9) and the con-
ditions satisfied by the parameters appearing in the equations define the
multiscale stochastic volatility model introduced in [11]. This model gener-
alizes the Heston stochastic volatility model. In fact choosing a1 = −1/2,
a2 = 0, b1 = 1, b2 = 0 the equations (2.1), (2.2) reduce to the Heston model
and they become decoupled from equation (2.3). Remind that the stochas-
tic variances and in particular the initial stochastic variances appearing in
(2.11), (2.12) cannot be observed in real markets.

In order to formulate the filtering problem considered in Section 3 we
need to compute the transition probability density function associated to
the system of stochastic differential equations (2.1), (2.2), (2.3), that is the
probability density function of having xt = x, v1,t = v1, v2,t = v2 given the
fact that xt′ = x′, v1,t′ = v′1, v2,t′ = v′2, when (x, v1, v2), (x

′, v′1, v
′
2) ∈ R×R+×

R+ and t, t′ ≥ 0, t − t′ > 0, that we denote with pf (x, v1, v2, t, x
′, v′1, v

′
2, t

′),
(x, v1, v2), (x

′, v′1, v
′
2) ∈ R × R+ × R+, t, t′ ≥ 0, t − t′ > 0. Moreover we

need to compute the price of European vanilla call and put options on the
asset whose price is given by St = S̃0e

xt , t > 0, where S̃0 ∈ R+ is the stock
price at time t = 0. Remind that xt = log(St/S0), t > 0, and that we have
chosen x̃0 = 0 with probability one so that we have S0 = S̃0 with probability
one, that is S0 is concentrated in the point S̃0 with probability one. The
function pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R × R+ × R+, t,

t′ ≥ 0, t − t′ > 0, as a function of the variables (x, v1, v2, t) is denoted
with p̃f (x, v1, v2, t) = pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′), (x, v1, v2) ∈ R × R+ × R+,
t > t′ ≥ 0, and is the solution of the Fokker Planck equation:

∂p̃f

∂t
(x, v1, v2, t) = L(p̃f )(x, v1, v2, t),

(x, v1, v2) ∈ R× R+ × R+, t > t′, (2.13)

with the boundary conditions:

p̃f (x, v1, v2, t) −→ 0 as x → +∞, or x → −∞, and t > t′, (2.14)

p̃f (x, v1, v2, t) −→ 0 as v1 → +∞, and t > t′, (2.15)

p̃f (x, v1, v2, t) −→ 0 as v2 → +∞, and t > t′, (2.16)
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and with the initial condition:

p̃f (x, v1, v2, t
′) = δ(x− x′)δ(v1 − v′1)δ(v2 − v′2), (x, v1, v2) ∈ R× R+ × R+,

(2.17)
where δ(·) denotes the Dirac’s delta and the operator L(·) is given by:

L(·) =
1

2

( ∂2

∂x2
((b2

1v1 + b2
2v2) · ) +

∂2

∂v2
1

(ε2
1v1 · ) +

∂2

∂v2
2

(ε2
2v2 · )

+2
∂2

∂x∂v1

(ε1ρ0,1v1b1 · ) + 2
∂2

∂x∂v2

(ε2ρ0,2v2b2 · )

−2
∂

∂x
((µ̂ + a1v1 + a2v2) · )− 2

∂

∂v1

(χ1(θ1 − v1) · )− 2
∂

∂v2

(χ2(θ2 − v2) · )
)
,

(x, v1, v2) ∈ R× R+ × R+. (2.18)

The Fokker Planck equation (2.13) is a parabolic partial differential equation
degenerate on the boundary of its domain of definition, that is degenerate
when v1 = 0 or v2 = 0 and t > t′ ≥ 0. The transition probability density
function pf (x, v1, v2, t, x

′, v′1, v
′
2, t

′), (x, v1, v2), (x
′, v′1, v

′
2) ∈ R × R+ × R+, t,

t′ ≥ 0, t− t′ > 0, is the fundamental solution of the Fokker Planck equation
(2.13) with the boundary conditions (2.14), (2.15), (2.16).

As shown in [11] problem (2.13), (2.14), (2.15), (2.16), (2.17) can be
solved using a technique described in [19] pag. 605-608 where it is applied
to the Fokker Planck equation associated to the Heston model. In this way
(see [11]) we obtain the following representation formula for pf :

pf (x, v1, v2, t, x
′, v′1, v

′
2, t

′) =

1

2π

∫
R

dk eık(x−x′−µτ)

2∏
i=1

e−2χiθi((νi+ζi)τ+log(si,b/(2ζi)))/ε2
i ·[

e−2v′i(ζ
2
i −ν2

i )si,g/(ε2
i si,b)−Mi(ṽi+vi)Mi

(
vi

ṽi

)(χiθi/ε2
i )−1/2

I2χiθi/ε2
i−1

(
2Mi(ṽivi)

1/2
)]

,

(x, v1, v2), (x
′, v′1, v

′
2) ∈ R× R+ × R+, t, t′ ≥ 0, t− t′ > 0, (2.19)

where ı is the imaginary unit, Iq(z) is the modified Bessel function of real
order q, and the quantities νi, ζi, si,g, si,b, ṽi, Mi, i = 1, 2, are given by:

νi = −1

2
(χi + ı k biεiρ0,i) , k ∈ R, i = 1, 2 , (2.20)
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ζi =
1

2

(
4ν2

i + ε2
i (b

2
i k

2 + 2ı k ai)
)1/2

, k ∈ R, i = 1, 2 , (2.21)

si,g = 1− e−2ζiτ , si,b = ζi − νi + (ζi + νi)e
−2ζiτ , τ > 0, i = 1, 2, (2.22)

ṽi =
4v′iζ

2
i e
−2ζiτ

(si,b)2
, Mi =

2si,b

εi
2si,g

, τ > 0, i = 1, 2. (2.23)

Note that formula (2.19) gives the transition probability density function of
the stochastic process solution of (2.1), (2.2), (2.3) under the assumptions
(2.4)-(2.9) as a one dimensional integral of an explicitly known integrand.
In this sense we say that under the assumptions (2.4)-(2.9) the multiscale
stochastic volatility model (2.1), (2.2), (2.3) is explicitly solvable.

The formulae to price at time t = 0 European vanilla call and put options
with strike price K > 0 and maturity time T > 0 are derived from (2.19)
using the no arbitrage pricing theory. In fact we compute the option prices as
expected values of discounted payoff functions with respect to an equivalent
martingale measure known as risk-neutral measure (see for example [7], [23]).
Let us denote with λi ∈ R, i = 1, 2, the risk premium parameters of the risk
neutral measure associated to (2.1), (2.2), (2.3). We note that the statistical
measure of the model (2.1), (2.2), (2.3), whose density is given by (2.19), can
be used to derive the corresponding risk neutral measure. In fact in order
to obtain a formula for the density of the risk neutral measure associated to
(2.1), (2.2), (2.3) it is sufficient to replace in (2.19) the parameters χi, θi,
i = 1, 2, with the parameters χ̃i = χi + λi, θ̃i = χiθi/(χi + λi), i = 1, 2,
(see [11] for further details). Moreover when we consider the risk neutral
measure we must impose the constraints χ̃i ≥ 0, θ̃i ≥ 0, i = 1, 2. Formula
(2.19) with the parameters χ̃i and θ̃i, instead than the parameters χi, θi,
i = 1, 2, respectively is the required formula for the density of the risk neutral
measure of the model (2.1), (2.2), (2.3). With some simple manipulations
of the formulae discussed previously (see [11] for further details) under the
risk neutral measure we obtain the following formula for the price C at time
t = 0 of a European vanilla call option with maturity time T > 0, time to
maturity τ = T − t > 0 (remind that t = 0) and strike price K, when at time
t = 0 the price of the underlying asset is given by S̃0 and the values of the
values of the stochastic variances are given by ṽ1,0, ṽ2,0:
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C(τ,K, S̃0, ṽ1,0, ṽ2,0) =
S̃0

2π
e−rτe2µ̂τ

∫ +∞

−∞
dk

e−ık(log(S̃0/K)+µ̂τ)−log(K/S̃0)

−k2 − 3ı k + 2
·

2∏
i=1

(
e−2χ̃iθ̃i((ν

c
i +ζc

i )τ+log(sc
i,b/(2ζc

i )))/ε2
i e−2ṽi,0((ζc

i )2−(νc
i )2)sc

i,g/(ε2
i sc

i,b)
)

,

τ > 0, S̃0, ṽ1,0, ṽ2,0 > 0, (2.24)

where r is the discount rate and the quantities νc
i , ζc

i , sc
i,b, sc

i,g, i = 1, 2, are
given by:

νc
i = −1

2
(χ̃i + ı k biεiρ0,i − 2biρ0,iεi) , k ∈ R, i = 1, 2, (2.25)

ζc
i =

1

2

(
4(νc

i )
2 + ε2

i (b
2
i k

2 + 2ı k ai + 4ı kb2
i − 4(ai + b2

i ))
)1/2

, k ∈ R, i = 1, 2 ,

(2.26)
sc

i,g = 1− e−2ζc
i τ , sc

i,b = ζc
i − νc

i + (ζc
i + νc

i )e
−2ζc

i τ , τ > 0, i = 1, 2. (2.27)

Analogously the formula for the price P at time t = 0 of a European vanilla
put option with maturity time T > 0, time to maturity τ = T − t > 0
(remind that t = 0) and strike price K, when at time t = 0 the price of the
underlying asset is given by S̃0 and the stochastic variances are given by ṽ1,0,
ṽ2,0 is:

P (τ,K, S̃0, ṽ1,0, ṽ2,0) =
K

2π
e−rτe−µ̂τ

∫ +∞

−∞
dk

e−ık(log(S̃0/K)+µ̂τ)−log(S̃0/K)

−k2 + 3ı k + 2
·

2∏
i=1

(
e−2χ̃iθ̃i((ν

p
i +ζp

i )τ+log(sp
i,b/(2ζp

i )))/ε2
i e−2ṽi,0((ζp

i )2−(νp
i )2)sp

i,g/(ε2
i sp

i,b)
)

,

τ > 0, S̃0, ṽ1,0, ṽ2,0 > 0, (2.28)

where the quantities νp
i , ζp

i , sp
i,g, sp

i,b, are given by:

νp
i = −1

2
(χ̃i + ı k biεiρ0,i + biρ0,iεi) , k ∈ R, i = 1, 2, (2.29)

ζp
i =

1

2

(
4(νp

i )
2 + ε2

i (b
2
i k

2 + 2ı k ai − 2ı kb2
i − 2(ai + b2

i ))
)1/2

, k ∈ R, i = 1, 2 ,

(2.30)
sp

i,g = 1− e−2ζp
i τ , sp

i,b = ζp
i − νp

i + (ζp
i + νp

i )e
−2ζp

i τ , τ > 0, i = 1, 2. (2.31)

Note that in the study of the calibration problem in (2.24), (2.28) we will
choose µ̂ = r.
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3 The filtering and calibration problems

Let m be a positive integer and Rm be the m-dimensional real Euclidean
space. First of all in (2.1), (2.2), (2.3) we choose ai = −1/2, bi = 1, i = 1, 2,
this choice translates in the multiscale model the usual relation between asset
price, asset log-return and stochastic variance known from the Heston model.
Remember that since in the calibration problem in the option price formulae
(2.24), (2.28) we choose µ̂ = r we have that when the option prices are used as
data of the calibration problem the discount rate r becomes a parameter that
must be determined in the calibration. More general problems where r is not
necessarily equal to µ̂ and ai, bi, i = 1, 2, are parameters to be determined
in the calibration can be studied. We will not consider them here. We note
that the model (2.1), (2.2), (2.3) together with the associated option price
formulae (2.24), (2.28) are parameterized by 13 real quantities, that is: the
model parameters µ̂, χi, θi, εi, i = 1, 2, the risk premium parameters λi,
i = 1, 2, the correlation coefficients ρ0,i, i = 1, 2, and the initial stochastic
variances ṽi,0, i = 1, 2. Remember that we have chosen µ̂ = r. When
we consider the filtering and calibration problems using as data asset and
option prices we introduce the vector Θ ∈ R13 and the set M⊂ R13 defined
as follows:

M=
{
Θ= (ε1, θ1, ρ0,1, χ1, ṽ0,1, µ̂, λ1, ε2, θ2, ρ0,2, χ2, ṽ0,2, λ2) ∈ R13 |

εi, χi, θi ≥ 0,
2χiθi

ε2
i

≥ 1,−1 ≤ ρ0,i ≤ 1, ṽi,0 ≥ 0, χi + λi > 0, i = 1, 2

}
. (3.1)

The vector Θ ∈ R13 is the unknown of the calibration problem consid-
ered here and the set M defines the set of “feasible” vectors, that is the
set of vectors satisfying the constraints. Later in the formulation of the cal-
ibration problem we will assume Θ ∈ M. When we consider the filtering
and calibration problems using as data only asset prices the risk premium
parameters λi, i = 1, 2, that appear in the option price formulae, must be
removed from the vector Θ and the definition of the vector Θ and of the set
M must be changed consequently. To fix the ideas in this section we will
discuss in detail the situation where asset prices and option prices are used
as data in the filtering and in the calibration problem. We leave to the reader
to work out the obvious changes that are needed when simpler problems are
considered.

Let ti, i = 0, 1, . . . , n, be time values such that ti < ti+1, i = 0, 1, . . . , n−
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1, without loss of generality we choose t0 = 0, and for later convenience
we define tn+1 = +∞. Let (x̃i, C̃i, P̃i) be respectively the log-return of the
asset price St and the prices of European vanilla call and put options on the
asset having maturity time Ti (Ti > ti) and strike price Ki, observed at time
t = ti, i = 0, 1, . . . , n. We suppose that the option prices observations C̃i, P̃i,
i = 0, 1, . . . , n, are affected by a Gaussian error with mean zero and known
variance φi, i = 0, 1, . . . , n, respectively and that the asset log-returns x̃i,
i = 0, 1, . . . , n, are observed without error. The filtering problem that we
consider is the following:

Given the vector Θ∈Mfind the probability density function p(x, v1, v2, t|Ft,Θ),
(x, v1, v2) ∈ R × R+ × R+, t > 0, of the random variables xt, v1,t and v2,t,
t > 0, solution of (2.1), (2.2), (2.3), (2.10), (2.11), (2.12), conditioned to
the observations Ft = {(x̃i, C̃i, P̃i) : ti ≤ t, i > 0}, t > 0, and forecast the
values of the state variables xt, v1,t, v2,t for t > 0 and in particular for t 6= ti,
i = 0, 1, . . . , n and for t > tn.

For t = t0 = 0 we define Ft0 = {x̃0 = 0}. Note that in the filtering
problem stated above we do not make use of the option prices C̃0, P̃0 observed
at time t = t0. That is in the filtering problem at time t = t0 = 0, we use
as datum only x0 = x̃0 = 0. The initial stochastic variances, appearing in
(2.11), (2.12), in the filtering problem are assigned in the vector Θ and can
be considered as parameters. The call and put option prices C̃0, P̃0 at time
t = t0 = 0 will be used as data in the calibration problem. Many other
filtering problems that use as data different combinations of asset prices and
option prices can be studied with simple extensions of the formulae that
follows. We will not consider them here.

Let us define the following functions:

pi(x, v1, v2, t|Θ) = p(x, v1, v2, t|Fti , Θ),

(x, v1, v2) ∈ R× R+ × R+, ti < t < ti+1,

i = 0, 1, . . . , n, (3.2)

to be the joint probability density functions of the random variables xt, v1,t,
v2,t, solution (2.1), (2.2), (2.3), (2.10), (2.11), (2.12), when ti < t < ti+1 con-
ditioned to the observations Fti made up to time t = ti, i = 0, 1, . . . , n. Let
us derive integral representation formulae for the functions pi(x, v1, v2, t|Θ),
(x, v1, v2) ∈ R × R+ × R+, ti < t < ti+1, i = 0, 1, . . . , n. From (2.1),
(2.2), (2.3), (2.10), (2.11), (2.12) it follows that the functions pi(x, v1, v2, t|Θ),
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(x, v1, v2) ∈ R × R+ × R+, ti < t < ti+1, i = 0, 1, . . . , n, can be computed
as solutions of a set of initial value problems for the Fokker Planck equation
(2.13) (see [18] pag.164-165 and [20] equations (2.6), (2.7), (2.8)), that is as
solutions of the following set of problems, for i = 0, 1, ..., n:

∂pi

∂t
= L(pi), ti < t < ti+1, (3.3)

where L(·) is given by (2.13) with the initial condition:

pi(x, v1, v2, ti|Θ) = fi(x, v1, v2; Θ), (x, v1, v2) ∈ R× R+ × R+, (3.4)

where

f0(x, v1, v2; Θ) = δ(x− x̃0)δ(v1 − ṽ1,0)δ(v2 − ṽ2,0),

(x, v1, v2) ∈ R× R+ × R+, (3.5)

and

fi(x, v1, v2; Θ) =
δ(x− x̃i)pi−1(x, v1, v2, t

−
i |Θ)π1(x, v1, v2, ti|Θ)∫ +∞

0

∫ +∞
0

pi−1(x̃i, v′1, v
′
2, t

−
i |Θ)π1(x̃i, v′1, v

′
2, ti|Θ)dv′1dv′2

,

(x, v1, v2) ∈ R× R+ × R+, i = 1, 2, ..., n, (3.6)

where pi−1(x, v1, v2, t
−
i |Θ) = limt→t−i

pi−1(x, v1, v2, t|Θ), limt→t−i
means left

limit for t that goes to ti, i = 1, 2, . . . , n, and

π1(x̃i, v1, v2, ti|Θ) =
1√
2πφi

1√
2πφi

e

�
− 1

2φi
[(C̃i−C(x̃i,v1,v2,ti;Ki,Ti,Θ))2+(P̃i−P (x̃i,v1,v2,ti;Ki,Ti,Θ))2]

�
,

(x̃i, v1, v2) ∈ R× R+ × R+, i = 0, 1, . . . , n. (3.7)

Note that when we consider filtering problems that do not use option prices
as data in (3.6) we choose π1(x, v1, v2, t|Θ) = 1, (x, v1, v2) ∈ R × R+ × R+,
t = ti, i = 1, 2, . . . , n. The solutions of the initial value problems (3.3)-(3.4)
can be represented as follows:

pi(x, v1, v2, t|Θ) =∫ +∞

−∞
dx′

∫ +∞

0

dv′1

∫ +∞

0

dv′2pf (x, v1, v2, t, x
′, v′1, v

′
2, ti)fi(x

′, v′1, v
′
2; Θ),

(x, v1, v2) ∈ R× R+ × R+, ti < t < ti+1, i = 1, 2, . . . , n. (3.8)
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A detailed discussion of the filtering problem for the Heston model analogous
to problem (3.3)-(3.7) and the development of an efficient numerical method
to compute its solution can be found in [20]. The work presented in [20]
can be extended to problem (3.3)-(3.7). We will not consider this extension
here. We note that since the partial differential equation (3.3) is the Fokker
Planck equation associated to the multiscale model (2.1), (2.2), (2.3), its
fundamental solution pf , given by (2.19), is the density of the statistical
measure associated to (2.1), (2.2), (2.3), that is it is the risk neutral measure
that has λ1 = λ2 = 0. Moreover it is easy to see that since f0 is independent
of λ1, λ2 the probability density function p0 is independent of λ1, λ2 while
the probability density functions pi, i = 1, 2, . . . , n, depend on λ1, λ2 through
the initial condition (3.4), that is through the functions fi, i = 1, 2, . . . , n,
defined in (3.6) that contain the option prices.

Using the functions pi(x, v1, v2, t|Θ), (x, v1, v2) ∈ R×R+ ×R+, ti < t <
ti+1, i = 0, 1, . . . , n, we can forecast the values of the state variables of the
model xt, v1,t, v2,t, t > 0, respectively as the expected values x̂t|Θ, v̂1,t|Θ,
v̂2,t|Θ, t > 0, conditioned to the observations contained in Ft, t > 0, of the
random variables xt, v1,t, v2,t, t > 0, that is:

x̂t|Θ = E(xt|Ft, Θ) =

∫ +∞

0

dv1

∫ +∞

0

dv2

∫ +∞

−∞
dxxpi(x, v1, v2, t|Ft, Θ),

ti < t < ti+1, i = 0, 1, . . . , n, (3.9)

v̂j,t|Θ = E(vj,t|Ft, Θ) =

∫ +∞

0

dv1

∫ +∞

0

dv2

∫ +∞

−∞
dxvjpi(x, v1, v2, t|Ft, Θ),

j = 1, 2, ti < t < ti+1, i = 0, 1, . . . , n, (3.10)

where E(· |+) denotes the expected value of · conditioned to +. The formu-
lae (3.9), (3.10) can be used to track the random variables xt, v1,t, v2,t, for
t > 0, and in particular for t 6= ti, i = 0, 1, . . . , n and for t > tn and they
constitute the tracking procedure announced in Section 1. The calibration
problem consists in determining the value of the vector Θ ∈ M that makes
most likely the observations (x̃i, C̃i, P̃i), made at time t = ti, i = 0, 1, . . . , n.
In the calibration problem we add to the data of the filtering problem the
call and put option prices at time t = t0, that is we add to the data of the
filtering problem the observations C̃0 and P̃0. Numerical experiments with
the multiscale model and previous experience developed in the study of the
Heston model [20], [9] suggest that the use in the calibration problem of
C̃0, P̃0 as data improves greatly the quality of the estimates of the initial
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stochastic variances resulting from the solution of the calibration problem.
The improvement of the quality of the estimated initial stochastic variances
determines an improvement in the estimates of all the remaining parame-
ters contained in the vector Θ. As suggested in [20] given the observations
we measure the (log-)likelihood of a vector Θ ∈ M through the following
function:

F (Θ) =
n−1∑
i=0

log
[∫ +∞

0

∫ +∞

0

pi(x̃i+1, v1, v2, t
−
i+1|Θ)π1(x̃i+1, v1, v2, ti+1|Θ)dv1dv2

]
+ log

[∫ +∞

0

∫ +∞

0

p0(x̃0, v1, v2, t0|Θ)π1(x̃0, v1, v2, t0|Θ)dv1dv2

]
, Θ ∈M. (3.11)

We have t0 = 0 so that from (2.10), (2.12), (2.11) we have p(x, v1, v2, t0|Ft0 , Θ)
= δ(x − x̃0)δ(v1 − ṽ1,0)δ(v2 − ṽ2,0), (x, v1, v2) ∈ R × R+ × R+, this implies
that the (log-)likelihood function (3.11) can be rewritten as follows:

F (Θ) = log[π1(x̃0, ṽ1,0, ṽ2,0, t0|Θ)] +
n−1∑
i=0

log
[ ∫ +∞

0

∫ +∞

0

pi(x̃i+1, v1, v2, t
−
i+1|Θ)π1(x̃i+1, v1, v2, ti+1|Θ)dv1dv2

]
,

Θ ∈M. (3.12)

Note that in [20] and in [9] in the case of the Heston model the functions
corresponding to the functions pi, i = 0, 1, . . . , n appearing in (3.11), (3.12)
have been defined using as data asset log-returns and only one type of options
prices, that is European vanilla call option prices instead than using asset
log-returns and European vanilla call and put prices as done here. That is in
the formulation of the calibration problem given here we have added the put
option prices to the data used in [20] and in [9] in order to improve the qual-
ity of the estimated vector Θ resulting from the solution of the calibration
problem. In fact in the problem considered here we have Θ ∈ R13, that is we
have thirteen parameters to estimate, while in the problem for the Heston
model considered in [20] and in [9] we have only six or seven (when we con-
sider also the risk premium parameter) parameters to estimate so that it is
natural to increase the number of data used in the formulation of the calibra-
tion problem when we go from the Heston model case studied in [20] and in
[9] to the case considered here. Moreover, we note that for i = 0, 1, . . . , n− 1
the weight π1(x̃i+1, v1, v2, ti+1|Θ) appearing in (3.12) is introduced to assign
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higher weights to the values of the v1, v2 variables that make likely the ob-
servation of the option prices C̃i+1, P̃i+1 at time ti+1 actually made. Remind
that when the option prices are not used as data in the calibration problem
in (3.12) we choose π1(x̃i+1, v1, v2, ti+1|Θ) = 1, (x, v1, v2) ∈ R× R+ × R+.

The calibration problem that we consider is the following one:

Given the observations (x̃i, C̃i, P̃i) at time t = ti, i = 0, 1, . . . , n, determine
the vector Θ∗ ∈ M ⊂ R13 solution of the following nonlinear constrained
optimization problem:

max
Θ∈M

F (Θ). (3.13)

Problem (3.13) is known as maximum (log-)likelihood problem since the vec-
tor Θ∗ ∈ M solution of (3.13) is the vector that makes “more likely” the
observations actually made. The vector Θ∗ ∈ M is the solution of the cali-
bration problem. Note that problem (3.13) is only one possible way of using
the maximum likelihood method to formulate the calibration problem that
we are considering. Many other formulations of the calibration problem are
possible and legitimate.

4 Some numerical experiments using synthe-

tic and real data

The technique used to solve the optimization problem (3.13) is a variable
metric steepest ascent method (see [15], [21]). Starting from an initial guess

Θ̃
0 ∈ M of the vector Θ∗ ∈ M, solution of (3.13), we update at every

iteration the current approximation of the solution of (3.13) with a step in the
direction of the gradient of the (log-)likelihood function (3.11) computed in
a suitable metric that takes care of the presence of the constraints defined in
M. To be more specific let us fix a tolerance value, δ > 0, and the maximum
number of iterations of the optimization procedure allowed, iter > 0, the
basic steps of the optimization algorithm used to solve problem (3.13) are:

1 set k = 0 and initialize Θ = Θ̃
0
;

2 evaluate F (Θk), if k > 0 and |F (Θk)−F (Θk−1)| < δ |F (Θk)|, where | · |
denotes the absolute value of ·, go to item 7;
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Figure 1: Log-return increment log(St/St−∆t), ∆t = 1/24 of the synthetic
data versus time t (“days”).

3 evaluate the gradient (in cartesian coordinates)) of the (log-)likelihood
function ∇F (Θk);

4 perform the steepest ascent step evaluating Θk+1 =Θk+ηkD(Θk)∇F (Θk),
where ηk is a positive real number that determines the length of the
step in the direction D(Θk)∇F (Θk) and guarantees that F (Θk) is a
non decreasing function of k and D(Θk) is a diagonal matrix related to
the use of the “variable metric”;

5 if ||Θk+1 −Θk|| < δ, go to item 7;

6 set k = k + 1, if k < iter go to item 2;

7 approximate Θ∗ with Θk+1 and stop.

We build a “good” initial guess Θ̃
0

for the previous optimization algo-
rithm doing a simple analysis of the input data, that is computing their
mean value, their historical variance, and performing some “ad hoc” initial
iterations starting from an initial guess Θ0 ∈ M (see [9] for the details of a
similar procedure used in the calibration of the Heston model). Moreover,
once solved the calibration problem (3.13), that is after having determined an
approximation of Θ∗, that with abuse of notation we denote with Θ∗, from
the knowledge of the joint probability density function p(x, v1, v2, t|Ft, Θ),

18



Figure 2: Value of the likelihood function F (Θ) at Θ = Θ∗
i , versus time t = t̃i

(“days”), i = 24, 25, . . . , 365∗24 (results obtained using high frequency data).

(x, v1, v2) ∈ R × R+ × R+, t ≥ 0, we can forecast the values of the asset
log-return xt, t > 0, t 6= ti, i = 0, 1, . . . , n, and of the stochastic variances
v1,t, v2,t, t > 0, using respectively the expected values x̂t|Θ∗ , v̂1,t|Θ∗ , v̂2,t|Θ∗ ,
t > 0, conditioned to the observations of the random variables xt,, v1,t, v2,t,
t > 0, given in (3.9), (3.10). Some simple manipulations involving formulae
(3.3), (3.4), (3.5), (3.6) and (2.19) show that we can rewrite (3.9), (3.10) as
follows:

x̂t|Θ = E(xt|Fti , Θ) = x̃i + (µ− θ1

2
− θ2

2
)(t− ti) + θ1

(1− e−χ1(t−ti))

2χ1

−(1− e−χ1(t−ti))

2χ1

∫ +∞

0

dv2

∫ +∞

0

dv1 v1 fi(v1, v2; Θ)

+θ2
(1− e−χ2(t−ti))

2χ2

− (1− e−χ2(t−ti))

2χ2

∫ +∞

0

dv2 v2

∫ +∞

0

dv1 fi(v1, v2; Θ),

ti ≤ t < ti+1, i = 0, 1, . . . , n, (4.1)

v̂j,t|Θ = E(vj,t|Fti , Θ) = θj(1− e−χj(t−ti))) +

e−χj(t−ti)

∫ +∞

0

∫ +∞

0

dv1dv2 vj fi(v1, v2; Θ), j = 1, 2,

ti ≤ t < ti+1, i = 0, 1, . . . , n . (4.2)
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Figure 3: Value of the likelihood function F (Θ) at Θ = Θ∗∗
i versus time

t = t̂i = i (“days”), i = 24, 25, . . . , 365 (results obtained using low frequency
data).

That is, the forecasts x̂t,Θ∗ , v̂1,t,Θ∗ , v̂2,t,Θ∗ of xt, v1,t, v2,t, t > 0, are obtained
choosing Θ = Θ∗ in (4.1), (4.2) where Θ∗ is the approximation of the solu-
tion of problem (3.13) obtained with the optimization procedure described
above. This is the tracking procedure announced previously and is the basic
ingredient of the forecasts of the electric power prices and of the S&P 500
and of its European options prices presented in this Section.

We present three numerical experiments. The first one uses synthetic
data and shows that the calibration procedure proposed is able to recon-
struct satisfactorily the parameters of the multiscale model (2.1), (2.2), (2.3).
We show some evidence of the fact that the calibration procedure is able to
handle circumstances that imply the possibility of spikes or eventually the
actual presence of spikes in the input data. In particular the behaviour
of the solution of the calibration problem as a function of the time fre-
quency of the input data is studied. In the second and third experiments
we consider daily data. The second experiment consists in the analysis of
two time series of electric power price data, the first time series does not
contain spikes while the second one contains spikes. No option prices are
used as data in this experiment. The electric power price data studied are
taken from the U.S. electricity market. This experiment shows that the cal-
ibration of the model on data containing spikes gives parameter estimates
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Figure 4: Value of the ratio χ1/χ2 of the vector Θ∗
i versus time t = t̃i (“days”),

i = 24, 25, . . . , 365 ∗ 24 (results obtained using high frequency data).

substantially different from the estimates obtained applying the calibration
procedure to data that do not contain spikes. In particular the estimates
of the speeds of mean reversion χ1, χ2 and of the volatilities of volatilities
ε1, ε2 take different values depending on the presence or absence of spikes
in the data. Using the solution of the calibration problem and the tracking
procedure introduced above we forecast electric power prices. We compare
the electric power prices forecasted with the tracking procedure with the
prices actually observed to establish the quality of the forecasted prices.
This comparison shows that the forecasted prices are of very high quality.
Finally, the third experiment shows how the calibration procedure works
on the 2005 data relative to the S&P 500 index and to the price of Euro-
pean put and call options on this index. In this experiment using formulae
(4.1), (4.2) we forecast the S&P 500 index and the option prices and the
forecasted prices are compared to the historical data. This comparison es-
tablishes the high quality of the forecasted prices. Moreover we compare the
maximum likelihood formulation of the calibration problem considered here
with the least squares formulation of the calibration problem studied in [11].
The website http://www.econ.univpm.it/recchioni/finance/w9 contains some
auxiliary material including some animations that helps the understanding
of the experiments presented.
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Figure 5: Value of the ratio χ1/χ2 of the vector Θ∗∗
i versus time t = t̂i = i

(“days”), i = 24, 25, . . . , 365 (results obtained using low frequency data).

In the numerical experiments, without loss of generality, we impose
χ1 ≤ χ2. Let us present the first numerical experiment. The synthetic
data used have been obtained integrating numerically one trajectory of the
stochastic differential equations (2.1), (2.2), (2.3) with the initial condition
(2.10), (2.11), (2.12) using the explicit Euler method with variable stepsize.
We have generated a trajectory of the log-return xt and of the stochastic
variances v1,t, v2,t, this trajectory is sampled with 24 equally spaced points
for each working day. A working day is made of six hours, sometime these
days made of six hours are denoted with “days”. We have computed the tra-
jectory for a “year” made of 365 working days. That is we have considered
a sampling frequency of fifteen minutes. These data are regarded as high
frequency data. In this experiment no option price data are used.

The vector Θ of the model used to generate the synthetic data has the
following components: ε1 = 0.06, θ1 = 0.05912, ρ0,1 = 0.99955, χ1 = 0.3682,
ṽ0,1 = 0.20502, µ̂ = 0.1924, ε2 = 1.28581, θ2 = 0.215164, ρ0,2 = −0.988,
χ2 = 100.946, ṽ0,2 = 0.286326. Remind that we have chosen x̃0 = 0.

Note that in this experiment the risk premium parameters λ1, λ2 are not
considered since the option prices are not used as data and this fact implies
that Θ ∈ R11 instead than to R13. The choice of the vector Θ made above
defines a model that is truly multiscale, in fact we have χ2/χ1 ≈ 300. This
model is likely to generate spikes in the data. Figure 1 shows the quantity
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Figure 6: Log-return increment log(St/St−1) of the electric power prices ver-
sus time t (days)(time series with no spikes, daily data).

log(Sti/Sti−1
), t = ti = t̃i = i/24, i = 1, 2, . . . , 365 ∗ 24 associated with the

synthetic data obtained from the computed trajectory of (2.1), (2.2), (2.3)
with initial condition (2.10), (2.11), (2.12) when the time t is measured in
“days”. It is easy to see that xt−xt−∆t = log(St/St−∆t), so that the quantity
plotted in Figure 1 is the log-return increment in one time step ∆t. Note
that in Figure 1 we have considered ∆t = 1/24 day as time step and that
since we consider a “day” made of six hours we have ∆t = 15 minutes. The
data shown in Figure 1 have spikes in log(St/St−∆t) around the 183th, and
the 320th day. We use as data of the calibration problems considered in
this experiment some subsets of the time series of the log-returns associated
with the data shown in Figure 1. Given the frequency of observation we
have solved the calibration problems resulting from the use as input data
of a rolling window of 24 “consecutive” observations of xt (with the given
frequency). Keep in mind that using the synthetic data shown in Figure
1 the highest frequency that can be considered is: one observation every
fifteen minutes. We go from a set of input data (i.e.: a window) to the
next one discarding the first observation of the input data and inserting as
new observation the next observation (with the given frequency) that follows
the last observation of the input data. Given the input data frequency we
solve all the calibration problems corresponding to rolling with the previous
procedure the data window through the data time series. We choose the
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Figure 7: Log-return increment log(St/St−1) of the electric power prices ver-
sus time t (days) (time series with spikes, first year of observation, daily
data).

same initial guess Θ̃
0

for the optimization method for all the calibration
problems considered. When the frequency of observation is chosen to be one
observation every fifteen minutes and the input data windows are made of 24
“consecutive” observations, the calibration procedure applied to the rolling
window provides 364*24+1 estimates Θ∗

i , i = 24, 25, . . . , 365∗24 of the vector
Θ. The index i associated to Θ∗

i is the index of the last observation contained
in the data window used in the calibration problem. For later convenience,
the corresponding optimal values F (Θ∗

i ), i = 24, 25, . . . , 365 ∗ 24 of the (log-)
likelihood function F (Θ) have been computed and are shown in Figure 2.

The same calibration exercise has been repeated using a rolling window
made of 24 daily observations. Note that these daily observations are ob-
tained sub-sampling appropriately the previous numerically computed trajec-
tory that has one data point every fifteen minutes. Remind that we consider
a “day” made of six hours. Thus this second calibration exercise provides
341 estimates Θ∗∗

i , i = 24, 25, . . . , 365 of the vector Θ and the corresponding
optimal values F (Θ∗∗

i ), i = 24, 25, . . . , 365 of the (log-)likelihood function
F (Θ) have been computed and are shown in Figure 3. Note that in this last
case the index i denotes the date t = t̂i = i (days) (i-th day of the data time

series) of the last observation of the rolling window. The initial guess Θ̃
0

of
the optimization procedure is a point with χ1 = χ2 = 10 and we use always
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Figure 8: Log-return increment log(St/St−1) of the electric power prices ver-
sus time t (days) (time series with spikes, second year of observation,daily
data).

the same initial guess in all the calibration problems solved.

The numerical results obtained in this experiment are shown in Figures
2-5 and they point out the following facts. The first fact comes out from
the observation of Figure 2 where the optimal values F (Θ∗

i ) as a function of
time t = t̃i, where t̃i = i/24, i = 24, 25, . . . , 365 ∗ 24 is the date (measured in
days) of the last observation in the data window used in the calibration, are
shown. In fact in Figure 2 the optimal value of the (log-)likelihood function
changes abruptly when the time t̃i approaches a time value where the data
have a spike (see Figure 1). This happens since for these time values the (log-
)likelihood function changes abruptly so that the choice, that we have made,
of solving the optimization problems starting from the same initial guess is
probably insufficient to handle these situations. Note the difference between
Figure 2 (where we study high frequency data) that shows an approximately
constant log-likelihood function at the solution of the calibration problems
and Figure 3 (where low frequency data are studied) that shows a widely
changing log-likelihood function at the solution of the calibration problems.
Remember that since the data have been generated using only one choice of
the vector Θ and the data window considered are all the same type a com-
pletely satisfactorily solution of the calibration problem should show F (Θ∗

i )
in Figure 2 and F (Θ∗∗

i ) in Figure 3 approximately constants as a function of
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i.

The second fact comes out from the behavior of the values of the speeds
of the mean reverting processes, that is the values of the parameters χ1,
χ2, obtained as solution of the calibration problems. Remind that we have
chosen χ1 ≤ χ2. When the high frequency data are used in the calibration
procedure we observe that the mean and median values of the ratio χ1/χ2

reconstructed from the data in the calibration problems are equal to 0.0586
and to 0.0164 respectively, that is there is a mean difference of one order of
magnitude between the two speeds χ1, χ2 and there is a difference of two
orders of magnitude if we consider the median value instead than the mean
value (see Figure 4). We can conclude that when we use high frequency
data the calibration reveals the presence of two scales in the model. This
fact is a signal that spikes in the log-return are likely, and it is important
to note that this is found even elaborating data that do not contain spikes.
On the other hand when daily observations (low frequency data) are used
in the calibration procedure (see Figure 5) we observe that the mean and
median values resulting from the calibration of the ratio χ1/χ2 are equal
to 0.2 and to 0.29 respectively, that is there is not a relevant difference in
the mean or median in the magnitude of the two speeds of mean reversion.
However looking at Figure 5 we can see that when spikes are contained in
the observation window used to calibrate the model (i.e. when i ≥ 220) the
ratio χ1/χ2 is near zero. This means that from the elaboration of daily data
the calibration procedure produces values of the speeds of mean reversion
of different order of magnitude only when processing data containing spikes.
Remind that in the vector Θ used to generate the data we have χ1/χ2 =
0.003647. These last findings suggest the importance of using high frequency
data to recognize the multiscale character of the model and be prepared to
the appearance of spikes in the data before their actual appearance.

The second numerical experiment considers two time series of electric
power price data. The first time series consists of 365 daily observations S̃i,
i = 0, 1, . . . , 364, that is it is a year, made of 365 days, of daily observations.
The second time series consists of 765 daily observations Ŝi, i = 0, 1, . . . 764.
In this experiment no option price data are used. Figure 6 shows the daily
log-return increment x̃i−x̃i−1 = log(S̃i/S̃i−1), i = 1, 2, . . . , 364, of the electric
power price data S̃i, i = 0, 1, . . . , 364. The time series shown in Figure 6 does
not contain spikes. Figures 7 and 8 show the daily log-return increment of
the second time series of electric power price data. Figure 7 shows the daily
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Figure 9: Estimated parameter values obtained solving 341 calibration prob-
lems using as data the electric power prices (time series with no spikes, Figure
6) versus the calibration problem number i1.

log-return increment of the second time series of electric power price data in
the first year of observation and Figure 8 shows the daily log-return incre-
ment in the second year of observation. The time series shown in Figures 7
and 8 contains spikes. We begin the analysis of these time series calibrating
the multiscale model using a data window made of 26 consecutive daily ob-
servations and we move this window along the time series substituting the
first observation of the window with the next observation after the window.
Using this procedure in the case of the time series shown in Figure 6 we
solve 340 (340=365-26+1) calibration problems numbered with the index i1,
i1 = 1, 2, . . . , 340 and in the case of the time series shown in Figures 7 and 8
we solve 740(740=765-26+1) calibration problems numbered with the index
i1, i1 = 1, 2, . . . , 740. The index i1 is the number of the first day contained in
the data window used in the calibration. Figures 9 and 10 show the results

27



Figure 10: Estimated parameter values obtained solving 341 calibration prob-
lems using as data the electric power prices (time series with spikes, Figure
7) versus the calibration problem number i1.

obtained solving the calibration problems associated to the two time series
of data as a function of the index i1 for i1 = 1, 2, . . . , 340. Figure 9 shows
the results obtained processing the time series of electric power price data
with no spikes (shown in Figure 6). Remind that this time series is made of
one year of daily data. Figure 10 shows the results obtained processing the
first year of the time series of electric power price data with spikes (shown in
Figure 7). We focus our attention on Figures 9, 10 to point out the different
behaviour of the estimated parameter values in the two cases. In absence of
spikes (Figure 9) the parameters εi, θi, χi, i = 1, 2, are stable, that is they
are approximately constants as a function of i1, and χ1 and χ2 are of the
same order of magnitude (i.e.: χ1 ≈ 1, χ2 ≈ 4). In presence of spikes (Figure
10) the parameters εi, θi, χi, i = 1, 2, have a jump in correspondence of the
first spike. However comparing Figure 7 and Figure 10 we can see that the
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Figure 11: Estimated parameter values obtained solving 740 calibration prob-
lems using as data the electric power prices (time series with spikes, Figures
7, 8) versus the calibration problem number i1.

calibration procedure produces two values of the ratio χ1/χ2, in particular
after the spike (i.e. i1 > 100) there is a jump in the ratio χ1/χ2 and we have
χ1 << χ2.

Figure 11 shows the estimated values of the parameters εi, θi, χi, i = 1, 2,
during the entire observation period covered by the data shown in Figures
7 and 8 (time series with spikes). We note the presence of a big jump in
the estimated parameter values around i1 = 395. Note that when we solve
the calibration problem corresponding to i1 = 395 we use as data the 26
consecutive daily observations starting with the 395th observation day. That
is, this calibration problem takes as input data one of the spikes (see Figure
8) contained in the time series. The fact that Figures 9, 10, 11 show the
model parameters as a function of the index i1 to be approximately piecewise
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constant functions suggests that the model and the calibration procedure
proposed are well suited to establish a stable relationship between the data
and the unknowns of the calibration problem.

Moreover using formulae (4.1), (4.2) and the tracking procedure de-
scribed in Section 3 we forecast the electric power prices using as data of
the calibration problems the data corresponding to the time series contain-
ing the spikes (shown in Figures 7, 8). That is we take a data window of 26
consecutive days in the time series of electric power price data we solve the
corresponding calibration problem, we use the (approximate) solution of the
calibration problem Θ = Θ∗ and formulae (4.1), (4.2) to forecast the values
of the state variables in the future. The future consists in the time period
after the last day whose observation is contained in the data window used in
the calibration problem. The data window used as input data of the calibra-
tion problem is rolled through the time series using the procedure described
previously.

Table 1 establishes the quality of the forecasted values of the electric
power log-returns when we do forecasts up to fifteen days in the future and
we process the data corresponding to the time series shown in Figures 7,
8. That is Table 1 contains the mean value of the relative error, elog−return,
committed approximating the observed log-return with the forecasted log-
return, the column trend contains (in percent) the number of times that
the forecasted log-return moves in the correct direction with respect to the
log-return of the first day contained in the data used in the calibration, that
is increases when the historical log-return increases and decreases when the
historical log-return decreases. The last column elog−return,i1≤100 contains the
same quantity than elog−return computed on the log-returns observed before
the first spike, that is for i1 ≤ 100. In Table 1 we consider forecasts 1, 2, 3, 4,
5 and 15 days in the futures, the quantities shown in the Table 1 show how
the quality of the forecasts deteriorates when we go deeper in the future.

Finally Figures 12 and 13 show the forecasted values of the log-return
(one day in the future) and the time series of the log-returns corresponding
to the time series shown in Figures 7, 8 as a function of time t (days). Figure
13 reproduces on a different scale the part of Figure 12 corresponding to
300 ≤ t ≤ 500. This is the region where severe spikes occur (see Figures
7, 8). Figures 12 and 13 show the very high quality of the (one day in the
future) forecasted log-returns in a more convincing way than Table 1 where
we consider highly aggregated performance indices.
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number of
days in the

future
elog−return trend (%) elog−return,i1≤100

1 0.0485 90.53% 0.0167
2 0.0786 82.27% 0.0268
3 0.0968 77.54% 0.0310
4 0.1078 73.88% 0.0324
5 0.1131 72.94% 0.0322
15 0.1773 63.06% 0.0474

Table 1: Mean relative errors of the forecasted values of the electric power
log-returns of the time series with spikes when compared to the log-returns
actually observed.

The third numerical experiment consists in the analysis of the daily clos-
ing values of the S&P 500 index and of the daily bid prices of the European
call and put options on the S&P 500 index with maturity date December 16,
2005 and strike price K = 1200 during the period of about eleven months
that goes from January 3, 2005 to November 28, 2005. Due to the number
of trading days in the year 2005 the time unit is a “year” made of 253 days.
Note that the call and the put options mentioned above whose prices have
been used as data in this experiment during the period January, November,
2005 have a significant volume traded. To avoid excessive numerical work
we analyze in detail the market data (i.e. S&P 500 index and the European
vanilla call and put option prices on this index) only in the months of January,
February, May, June, October and November, 2005. The results presented
are representative of the results obtainable from an exhaustive analysis of
the eleven months of data available. We have solved the calibration problem
(3.13) using the data contained in a window made of fifteen consecutive ob-
servation days, that is fifteen daily observations of the log-return of the S&
P 500 index and of the call and put option prices on S&P 500 index having
maturity time December 16, 2005 and strike price K = 1200. In this data
window there are three data for each day of observation and fifteen days of
observation, that is there are 45 data.

We solve three calibration problems, the first one uses as data the data
relative to the first fifteen observation days of January 2005, the second one
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Figure 12: Forecasted values (one day in the future) (stars) and observed
values (squares) of the log-returns of electric power prices (time series with
spikes, Figures 7, 8) versus time t (days).

uses as data the data relative to the last twelve observation days of May
2005 and the first three observation days of June 2005, and the third one
uses as data the data relative to the last twelve observation days of October
2005 and the first three observation days of November 2005. The three sets of
estimated parameter values obtained solving these three calibration problems
are used to forecast the value of the S&P 500 and the prices of its call and
put European vanilla options one day, one week and one month in the future
(that is one day, one week, one month after the day of the last observation
contained in the data used in the calibration problem). The quality of these
forecasts is established by comparison with the corresponding historical data.
Moreover a comparison of the results obtained using the calibration procedure
proposed here with the results obtained using the least squares formulation
of the calibration problem proposed in [11] is presented.
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Figure 13: Forecasted values (one day in the future) (stars) and observed
values (squares) of the log-returns of electric power prices (time series with
spikes, Figures 7, 8) versus time t (days).

The forecast of the S& P 500 index is done with the tracking procedure
derived from (4.1), (4.2) already discussed. The forecast of the option prices
is done using formulae (2.24), (2.28) starting from the model parameters,
including the correlation coefficients, the risk premium parameters and the
initial stochastic variances, estimated solving the calibration problem. We
use formulae (2.24), (2.28) with two different choices of asset price, that
is: the price actually observed in the day of the forecast or the asset price
forecasted using formula (4.1). The first choice is considered in order to
compare the results obtained in this paper with those presented in [11] where
the asset price actually observed the day of the forecast was used. We note
that in (2.24), (2.28) we use always the values of the stochastic variances
obtained using formula (4.2). That is, given the stochastic variances v1,t,
v2,t, at time t = t0 = t̃0 where t̃0 is the time of the first observation used
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in the calibration problem (that is given the initial stochastic variances ṽi,0,
i = 1, 2 that are estimated solving the calibration problem) we forecast v1,t,
v2,t, t > t0, using formula (4.2) where the vector Θ is chosen to be the
vector Θ∗ obtained as solution of the calibration problem. Starting from
the solution of the first calibration problem (data corresponding to the first
fifteen observation days of January 2005) we forecast the index value and the
option prices. In Table 2 we show the relative errors made in the forecast of
the S&P 500 index value eindex and of the bid prices of the European vanilla
call option, ecall option, and put option, eput option, having strike price K = 1200
and maturity time T given by December 16, 2005 obtained forecasting up to a
month in the future. In Table 2 the option prices are forecasted using as asset
price the forecasted values of the S&P 500 index in the days of the forecasts.
The errors are computed comparing the forecasted values with the historical
data. The results shown in Table 2 relative to January and February, 2005
are somehow representative of the results obtained with a more exhaustive
analysis of the data available. Note that the forecasted values of the S&P 500
index are really satisfactory and of much higher quality than the forecasted
values of the electric power prices (compare Table 1 and Table 2). This
difference is due to two facts: the first one is the use of the option prices
in the calibration procedure when we study the S& P 500 data. The option
prices improve the quality of the solution of the calibration problem and
of the conditioned probability densities. No option prices are used in the
solution of the calibration problem for the electric power price data. The
second one is the huge historical volatility of the time series of the electric
power price data. This last fact makes the forecasting problem for the electric
power price data very difficult.

Finally we use the estimated model parameter vectors obtained as solu-
tion of the calibration problems to forecast the prices of all the European call
options on the S&P 500 index traded in a given day. The days that we con-
sider are January 28, 2005, June 28, 2005 and November 28, 2005. Note that
in the year 2005 we had approximately three hundreds European call options
on the S&P 500 index traded. The forecast of the option prices of January
28, 2005 is done using the vector Θ obtained solving the calibration problem
using as data the first fifteen observation days of January 2005. The forecast
of the option prices of June 28, 2005 and November 28, 2005 are done using as
data the first three observation days of the current month (June and Novem-
ber respectively) and the last twelve observation days of the previous month
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number of
days in the

future
eindex ecall option eput option

1 7.522 · 10−5 0.0659 0.0407
2 1.303 · 10−4 0.0559 0.0737
3 1.7509 · 10−4 0.0893 0.0952
4 2.6962 · 10−4 0.0528 0.0793
5 2.9114 · 10−4 0.0496 0.0822
15 3.7106 · 10−4 0.0268 0.1810
30 3.5094 · 10−4 0.0717 0.1099

Table 2: Relative errors of the forecasted values of the SP&500 and of the
corresponding call and put option prices in January and February 2005 when
compared to the prices actually observed. The model parameters employed
have been obtained solving the calibration problem using as data the data
relative to the first fifteen observation days of January 2005.

(May and October respectively). We consider the days January 28, June 28,
November 28, 2005 because we have at our disposal the results presented
in [11] relative to the forecasts of the call option prices of these three days
made using the model parameter vectors obtained as solution of the calibra-
tion problem formulated with the least squares procedure discussed in [11].
We compare the call option prices obtained solving the calibration problem
with the maximum likelihood procedure presented in this paper with those
obtained solving the calibration problem with the least squares procedure
introduced in [11]. Let us introduce some notation necessary to illustrate
the comparison. Let nobs be the number of call option prices available at

time t̃ and let C t̃(Ti, Ki, S̃t̃), C t̃,Θ
LS (Ti, Ki, S̃t̃), C t̃,Θ

ML(Ti, Ki, S̃t̃) denote respec-
tively the (observed) prices at time t̃ of European call options with strike
price Ki and maturity time Ti, the prices generated using formula (2.24)
with the parameter vector obtained solving the calibration problem with the
least squares procedure (LS) and with the parameter vector obtained solving
the calibration problem using the maximum likelihood procedure (ML). Note
that nobs may depend on t̃, we omit this dependence for simplicity. Figures
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Date t εt
mean,ML εt

mean,LS

January 28, 2005 4.69 · 10−3 2.84 · 10−3

June 7, 2005 5.99 · 10−3 1.75 · 10−3

June 28, 2005 6.87 · 10−3 2.56 · 10−3

November 7, 2005 3.68 · 10−3 3.04 · 10−3

November 14, 2005 3.07 · 10−3 2.21 · 10−3

November 28, 2005 3.21 · 10−3 2.41 · 10−3

Table 3: Quality of the forecasted values of the option prices established
comparing the forecasted prices with the prices actually observed when the
maximum likelihood (ML) or the least squares (LS) method are used in the
calibration of the multiscale model.

14, 15, 16 show the absolute error:

εC/S0 =

∣∣∣∣∣C t̃,Θ
A (T,K, S0)

S0

− C t̃(T,K, S0)

S0

∣∣∣∣∣ , A = LS, ML, (4.3)

obtained using the two calibration procedures (A = LS (least squares proce-
dure), ML (maximum likelihood procedure)) as a function of the moneyness
K/S0 = Ki/S0, i = 1, 2, . . . , nobs, where S0 = S̃t̃ is the value of the S&P 500
index at the transaction day t̃ where the option prices are forecasted and as
a function of the time to maturity τi = Ti − t̃, i = 1, 2, . . . , nobs. In Table 3
we show the mean error:

εt
mean,A =

1

nobs

nobs∑
i=1

∣∣∣∣∣C t̃,Θ
A (Ti, Ki, S0)

S0

− C t̃(Ti, KI , S0)

S0

∣∣∣∣∣ , A = LS, ML. (4.4)

Note that the absolute errors shown in Figures 14, 15, 16 and the mean
absolute errors shown in Table 3 are referred to quantities roughly speaking
of order 0.1.

We recall that in [11] we have solved three calibration problems using the
least squares formulation and the call option price data of January 3, 2005,
June 3, 2005 and November 3, 2005. Note that the least squares procedure to
solve the calibration problem of January 3, 2005 uses nobs = 281 call option
prices. Similarly the calibration problem of June 3, 2005 uses nobs = 281
call option prices and the calibration problem of November 3, 2005 uses the
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prices of nobs = 303 call options. We use the parameter estimated using
the call option prices of January 3, 2005 (nobs = 281) to forecast the option
prices of January 28, 2005 (nobs = 258) and similarly we use the parameters
estimated using the call option prices of June 3, 2005 (nobs = 281) to forecast
the option prices of June 28, 2005 (nobs = 278) and the parameters estimated
using the call option prices of November 3, 2005 (nobs = 303) to forecast the
option prices of November 28, 2005 (nobs = 292).

We proceed similarly with the parameter values estimated solving the
three calibration problems mentioned above with the maximum likelihood
procedure. In fact we use the parameters estimated using the first fifteen
daily observations of January 2005 of the S& P 500 index and of the prices
of the European call and put with K = 1200 and T given by December
16, 2005 to forecast the prices of all the call options traded on January 28,
2005. That is we forecast the prices of January 28, 2005 of nobs = 258 call
options. Moreover we use the parameters estimated using the last twelve
observation days of May 2005 and the first three observation days of June
2005 of the S& P 500 index and of the prices of the European call and put
with K = 1200 and T given by December 16, 2005 to forecast the prices of
all the call options traded on June 28, 2005. That is we forecast the prices
of June 28, 2005 of nobs = 278 call options. Finally, we use the parameters
estimated using the last twelve observation days of October 2005 and the
first three observation days of November 2005 of the S& P 500 index and of
the price of the European call and put options with K = 1200 and T given
by December 16, 2005 to forecast the prices of all the call options traded on
November 28, 2005. That is we forecast the prices of November 28, 2005 of
nobs = 292 call options.

Table 3 shows the results obtained. Remind that in the forecasts con-
sidered in Table 3 we use as value of the S&P 500 index the actual value
of the index the day of the forecast and not its forecasted value. The re-
sults presented in Table 3 show that the option prices forecasted with the
two methods are approximately of the same quality. We can conclude that
the maximum likelihood approach to the calibration problem has two advan-
tages when compared to the least squares approach presented in [11]. The
first one is that a relatively small number of data is used to calibrate the
model. In fact only one European call and one European put option prices
and the corresponding value of the index are considered for each day of data
and a time window of fifteen consecutive trading days is used as input data
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in the calibration problem. This corresponds to fortyfive data. The least
squares procedure uses as data all the call options traded in a given day
that is approximately three hundreds data. The second one is the fact that
the maximum likelihood approach thank to the tracking procedure discussed
previously allows to forecast the value of the asset, that is the value of the
S&P 500 index. This is a consequence of the solution of the filtering problem.
This makes possible to “forecast” option prices without knowing the value
of the S&P 500 index the day of the forecast. Finally we note that going
back to Table 2 we can say that the parameter values obtained using the
maximum likelihood approach give satisfactory results when used to forecast
the option prices up to a month in the future.

We believe that the numerical experiments presented here suggest that
the multiscale stochastic volatility model introduced in [11] together with
the maximum likelihood procedure to solve the calibration problem and the
tracking procedure to solve the forecasting problem presented in this paper
are a powerful tool to do the analysis of time series of financial data.
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Figure 14: January 28, 2005: Absolute error εC/S0 on the observed call option
prices divided by S0 committed using the forecasted prices obtained using the
multiscale model calibrated with the maximum likelihood approach (squares
and blue-line) or with the least squares approach (stars and green line) versus
moneyness K/S0. The forecasted prices are obtained using the same parame-
ter values (resulting from the calibration) for all the maturities considered.
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Figure 15: June 28, 2005: Absolute error εC/S0 on the observed call option
prices divided by S0 committed using the forecasted prices obtained using the
multiscale model calibrated with the maximum likelihood approach (squares
and blue-line) or with the least squares approach (stars and green line) versus
moneyness K/S0. The forecasted prices are obtained using the same parame-
ter values (resulting from the calibration) for all the maturities considered.
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Figure 16: November 28, 2005: Absolute error εC/S0 on the observed call
option prices divided by S0 committed using the forecasted prices obtained
using the multiscale model calibrated with the maximum likelihood approach
(squares and blue-line) or with the least squares approach (stars and green
line) versus moneyness K/S0. The forecasted prices are obtained using the
same parameter values (resulting from the calibration) for all the maturities
considered.
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