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Commodity Prices in the Presence of
Inter-commodity Equilibrium Relationships

Abstract

This paper shows that the long-term co-movement among commodities is driven by economic re-
lations, such as, production, substitution or complementary relationships. We refer to these as inter-
commodity equilibrium (ICE) relationships. An ICE relation implies a long-term source of co-movement
that is not captured by traditional commodity pricing models. In particular, we find a cross-commodity
feedback effect where the convenience yield of a certain commodity is determined, among other things,
by the prices of related commodities. We test this prediction in a multi-commodity model that dis-
entangles a short-term source of co-movement from the long-term ICE component. We estimate the
model for the heating oil - crude oil and for the WTI - Brent crude oil pairs. We find that ICE relations
are pervasive and significant, both, statistically and economically. The correlation structure implied by
our model matches the upward sloping curves observed in the data. The ICE relationship considerably
reduces the long-term volatility of the spread between commodities which implies lower spread option
prices.

Keywords: Inter-commodity equilibrium (ICE), commodity prices, convenience yields, cross-commodity
feedback effects, correlation structure, spread options.

JEL Classification: C0, G12, G13, D51, D81, E2.



1 Introduction

Commodity markets have experienced dramatic up-and-down movements in a relatively short time

period. Closest-to-maturity crude-oil futures have increased from almost $50 per barrel in January

2007 to $147 per barrel in July 2008, the highest level in history since it is traded in NYMEX.

Surprisingly, only 5 months later, the oil price drop to almost $30 per barrel. The energy sector,

agricultural commodities and industry metals have experienced similar patterns. While academics

and policy makers are still trying to understand the causes, the following stylized facts, among

others have been reinforced after the turmoil: 1) commodity prices are volatile, 2) spot and futures

prices are mean-reverting, and 3) prices of multiple commodities co-move. These characteristics

play a critical role in modeling financial contingent claims on commodities.

Since Keynes (1923), many scholars have studied the stochastic behavior of individual com-

modities. However, relationships between multiple commodities have received little attention in

theoretical modeling and commodity-related contingent-claim pricing. These cross-commodity re-

lationships imply that two or several commodities share an equilibrium that links prices in the

long run. We refer to these long-term connections as inter-commodity equilibrium (ICE) relation-

ships. Examples of economic ICE relationships between commodities include production relation-

ship where upstream commodity and downstream commodity are tied in a production process, and

substitute/complementary relationships where two commodities serve as substitute/complement in

consumption and/or production.

The existence of ICE usually indicates long-term co-movement among commodity prices. Tem-

porary deviation from the ICE (because of demand and supply imbalances caused by macro-

economic factors and inventory shocks, etc.) will be corrected over the long-run. This implies

that co-movement exists not only in spot prices, but also in expected prices, which are determined

by convenience yield and risk premia, among others. The presence of ICE suggests for example,

that the convenience yield of one commodity is affected by the spot price of other commodities.

Figure 1 shows the correlation structure of weekly futures returns for the heating - crude oil and

for the WTI - Brent crude oil pairs between 1986.07 to 2009.04. These ICE commodity pairs follow

a production and a substitute relationship, respectively. The plot shows upward sloping correlation
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structures for both commodity pairs. Prices are tied by the long-term ICE relationship which

translates into higher long-term correlations. Interestingly, tradicional commodity pricing models,

such as correlated versions of the Gibson and Schwartz (1990) (hereafter GS) and the Casassus

and Collin-Dufresne (2005) (hereafter CCD) models, are unable to match this evidence. Moreover,

the correlation structure is crucial for the pricing of commodity spread options, which suggest that

the option prices implied by the traditional models have strong biases. We propose a reduced-form

model that allows for a flexible correlation structure that matches the pattern observed in the

data. We find that for long-maturity spread options, the prices implied by our model are lower

than the ones predicted by the traditional models, because the higher long-term correlation reduces

the volatility of the spread. We show that the opposite occurs for short-maturity options.

In econometrics, long-term equilibrium relationships (such as ICEs) are usually expressed in the

format of cointegration or Error Correction Models (ECMs). Engle and Granger (1987) shows that

the ECM is identical with a cointegration model if the underlying time series are non-stationary.

An ECM predicts that the adjustment in a dependent variable depends not only on the explanatory

variables but also on the extent to which an explanatory variable deviates from the equilibrium

(refer to Banerjee, Dolado, Galbraith, and Hendry 1993). Many scholars have empirically studied

the cointegration/ECM relationships among commodities. Among them, Pindyck and Rotem-

berg (1990) tests and confirm the existence of a “puzzling” phenomenon - the prices of raw com-

modities have a persistent tendency to move together. Ai, Chatrath, and Song (2006) documents

that the market-level indicators such as inventory and harvest size explain a strikingly large portion

of price co-movements. Malliaris and Urrutia (1996) documents a long-term cointegration among

prices of agricultural commodity futures contracts from CBOT. Girma and Paulson (1999) finds a

cointegration relationship in petroleum futures markets. Recently, Paschke and Prokopczuk (2007)

and Cortazar, Milla, and Severino (2008) have studied the statistical relationship among commodi-

ties in a multi-commodity affine framework using futures prices. However, none of these models

give an economic foundation about which type of assets and why prices of multiple commodities

move together through time. To the best of our knowledge no previous research have looked at the

patterns of co-movements among multiple commodities under ICE relationships.

Our reduced-form model is part of a growing literature on asset pricing that studies the dynamics
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of commodity prices. This literature documents the following stylized facts for single commodities:

the existence of a stochastic convenience yield (e.g. GS and Brennan 1991), mean-reversion in

prices (e.g. Bessembinder, Coughenour, Seguin, and Smoller 1995, and Schwartz 1997), seasonality

(e.g. Richter and Sorensen 2002), time-varying risk-premia (e.g. CCD) and stochastic volatility

(e.g. Trolle and Schwartz 2009).

Our paper is organized as follows. Section 2 identifies three economic inter-commodity equilib-

rium (ICE) relationships and provide examples of such relationships. Section 3 solves an economic

model for the case of two commodities that have a production relationship and generates an en-

dogenous cross-commodity feedback effect. Guided by the economic model, section 4 develops an

empirical model that captures the co-movement among prices (and price dynamics) in a multi-

commodity system. We also show that our model is an extension of the “maximal” affine model

to a multi-assets case. Section 5 describes the estimation of the model and shows the estimation

results. Section 6 presents the valuation of spread options under our multi-commodity framework,

and section 7 concludes.

2 Inter-Commodity Equilibrium (ICE) Relationships

The co-movement of commodity prices and the existence of inter-commodity equilibrium (ICE)

relationships are pervasive in the economy. Examples of the economic ICE relationships between

different commodities include, but are not restricted to the following cases:

Production Relationships

One commodity can be produced from another commodity when the former is the output of a

production process that uses the other commodity as an input factor. For example, the petroleum

refining process “cracks” crude oil into its constituent products, among which heating oil and

gasoline are actively traded commodities on the New York Mercantile Exchange along with crude

oil. Spread futures and spread options, such as the 3:2:1 crack spreads (the purchase of three

crude oil futures with the simultaneous sales of two unleaded gasoline futures and one heating oil

future), are widely used by refiners and oil investors to lock in profit margins. A similar production
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relationship can be found in the soybean complex. Soybeans can be crushed into soybean meal and

soybean oil. The three commodities in the complex are traded separately on the Chicago Board

of Trade. By analogy to the crack spread, the crush spread is also a actively traded derivative.

Not all production-linked commodities have spread derivatives established for trading. Aluminum -

Aluminum Alloy and corn - ethanol are other examples of the production-linked ICE relationships

without spread trading.

Substitute Relationships

A substitute relationship exists when two traded commodities are substitutes in consumption.

Crude oil and natural gas are commonly viewed as substitute goods. Competition between natural

gas and petroleum products occurs principally in the industrial and electric generation sectors.

According to the EIA Manufacturing Energy Consumption Survey (Energy Information Adminis-

tration 2002), approximately 18 percent of natural gas usage can be switched to petroleum products.

Other analysts estimate that up to 20 percent of power generation capacity is dual-fired. West Texas

Intermediate (WTI), a type of crude oil often referenced in North America, and Brent crude oil

from the North Sea, are commonly used as benchmarks in oil pricing and the underlying commod-

ity of NYMEX oil futures contracts. WTI and Brent crude represent an example of a substitute

relationship. Recently NYMEX started to trade WTI-Brent spread option. Corn and soybean meal

serve as substitute cattle feeds. Ethanol - petroleum products are potentially competitive products.

Complementary Relationships

A complementary relationship exists when two commodities share a balanced supply or are com-

plementary in consumption and/or production. Let’s consider the case of gasoline and heating oil.

If the gasoline price increases dramatically, and crude oil is cracked to supply gasoline, this process

also produces heating oil and may result in a drop in the price of heating oil. The relationship

between these two commodities is one of complementarity. On the other hand, lead, tin, zinc and

copper are often smelted from paragenesis mineral deposits. The equilibrium assemblage of mineral

phases gives those industrial metals a natural relationship in supply. Crude oil and minerals from

industrial metals are generally concentrated in developing countries whose economy relies heavily

on commodity exports. In addition, industrial metals are seldom used in their pure forms. They

4



find most applications in the form of alloys. For example, the principal alloys of tin are bronze

(tin and copper), soft solder (tin and lead), and pewter (75% tin and 25% lead). Two-thirds of

nickel stocks are used in stainless steel, an alloy of steel. In 1998, 48% of zinc was applied as zinc

coatings, jointly used with aluminium.

The three above-mentioned economic ICE relationships can be present simultaneously among

commodities. For example, while complementarity exists between gasoline and heating oil, some

substitutability is also at play. In the following section we present a structural model for the

production relationship and the implication of the ICE relation in the prices dynamics.

3 The Economic Model

Commodity prices link two interconnected markets: the cash (or futures) market and the inventory

market. Immediate ownership of a physical commodity offers some benefit or convenience that is

not provided by futures ownership. This benefit, in terms of a rate, is called the “convenience yield”

(see Brennan 1991, and Schwartz 1997). The “Theory of Storage” of Kaldor (1939), Working (1948)

and Telser (1958), predicts that the return from purchasing a commodity and selling it for delivery

(using futures) equals the interest forgone less the convenience yield. The convenience yield is

attributed to the benefit of protecting regular production from temporary shortages of a particular

commodity or by taking advantage of a rise in demand and price without resorting to a revision of

the production schedule.

The traditional presentation of the Theory of Storage proposes that a “high” convenience yield

is associated with a “high” spot price (see Pindyck 2001). If we only consider the market for any

single commodity, the statement indicates: 1) the convenience yield is an increasing function of the

spot price; or 2) there is a positive correlation of incremental changes between the spot price and the

convenience yield. This paper extends the Theory of Storage by introducing a third interpretation,

i.e., 3) a high level of convenience yield of a particular commodity corresponds to a high price-level

difference between relative commodities in an ICE relationship. The first two interpretations have

been studied by several authors. For example, CCD explicitly model the positive dependence of

the convenience yield on the spot price and the instantaneous positive correlation between the spot
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price and the convenience yield. However, the third interpretation has received little attention so

far.

To motivate the importance of the third interpretation, let’s give an example where interpre-

tation 1) is violated, however it is consistent with interpretation 3). Consider a system of two

commodities, heating oil and crude oil, where there is a production relationship in long-term equi-

librium. Assume at time 0 that heating/crude oil are $20/$15, respectively, while at time 1 they

move to $22/$21, respectively. First, let’s consider the convenience yield of heating oil. If we look

only at the heating oil market, since the heating oil is more expensive at time 1, we expect to have

a greater convenience yield at time 1 than at time 0. However, if we look at both markets –heating

oil and crude oil– together, we should expect the convenience yield of heating oil to be smaller

at time 1 than at time 0. Indeed, since heating oil is only refined from crude oil, a high spread

between heating and crude oil at time 0 (i.e., the high production profit), indicates that the refining

capability cannot satisfy the strong demand for heating oil. Thus heating oil is relatively scarce

and should have relatively higher convenience yields than at time 1 when the heating oil is very

likely in abundance. Thus, the relative prices of heating and crude oil do influence the convenience

yield of the commodities.

The dependence of the convenience yield of a certain commodity on other commodities is not

part of the traditional Theory of Storage. We provide the intuition in a simple production equi-

librium highlighting the ICE relationship between crude oil an heating oil. This economy builds

on the single commodity equilibrium models of Casassus, Collin-Dufresne, and Routledge (2008)

and Routledge, Seppi, and Spatt (2000) and is similar in spirit to the cross-commodity model of

Routledge, Seppi, and Spatt (2001).

To formalize the economic intuition developed above, we consider a continuous-time production

economy with an infinite time horizon. This economy has a capital sector (Kt) and two storable

commodity sectors: crude oil (Q1,t) and heating oil (Q2,t). A representative agent derives utility

from the following two consumption goods: heating oil and the standard consumption good from

the capital sector that is used as the numeraire. The representative agent maximizes expected log

utility with respect to consumption of capital (CK,t), consumption of heating oil (C2,t) and demand
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for crude oil (q1,t):1

sup
{CK,t,C2,t,q1,t}∈A

E0

[∫ ∞
0

e−θ t (φ log (CK,t) + (1− φ) log (C2,t)) dt
]

(1)

where A is the set of admissible strategies. The optimization problem is subject to the following

processes that describe the dynamics of the stocks of capital, crude oil and heating oil, respectively:

dK = (αK − CK)dt+ σK K dWK (2)

dQ1 = −q1 dt (3)

dQ2 = (γ log(q1)Q2 − C2)dt (4)

The production rate of heating oil is an increasing function of the input quantity q1 that flows from

the crude oil stocks. For simplicity, we assume that this rate has a logarithmic form and that crude

oil can be used only as an input to the heating oil technology. We assume that the capital sector

has a constant return-to-scale technology. Finally, following Cox, Ingersoll Jr., and Ross (1985), we

assume that the output of the capital sector is stochastic. Uncertainty in the economy is captured

by the Brownian motion WK and σK is the volatility of output returns.

As expected, the representative agent optimally consumes a constant fraction of capital (CK =

θK), a constant fraction of heating oil (C2 = θ Q2), and demands a constant rate of crude oil

(q1 = θ Q1).2 The market-clearing prices are determined by marginal utility indifference. The

commodity prices correspond to the amount of capital the representative agent is willing to give

for an extra unit of commodity (i.e. the shadow price). In this simple economy the equilibrium

prices for crude oil (S1) and heating oil (S2) are given by:

S1 =
1− φ
φ

γ

θ

K

Q1
and S2 =

1− φ
φ

K

Q2
(5)

The equilibrium convenience yields are related to the marginal productivity of each commodity in

the economy (see Casassus, Collin-Dufresne, and Routledge 2008). A relevant prediction for us is

that the convenience yield of heating oil (δ2) is a time-varying and increasing function of the crude
1These variables are all time dependent. Hereafter, we drop this dependance throughout the paper to simplify the

notation.
2See Appendix A for a sketch of the solution to the representative agent’s problem.
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oil stocks:3

δ2 = γ log (θ Q1)

= γ

[
log
(

1− φ
φ

γK

)
− log (S1)

]
(6)

Furthermore, since the crude oil price (S1) is decreasing in its stock (Q1), equation (6) shows that

the heating oil convenience yield is a decreasing linear function of the (log) crude oil price plus

another risk factor that in this case is log(K). Higher crude oil inventories imply lower crude oil

prices and higher heating oil convenience yields. The intuition is the following. Since the production

rate of heating oil is increasing in the crude oil inventories, more inventories of crude oil today imply

more inventories and lower prices of heating oil in the near future. The heating oil spot price is

expected to decrease, which in this model implies lower futures prices.4

This inter-commodity relationship exists because crude oil is an input for heating oil produc-

tion. The model can be extended in several ways, but as long as the ICE relationship exists, the

crude oil price will influence the heating oil price dynamics (through the heating oil convenience

yield). Appendices B.1 and B.2 provide structural models for the substitute and complementary

relationship respectively, which show a similar phenomenon to the one mentioned above.

In summary, if an ICE relationship exists among commodities, the structural models predict that

the dynamics of a certain commodity is partly determined by the behavior of related commodities.

In particular, the structural ICE model suggests that the inter-commodity connection is through the

convenience yields. In the next section, we propose a reduced-form model with the interdependence

of the convenience yield on other commodity prices that is in line with our theoretical prediction.

4 The Empirical Model

This section introduces a reduced-form model that is consistent with the stylized facts from

ICE commodities (i.e. upward sloping correlation structure, stochastic convenience yields, mean-

reversion, etc.). Our multi-commodity model is parsimonious in the sense of “maximal” affine
3In this simplified economy, the convenience yield of crude oil is zero.
4Indeed, in this economy the heating oil risk-premium is constant (σ2

K). The interest rate is also constant (r =
α− σ2

K), thus all the action in the expected spot price is given by the time-varying convenience yield.
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models.5 We prefer to build a maximal model in order to avoid the risk of model mis-specification.

Furthermore, we distinguish two sources of co-movement across commodities: 1) a short-term effect

associated to the correlation of commodity prices, and 2) a long-term effect that is a consequence

of the ICE relationship. The long-term effect manifests in that the dynamics of one commodity

is a function of the other commodities in the economy. In particular, we choose a representation

in such a way that the long-term effect is present, because the convenience yield of a particular

commodity depends on the other commodities.

4.1 The Data-generating Processes

Assume there are n commodities in the system, in which the commodities have ICE relationships.

Denote

xi = log(Si) for i = 1, . . . , n (7)

where Si is the spot price of commodity i. Under the physical measure (P), we assume the (log)

spot prices follow Gaussian processes

dxi = (µ̃i − δi)dt+ σidWi for i = 1, . . . , n (8)

where δi is the convenience yield of commodity i, and µ̃i and σi are constants. Here, Wi (i =

1, . . . , n) are correlated Brownian motions. Motivated by our structural framework above, we

propose a specification where the convenience yield of commodity i, δi, is a function of the spot

prices of the n commodities in the economy. Furthermore, there are also n extra latent factors, ηj

(j = 1, . . . , n), affecting the n convenience yields. For simplicity, we consider an affine relationship

among the convenience yields and the risk factors. Therefore,

δi = −
n∑
j=1

bi,jxj + ηi −
n∑

j=1,i 6=j
ai,jηj (9)

5An affine structure is the standard framework for commodity pricing reduced-form models (see for example, GS
and Schwartz 1997). See Dai and Singleton (2000) and CCD for the definition of “maximal” in this context.
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where bi,j and ai,j are constants. The latent factors η’s follow mean-reverting processes of the form,

dηi = (θ̃i(t)− kiηi)dt+ σn+idWn+i for n = 1, . . . , n (10)

Here, θ̃i(t) = χ̃i+ωi(t), where χ̃i is a constant and ωi(t) is a periodical function on t to capture the

seasonality of commodity futures prices (if any). Refer to Richter and Sorensen (2002) and Geman

and Nguyen (2005) for a similar setup on the seasonality of the convenience yields. Following

Harvey (1991) and Durbin and Koopman (2001), we specify ωi(t) as:

ωi(t) =
L∑
l=1

(sc,li cos 2π l t+ ss,li sin 2π l t) (11)

Letting Y = (x1, . . . , xn, η1, . . . , ηn)> denote the 2n factors driving the system of n commodity

prices, our model can be rewritten in a vector form,

dY =
(
Ũ(t) + ΨY

)
dt+ dβ (12)

where Ũ(t) = (µ̃1, . . . , µ̃n, θ̃1(t), . . . , θ̃n(t))>, and Ψ =

 B A

0 K

 with

B =


b1,1 b1,2 · · · b1,n

b2,1 b2,2
. . . b2,n

...
. . . . . .

...

bn,1 bn,2 · · · bn,n

 , A =


−1 a1,2 · · · a1,n

a2,1 −1
. . . a2,n

...
. . . . . .

...

an,1 an,2 · · · −1

 ,K =


−k1 0 · · · 0

0 −k2
. . . 0

...
. . . . . .

...

0 0 · · · −kn


In equation (12), β = (σ1W1, . . . , σ2nW2n)> is a scaled Brownian motion vector with covariance

matrix Ω = {ρi,jσiσj} for i, j = 1, 2, . . . , 2n, where ρi,jdt is the instantaneous correlation between

the Brownian motion increments dWi and dWj .

Our model nests several other classical models:

1. If bi,k = 0 and ai,k 6=i = 0 (i = 1, . . . , n; k = 1, . . . , n), our model reduces to correlated GS

models on commodities.

2. If bi,k 6=i = 0 and ai,k 6=i = 0 (i = 1, . . . , n; k = 1, . . . , n), our model reduces to correlated CCD

models with constant interest rate on commodities.
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The correlated GS and CCD models correspond to the GS and CCD models when the spot prices

and convenience yields across commodities are correlated. The correlated version of the models are

more flexible than the original models and later will be considered as benchmarks for our model.

4.2 Co-movement in Commodity Prices

A natural way of extending the traditional single commodity-pricing models to a multi-asset frame-

work, is to assume that the shocks of the factors are correlated. Indeed, if the objective is to study

the valuation of derivatives or the portfolio selection problem in a multi-commodity framework,

then correlated factors need to be considered. However, these correlations only generate a short-

term source of co-movement in commodity prices. This type of co-movement fails to recognize the

long-term effect that exists in the inter-commodity equilibrium relationships. This is the case for

the correlated versions of the GS and CCD models.

The proposed empirical model in this paper makes an important distinction between the two

components of the co-movement between commodities. In contrast to the short-term effect im-

plemented by the instantaneous correlation structure in Brownian motions of different commodity

prices, the ICE relationship generates a longer term effect. This long-term source of co-movement

is a feedback effect that is mainly at play through the connection between the expected returns

of different commodities, i.e. the way a particular commodity impacts the expected return of the

other commodities in the economy.6 This cross-commodity feedback effect corresponds to an er-

ror correction or the cointegration between different time series in the discrete-time econometric

literature.7

In the model, the expected return of xi is

E [dxi] =

µ̃i +
n∑
j=1

bi,jxj − ηi +
n∑

j=1,i 6=j
ai,jηj

 dt (13)

6The term “feedback effect” has had different interpretations in the econometrics and finance literature. Here, we
borrow the concept from the term-structure literature, that refers basically to the non-diagonal terms of the long-run
matrix Ψ. See Dai and Singleton (2000) and Duffee (2002) for more details.

7For details, please refer to de Boef (2001) and Hamilton (1994).

11



The ai,j ’s and the bi,j ’s (for j 6= i) represent the long-term source of co-movement.8 These pa-

rameters relate the expected return of the commodity i with the price and convenience yield of

commodity j. The correlated GS and CCD models set these parameters to zero, therefore they

completely ignore the cross-commodity feedback effect.

According to the sign of the bi,j ’s, we classify the co-movement between commodity (log) prices

xi and xj (j 6= i) into three classes. That is, if both bi,j > 0 and bj,i > 0, a positive increment of

xi tend to feedback a positive increment on xj , which is in turn likely to strengthen xi by another

positive feedback; hence xi and xj move together. Similarly, if bi,j < 0 and bj,i < 0 xi and xj move

in opposite directions. Lastly, we have the mixed cases bi,j > 0, bj,i < 0 and bi,j < 0, bj,i > 0, where

it is not easy to tell the type of co-movement between the commodity prices.

The covariance matrix Σ(t, T ) for the vector of commodity prices XT conditional on Xt is

Σ(t, T ) =
∫ T

t
eΨ(T−u)ΩeΨ>(T−u)du (14)

The covariance is stationary as long as all eigenvalues of the long-run matrix Ψ are negative, which

is indeed the case for all the commodity pairs studied in the empirical section. From the definition of

the conditional covariance we obtain the conditional price correlation (i.e. the correlation structure),

ρ(t, T )i,j =
Σ(t, T )i,j√

Σ(t, T )i,iΣ(t, T )j,j
for i, j = 1, . . . , n (15)

It is easy to see that when T → t the instantaneous conditional price correlation is ρi,j which does

not depend on the long-run matrix Ψ, i.e. limT→t ρ(t, T )i,j = ρi,j . This means that in the short

run, the correlation among the factors is an important source of co-movement.

For a longer period of time τ = T − t > 0, the conditional price correlation does depend on

Ψ, and it is impacted by the relationship among the commodities. If there is a long-term ICE

relationship, it will appear in the a’s and b’s, which in turn affects the long-run matrix Ψ. This

dynamics creates another source of co-movement that takes effect at relatively longer horizons.

Figures 5 and 9 show that the cross-commodity feedback effect due to the ICE relationship, does
8Note from equation (9) that if ai,j 6= 0, then the convenience yield for both commodities i and j share the

common factor ηj .
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play an important role in explaining the co-movement of commodity prices. The figure shows that

by neglecting the cross-commodity parameters, the GS and CCD models impose strong restrictions

on the correlation structure. The cross-commodity feedback effect is necessary to match the upward

sloping correlation structure in the data.

4.3 Futures Pricing

Assuming a constant risk premium for each factor, the risk-neutral process can be expressed as

follows:

dβQ = Π dt+ dβ (16)

where Π = (πx,1, . . . , πx,n, πη,1, . . . , πη,n)> is the risk premium vector. A constant risk premium

restricts the long-run behavior (i.e. the Ψ matrix) to be the same under both, risk-neutral and

physical measures, but reduces considerably the number of parameters to estimate.

The drift part U(t) under the risk neutral measure can be specified as, U(t) = Ũ(t)−Π, hence,

dY = (U(t) + ΨY )dt+ dβQ (17)

where βQ = (σ1W
Q
1 , . . . , σ2nW

Q
2n)> and U(t) = (R,L(t))> with R = (rf − 1

2σ
2
1, . . . , r

f − 1
2σ

2
n)>,

L(t) = (θ1(t), . . . , θn(t))>, θi(t) = χi + ωi(t) and χi = χ̃i − πη,i. We assume a constant interest

risk-free rate rf to keep the model simple.9

The following proposition shows the futures prices for each commodity i:

Proposition 1 Let Fi,t(Yt, T ) be the ith commodity futures price maturing in τ = T − t periods.

In the model setup (17), the futures prices are determined by

log(Fi,t(Yt, t+ τ)) = mi(τ) +Gi(τ)Yt for i = 1, . . . , n (18)

where

mi(τ) =
∫ τ

0

(
Gi(u)U +

1
2
Gi(u) ΩGi(u)>

)
du

9It is straightforward to extend our model to consider a stochastic interest rates as in Schwartz (1997).
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G(τ) = exp(Ψ τ)

where Gi(τ) denotes the ith row of the G(τ) matrix.

Proof See Appendix D.1. �

4.4 “Maximal” Affine Model in a Multi-commodity System

Duffie and Kan (1996), Duffie, Pan, and Singleton (2000) and Dai and Singleton (2000) propose a

“maximal” canonical form for affine multi-factor model of the form:

xi = αi0 + ψi
Ŷ
Ŷ , (19)

where xi denotes the (log) value of the ith asset, ψi
Ŷ

is a 1 ×m constant row vector and αi0 is a

constant. Ŷ is an m×1 column vector of latent state variables that follow mean-reverting Gaussian

diffusion processes under the risk-neutral measure,

dŶ = −ΛŶ dt+ dWQ
Ŷ

(20)

where Λ is a lower triangular matrix and WQ
Ŷ

is a vector of independent Brownian motions. The

above-mentioned model is “maximal” in the sense that, conditional on observing the single asset,

the model offers the maximum number of identifiable parameters (c.f. Dai and Singleton 2000, and

CCD).

In order to use this model into a multi-commodity system, we have to extend it in two ways.

First, the above maximal model is only suitable for a single asset, thus we need to extend the model

to a canonical affine representation for multiple assets. We hence define the maximal model for

multiple assets as follows:

In a system of n assets which are governed by m factors, a model for the system is “maximal”

if and only if every single asset in the system is modeled by an m-factor maximal model as defined

in Dai and Singleton (2000):

X = ψ0 + ψ
Ŷ
Ŷ , (21)
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where X = (x1, . . . , xn)> represent the n assets which are governed by Ŷ in equation (20). Here,

ψ
Ŷ

= (ψ1
Ŷ
, . . . , ψn

Ŷ
)> is an n×m matrix and ψ0 = (ψ1

0, . . . , ψ
n
0 )> is an n× 1 vector.

Thus a simple combination of maximal models for single commodities does not necessarily form

a maximal model for a multi-commodity system. For example, the CCD model is maximal for single

commodities, but is not maximal in a multi-commodity system. The previous section shows that an

extended version of the CCD model is nested in our model and hence is not maximal, because this

model restricts some parameters in the expected return of the factors to be zero. These constraints

considerably influence the joint long-run behavior of the commodities and are directly related to

the ICE relationship.

Second, the above maximal model only allows a constant ψ0, however, many commodity prices

are subjective to seasonal movements. Thus, we need to extend the maximal model by letting ψ0

be time-varying. The extended model for multiple assets is:

X = ψ0(t) + ψ
Ŷ
Ŷ , (22)

dŶ = −Λ Ŷ dt+ dWQ
Ŷ

(23)

where ψ0(t) = (ψ1
0(t), ψ2

0(t), . . . , ψn0 (t))> is an n× 1 vector, ψi0(t) = αi0 +$i
0(t), and where $i

0(t) is

a periodical function.

To address the maximal model for multiple assets in an n commodities system governed by 2n

factors, we specify X as the n × 1 vector of (log) spot commodity prices, Λ in (20) as a 2n × 2n

lower triangle matrix and WQ
Ŷ

as a 2n× 1 vector of independent Brownian motions.

Following CCD we now show that for the multi-commodity maximal model, the convenience

yield vector ∆ = (δ1, . . . , δn)> is an affine function of the state variables Ŷ . The absence of arbitrage

implies that under the risk-neutral measure (Q) the drift of the spot price of the ith commodity

must follow

EQ
t [dSi] = (rf − δi)Sidt for i = 1, . . . , n (24)

Applying Itô’s lemma, we obtain the following expression for the maximal convenience yield vector
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∆ implied by our model,

∆ = rf1n −
EQ
t [dV ] + 1

2(VarQ
t [dx1], . . . ,VarQ

t [dxn])>

dt

= rf1n + ψ
Ŷ

ΛŶ − 1
2

diag(ψ
Ŷ
ψ>
Ŷ

) (25)

where VarQ
t (.) denotes the variance under the risk-neutral measure, and 1n is an n × 1 column

vector with all elements equal to 1.

In order to show that our empirical model from the beginning of this section is indeed maximal,

we first introduce an intermediate representation that allows us to show that our model and the

one presented in equations (22)-(23) are equivalent. The intermediate representation rotates the

state vector Ŷ to state variables that have a better economic meaning: the (log) spot prices and

the convenience yields of the n commodities. Eventually, we could have included m − 2n extra

latent state variables in the intermediate representation, but as it will become clear later, a 2n-

factor model is enough to capture the joint dynamics of a system of n commodities.10 Thus, we

set m = 2n. Proposition 2 formalizes the intermediate representation.

Proposition 2 Assume 2n factors driving the dynamics of the futures prices of n commodities,

as in equations (22)-(23). The maximal model under the risk-neutral measure can be presented

equivalently by an affine model where the state variables are the log spot prices xi and convenience

yields δi (i = 1, . . . , n). The dynamics of the new state vector Y = (x1, . . . , xn, δ1, . . . , δn)> is:

dY = (U(t) + ΨY )dt+ dβQ
Y

(26)

where U(t) =
(
R,L(t)

)>, Ψ =

 0 −In×n

A B

 and βQ
Y

is a scaled Brownian motion vector with

covariance matrix Ω. The n×1 vectors R and L(t) and the n×n matrices A, B and Ω are specified

in Appendix D.2.
10Note that the canonical form model has m factors, while our empirical model has 2n factors.
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Proof By writing equations (22) and (25) together, we have

Y =

 X

∆

 =

 ψ0(t)

ψc

+

 ψ
Ŷ

ψ
Ŷ

Λ

 Ŷ , (27)

where ψc = rf1n − 1
2diag(ψ

Ŷ
ψ>
Ŷ

). Equation (27) shows that the intermediate representation, Y ,

is an invariant transformation of Ŷ (see Dai and Singleton 2000). This transformation rotates the

state variables, but all the initial properties of the model are maintained, that is, the resulting model

is still a maximal affine 2n-factor Gaussian model. Furthermore, we apply Itô’s lemma to obtain the

specific relationships between the model parameters specified in the proposition and those specified

in equations (22)-(23). Appendix D.2 shows the derivation in a greater detail. �

An important corollary of Proposition 2 is that, in a maximal model, the drift of the convenience

yield of a certain commodity depends on other commodity spot prices. This is consistent with the

structural model in section 3 (for example, see equation (6)).

Now we are ready to show that our model is maximal. The next proposition formalizes this.

Proposition 3 The maximal model specified in Proposition 2 is equivalent with our model in (17).

Proof Equation (9) shows that the convenience yield vector is ∆ = −BX − Aη, where η =

(η1, . . . , ηn)> is the vector of latent state variables that follow the dynamics in (10). Thus, we find

the following invariant transform from Y to Y :

Y =

 X

η

 =

 In×n 0

−A−1B −A−1

Y (28)

Similar with Proposition 2, we apply Itô’s lemma to compare the parameters in (26) and (28) and

show that they are identical. Appendix D.3 shows the derivation in detail. �

Proposition 2 and 3 show that our model belongs to the maximal model of multi-commodity sys-

tem. Furthermore, it captures the ICE relationship among different commodities. In the following

section, we show how to calibrate this model.
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5 Estimation

We demonstrate the importance of ICE relationships in futures pricing using a production pair

of heating oil and crude oil. A Kalman filtering is applied for implementing our model. Even

though our model can be applied to price a system of n commodities jointly, two commodities are

enough to highlight the main characteristics of our model and the intuition behind the results.11

We also estimate a substitution ICE relationship between WTI crude oil and Brent crude oil. The

estimation of the WTI-Brent crude oil pair is analogous to the heating and crude oil pair, therefore,

we leave the details of the estimation of the substitute case for Appendix C.

5.1 Empirical Method – the Kalman Filter

One of the difficulties of calibrating the model is that the state variables are not directly observable.

A useful method for maximum likelihood estimation of the model is addressing the model in a state-

space form and to using the Kalman filter methodology to estimate the latent variables.12 The state-

space form consists of a transition equation and a measurement equation. The transition equation

shows the data-generating process. The measurement equation relates a multivariate time series of

observable variables (in our case, futures prices for different maturities) to an unobservable vector

of state variables (in our case, the (log) spot prices xi and ηi (i = 1, . . . , n)). The measurement

equation is obtained using a log version of equation (18) by adding uncorrelated noises to take

account of the pricing errors.

Suppose that data are sampled in equally separated times tk, k = 1, . . . ,K. Denote ∆t =

tk+1 − tk as the time interval between two subsequent observations. Let Yk represent the vector of

state variables at time tk. Thus, we can obtain the transition equation,

Yk+1 = (Ψ ∆t+ I)Yk + Ũ(t) ∆t+ wk (29)
11The computational loads increase exponentially for the case of more than two commodities. Furthermore, com-

modity pairs are building blocks of any commodity system. Any multi-commodity system can be decomposed into
multiple commodity pairs, e.g., the system with three commodities can be priced using no more than 3 pairs of
commodities.

12Hamilton (1994) and Harvey (1991) give a good description of estimation, testing, and model selection of state-
space models.
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where wk is a 2n× 1 random noise vector following zero-mean normal distributions.

For the measurement equation at time tk, we consider the vector of the log of futures prices

Fk = (F1,k(τ1), . . . , Fn,k(τ1), . . . , F1,k(τM ), . . . , Fn,k(τM ))>, where τj denotes the time to maturi-

ties.13 The log (nM)× 1 vector Fk can be written as,

log(Fk) = m+GYk + εk (30)

where

m = (m1(τ1), . . . ,mn(τ1), . . . ,m1(τM ), . . . ,mn(τM ))>,

G = (G1(τ1), . . . , Gn(τ1), . . . , G1(τM ), . . . , Gn(τM ))>,

and εk is a (nM)× 1 vector representing the model errors with its variance covariance matrix Υ.

In order to reduce the number of parameters to estimate, we assume that the standard errors for

all contracts are the same. This also reflects the notion that we want our model to price the n

commodities and M contracts equally well. Therefore, we define Υ = ε2InM , where ε is the pricing

error of the log of the futures prices and InM is the (nM)× (nM) identity matrix.

5.2 The Data

Our data consist of weekly futures prices of West Texas Intermediate (WTI) crude oil and heating

oil. The weekly WTI crude oil and heating oil futures are obtained through the New York Mercantile

Exchange (NYMEX) for the period from 1995.01 to 2006.02 (582 observations for each commodity).

The time to maturity ranges from 1 month to 17 months for these two commodities. We denote

Fn as futures contracts with roughly n months to maturity; e.g., F0 denotes the cash spot prices

and F12 denotes the futures prices with 12 months to maturity. We use five time series —F1, F5,

F9, F13, F17– for WTI, crude oil, and heating oil contracts. Table 1 summarizes the data. Note

that, in the calibration, we take the risk-free rate as 0.04, which is the average interest rate during

these years.
13Since our model has 2n factors we need M ≥ 2.
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5.3 Empirical Examination of the ICE Relationship

As mentioned before, since WTI crude oil and heating oil are the input and output of the oil refinery

firm, they belong to the production relationship and follow an ICE relationship.

We arbitrarily define crude oil as commodity 1 and heating oil as commodity 2. Figure 2 shows

the historical crude and heating oil time series. Crude oil prices does not show seasonality, which is

consistent with the literature on oil futures, such as Schwartz (1997). However, heating oil shows

quite strong seasonality. This is because in winter, demand for heating oil is typically high, but

there are usually not enough facilities existent to store the heating oil; hence, in the winter, heating

oil has relatively higher convenience yields. Therefore, winter-maturing futures tends to be higher

than those maturing in summer. Since the seasonality of heating oil is in an annual frequency, for

simplicity we set L = 1 in equation (11), implying that

ωi(t) = sci cos 2π t+ ssi sin 2π t (31)

We use the Kalman filter to calibrate our model. Table 2 shows the results. From the model

estimation, we see that most parameters are significant. In particular, b1,2 and b2,1 are highly

significant, which is consistent with the ICE notion that the convenience yields depend on other

commodity prices. The positive signs of b1,2 and b2,1 are also in line with the prediction of the

production relationship. Figure 3 shows the time series of the mean errors (ME) and root mean

squared errors (RMSE). The MEs are negligible, and the RMSEs fluctuate between 0.002 to 0.03,

which shows that our model performs reasonably well in fitting futures prices. Figure 4 shows the

convenience yield for both WTI crude oil and heating oil implied by our model. As is well known,

the convenience yields of productive commodities are highly volatile and can be as high as 100%

(see CCD).

In order to test whether our model is better than the correlated versions of the GS and CCD

models, we run a likelihood ratio test on the three models. Table 3 shows that, in terms of fitting

the futures curves, our model is significantly better than the correlated GS model and correlated

CCD model. This result suggests that the ICE is indispensable when jointly modeling multiple

commodities.
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Figure 5 shows the correlation structure for correlated GS, correlated CCD and our model. The

plot shows that only our model is able to generate the upward sloping correlation curve present in

the data. In the short run, we see the correlation for our model is smaller than the correlated GS

and CCD models. This occurs because our model is more flexible when capturing the co-movement

between two futures prices, which allows us to disentangle the different sources of co-movement (i.e.

the correlation and the ICE effects). Indeed, the correlated versions of GS and CCD, which don’t

consider long-term ICE relationships, are forced to include some existing mid-term correlation in the

short-term component of co-movement. In the long run, our model allows for a greater correlation

than the other two models, which is consistent with the significance of the ICE relationship.

In the next section we show that a well-behaved empirical model can guide investors in correctly

pricing financial contingent claims.

6 Application – Spread Option Valuation

Spread options are based on the difference between two commodity prices. This difference can be,

for example, between the price of an input and the price of the output of a production process

(processing spread). NYMEX offers tradable options on the crack spread: the heating oil/crude oil

and gasoline/crude oil spread options (introduced in 1994) and the recently announced substitute

spread between the WTI and the Brent crude oil. Also, many firms may face “real options” on

spreads. For example, manufacturing firms possess an option of transferring the raw material to

products at a certain cost, because they can choose not to produce. This option is on the spread

between input and output prices and the strike price corresponds to the production cost. The

spread option is of great importance for both commodity market participants and real production

firms.

Since the spread is determined by the difference of two asset price, it is natural to model the

spread by modeling each asset separately. This is the main characteristic of the so-called two-price

model, where the short-term correlation is the driver for most of the action in the spread (as in

the correlated GS and CCD models). Up to now, nearly all researchers use the two-price model

for pricing spread options (see Margrabe (1978) and Carmona and Durrleman (2003)). However,
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as we see from section 4.2, the two-price model ignores the long-term co-movement component

implied by ICE relationship. Thus, the two-price models might be flawed especially for the long

run. Mbanefo (1997) and Dempster, Medova, and Tang (2008), among others have documented

that the traditional two-price model suffers a problem of overpricing the spread option. Therefore,

spread option pricing can be regarded as an out-of-sample test for our theoretical model.

At current time t, the pricing of call and put spread options, ct(T,M) and pt(T,M), with strike

K on two commodities with futures prices F1,t(M) and F2,t(M), are specified as:

ct(T,M) = e−r
f (T−t)EQ

t [max (F2,T (M)− F1,T (M)−K, 0)] (32)

pt(T,M) = e−r
f (T−t)EQ

t [max (K − (F2,T (M)− F1,T (M)), 0)] (33)

where the time to maturity for the spread options is T . To the best of our knowledge, the analytical

solution for spread options is not available if K 6= 0. Thus, to price the options we use Monte Carlo

simulation. In this section, we simulate the futures prices using three models – ours, the correlated

CCD, and the correlated GS models. The futures price dynamics under the risk-neutral measure

are specified as,
dFi,t(M)
Fi,t(M)

= Gi(M − t) dβQ, for i = 1, 2 (34)

We choose two spread options: the crack spread option – spread between heating oil and the WTI

crude oil, and the substitute spread option – spread between the WTI crude oil and Brent crude

oil. For the crack spread, we assume crude and heating oil prices as F1,t(M) = 100 (crude oil) and

F2,t(M) = 105 (heating oil), respectively; and for Brent and WTI crude oil, we use F1,t(M) = 100

(Brent crude) and F2,t(M) = 102 (WTI crude), respectively.14

We focus on spread options of different maturities to understand the effect of the correlation

structure implied by the models. We choose T = 3 month for short-maturity options and T =

5 years for long-maturity options. Also, for both, crack and substitutive spreads, we choose the

same maturity on futures and options, which is the convention of the spread option specification on

NYMEX. We use the estimates from the crude-heating oil and WTI-Brent oil pairs to conduct our

simulations, where 2000 paths are simulated for the three models. In order to make the simulation
14Note that generally heating oil is about 5 dollars higher than the crude oil, and WTI crude is 1.5 to 2 dollars

above Brent crude.
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accurate, we use anti-variate techniques in generating random variables and use the same random

seed for all three models. The risk free rate rf is 0.04 in the simulation.

Tables 4 and 8 show the option values with different strikes for both call and put options of

crack spread and substitutive spread, respectively. The tables show that both, short-term and

long-term effects, are important determinants of spread option prices. The results indicate that

for long-maturity options (T = 5 years), our model implies lower call and put spread option

prices than the correlated GS and CCD models.15 Our finding is consistent with the evidence

of Mbanefo (1997) that the two-prices models tend to overprice the spread option by ignore the

equilibrium relationship, specially for long-maturity options. This is a consequence of the higher

long-term correlations implied by our model. Intuitively, the ICE relationship (positive b1,2 and

b2,1’s) restrict the commodity prices from large deviations from their equilibrium, and thus make the

spread of the prices relatively smaller and less volatile than models without the ICE specification.

The lower term volatility of the spread traduces into lower options values.

The opposite occurs for short-maturity options (T = 3 month). The results suggest that the

two-prices model may underprice short-maturity option values. The short-term correlation in the

CCD and GS models is contaminated because these models are misspecified.16 Indeed, these models

can not capture the long-term source of co-movement, therefore, they tend to accommodate long-

term effects in the short-end of the correlation structure. This creates important biases in option

prices.

7 Conclusions

We study the determinants of the co-movement among commodity prices in a multi-asset frame-

work. We find that a long-term source of co-movement is driven by economic relations, such as,

production, substitution or complementary relationships. We refer to these economic connections

as inter-commodity equilibrium (ICE) relationships. Using a structural model, we show that the
15Note that CCD model has lower option prices than those in the GS model because the CCD model captures the

mean-reversion of commodity prices, while GS model does not.
16Figures 5 and 9 show that the cross-commodity feedback effect in our model implies a lower short-term correlation

and a larger long-term correlation than the correlated GS and CCD models.

23



ICE relation implies a cross-commodity feedback effect that influence the long-term joint dynamics

of prices. This effect implies that the convenience yield of a certain commodity depends on the

prices of other related commodities. This notion is not presented in the traditional “Theory of

Storage”.

We propose a maximal affine reduced-form model for a multi-commodity setup which nests the

GS and CCD models. We follow the ICE prediction and explicitly consider the interdependence

of convenience yields on the spot prices of all commodities in the economy. Our model allows

us to disentangle the different sources of co-movement and implies a flexible correlation structure

that matches the upward sloping shape observed in the data for ICE commodities. We find that

traditional commodity pricing models, such as the GS and CCD models, impose strong restrictions

on the correlation structure. These models account only for a short-term source of co-movement,

therefore the estimation forces this component to accommodate to match the higher long-term

correlations in the data. We estimate our model for the heating oil - crude oil and for the WTI -

Brent crude oil pairs. Likelihood-ratio tests show that our model is significantly better than the

correlated versions of the GS and CCD models, which proves the importance of modeling ICE

relationships.

We use our model to price spread options because spread options largely depend on the equi-

librium relationship between the two underlying commodities. The flexibility in the correlation

structure implied by our model has an important effect on option prices. For long-maturity op-

tions, our model predicts lower prices than those from the correlated GS and CCD models. This

occurs because our model correctly accounts for an upward sloping correlation structure. The

long-run relationship ties both commodity prices, reducing the volatility of the spread and yielding

lower spread option values. Our results also show that the short-term correlation is lower than the

one in the GS and CCD models. This imply higher prices for short-maturity spread options.
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Appendix

A Derivation of the Economic Model of Production Relationship

First, note that we can extract the convenience yield δj for each commodity j using the pricing kernel (ξ)
and the price of the commodity (Sj):

E [d(ξ Sj) + ξ δjSjdt] = 0 (A1)

which implies that

E
[
dχj
χj

]
= −δjdt (A2)

with χj = ξ Sj . The interpretation for this result is that the convenience yield corresponds to the interest
rate in a world that uses the commodity as the numeraire (see Richard and Sundaresan 1981, and Casassus,
Collin-Dufresne, and Routledge 2008).

Let us denote by J(K,Q1, Q2) = sup{CK,u,C2,u,q1,u}∈A Et
[∫∞
t
e−θ(u−t)U(CK,u, C2,u)du

]
the “current”

value function associated with the representative agent’s problem. Note that given the set-up, the value
function J(·) is not a function of time.

The solution of the our problem is determined by the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
{CK ,C2,q1}∈A

{U(CK , C2) +DJ − θJ} = 0 (A3)

where D is the Itô operator

DJ = (αK − CK)
∂J

∂K
− q1

∂J

∂Q1
+ (γ log(q1)Q2 − C2)

∂J

∂Q2
+

1
2
σ2
KK

2 ∂
2J

∂K2
(A4)

with ∂J
∂K , ∂J

∂Q1
and ∂J

∂Q2
representing the marginal value of an additional unit of numeraire good, crude oil

and heating oil, respectively. ∂2J
∂K2 is the second derivative with respect to K.

The first-order conditions with respect to consumption of capital, consumption of heating oil and demand
for crude oil are UCK

= ∂J
∂K , UC2 = ∂J

∂Q2
and γ Q2

q1
∂J
∂Q2

= ∂J
∂Q1

, respectively. Given our logarithmic utility func-

tion, these conditions imply that the optimal consumptions are CK = φ
(
∂J
∂K

)−1
and C2 = (1−φ)

(
∂J
∂Q2

)−1

.
After replacing these controls in the HJB equation we obtain an ordinary differential equation with a closed-
form solution that is linear in log(K), log(Q1) and log(Q2).

We note that the pricing kernel is ξt ∝ e−θ tUCK,t
(CK,t, C2,t) and define commodity prices as the marginal

prices that solve J(K,Q1, Q2) = J(K+S1 ε,Q1− ε,Q2) = J(K+S2 ε,Q1, Q2− ε) when ε→ 0. These imply
that Sj =

(
∂J
∂K

)−1 ∂J
∂Qj

for j ∈ {1, 2}. Finally, using the envelope condition above, we obtain the result that

commodity j pricing kernel is χj,t ∝ e−θ t
∂J(Kt,Q1,t,Q2,t)

∂Qj
. We apply Itô’s to this expression to obtain the

convenience yield of commodity j.

B Substitute and Complementary Relationships

B.1 The Economic Model for a Substitute Relationship

Consider now a similar economy to the production case in Section 3, but with two substitute commodities,
say, West Texas Intermediate (WTI) crude oil from the North Sea (Q1) and Brent crude oil (Q2). There
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is also a production technology in the capital sector (K) that uses both types of crude oils to produce the
consumption good. The representative agent in the economy maximizes the expected log utility with respect
to the consumption of capital (CK), the demand of WTI crude oil (q1) and the demand of Brent crude
oil (q2):

sup
{CK,t,q1,t,q2,t}∈A

E0

[∫ ∞
0

e−θ t log (CK,t) dt
]

(B1)

where A is a set of admissible strategies. First, consider a simple case where the capital and crude oil stocks
evolve in the following way:

dK = (α(log(q1) + log(q2))K − CK)dt+ σKKdWK (B2)
dQ1 = −q1dt+ σ1Q1 dW1 (B3)
dQ2 = −q2dt+ σ2Q2 dW2 (B4)

The uncertainty is captured by the independent Brownian motions Wi for i ∈ {K, 1, 2}. The stochastic
crude oil stocks capture the fact that available barrels of oil are affected by some exogenous factors. As we
will note later, this type of uncertainty generates the very appealing feature that the WTI and Brent crude
oil prices are less than perfectly correlated.

At this point, given the simplicity of the economy, the two commodities Q1 and Q2 are not substitutes.
The crude oil demands q1 and q2 depend only on their own stock level. Whether the WTI crude oil is cheaper
or more expensive than the Brent crude oil does not affect the demand for Brent oil.

A simple way of making these two commodities substitute is by allowing some interaction between the
two crude oil stocks. For example, if the agents can move some units from the Brent stock to the WTI stock
and vice-versa, then the two commodities will have some degree of substitutability. There are multiple ways
of doing this, but only few of them have closed-form solutions. It is important to have analytical expressions
in order to understand the economics behind the results.

The case with optimal adjustment from Brent to WTI crude oil and vice-versa at an infinite rate and
at no cost can easily be solved, but the model is unrealistic. Without any friction both crude oil prices
will be identical. If we consider some degree of irreversibility by including proportional adjustment costs,
the problem becomes similar to that of the shipping model of Dumas (1992) which needs to be solved
numerically.17 Including fixed costs as in Casassus, Collin-Dufresne, and Routledge (2008) involves an even
more complex solution. If there is a finite upper bound for the rate of adjustment from one stock to the
other, the problem has the same flavor as in the bounded investment rate model of Kogan, Livdan, and
Yaron (2008). Because of the extra state variable, to the best of our knowledge, there is no closed form
solution to this problem, either.

A common characteristic of the endogenous decisions in the three equilibrium models mentioned above is
that the optimal adjustment occurs when the level of the target stock is relatively lower than the level of the
source stock. We propose an exogenously defined adjustment strategy that captures this feature and allows
for closed-form solutions. The strategy involves transporting a time-varying fraction of Brent oil stocks to the
WTI sector when the Brent stocks are greater than the WTI stocks, and vice-versa. Doing this at a finite rate
captures the irreversibility characteristic embedded in the endogenous decisions of Dumas (1992), Casassus,
Collin-Dufresne, and Routledge (2008) and Kogan, Livdan, and Yaron (2008). The modified processes are:

dQ1 = (ωQ1 − q1)dt+ σ1Q1 dW1 (B5)
dQ2 = (−ωQ2 − q2)dt+ σ2Q2 dW2 (B6)

dω = κ

(
log
(
Q2

Q1

)
− ω

)
dt (B7)

The adjustment rate ω can take both signs. It moves continuously towards a time-varying long-term mean
that depends on the stocks Q1 and Q2. If there is more Brent oil than WTI oil in the economy (i.e. Q2 > Q1),

17Actually, the problem here is more complex, since we have three state variables instead of the two state variables
representing the two countries in Dumas (1992).
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the rate ω moves towards a positive value until the stocks are balanced. The positive parameter κ is the
speed of adjustment from one oil stock to the other and captures the degree of substitutability between the
two commodities. The higher the κ the better substitutes are the commodities, because the adjustment
occurs at a higher speed. It also captures the persistence of the adjustment rate, and thus the degree of
irreversibility in the adjustment decision. A low κ implies greater irreversibility because it will take longer
to balance the stocks.

Let us denote by J(K,Q1, Q2, ω) = sup{CK,u,q1,u,q2,u}∈A Et
[∫∞
t
e−θ(u−t)U(CK,u)du

]
the “current” value

function for the representative agent’s problem in the substitute relationship example.

The solution to our problem is determined by the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
{CK ,q1,q2}∈A

{U(CK) +DJ − θJ} = 0 (B8)

where D is the standard Itô operator associated to this economy. The first-order conditions with respect
to consumption of capital and demands for the two types of crude oil are CK =

(
∂J
∂K

)−1
, αK

q1
∂J
∂K = ∂J

∂Q1

and αK
q2

∂J
∂K = ∂J

∂Q2
, respectively. After replacing these controls in the HJB equation we obtain an ordinary

differential equation with a closed-form solution that is linear in log(K), log(Q1), log(Q2) and ω.

The representative agent problem that maximizes equation (B1) subject to equations (B2) and (B5)-
(B7) has an affine solution similar to the one in the production relationship example. The representative
agent optimally consumes a constant fraction of capital (CK = θK) and demands a constant rate of WTI
and Brent crude oils (q1 = θ Q1 and q2 = θ Q2). Note that as before, the instantaneous crude oil demands
are a function only of their own crude oil stocks, but now both crude oil stocks are related because of the
adjustment rate ω. This implies that future Brent oil demands will be affected by the current WTI stock
level.

In a similar way to the production relationship, the equilibrium crude oil prices are very simple:18

S1 =
α

θ

K

Q1
and S2 =

α

θ

K

Q2
(B9)

The prices have the same structure, because the problem is symmetric for both commodities.19 The equi-
librium convenience yields are:

δ1 = ω − σ2
1 and δ2 = −ω − σ2

2 (B10)

The convenience yields are directly related to the adjustment rate ω. The WTI oil convenience yield is
increasing in ω, because a high ω implies more expected WTI oil stocks in the next period.20 This expected
increase in stocks decreases expected prices, thus generating a positive convenience yield (after risk premium
adjustments). The WTI oil convenience yield is time varying and has the same dynamics as the adjustment
rate. If we also consider that equation (B9) implies that Q2

Q1
= S1

S2
, then the dynamics of δ1 is:

dδ1 = κ

(
log
(
S1

S2

)
− δ1

)
dt (B11)

A higher differential between S1 and S2 implies that the convenience yield δ1 is more likely to increase in
the near future. In this particular case, the convenience yields are conditionally deterministic, because the
exogenous adjustment strategy was assumed to have this characteristic. Equation (B12) shows that the
convenience yield of WTI oil depends on the price of Brent crude oil,

δ1,t = δ1,t0e
−κ(t−t0) +

∫ t

t0

κ e−κ(t−u) log
(
S1,u

S2,u

)
du (B12)

18Again, see Appendix A for more details on the solution of the model.
19Note that because Q1 and Q2 are driven by independent Brownian motions, the price of the commodities are

only partly correlated. This correlation emerges because they share the common factor K.
20The opposite occurs for the Brent convenience yield.
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B.2 The Economic Model for a Complementary Relationship

In this appendix we study the joint equilibrium dynamics of two commodities that have an ICE complemen-
tary relationship. We consider the case of gasoline (Q1) and heating oil (Q2) that share a balanced supply
from crude oil (Q3) crack process and also are complementary in consumption. The representative agent
consumes capital (CK) and a mix of gasoline and heating oil, defined as CM = Cν1C

1−ν
2 , where ν represents

the share of gasoline in the mix. The agent maximizes expected utility of consumption and also chooses how
much crude oil to demand (q3) for production of gasoline and heating oil:

sup
{CK,t,CM,t,q3,t}∈A

E0

[∫ ∞
0

e−θ t (φ log (CK,t) + (1− φ) log (CM,t)) dt
]

(B13)

The dynamics of the stocks of capital, gasoline, heating oil and crude oil, respectively, are:

dK = (αK − CK)dt+ σKKdWK (B14)
dQ1 = (γ log(q3)− C1)dt+ σ1Q1 dW1 (B15)
dQ2 = ((1− γ) log(q3)− C2)dt+ σ2Q2 dW2 (B16)
dQ3 = −q3dt (B17)

Where γ ∈ (0, 1) represents the relative productivity of gasoline in the crack production process.21 Let us
denote by J(K,Q1, Q2, Q3) = sup{CK,u,CM,u,q3,u}∈A Et

[∫∞
t
e−θ(u−t)U(CK,u, CM,u)du

]
the “current” value

function for the representative agent’s problem in the complementary relationship example.

As before, the solution to our problem is determined by the following Hamilton-Jacobi-Bellman (HJB)
equation:

sup
{CK ,C1,C2,q3}∈A

{
U(CK , Cν1C

1−ν
2 ) +DJ − θJ

}
= 0 (B18)

where D is the standard Itô operator associated to this economy.22 We proceed as before and obtain the first
order conditions with respect to the consumptions and the demand of crude oil. As in the previous cases,
the agent optimally consumes a constant fraction of the stocks (CK = θK, C1 = θ Q1 and C2 = θ Q2) and
demands a constant fraction of crude oil (q3 = θ Q3).

The shadow price of a unit of each of the stocks is decreasing on its own stock and increasing on how
important they are for the economy:

S1 = ν
1− φ
φ

K

Q1
, S2 = (1− ν)

1− φ
φ

K

Q2
and S3 =

γ ν + (1− γ)(1− ν)
θ

1− φ
φ

K

Q3
(B19)

They are also increasing on the capital stock, because this imply that the commodities are relatively scarce
in the economy.

The equilibrium convenience yields of gasoline and heating oil are as follows

δ1 = γ log(θ Q3)− σ2
1 and δ2 = (1− γ) log(θ Q3)− σ2

2 (B20)

Both convenience yields are increasing on the crude oil stocks, because this means a higher marginal pro-
ductivity of gasoline and heating oil. Interestingly, as opposed to the substitute example in the previous
section, here the convenience yields of the complementary commodities are positively correlated (in this sim-
ple case, they are even perfectly correlated). It is straightforward to show that the dynamics of the gasoline
convenience yield depends on the heating oil convenience yield.

21The crack product ratio of unleaded gasoline and heating oil usually is 2
3

: 1
3
. On average, cracking three barrels

of crude oil produces 2 barrels (84 gallons) of unleaded gasoline and one barrel heating oil.
22Note that since the consumption of the mix (CM ) is increasing in the consumption of gasoline (C1) and heating

oil (C2), we can assume that the agent maximizes with respect to C1 and C2.
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The co-movement behavior of heating oil and gasoline prices is more complex than in a pure production
relationship and in a pure substitute relationship. In our example above, the heating oil and gasoline co-
move with crude oil due to production relationships. The prices of heating oil and gasoline are inversely
related to their inventories, which in turn are determined by supply from crack production and demand from
complementary consumptions. The consumption intensity of gasoline in the consumption mix is determined
by ν and the production share of gasoline from output mix is determined by γ. Unless there is a perfect
product-mix where the outputs and consumption are in perfect proportion, the gasoline and heating oil
prices will not co-move perfectly.

C Empirical Estimation of the WTI and Brent crude oil pair

The WTI and Brent crude oils have very similar quality and thus a similar usage. The relationship between
WTI and Brent crude oil belongs to the substitute relationship and thus the prices of WTI and Brent crude
oil share an ICE relationship.

For the estimation we consider weekly futures prices of West Texas Intermediate (WTI) and Brent crude
oils. The weekly WTI and Brent crude oil futures are obtained through the NYMEX and London Interna-
tional Petroleum Exchange for the period from 1995.01 to 2006.02 (582 observations for each commodity).
The time to maturity ranges from 1 month to 11 months for these two commodities.23 We use five time
series – F1, F3, F6, F9, F11 – for WTI and Brent crude oil contracts. Table 5 summarizes the data. As
before, we take the risk-free rate as 0.04, which is the average interest rate during these years. Note that,
since the quality of WTI oil is slightly better (lighter) than that of Brent oil, on average the futures prices for
WTI oil are around 1.5 to 2 dollars higher than those for Brent oil. Figure 6 shows the historical evolution
of the WTI and Brent crude oil prices, where we see both of WTI and Brent crude oil do not show seasonal
behavior.

In the model estimation, we arbitrarily set WTI crude oil as commodity 1 and Brent crude oil as
commodity 2. Since nearly no seasonality is found in the WTI and Brent oil futures prices, we thus set
sc1 = ss1 = sc2 = ss2 = 0 in equation (11). Table 6 shows the results for the WTI and Brent crude oil pair.

From the parameter estimation, we see that nearly all the parameters are significant except a1,2, a1,2 and
some correlation estimations. Similar to the case of the previous example, b1,2 and b2,1 are also significant,
i.e. the convenience yield of WTI depends on the price of Brent and vice versa. The positive sign of b1,2
and b2,1 is consistent with the prediction of the substitute relationship. Figure 7 shows the time series of the
ME and RMSE of the pricing errors. The MEs are very small, and the RMSEs fluctuate between 0.002 to
0.02 for WTI crude oil and 0.001 to 0.03 for the Brent crude oil. This again shows that our model performs
reasonably well in fitting futures prices. Figure 8 depicts the filtered spot convenience yields. From the
likelihood ratio tests in table 7, we again see that our model is significantly better than either the CCD
model or the GS model in fitting the futures prices. Figure 9 shows the correlation term-structure for
correlated GS, correlated CCD and our model. We find quite similar relationships between correlated GS,
CCD and our model as the crude-heating oil example.

D Proofs for the Empirical Model

D.1 Proof of Proposition 1

Under the risk-neutral measure, the ith futures prices Fi,t(Yt, T ) need to satisfy,

Fi,t(Yt, T ) = EQ
t [Si,T ] for i = 1, . . . , n (D1)

23The reason for not using longer maturity futures is that the maturity for Brent futures was only up to 1 year in
the early sample period.
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Let τ = T − t. The futures price Fi,t(Yt, t + τ) should satisfy the following vector-based Feynman-Kac
equation,

− ∂Fi
∂τ

+
∂Fi
∂Y

>
(U + ΨY ) +

1
2

Tr
(
∂2Fi
∂Y 2

Ω
)

= 0 (D2)

with boundary condition Fi,t(Yt, t) = exp(xi,t).

Assume that
log(Fi,t(Yt, t+ τ)) = mi(τ) +Gi(τ)Yt (D3)

where mi(τ) is the ith element of the m(τ) vector, and Gi(τ) is the ith row of the G(τ) matrix. By
plugging (D3) into (D2), we have two ordinary differential equations

− ∂mi

∂τ
+GiU +

1
2
Gi(τ) ΩGi(τ)> = 0

∂Gi
∂τ
−Gi(τ)Ψ = 0 (D4)

with boundary condition

mi(0) = 0
Gi,i(τ) = 1
Gj,i(τ) = 0 (i 6= j)

Thus, the solution for (D2) is

mi(τ) =
∫ τ

0

(
Gi(u)U +

1
2
Gi(u) ΩGi(u)>

)
du (D5)

G(τ) = exp(Ψ τ)

Gi(τ) denotes the ith row of the G(τ) matrix. When Ψ is diagnosable,

G(τ) = Ξ diag(exp(λ1τ), . . . , exp(λ2nτ))Ξ−1

where Ξ is the matrix composed of eigenvectors of Ψ and λk (k = 1, . . . , 2n) are the eigenvalues of Ψ;
otherwise G(τ) can be calculated by Taylor expansion, i.e. G(τ) = I + 1

2 (Ψ τ)2 + 1
6 (Ψ τ)3 . . .

Grouping the elements mi’s from equation (D5) yields the solution in Proposition 1.

D.2 Proof of Proposition 2

Equation (27) specifies a unique transformation from the latent variables Ŷ to Y . Thus the Y processes

in (27) preserves the maximal specification of the model. Letting Γ0(t) =
(
ψ0(t)
ψc

)
, ΓŶ =

(
ψŶ
ψŶ Λ

)
and

applying Itô’s lemma to (27) we see that

dY = ΓŶ ΛΓ−1

Ŷ
(Γ0(t)− Y )dt+ ΓŶ dβ

Q
Ŷ
, (D6)

Denoting ψŶ =
(
ψ1 ψ2

)
and Λ =

(
Λ1 0
Λ2 Λ3

)
where ψ1, ψ2,Λ1,Λ2,Λ3 are all n × n matrixes and,

comparing this with (26), we have,

Ω = ψ>
Ŷ
ψŶ +K>ψ>

Ŷ
ψŶ Λ

B = (ψ2Λ3ψ
−1
2 ψ1 − ψ1Λ1 − ψ2Λ2)−1(ψ1Λ2

1 + ψ2Λ2Λ1 + ψ2Λ3Λ2 − ψ2Λ2
3ψ
−1
2 ψ1) (D7)

A = (ψ1Λ1 + ψ2Λ2 − ψ2Λ3ψ
−1
2 ψ1)−1(ψ1Λ2

1 + ψ2Λ2Λ1 + ψ2Λ3Λ2 − ψ2Λ2
3ψ
−1
2 ψ1)ψ2Λ3ψ

−1
2 − ψ2Λ2

3ψ
−1
2
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There is a one-one relationship from (Λ, ψŶ ) to (Ω, A,B). Note that there are, in total, n+ 2n2 parameters
in Λ and 2n2 in ψŶ . Also, there are, in total n+ 2n2 parameters in Ω and 2n2 in A and B.

Given B and A, R can be determined easily from Ω and has the form R = (rf− 1
2σ

2
1, . . . , r

f− 1
2σ

2
n)>. The

other mean vector has the form L(t) = (θ1(t), . . . , θn(t))> with θi(t) = χi + ωi(t) and it can be determined
by

L(t) = −(Aψ0(t) +B ψc), (D8)

Specifically, χi =
∑n
k=1Ai,kαk +

∑n
k=1Bi,k(ψc)k, and ωi(t) =

∑n
k=1Ai,k$k(t).

Therefore, equation (26) is identical to the maximal specification under the risk-neutral measure.

D.3 Proof of Proposition 3

Equation (28) specifies a unique linear transformation from the latent variables Y to Y . Denote ΓY =(
In×n 0
−A−1B −A−1

)
. Performing Itô’s lemma on (28) we have

dY = ΓY (U + Ψ Γ−1

Y
Y )dt+ ΓY dβ

Q
Y
. (D9)

By comparing the parameters in (D9) and those in (17), we find that if the following equations hold, the
two models are identical:

0 = B2 −BB +A (D10)
B −B = AKA−1 (D11)

Ω = (ΓY )>ΩΓY (D12)

Equation (D10) is a quadratic matrix equation, which has been studied quite often (e.g., Smith, Singh, and
Sorensen (1995)). In most of the cases, there is no analytical solution for the quadratic matrix equation, but
it can be solved by numerical methods such as the Newton method (c.f. Higham and Kim (2001)). After
obtaining B, we can solve (D11). Since A and K can be seen as the Eigenvalue and Eigenmatrix of (B−B),
we can first obtain K by calculating the eigenvalues of (B − B), then we normalize the ith eigenvector to
make its ith element equal to one. A is just the collection of the those eigenvectors. After obtaining A and
B, we can easily obtain Ω by equation (D12). Note that there are, in total, 2n2 parameters in A and B, and
also 2n2 parameters in A, B and K. Thus, (D10) and (D11) provide a mapping from (A, B) to (A, B, K).
Also, it is easy to show that R = R, and

L = −(A−1BR+A−1L). (D13)

Specifically, χi =
∑n
k=1(A−1B)i,kRk +

∑n
k=1(A−1)i,k(θ)k, and ωi(t) =

∑n
k=1(A−1)i,kωk(t).
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Table 1: Data Summary for heating and WTI crude oil pair
The data consist of weekly futures prices of heating oil and West Texas Intermediate (WTI) crude oil from 1995.01

to 2006.02. Fn is denoted as futures contracts with roughly n months to maturity. The mean and standard deviation

of returns are in annual terms. The unit for WTI oil and Brent oil futures prices are $/bbl, $/bbl respectively, while

heating oil futures prices are originally in cents/gallon, we have transferred it to $/bbl.

Contracts Mean Price Std of Price Mean Return (Annualized) Std of

Panel A: WTI crude oil

F1 28.34 12.79 0.1689 0.3306

F5 27.73 13.19 0.1471 0.2637

F9 26.82 12.90 0.1404 0.2025

F13 26.41 12.93 0.1343 0.1979

F17 25.97 12.76 0.1315 0.1842

Panel B: Heating oil

F1 32.77 15.84 0.1815 0.3752

F5 32.22 15.91 0.1522 0.2746

F9 31.51 15.51 0.1398 0.2246

F13 31.03 15.54 0.1304 0.2019

F17 30.59 15.27 0.1321 0.1968
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Table 2: Parameter estimation for the heating and WTI crude oil pair
The data consist of weekly futures prices of heating oil and West Texas Intermediate (WTI) crude oil from 1995.01

to 2006.02. The estimates corresponds to the 4-factor maximal multi-commodity model.

Parameter Estimate Std. Err. Parameter Estimate Std. Err.

b1,1 -3.523 ( 0.022 ) σ1 0.456 ( 0.017 )

b1,2 3.500 ( 0.023 ) σ2 0.442 ( 0.016 )

b2,1 2.298 ( 0.136 ) σ3 0.696 ( 0.034 )

b2,2 -2.441 ( 0.152 ) σ4 0.225 ( 0.013 )

a1,2 0.018 ( 0.031 ) χ1 0.494 ( 0.035 )

a2,1 -0.455 ( 0.042 ) χ2 -1.178 ( 0.079 )

k1 2.066 ( 0.048 ) χ̃1 0.430 ( 0.106 )

k2 0.664 ( 0.045 ) χ̃2 -1.100 ( 0.028 )

ρ1,2 0.821 ( 0.033 ) µ̃1 0.216 ( 0.139 )

ρ1,3 0.672 ( 0.048 ) µ̃2 0.135 ( 0.135 )

ρ1,4 0.736 ( 0.062 ) sc
1 1.117 ( 0.020 )

ρ2,3 0.802 ( 0.040 ) ss
1 0.687 ( 0.018 )

ρ2,4 0.544 ( 0.068 ) sc
2 7.956 ( 0.153 )

ρ3,4 0.246 ( 0.092 ) ss
2 4.290 ( 0.158 )

ε 0.011 ( 0.001 )

Log-likelihood 15398

Table 3: Likelihood ratio tests for the heating and WTI crude oil pair
This table compares our maximal model with the correlated GS and CCD models. The parameters used for calculation

are from table 2. Correlated GS and CCD models correspond to the cases b1,2 = b2,1 = a1,2 = a2,1 = 0 and

b1,1 = b1,2 = b2,1 = b2,2 = a1,2 = a2,1 = 0 respectively. The 1% significant levels are 13.28, 16.81 and 9.21,

respectively for our model vs. correlated CCD, our model vs. correlated GS and CCD vs. correlated GS. The

statistics significant at the 1% level are marked with an asterisk.

Log-likelihood LR statistic

Our model 15398 Our model vs. CCD 748 (*)

CCD 15024 Our model vs. GS 1788 (*)

GS 14504 CCD vs. GS 1040 (*)
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Table 4: Values for the crack spread option
The table shows the crack spread option prices between heating oil and WTI crude oil for different strikes. Panel A

presents the call option values, while and Panel B presents the put option values. The options and the underlying

futures have the same maturity. The parameters used for calculation is from table 2.

Panel A: Call Options

Time to maturity = 3 months Time to maturity = 5 years

Strike Our model CCD GS Our model CCD GS

0 5.917 5.142 4.654 5.976 6.708 10.051

1 4.659 3.815 3.284 4.819 5.655 8.952

2 3.585 2.729 2.189 3.840 4.725 7.953

3 2.691 1.860 1.377 3.038 3.920 7.042

4 1.968 1.215 0.804 2.394 3.230 6.217

Panel B: Put Options

Time to maturity = 3 months Time to maturity = 5 years

Strike Our model CCD GS Our model CCD GS

0 1.920 1.138 0.680 1.980 3.130 6.461

1 2.662 1.812 1.311 2.670 3.923 7.208

2 3.588 2.726 2.215 3.538 4.839 8.055

3 4.693 3.857 3.404 4.582 5.881 8.990

4 5.970 5.211 4.831 5.784 7.037 10.012
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Table 5: Data Summary for WTI and Brent oil pair
The weekly WTI and Brent crude oil futures are obtained through the NYMEX and London International Petroleum

Exchange for the period from 1995.01 to 2006.02 (582 observations for each commodity). Fn is denoted as futures

contracts with roughly n months to maturity. The mean and standard deviation of returns are in annual terms.

Contracts Mean Price Std of Price Mean Return (Annualized) Std of

Panel A: WTI crude oil

F1 28.34 12.79 0.1689 0.3306

F3 27.97 12.98 0.1562 0.2787

F6 27.36 13.00 0.1455 0.2295

F9 26.82 12.90 0.1404 0.2025

F11 26.52 12.81 0.1381 0.1895

Panel B: Brent crude oil

F1 26.70 12.49 0.1740 0.3292

F3 26.41 12.69 0.1612 0.2770

F6 25.89 12.75 0.1516 0.2334

F9 25.41 12.67 0.1457 0.2067

F11 25.13 12.60 0.1440 0.1950

Table 6: Parameter estimation for the WTI and Brent oil pair
The data consist of weekly futures prices of West Texas Intermediate (WTI) crude oil and heating oil from 1995.01

to 2006.02. The estimates corresponds to the 4-factor maximal multi-commodity model.

Parameter Estimate Std. Err. Parameter Estimate Std. Err.

b1,1 -9.538 ( 0.042 ) σ1 0.380 ( 0.012 )

b1,2 8.840 ( 0.054 ) σ2 0.345 ( 0.011 )

b2,1 0.145 ( 0.051 ) σ3 0.317 ( 0.024 )

b2,2 -0.296 ( 0.058 ) σ4 0.312 ( 0.012 )

a1,2 -0.304 ( 0.172 ) χ1 -2.489 ( 0.210 )

a2,1 -0.053 ( 0.045 ) χ2 -0.290 ( 0.087 )

k1 0.504 ( 0.005 ) χ̃1 -2.836 ( 0.297 )

k2 1.116 ( 0.032 ) χ̃2 -0.268 ( 0.126 )

ρ1,2 0.906 ( 0.022 ) µ̃1 0.202 ( 0.114 )

ρ1,3 -0.106 ( 0.094 ) µ̃2 0.207 ( 0.103 )

ρ1,4 0.813 ( 0.034 ) sc
1 0

ρ2,3 0.089 ( 0.091 ) ss
1 0

ρ2,4 0.817 ( 0.032 ) sc
2 0

ρ3,4 0.052 ( 0.157 ) ss
2 0

ε 0.006 ( 0.001 )

Log-likelihood 18508
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Table 7: Likelihood ratio tests for the WTI and Brent oil pair
This table compares our maximal model with the correlated GS and CCD models. The parameters used for calculation

are from table 6. Correlated GS and CCD models correspond to the cases b1,2 = b2,1 = a1,2 = a2,1 = 0 and

b1,1 = b1,2 = b2,1 = b2,2 = a1,2 = a2,1 = 0 respectively. The 1% significant levels are 13.28, 16.81 and 9.21,

respectively for our model vs. correlated CCD, our model vs. correlated GS and CCD vs. correlated GS. The

statistics significant at the 1% level are marked with an asterisk.

Log-likelihood LR statistic

Our model 18508 Our model vs. CCD 1112 (*)

CCD 17952 Our model vs. GS 2986 (*)

GS 17015 CCD vs. GS 1874 (*)

Table 8: Values for the substitution (or location) spread option
The table shows the substitution (or location) spread European option prices between WTI and Brent crude oil for

different strikes. Panel A presents the call option values, while and Panel B presents the put option values. The

options and the underlying futures have the same maturity. The parameters used for calculation are from table 6.

Panel A: Call Options

Time to maturity = 3 months Time to maturity = 5 years

Strike Our model CCD GS Our model CCD GS

0 2.963 2.446 2.414 3.113 3.775 4.101

1 2.330 1.758 1.721 2.583 3.238 3.572

2 1.785 1.198 1.161 2.125 2.763 3.101

3 1.332 0.767 0.731 1.731 2.338 2.683

4 0.963 0.459 0.430 1.399 1.967 2.316

Panel B: Put Options

Time to maturity = 3 months Time to maturity = 5 years

Strike Our model CCD GS Our model CCD GS

0 0.969 0.445 0.413 1.277 1.865 2.220

1 1.335 0.756 0.720 1.670 2.252 2.614

2 1.790 1.197 1.160 2.135 2.699 3.067

3 2.338 1.765 1.730 2.664 3.197 3.572

4 2.969 2.458 2.429 3.256 3.749 4.127
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Figure 1: Correlation structure for heating-crude oil and WTI-Brent crude oil pairs.
The figure plots the correlation between weekly futures returns for different maturities.
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Figure 2: Historical evolution of heating and crude oil futures. Weekly data with 1 month
futures prices of West Texas Intermediate (WTI) crude oil and heating oil are used.
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Figure 3: ME and RMSE for the heating and WTI crude oil futures. Both ME and RMSE
are very small, which show that our model fits the futures prices reasonably well.
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Figure 4: The implied convenience yield for heating oil and WTI crude oil. The implied
convenience yield are from the 4-factor maximal multi-commodity model with the parameters from
table 2.
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Figure 5: The correlation term structure for heating and WTI crude oil. The table shows
the correlation term-structure for the correlated GS model, the correlated CCD model and our
model. Parameters used for calculation is from table 2.
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Figure 6: Historical evolution of WTI and Brent crude oil futures. Weekly data with 1
month futures prices of West Texas Intermediate (WTI) crude oil and Brent crude oil are used.
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Figure 7: ME and RMSE for the WTI and Brent crude oil futures. Both ME and RMSE
are very small, which shows our model fits the futures prices reasonably well.
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Figure 8: The implied convenience yield for WTI and Brent crude oil. The implied
convenience yield are from the 4-factor maximal multi-commodity model with the parameters from
table 6.
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Figure 9: The correlation term structure for WTI and Brent crude oil. The table shows
the correlation term-structure for the correlated GS model, the correlated CCD model and our
model. Parameters used for calculation is from table 6.
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