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Abstract

Incomplete information, idiosyncratic volatility and

stock returns

We develop a model of firm investment under incomplete information that

explains why idiosyncratic volatility and stock returns are related. When

the unobserved state variable proxies for business cycles, we show that a

properly calibrated version of the model generates a negative relation due

to the natural asymmetry in the length of expansions and recessions. We

further show that, conditional on earning surprises, the relation between

idiosyncratic volatility and stock returns is positive after good news and

negative after bad news. This result provides new insights on the nature of

stock return predictability.

Keywords: Idiosyncratic volatility, incomplete information, cross–section

of returns, q−theory of investment.
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1 Introduction

According to textbook asset pricing theory, investors are only compensated

for bearing aggregate risk and, as a result, idiosyncratic volatility should not

be priced. However, numerous recent empirical studies have documented a

relation between stock returns and idiosyncratic volatility. In particular,

Ang, Hodrick, Xing, and Zhang (2006), Jiang, Xu, and Yao (2007) and

Brockman and Yan (2008) provide strong evidence of a negative relation for

the US stock market, and Ang, Hodrick, Xing, and Zhang (2008) confirm in

a recent study that a similar relation also holds in other markets. There is

however no consensus as to the direction of this effect. Indeed, Malkiel and

Xu (2001), Spiegel and Wang (2005) and Fu (2005) find positive relations

between idiosyncratic volatility and expected returns, while Longstaff (1989)

finds a weakly negative relation.

In this paper we propose a model of firm valuation under incomplete

information that is able to explain the ambiguous link between idiosyncra-

tic volatility and stock returns. Firms in our model are unable to perfectly

anticipate the growth rate of their cash flows, but learn about it by observing

a firm specific signal. As a result, the shocks perceived by a firm, the

so-called innovation process, differ from those which are measured by the

econometrician who conducts unconditional tests based on the whole history

of stock returns. Indeed, the innovation process is the sum of two terms:

the underlying true idiosyncratic shock and the error that the firm makes in

estimating the growth rate of its cash flows. In contrast, the econometrician

uses the actual underlying distribution to construct his tests and, hence, is

able to measure the true idiosyncratic shocks of the firms.

Conditional on the information available to the firm the estimation error

is equal to zero on average, and it follows that the expected returns satisfy a
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conditional version of the CAPM where idiosyncratic volatility plays no role.

In contrast, relative to the true underlying distribution, the firm’s estimation

error is different from zero and thus appears multiplied by idiosyncratic

volatility in the expected stock returns as measured by an econometrician

performing unconditional tests similar to those of Ang et al. (2006; 2008),

Jiang et al. (2007) and Brockman and Yan (2008) among others. This is

the mechanism which generates a relation between idiosyncratic volatility

and stock returns. It is important to observe that the deviation from the

CAPM which is implied by our model is not due to a missing factor. Indeed,

the additional term in the expression of a firm’s expected stock return is

generated by the firm’s own estimation errors and, hence, does not represent

remuneration for exposure to a systematic risk factor. The presence of such

a component in expected returns is entirely due to learning and could not

be generated by introducing additional state variables into an otherwise

standard model.

Since our aim is to explain properties of the cross-section of stock returns

we need a valuation model in which heterogeneity among firms arises en-

dogenously through time. Furthermore, we want to be able to calibrate the

model to observable firm and industry characteristics. In order to achieve

these goals, we focus on a simple version of the q-theoretic model of invest-

ment with adjustment costs which has been successful in describing many

properties of the cross section of stock returns (see Liu, Whited, and Zhang

(2007), Li, Livdan, and Zhang (2007) and the references therein). Specif-

ically, we assume that each firm is endowed with a constant returns to

scale production function and faces quadratic capital adjustment costs. The

growth rate of the firm specific output price follows a two state Markov
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chain which is common to all firms, and thus proxies for business cycles.1

We assume that firms only observe the output prices and must therefore

estimate the current value of the growth rate.

This simple specification delivers a closed form expression for the value

of the firm which allows for a transparent analysis of the relation between

idiosyncratic volatility and stock returns. In particular, the model shows

that, relative to the true distribution from which the shocks are drawn, the

expected excess stock return is the sum of two terms. The first term is the

usual remuneration for exposure to aggregate risk, namely the product of

the firm’s beta and the market price of risk. The second term is the product

of the firm’s idiosyncratic volatility and a normalized forecast error. This

term is unique to our incomplete information setting and is the channel

through which idiosyncratic volatility and stock returns are related.

The empirical evidence documenting the idiosyncratic volatility anomaly

relies on sorting stocks into portfolios on the basis of past idiosyncratic

volatilities. In our model, the sign and magnitude of the relation that would

be obtained using a similar construction depends on the distribution of the

forecast errors among the sorted portfolios. Since the unobserved growth

rate is common to all firms, the forecast errors at a given point in time

all have the same sign. Firms underestimate the growth rate and, thus,

make positive forecast errors, during expansion phases and overestimate the

growth rate during recessions. The magnitude of these errors and their rel-

ative frequency depend on the distribution of the business cycles. Since the

latter are asymmetric with long expansions and short recessions, the uncon-

ditional mean of the firms’ forecasts is close to the value of the growth rate
1Similar specifications have been used in the asset pricing literature by Veronesi (1999;

2000) and David (1997), in the corporate finance literature by Hackbarth, Miao, and
Morellec (2006) and in the investment literature by Guo, Miao, and Morellec (2005) and
Eberly, Rebello, and Vincent (2006).
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that prevails during expansion phases. As a result, positive forecast errors

are frequent and small, while negative forecast errors are infrequent but of

larger magnitude. The relation between idiosyncratic volatility and stock

returns is negative if the contribution of the negative forecast errors induced

by recessions dominates, and positive otherwise. To determine which of the

two cases prevails, we first calibrate the model to match US business cycles

as well as important firm and industry characteristics. We then replicate

the portfolio construction of Ang et al. (2006) on panels of data simulated

from the calibrated model and obtain similar results. On average, portfolios

of firms with high idiosyncratic volatility generate lower returns and have

lower alphas, indicating that negative forecast errors dominate. We further

confirm that the asymmetry in the distribution of the growth rate is the

key element needed to generate a negative relation by simulating the model

with a symmetric distribution of business cycles. In that case, there is no

significant relation between idiosyncratic volatility and stock returns.

While the mechanism which links idiosyncratic volatility to stock returns

is entirely due to incomplete information, the sign of the relation that we

obtain in our model comes from the specific choice of business cycles as the

underlying unobserved state variable. A different choice of the unobserved

state variable could induce a positive relation. For example, a model with

time dependent transitions between expansions and recessions implies a time

varying distribution of forecast errors and, hence, could produce alternating

episodes of positive and negative relation between idiosyncratic volatility

and stock returns. Such a setting could help understand the diverging results

in the empirical literature documenting the idiosyncratic volatility anomaly.

In addition to providing an explanation of the idiosyncratic volatility

anomaly, our model also has some novel empirically testable implications for
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the cross section of stock returns. First, we show that the response of returns

to earning surprises depends on idiosyncratic volatility in an asymmetric

way. Specifically, the model implies that, following good news, firms with

larger idiosyncratic volatility should produce larger returns. Following bad

news, the relation is reversed and firms with larger idiosyncratic volatility

should produce lower returns. This implication relates to the vast literature

on stock return predictability, see Ball and Brown (1968), Watts (1978),

Foster, Olsen, and Shevlin (1984) and Bernard and Thomas (1990) among

others. Our contribution is to show, theoretically, why the reaction to news

should be stronger among high idiosyncratic volatility firms. Recent results

in the empirical literature support this prediction. In particular, Zhang

(2006) studies the link between information uncertainty and stock returns.

Sorting firms on past return volatility, he documents that firms with high

volatility perform relatively better following good news and relatively worse

following bad news. Our prediction is consistent with this finding because

in our model firms with large total volatility are also those with large idio-

syncratic volatility.

The deviation from the traditional CAPM implied by our setting is

driven by earning forecast errors. Therefore the second implication of our

model is that, controlling for earning surprises, idiosyncratic volatility should

not have explanatory power for the cross section of stock returns. In other

words, introducing this control variable should reduce the volatility anomaly.

Here again, there is recent empirical evidence in the literature to support

the prediction of our model. Jiang et al. (2007) replicate the findings in

Ang et al. (2006) by showing that idiosyncratic volatility has a negative and

significant coefficient in the standard Fama-MacBeth regressions. However,

when controlling for analyst forecast errors, they obtain a non-significant
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coefficient for idiosyncratic volatility. Since such forecasting errors are a

reasonable proxy for the additional term implied by our model, the results

of Jiang et al. (2007) provide strong support for our prediction.

The remainder of the paper is organized as follows. In Section 2, we for-

mulate our incomplete information model and derive an analytical solution

for the value of an individual firm. In Section 3, we provide a theoretical

analysis of the relation between idiosyncratic volatility and stock returns

and we derive testable implications. In Section 4, we detail the simulation

methodology and the calibration of the model. We also present the results

of regressions performed on artificial panel data and study the determinants

of the relation by varying key parameters. Section 5 concludes.

2 The model

In this section we construct a model of capital investment with adjustment

costs under incomplete information. Heterogeneity among firms arises en-

dogenously as each firm faces a specific output price that comprises both an

idiosyncratic and an aggregate shock.

As in Berk, Green, and Naik (1999), we focus on a partial equilibrium

model in the sense that we take the pricing kernel as given. This gives us the

tractability we need in order to focus on the relation between idiosyncratic

volatility and stock returns.

2.1 Information structure

We consider a continuous time model of an economy in which firms sell

their output at a firm specific price Xi. This firm specific price process has

a stochastic growth rate which is common to all firms and is affected by

both idiosyncratic and aggregate shocks.
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Assumption 1: For each i, the firm specific price Xi evolves according to

dXit = Xitθtdt+Xitσ
(
ρdBat +

√
1− ρ2dWit

)
(1)

where Ba, Wi are independent Wiener processes and (ρ, σ) are constants.

The process for the growth rate θ is described below.

The constant ρσ measures the exposure of the firm specific price process

to the aggregate shock Ba which is common to all the firms. The constant

σ
√

1− ρ2 measures the exposure of the price process to the firm specific

Wiener process Wi. The instantaneous volatility of the price process is

identical across firms and equal to σ. Similarly, the instantaneous correlation

between the prices faced by firms i and j 6= i is identical across firms and

equal to ρ. The firm specific prices grow at the rate θ which is common to

all firms and satisfies the following.

Assumption 2: The growth rate of the price processes follows a two-state,

continuous time Markov chain with generator matrix 2

Γ =

 −λ λ

µ −µ

 . (2)

The two states of the Markov chain are denoted by θh > 0 and θl < 0 and

are referred to as the low and the high state of the economy.

The growth rate of the price processes can jump from one state to another,

simultaneously for all firms. Furthermore, the above assumption implies

that the transition times between the high and the low state on one hand,

and between the low and high state on the other hand, are exponentially
2See Karlin and Taylor (1975, Chapter 4) for a precise definition of the generator

matrix. The transition matrix of the chain over a period of length t can be obtained from
the generator matrix simply as exp(Γt).
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distributed with parameters λ and µ. This is a simple way of introducing

business cycles into the model.3 In the high state, the economy is expanding

and all firms benefit from the positive trend in prices. In the low state,

the economy is contracting and all firms suffer from the negative trend in

prices. Nevertheless, in both states firms may be subject to specific adverse

or beneficial market conditions which are modeled through their exposure

to the idiosyncratic shocks.

A key feature of our model is that agents have incomplete information

about the growth rate of the output price processes. Firms are run by

managers who act in the best interest of shareholders. These managers play

no role other than processing information and implementing the corporate

strategy that maximizes shareholder value. In the model, the managers base

their anticipations on the observation of different signals and hence have

different perceptions about the current state of the economy. In particular,

we make the following assumption.

Assumption 3: The manager of firm i only observes the realizations of the

aggregate shock Ba and the price process Xi faced by his firm.

Since the manager only observes the aggregate shock and the price faced

by his firm, his estimation of the current state depends only the realizations

of his firm’s price process but not on the price processes of the other firms in

the economy. An identical information processing behavior can be obtained

by assuming that the managers observe all the price processes but do not

recognize the fact that the growth rate is common to all firms. The above

assumption is thus behavioral as it implies that the managers are biased
3The interpretation of θ as a model of the business cycle indicates precisely how to

calibrate the generator matrix. In the simulations of the model we use the frequencies of
the business cycles as reported by the NBER to calibrate the transitions between the two
states of the growth rate and investment rates to calibrate its values.
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in the way they learn about the state of the economy. The Brown and

Rozeff (1979) model, which is one of the most popular earnings forecast

model, relies exclusively on past earnings and does not use any economy

wide variables. Since the firm’s output is locally deterministic, forecasting

prices or earnings is equivalent in our setting, and it follows that Assumption

3 is in line with the standard forecasting practice.

To gauge the robustness of our results to Assumption 3, we consider in

Section 4.4 an alternative specification of the model where the growth rates

are identically and independently distributed across firms. In such a setting,

the information processing behavior implied by Assumption 3 is optimal, and

we show that the implications of this alternative specification for the relation

between idiosyncratic volatility and stock returns are qualitatively similar

to those of our base case model. While the latter requires Assumption 3,

it has a clear advantage compared to a specification with iid growth rates

since the assumption of a common growth rate makes it possible to calibrate

the model to the business cycle.

Since the manager of firm i has complete information about the aggregate

shocks, he bases his estimation of the growth rate on the observation of a

firm specific signal si which evolves according to

dsit = dXit/Xit − ρσdBat ≡ θtdt+ (1/ε)dWit. (3)

The constant ε = 1/σ
√

1− ρ2 measures the precision of the signal. When

ε is high, the signal has very little dispersion around the true value of the

growth rate and firms are able to estimate θ accurately. On the contrary,

when ε is low, the variance of the signal is very large and firms are thus

unable to estimate the growth rate accurately.
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Let Fit denote the information set which is available at time t to the

manager of firm i. This information set contains all past realizations of

the aggregate shock and the firm specific price process. Let Eit denote the

expectation conditional on Fit and the manager’s prior; and

mit = Eit[θt] ≡ E[θt|Fit] (4)

denote the manager’s estimation of the current growth rate of the price

process. The following well-known lemma (see for example Liptser and

Shiryaev (2001, p.372) or David (1997)) shows that the evolution of the

estimated growth rate can be described by a diffusion process.

Lemma 1: Assume that the initial prior of manager i is represented by

pi ∈ [θl, θh]. Then his estimation evolves according to

dmit = (λ+ µ)(m−mit)dt+ ε(mit − θl)(θh −mit)dBit (5)

subject to the initial condition mi0 = pi. In this equation, the constant m is

the unconditional mean of the growth rate, and

Bit =
∫ t

0
ε (dsiu −miudu). (6)

is a standard Wiener process with respect to the information set Fit which

is available to the manager of firm i.

The dynamics of the estimated growth rate given in the above lemma are

quite intuitive. The stochastic shock dBi is the normalized innovation in

the firm’s signal, that is the difference between the observed signal and its

expected value divided by the volatility of the signal observed by the firm.

The specific form of the volatility of mi guarantees that the firm’s estimation
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takes values in the interval [θl, θh] induced by the support of the growth rate.

Finally, the drift is a mean reverting component which pushes back the firm’s

estimation towards the unconditional mean

m = θl +
µ

µ+ λ
(θh − θl) (7)

of the growth rate process. The fact that the coefficient of mean reversion

increases with λ + µ is due to the property that the speed of convergence

of the Markov chain towards its stationary distribution increases with the

frequency of the shifts, see Karlin and Taylor (1975, Chap. 4).

Equipped with the definition of the innovation process, we can rewrite

the dynamics of the firm specific price process as

dXit = Xitmitdt+Xit (ρσdBat + (1/ε)dBit) . (8)

In conjunction with equation (5), this equation shows that the information

set which is available to firm i coincides with the information set generated

by the pair (mi, Xi). It follows that the relevant state variables for the

firm valuation problem are the firm’s price process and its estimation of the

current growth rate.

In order to complete the description of the information structure in the

model, we need to specify what information is available to the investors in

the market. This is the purpose of the following assumption.

Assumption 4: The manager of firm i publicly releases the values of mi

and Xi. Investors take these values and the dynamics (5), (8) as given for

all firms in the economy.

The first part of the above assumption insures that, for each firm i, the
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manager’s forecast of the firm’s growth rate is readily available to investors.

Since investors take the dynamics of mi and Xi as given, this further implies

that all agents in the model agree on the state variables that are relevant to

the firm and, hence, also on the value of the firm.

There is empirical evidence, that managers do provide such information

to investors, either directly or indirectly through analysts covering the firm.

In particular, Ajinkya and Gift (1984) find that managers release earnings

forecast in order to move the investors’ earnings expectations towards the

management forecast. Similarly, Graham, Harvey, and Rajgopal (2005) find

that CFOs provide earnings guidance to analysts if there is a significant gap

between analysts’ forecasts and internal projections.

The second part of Assumption 4 is quite natural in the context of our

model as it implies that the information available to investors is simply the

aggregation of the information available to the managers. However, it is

important to note that investors are not trying to estimate the true state

from their observation of the processes mi and Xi. They take the dynamics

in equations (5) and (8) as given and do not internalize the fact these arise

from the filtering of the growth rate by the managers.4

2.2 Firm valuation

Each firm uses capital K and labor L to produce output according to the

isoelastic Cobb-Douglas production function

Y (K,L) = AK1−ζLζ

4An identical information structure can be obtained by assuming that investors do
not realize that the growth rate is common to all firms and, hence, estimate the growth
rate of firm i by considering Xi and Ba only.
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where A is a nonnegative constant and ζ ∈ (0, 1) represents the constant

share of labor. The firm pays a fixed wage w and can costlessly adjust its

labor input. As a result, the firm’s operating profit is given by

π(Xit,Kit) = max
L≥0

XitY (Kit, L)− wL = DXΦ
itKit, (9)

where Φ = 1/(1 − ζ) and D ≡ D(A) is a nonnegative constant which we

normalize to one by choosing the value of the constant A.

The firm undertakes gross investment Ii and incurs depreciation at a

constant rate δ ≥ 0. Consequently, the dynamics of its capital stock are

dKit = (Iit − δKit)dt. (10)

Investment is reversible but capital cannot be adjusted costlessly. Following

Abel and Eberly (1997) we assume that the instantaneous investment cost

function is given by

φ(Iit) = bIit +
1

2γ
I2
it (11)

where b ≥ 0 represents the purchase price of one unit of capital and γ > 0

is a constant that measures the severity of the adjustment costs. The fact

that φ is convex reflect the fact that the more units of additional capital the

firm tries to incorporate into the existing one, the less effective those units

are at expanding firm capacity on the margin.5

Following Hall (2001) and Zhang (2005) we assume that the firm can

costlessly issue new equity if its operating cash flows are not sufficient to
5The specification of the capital adjustment technology can be generalized to include

numerous features such as asymmetric adjustment costs (Zhang (2005), Hall (2001)), fixed
costs (Abel and Eberly (1994; 1997), Cooper (2006)) or irreversibility (Abel and Eberly
(1994)). We choose to focus on the simple specification in equation (11) because it allows
for an explicit solution to the firm valuation problem.
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finance new investments. On the other hand, when operating cash flows are

larger than investment expenses the firm pays dividend to its shareholders.

Accordingly, the total cash flow paid to the shareholders of firm i at time t

is given by

Cit = π(Xit,Kit)− φ(Iit) = XΦ
itKit − bIit −

1
2γ
I2
it. (12)

Abstracting from agency issues, we assume that the manager of the firm

acts in the best interest of shareholders and hence chooses an investment

strategy that maximizes the market value of the firm. To identify the latter,

we now define a stochastic discount factor.

Assumption 5: Financial markets are complete. Assets can be valued by

discounting future cash flows using the stochastic discount factor

ξt = exp
(
−rt− κBat −

κ2

2
t

)
. (13)

In this equation, the constants r and κ represent, respectively, the risk free

rate and the market price of aggregate risk.

The specification of the stochastic discount factor is quite natural in the

context of our model. Indeed, only the aggregate shocks which are common

to all firms carries a risk premium. Furthermore, the fact that all investors

observe the aggregate shock Ba implies that they have the same perception

of the stochastic discount factor and this property is crucial to guarantee

that they agree on the prices of all traded assets.6

6The specification of the stochastic discount factor could be generalized to allow for a
stochastic risk free rate and a stochastic risk premium as in Berk et al. (1999) or Zhang
(2005). We focus on a specification where these components are constant for tractability.
However, the mechanism which drives our result does not rely on this assumption and
hence would still prevail under more general specifications.
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We further assume that over a small time interval of length dt the firm

stops its activity with probability Λdt so that the average lifetime of a firm

is 1/Λ. After it ceases operations, the firm has no more value. As is well

known, the possibility of liquidation can be accounted for in the valuation

by increasing the risk free rate from r to r + Λ in the computation of the

discounted value of the firm’s future cash flows.7

Putting together the various pieces of the model, we can now formally

define the value of firm i, conditional on being active, as

Vit = max
Is

Eit

∫ ∞
t

e−Λ(s−t)ξt,s (π(Xis,Kis)− φ(Is)) ds, (14)

where ξt,s = ξt/ξs is the stochastic discount factor at time t for cash flows

which are paid at time s ≥ t. The following proposition derives an analytical

solution for the value of the firm.

Proposition 1: Assume that the parameters of the model satisfy

r + Λ
Φ

> max
[
θh − ρσκ−

1
2
σ2(1− Φ); 2θh − 2ρσκ− σ2(1− 2Φ)

]
. (15)

Then, conditional on being active, the value of a firm i and its optimal

investment policy are given by

Vit = Q(mit, Xit)Kit +G(mit, Xit), (16)

Iit = γQ(mit, Xit)− γb. (17)

In the above equations, the marginal value of the firm’s capital, Q, and the
7See for example Duffie, Schroder, and Skiadas (1996), Duffie and Singleton (1999)

and Collin-Dufresne, Goldstein, and Hugonnier (2004).

15



market value of the firm’s growth options, G, are defined by

Q(mit, Xit) = (q0 + q1mit)XΦ
it , (18)

G(mit, Xit) = g0 + g1(mit)XΦ
it + g2(mit)X2Φ

it , (19)

where the constants q0, q1 and g0 and the functions g1(m) and g2(m) are

defined in the appendix.

The above proposition is in line with the neoclassical q−theory of investment

according to which a firm invests when the value of an additional unit of

capital exceeds its purchase price and disinvests otherwise. As in Abel and

Eberly (1997), the combination of constant returns to scale and capital

independent adjustment costs implies that both the marginal value of capital

and the value of the firm’s growth options are independent of firm size as

measured by its capital stock.

Specific to our analysis is the fact that there are two state variables

influencing the firm’s investment behavior: the specific price Xi and the

expected growth rate mi. Both of these variables affect the marginal value

of capital and hence condition the firm’s investment policy and the evolution

of its capital stock. Since the marginal value of capital is a linear function

of the estimated growth rate it follows that

Q(mit, Xit) = Eit[Q(θt, Xit)]

where Q(θt, Xit) is the marginal value of capital that would prevail in a full

information context.8 Since investment is linear in the marginal value of

capital, this further implies that investment under incomplete information is
8When the growth rate is constant (θh = θl = θ) and investors have full information,

the expectation becomes irrelevant. In that case, the marginal value of capital is given by
Qi = XΦ

i /B for some nonnegative constant B as in Abel and Eberly (1997).
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the expectation of its full information counterpart. Incomplete information

reduces the optimal investment level in the high state and increases it in the

low state. This effect is illustrated by Figure 1 which plots a simulated path

of the firm’s optimal investment policy under both complete and incomplete

information.

Insert Figure 1 about here

In the simulated path of Figure 1, the high state is more likely than the

low state (µ � λ) and therefore the unconditional mean m of the growth

rate is closer to the high value of the growth rate θh. Since the estimated

growth rate reverts to its mean m, this implies that the firm’s investment

adjusts slowly in the low state and rather fast in the high state. In the

postwar US economy, business cycles present a similar asymmetry with short

recessions and long expansions. We discuss in Section 4.3 the crucial role of

this asymmetry in our explanation of the negative relation between idiosyn-

cratic volatility and stock returns.

3 Idiosyncratic volatility and stock returns

This section derives the relation between idiosyncratic volatility and stock

returns implied by the model. We first discuss our theoretical findings in

Section 3.1 and then discuss testable implications in Section 3.2.

3.1 Theoretical findings

When performing unconditional tests on data generated from the model, we

do not capture the distributional properties of the returns as perceived by

investors. Instead, we measure a combination of perceived returns, which are
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solely due to exposure to aggregate risk, and forecast errors which are due

to incomplete information. In other words, basic regression results provide

coefficient estimates which are drawn from the true underlying distribution,

and not from the perceived conditional distribution of stock returns.

To clearly identify the respective contributions of exposure to aggregate

risk and forecast errors to stock returns, we start by analyzing the dynamics

of the firm value. Applying Itô’s lemma to the expression of the firm value

given in Proposition 1 we obtain

dVit + Citdt

Vit−
= (r + aitκ+ Λ(1−Nit))dt (20)

+ aitdBat + ιitdBit − dNit

where 1−Ni is the indicator function that the firm is active,

ait = ρσXit
Vx(mit, Xit)
V (mit, Xit)

(21)

denotes the firm’s aggregate, or systematic, volatility and

ιit = (1/ε)Xit
Vx(mit, Xit)
V (mit, Xit)

+ ε(mit − θl)(θh −mit)
Vm(mit, Xit)
V (mit, Xit)

(22)

denotes the firm’s idiosyncratic volatility. Both of these volatilities contain

a term which comes from the sensitivity of the firm value to variations in the

output price. However, idiosyncratic volatility is also driven by a specific

component which comes from incomplete information.

Since Eit[dNit] = Λ(1 − Nit)dt by definition, equation (20) shows that,

conditional on the information available to investors, the expected stock

return depends only on the firm’s exposure to aggregate risk as measured

by the aggregate volatility ai. Therefore, from the point of view of investors,
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a version of the intertemporal CAPM holds in the sense that

Eit

[
dVit + Citdt

Vit−dt

]
= r + aitκ.

The econometrician’s perspective is different. Using the link between the in-

novation process and the original Wiener process, we can write the dynamics

of the firm value as

dVit + Citdt

Vit−
= (r + aitκ+ ιitηit + Λ(1−Nit))dt

+ aitdBat + ιitdWit − dNit,

where ηit = ε(θt −mit). Relative to equation (20), the drift now contains

an additional component which depends on the idiosyncratic volatility of

the firm ιi and the manager’s forecast error θ − mi. Conditional on the

information available to investors this component is null on average since

Eit[ιitηit] = Eit [ιitε(θt −mit)] = ιitε (Eit[θt]−mit) ≡ 0,

by definition of the manager’s forecast mi. However, conditional on the

whole information set (i.e. knowing the true state of the economy) this

term becomes observable and hence satisfies

Et [ιitηit] = ιitηit 6= 0. (23)

This difference in the measurements of the average returns by investors on

the one hand and the econometrician on the other is the key mechanism that

allows us to obtain a link between idiosyncratic volatility and stock returns.

When θt > mit (θt < mit) there is a positive (negative) shock which is
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interpreted as being part of the innovation and therefore does not contribute

to the investors’ perception of the expected return. This shock will however

affect a time series estimation of the mean stock returns because these are

drawn from the true distribution which includes the additional term ιiηi in

the drift of the firm value process.

We summarize the previous discussion and present our main result on

the expected excess return equation in the following proposition.

Proposition 2: The instantaneous expected excess return conditional on

the whole information set is given by

Et

[
dVit + Citdt

Vit−dt

]
− r = aitκ+ ιitηit. (24)

where ai and ιi denote the firm’s aggregate and idiosyncratic volatility and

ηi is the normalized forecast error.

Equation (24) is not a multi-factor specification in the tradition of Merton

(1973) intertemporal CAPM. The first term on the right hand side is a

remuneration for the exposure to aggregate risk. The second term, however,

comes from the forecast error and is not a remuneration for risk. This term

depends on the level of idiosyncratic volatility and on the manager’s forecast,

which are both firm specific, but it also depends on the current state of the

economy θ. Since the latter is common to all firms, and can only take two

values, all forecast errors have the same sign.9 They do however differ in

their magnitude, since a firm’s assessment of its current growth rate depends

on the trajectory of its specific price process.
9The two state process underlying this result allows for a simple interpretation of the

common growth rate as a proxy for the evolution of the business cycle. It is however not
necessary for the validity of our analysis since Proposition 2 holds for any specification of
the common growth rate process.
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In the model, the cash flow dynamics follow from the firms’ investment

decisions but this property is not necessary for the validity of Proposition

2. In particular, the return decomposition given in equation (24) holds for

any specification of the cash flows as long as the information structure and

the state variables are kept the same. The endogenous cash flow specifica-

tion on which we focus allows for a straightforward calibration of the model

to observed firms and investment characteristics. Furthermore, our model

implies that the heterogeneity among firms, and hence among idiosyncratic

volatilities, arises endogenously as firms react optimally to changing market

conditions. This makes the model more realistic, and the level of hetero-

geneity more plausible, than if we had exogenously postulated a cash flow

process for each firm.

Proposition 2 describes the risk return relation conditional on the whole

information set. In practice, an econometrician performing unconditional

tests on data generated from the model would rely on a much smaller infor-

mation set. In particular, portfolio regressions similar to the one we conduct

in Section 4.3 are constructed from realized stock returns which are averaged

across time and stocks. Even in such a case, our analysis remains valid. To

see this, consider the sample average excess return on an equally weighted

portfolio of n stocks over a period of length ∆ starting at time t, that is

At =
∫ t+∆

t

1
n∆

n∑
i=1

(
dVis + Cisds

Vis−
− rds

)
.

To infer the mean excess return on the portfolio, an econometrician computes

the time series average of successive realizations of A. Using our previous
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results we may decompose each realization into the sum of three terms

At =
∫ t+∆

t

1
n∆

n∑
i=1

(
aisdBas + ιisdWit − dNis + Λ(1−Nis)ds

)
+
∫ t+∆

t

1
n∆

n∑
i=1

(
aisκ

)
ds+

∫ t+∆

t

1
n∆

n∑
i=1

(
ιisηis

)
ds.

When averaged across time, the three terms in the above decomposition

behave differently. The first term averages to zero as it represents the average

shock incurred by the portfolio. The second term is the standard reward for

the exposure of the portfolio to aggregate risk. Even if the firms’ forecasts

are conditionally unbiased, the last term is non zero on average because the

estimation error are multiplied by the firms’ idiosyncratic volatilities.

The sign and magnitude of the effect depend on the joint distribution

of forecast errors and volatilities. Due to the complex path dependence of

these variables, this distribution cannot be computed in closed form. How-

ever, the assumption that the unobservable state variable proxies for the

business cycle gears the results toward a negative relation. Since business

cycles are asymmetric with long expansions and short recessions, the un-

conditional mean of the forecast, m, is close to the high level of the state

variable, θh. This induces estimation errors that are on average large when

negative and small when positive. We thus expect to observe a negative

relation between idiosyncratic volatility and stock returns. We confirm this

in Section III.C where we show that when calibrated to match moments of

firms and industry characteristics, the model generates the negative average

relation documented by Ang et al. (2006; 2008) and Jiang et al. (2007).

It is important to note that a different choice of the underlying state

variable could induce a positive relation between idiosyncratic volatility and

stock returns. For example, a specification where the unconditional mean
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of the forecast would be closer to the low level of the state variable would

yield a positive relation. One could also introduce a richer dynamic where

the long term mean would itself be time varying implying periods of positive

relation alternating with periods of negative relation. Such a setting could

help understand the diverging results in the literature concerning the sign

of the idiosyncratic volatility effect.

3.2 Testable implications and empirical support

The previous results can be used to derive two novel implications which are

related to earning forecasts and idiosyncratic volatility. While we do not

perform a formal test of these predictions, we show that they are strongly

supported by recent findings in the empirical asset pricing literature.

Proposition 2 shows that the loading of stock returns on forecast errors

is given by the firm’s idiosyncratic volatility. This suggests that stocks with

larger idiosyncratic volatility should be more responsive to forecast errors.

In particular when the realized growth rate is higher than anticipated, i.e.

when θ > mi, firms with larger idiosyncratic volatility should have higher

returns than firms with lower idiosyncratic volatility. On the contrary, these

firms should have lower returns when θ < mi. This leads to the following

testable implication.

Implication 1: Following good news, firms with larger idiosyncratic vola-

tility should produce relatively larger returns, and following bad news they

should produce relatively lower returns.

There is a vast literature documenting the predictability of stock returns

following earning announcements, see Ball and Brown (1968), Watts (1978),

Foster et al. (1984) and Bernard and Thomas (1990) among others. The

fact that good (bad) news are followed by positive (negative) returns is
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usually referred to in that literature as the post-earning announcement drift.

Most of the theories proposed to explain this anomaly are behavioral. In

particular, Bernard and Thomas (1990) suggest that investors underreact to

news while Barberis, Shleifer, and Vishny (1998) rely on the representative

heuristic and conservatism bias. Our model proposes a explanation based

on incomplete information and, in addition, predicts that the effect should

be stronger among hight idiosyncratic volatility firms.10

Recent results in the empirical literature provide support to the above

implication. In his study of the link between information uncertainty and

stock returns, Zhang (2006) provides a detailed analysis of the properties of

portfolios sorted on the basis of different proxies for information uncertainty.

One of the six proposed proxies is the stock volatility, which is measured by

the standard deviation of weekly excess returns.11 Defining good and bad

news according to the direction of the forecast revisions made by analysts,

Zhang (2006) finds that firms with high volatility produce relatively lower

returns following bad news and relatively higher returns following good news.

More precisely, a portfolio long in the high volatility stocks and short in the

low volatility stock has a monthly average return of −1.47 % after bad news

and 0.44 % after good news over the sample period from January 1983 to

December 2001.12 These results provide strong support for Implication 1

as long as revisions of analysts’ forecasts qualify as a good proxy for the

forecast errors which appear in equation (24).

According to Proposition 2, the expected excess return of a firm is the
10Since information is revealed continuously through time there is no formal earnings

announcement in our model. However, Implication 1 deals with instantaneous returns and
thus describes the local relation between news and stock returns.

11In general, firms with high total volatility do not necessarily have high idiosyncratic
volatility. In our model the two quantities are linked through equations (21)–(22) and
we show in Section 4.3 that sorting stocks on the basis of total or idiosyncratic volatility
results in the same portfolios.

12see Zhang (2006, Table III).
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sum of two components. The first one is generated by exposure to aggregate

risk and can be measured by the firm’s market beta. The second one is an

idiosyncratic component, which is the product of the firm’s idiosyncratic

volatility and a forecast error. This suggests that if one could control for

these firm specific forecast errors, then idiosyncratic volatility should not

play any role in explaining the cross section of stock returns. This instanta-

neous forecast error is difficult to measure empirically but earnings forecast

errors should provide a reasonable proxy because, in our model, earnings are

linear in the firm specific price process. This naturally leads to the following

implication.

Implication 2: Controlling for earning forecast errors, idiosyncratic volatil-

ity should not have explanatory power for the cross-section of returns.

There is recent evidence in the literature that supports this prediction of our

model. As part of their study of the information content of idiosyncratic

volatility, Jiang et al. (2007) estimate the following linear model

Returnt+1 = b0 + b1IVOL + b2 ln (SIZE) + b3 ln (B/M) + b4PrRet

+ b5LEV + b6LIQ + b7SHOCK + ε (25)

where IVOL is a measure of idiosyncratic volatility and the variable SHOCK

stands for different unexpected earning measures. In particular, two of the

measures they use are analyst forecast errors which defined as follows: “re-

alized quarterly earning per share in excess of the mean of analysts forecasts

at the last month of the portfolio formation quarter, divided by the previ-

ous year’s book value of equity per share”. As explained above, this variable

provides a reasonable proxy for the forecast error which appears in the in-

stantaneous return equation (24).
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Jiang et al. (2007) estimate the Fama–MacBeth regression in equation

(25). Omitting the SHOCK variable they obtain a negative and significant

relation between idiosyncratic volatility and stock returns. When introduc-

ing current (FERQ0) and one step ahead (FERQ1) earning forecast errors,

idiosyncratic volatility becomes insignificant as predicted by our model. The

authors provide an explanation which is related to selective corporate infor-

mation disclosure. Our model does not validate or invalidate their expla-

nation as it addresses the problem in a very different way. However, it

is noteworthy that our model is able to explain the direction of the effect

following good or bad news, while theirs does not.

The two implications discussed here have only been addressed separately

in the literature. The strength of the incomplete information framework that

we propose is that it can simultaneously explain the significant role played

by the forecast revisions in the relation between idiosyncratic volatility and

stock returns, and the asymmetric nature of the return reaction of high

volatility stocks following good and bad news.

4 Implementation of the model

In this section we use simulated data to show that our model is able to

qualitatively replicate the idiosyncratic volatility anomaly. We describe the

simulation methodology in Section 4.1 and discuss the choice of parameters

in Section 4.2. The results of the tests performed on the simulated data are

presented in Section 4.3.

4.1 Simulation methodology

The model developed in the previous sections is set in continuous time and,

hence, needs to be discretized before it can be simulated. To this end, we ap-
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ply the standard Euler scheme which allows for a transparent discretization

of the model’s dynamics.

Let ∆ be a fixed time step, e.g. one day. In accordance with the con-

vention taken in Proposition 2, the return of firm i is computed as

Returnit =
Vit + Cit∆
Vit−∆

− 1,

where Vi is the firm’s value process as defined in Proposition 1, and

Cit = XΦ
itKit − φ(Iit)

is the cash flow of the firm. To compute beta coefficients, we exogenously

define a return process for the market portfolio by letting

dMt = (r + σκ)Mtdt+ σMtdBat.

Given this process, the return on the market is computed as

Market Returnt =
Mt

Mt−∆
− 1,

and the beta of firm i is obtained by regressing the return of the firm on

the return of the market. In the above specification, the constant volatility

parameter σ has no effect on the estimation other than scaling the values

of the beta coefficients. We choose its value in such a way that the average

beta of the firms across all the simulations is close to one.

In order to replicate the tests of Ang et al. (2006; 2008) we simulate

10,000 artificial panels of data each with 500 firms sampled at a daily fre-

quency for a period of 10 years. All the statistics which are discusses below

are obtained by averaging across simulations.
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4.2 Calibration

The model has 13 parameters, which can be separated in three groups.

The composition of these groups as well as the chosen parameter values are

reported in Table 1.

Insert Table 1 about here

The first group contains the parameters whose values are directly measurable

from the data or can be obtained from previous studies. The depreciation

rate is set equal to δ = 12% following Cooper and Haltiwanger (2006).

Following Kydland and Prescott (1982) we set the share of labor in the

production function to ζ = 0.7 so that the price elasticity of operating

profits is given by Φ = 10/3. The market price of risk κ and the interest

rate are set equal to 0.3 and 4.8%, respectively, in order to match the average

Sharpe ratio and nominal interest rate in the US over the past 100 years

as reported by Shiller (2005). Finally, we set the liquidation intensity to

Λ = 9.2% so that firms operate for approximately 11 years on average.13

The parameters in the second group define the transition matrix of the

growth rate process. To match the duration and frequency of business cycles

in the postwar US as measured by the NBER (2008), we set the transition

intensities to λ = 0.233 and µ = 1.154. This parametrization implies that,

on average, the length of a complete cycle is 61.9 months, with expansion

phases of 51.5 months and contractions of 10.4 months.

The parameters of the third group are chosen in such a way that the

moments obtained from the simulated data match a number of empirical

moments of investment dynamics, stock returns, and book to market ratios.
13While this figure might seem small it is comparable to the average lifetime implied

by the default rates on speculative grade bond, see Duffie and Singleton (2003).
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The parameters of the adjustment cost function play an important role in

the determination of the size of growth options relative to the total firm

value. We choose γ and b to match the mean and standard deviation of

book-to-market ratios. Following Pontiff and Schall (1998), we construct

a book-to-market ratio index over the period 1920–2008 by using the Dow

Jones Industrial Average Index at a monthly frequency along with the previ-

ous year book value obtained from ValueLine (2006). For the entire sample

the average is 69% and the standard deviation is 27%. In contrast, over

the period 1981–2003, for which we also have investment data, the mean

and standard deviation of the book-to-market ratio are 42% and 27% re-

spectively. The simulated data generates an average book-to-market ratio

of 50% with a monthly standard deviation of 32%.

The states of the growth rate process are set to θh = 0.707% and θl =

−5.863% to match the mean investment and disinvestment rate reported in

Abel and Eberly (1999a) and Eberly et al. (2006). The model produces a

mean investment rate of 10% and a mean disinvestment rate of 3%, while

empirical values are 15% and 2% respectively. Finally we set the total

volatility of the price process to σ = 21% and the correlation between firm

specific prices and aggregate shocks to ρ = 0.1. This produces an average

standard deviation of stock returns of 31% which lies well within the range of

empirically reported values (see Campbell, Lettau, Malkiel, and Xu (2001)

and Vualteenaho (2001)).

Insert Table 2 about here

Table 2 summarizes the moments obtained in the simulated data along

with their empirical counterparts. It shows that our model generates values

which are in line with key moments of industry and firms characteristics
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and provides reasonable level of stock return volatility. The model performs

however very poorly regarding the share of adjustment costs as it generates

a value twice as high as its emprical counterpart. This is a well-known

shortcoming of adjustment cost models, see Chirinko (1993). We could

improve the performance of the model along this dimension by modifying the

cost function to allow for features such as fixed costs or partial irreversibility.

We choose to focus on the simple specification in equation (11) because it

allows for an explicit solution to the firm valuation problem.

4.3 Results

To test the ability of our model to generate the idiosyncratic volatility

anomaly we now use the simulated panels of data to construct portfolios

sorted on different measures of idiosyncratic volatility. We replicate the

portfolio construction of Ang et al. (2006). To this end, we use one month

of daily observations to construct the measures of idiosyncratic volatility

and consider a one month portfolio holding period. Ang et al. (2006) use

two different measures of idiosyncratic volatility: (i) standard deviation of

past returns and (ii) standard deviation of the residuals of a three factor

Fama–French model. We focus here on the first measure and replace the

second one by the standard deviation of the residuals of a market model

since the construction of the Fama–French factors is problematic in our par-

tial equilibrium framework.

Insert Table 3 about here

Table 3 displays summary statistic from our simulation for five quintile

portfolios ranked by increasing measure of idiosyncratic volatility along with

the benchmark results of Ang et al. (2006). As shown by the first and
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the fourth column of Panel A, the model is able to generate the volatility

anomaly. Indeed, the portfolios’ alphas are both decreasing in the measure

of idiosyncratic volatility and highly statistically significant. This shows that

portfolios which contain high idiosyncratic volatility firms have lower risk

adjusted performance. Furthermore, the average portfolio returns are also

decreasing in idiosyncratic volatility. The magnitude of the effect generated

by our model is however much lower than the empirical results. Ang et al.

(2006) obtain an alpha of –16.20% per year for a portfolio long in the fifth

quintile and short in the first quintile, while our model yields an alpha of

–1.99% per year. Similarly, Ang et al. (2006) report a negative average

return of –11.64% per year for this long-short portfolio while our model

generates a negative return of –1.69% per year.14 It is important to note

that the empirical results reported in Ang et al. (2006) are mainly driven

by extremely low returns in the fifth quintile.15 Indeed, the difference in

average return between the fourth and fifth quintile is ten times larger than

between the first on fourth quintile. If we exclude the fifth quintile, our

results are much more in line with theirs. In particular, for a portfolio long

in the fourth quintile and short in the first, Ang et al. (2006) obtain an alpha

of –5.04% and an average return of –0.84% while our model yields an alpha

of –1.63% and an average return of –1.37%.

The last three columns of Table 3 report the average idiosyncratic volatil-

ity effect, idiosyncratic volatility and aggregate volatility of the quintiles

portfolios. Comparing the two panels of the table shows that sorting on

either total volatility or residual volatility correctly identifies the firms with
14In their paper Ang et al. (2006) report a monthly alpha of –1.35% and an average

monthly return of –0.97% for the long-short portfolio. The numbers reported here are
obtained from theirs by multiplying by twelve.

15In order to obtain such large effects, we would need our model to generate more
heterogeneity among firms. This could potentially be achieved by initially endowing firms
with heterogenous cash flow dynamics and production technologies.
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largest idiosyncratic volatility. As expected from the fact that returns are

generated according to equation (24), the measured alphas are almost iden-

tical to the true idiosyncratic volatility effect reported in the fifth column.

In accordance with the prediction of our model the magnitude of the effect

is larger for high idiosyncratic volatility firms.

Insert Figure 2 about here

As explained in Section 3.1 the sign of the idiosyncratic volatility effect

depends on the joint distribution of future forecast errors and idiosyncratic

volatilities. Figure 2 displays the idiosyncratic volatility effect as a function

of the forecast error and the empirical distribution of the normalized forecast

error η conditional on the true value of the growth rate. As can be seen from

the figure, the distribution is negatively skewed in both states. This is due

to the fact that, since expansions are more frequent than recessions for the

chosen parameter values, the unconditional mean m of the forecast is close

to the high value of the growth rate. In the high state, when the forecast

error is positive, the effect is small as mi tends to be close to θh due to

mean reversion. However in the low state, the effect is much larger since the

distribution of the forecast errors is concentrated on the left.

Insert Figure 3 about here

The idiosyncratic volatility effect which is reported in Table 3 results

from the combination of the effects which occur in the low and high states.

While the high state is more frequent, the overall effect is dominated by

the negative contribution of the low state. In a model with symmetric

regimes and transition probabilities, the idiosyncratic volatility effect should

be absent since the contribution of the two states should cancel out. Figure
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3 confirms this intuition by showing that in such a model the idiosyncratic

volatility effect and the distribution of the forecast errors are both perfectly

symmetric. Panel A of Table 4 reports the summary statistics obtained

from this model and shows that the alphas of the quintile portfolios are not

significantly different from zero. However, the long–short portfolio generates

a positive average return due to its net exposure to aggregate risk.

Insert Table 4 about here

The average return generated by the long–short portfolio is not only due

to the idiosyncratic volatility effect as it also reflects the different exposure

of the quintile portfolios to aggregate risk. In Table 3, the firms with highest

idiosyncratic volatility also have the highest aggregate volatility. The long–

short portfolio therefore exhibits a positive exposure to aggregate risk which

contributes positively to its average return. This exposure could completely

offset the idiosyncratic volatility effect. However the alphas of the portfolios

should still decrease with idiosyncratic volatility, since larger exposure to

aggregate risk increases not only the portfolio returns but also their betas.

This intuition is confirmed by Panel B of Table 4 which reports the summary

statistics for a model where the correlation coefficient ρ is set equal to 0.5.

With this parametrization, aggregate volatilities are much larger and the

long–short portfolio generates a positive return even though the idiosyncra-

tic volatility effect is still present. Indeed, the alphas of the portfolios are

significantly negative and decrease with idiosyncratic volatility.

4.4 An alternative specification

The assumption of a common growth rate is convenient since it allows for a

simple calibration of the transition matrix. However, Assumption 3 can be
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seen as a shortcoming of the model as it implies that managers do not learn

from observing other firms price processes. We show in this section that the

link between idiosyncratic volatility and stock returns that we identify does

not require such a behavioral assumption.

Assume that the firm specific price process evolves according to

dXit = Xitθitdt+Xitσ
(
ρdBat +

√
1− ρ2dWit

)
, (26)

where the only modification, compared to our base case model, is that the

growth rate θi is now firm specific rather than common to all firms. We

maintain the assumption that θi follows a two state Markov chain and further

assume that it is identically and independently distributed across firms.

Contrary to our base case model, we now assume that each manager

observes the aggregate shock and the price processes of all the firms in the

economy and must estimate the current value of his firm’s growth rate form

his observations. Since the growth rates are iid across firms, the observation

of another firms’ price process does not carry any relevant information for

the estimation of a firm’s growth rate. As a result, the only signal which is

relevant to the manager of firm i is given by

dsit = dXit/Xit − ρσdBat ≡ θitdt+ (1/ε)dWit, (27)

and it follows that the manager’s estimation reported in equation (5) is now

optimal without any behavioral assumption.

The equations which describe the dynamics of the firm value process

remain valid under this alternative specification provided that one replaces

each instance of θ by θi. In particular, the relevant idiosyncratic volatility
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component in stock returns is now entirely firm specific, and given by

ηit = ε(θit −mit).

Since the growth rate is no longer common to all firms, this idiosyncratic

volatility component changes sign across firms. However, the law of large

numbers implies that, at any point in time, a fraction µ/(λ+µ) of firms are

in the up state while the remaining fraction is in the low state. This suggest

that the idiosyncratic volatility effect documented in the previous section

should still prevail in this alternative model provided that (i) the high state

is more probable than the low state and (ii) firms estimation errors are larger

in the low state than in the high state.

Insert Table 5 about here

In order to confirm this intuition, we repeat the simulation and portfolio

construction procedure described in the previous section and present the

results for two sets of parameters in Table 5. The top panel of the table

shows that, when using the base case parameters of Table 1, we obtain an

idiosyncratic volatility effect ιiηi which is monotonically decreasing with id-

iosyncratic volatility as in the original specification of the model. However,

the magnitude of this effect is much smaller than in the original model and

does not compensate the effect of systematic volatility. As a result, the

average return of the long short portfolio is very slightly positive but its

alpha is negative and statistically significant.

The bottom panel of Table 5 reports the results for a parametrization

of the model with symmetric regimes and transition probabilities similar to

used in Figure 3. As shown by columns ιη and α, the idiosyncratic volatility

effect is entirely absent in this model. In particular, none of the portfolios
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contain a significant idiosyncratic volatility component and the increase in

return apparent in column R can be entirely attributed to the portfolios’

exposure to systematic risk. This confirms the fact that, in the context of

our model, the driving force behind the idiosyncratic volatility effect is the

asymmetric nature of business cycles.

5 Conclusion

In this paper, we propose a model of firm valuation under incomplete in-

formation that is able to explain the ambiguous link between idiosyncratic

volatility and stock returns. While the relation between idiosyncratic volatil-

ity and stock returns generated by our model is entirely due to our incom-

plete information assumption, we show that its sign depends on the choice of

the underlying unobserved state variable. When this state variable proxies

for the business cycle we show that, due to the natural asymmetry between

expansions and recessions, a properly calibrated version of the model is able

to replicate the negative relation documented by Ang et al. (2006; 2008),

Brockman and Yan (2008) and Jiang et al. (2007) among others.

In addition to explaining the idiosyncratic volatility anomaly, our model

also has novel implications for the cross-section of stock returns. First, our

model predicts that firms with larger idiosyncratic volatility should display

lower returns following bad news and higher returns following good news.

We present results in the recent literature (see Zhang (2006)) which doc-

ument such an effect. It is important to note that our model generates

these properties endogenously through a rational mechanism. Second, our

model predicts that controlling for earning forecast errors should mitigate

the idiosyncratic volatility anomaly. This implication is supported by the

recent findings of Jiang et al. (2007) who show that introducing contem-
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poraneous earnings forecasts errors renders the coefficient of idiosyncratic

volatility insignificant in standard Fama–MacBeth regressions.

37



Appendix

Proof of Lemma 1. The proof of this well-known filtering result can be found

in numerous places among which Liptser and Shiryaev (2001, p.372). QED.

In order to facilitate the proof of Proposition 1, we start by presenting

a useful technical result.

Lemma 2: Let a, b, c and δ be arbitrary constants and consider the, possibly

infinite, process defined by

St = Eit

∫ ∞
t

e−a(s−t)ξt,sX
b
is(c+ δmis)ds.

If the parameters of the model are such that

min
m∈[θl,θh]

[
r + a+ bρσκ+

1
2
b(1− b)σ2 − bm

]
> 0, (28)

then the process S is well defined and given by St = (C + Dmit)Xb
it where

the constants C and D are the unique solutions to

bC + bD(θl + θh) = D
(
r + a+ bρσκ+ λ+ µ+ 1

2b(1− b)σ
2
)
− δ,

C
(
r + a+ 1

2b(1− b)σ
2
)

= D
(
(λ+ µ)m− bθlθh

)
+ c.

Proof. The fact that (28) is sufficient for the finiteness of S follows from

the boundedness of mi and the fact that ξXb
i is an exponential process with

constant volatility, we omit the details.

In order to establish the second part, let the constants C and D be as

in the statement and consider the process defined by

Mt = e−atξtX
b
it(C +Dmit) +

∫ t

0
e−asξsX

b
is(c+ δmis)ds.
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Using the dynamics of the pair (mi, Xi) in conjunction with the definition

of the constants (C,D) and applying Itô’s lemma we deduce that M is a

local martingale. Using the boundedness of mi in conjunction with (28) and

well–know results on geometric Brownian motion we can show that

Ei0 sup
t∈[0,T ]

|Mt|2 <∞,

for any finite time T . This implies that the local martingale M is a true

martingale at least up to time T and it follows that

e−atXb
it(C +Dmit)

= Eit

[
e−aT ξt,TX

b
iT (C +DmiT ) +

∫ T

t
e−asξt,sX

b
is(c+ δmis)ds

]
.

Taking the limit as T → ∞ on both sides of the previous expression and

using the dominated convergence theorem we obtain

Xb
it(C +Dmit) = St + lim

T→∞
Eit

[
e−a(T−t)ξt,TX

b
iT (C +DmiT )

]

and the proof will be complete once we show that the second term on the

right is equal to zero. This follows from the boundedness of mi and the

assumed validity of (28), we omit the details. QED.

Proof of Proposition 1. Let I be an arbitrary investment policy for firm i,

denote by Ki the associated capital stock and let

St = Eit

∫ ∞
t

e−Λ(s−t)ξt,s (π(Xis,Kis)− φ(Is)) ds

denote the corresponding value process, conditional on the firm being active.
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Using the dynamics of the capital stock process we obtain

Kis = e−δ(s−t)Kit +
∫ s

t
e−δ(τ−t)Iτdτ.

Substituting this back into the expression of the firm value process and using

the definition of the firm’s production function in conjunction with the law

of iterated expectations we obtain

St = QitKit + Eit

∫ ∞
t

e−Λ(s−t)ξt,s (QisIs − φ(Is)) ds

where the process

Qit = Eit

∫ ∞
t

e−(δ+Λ)(s−t)ξt,sX
Φ
isds

gives the marginal valuation of the firm’s capital. Assuming that the above

expectations are well defined at the optimum (this will be verified below),

this shows that the optimal investment policy is given by

I∗it = argmax
x∈R

(xQit − φ(x)) = γQit − γb

and all that is left to do is to compute the marginal value of capital and the

value of the firm’s growth options:

Gt = Vit −QitKit =
γ

2
Eit

∫ ∞
t

e−Λ(s−t)ξt,s(Qis − b)2ds. (29)

Let us start by computing the firm’s marginal value of capital. Using the

result of Lemma 2 we have that if

r + Λ + δ + Φ
(
ρσκ− θh + 1

2Φ(1− Φ)σ2
)
> 0,
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then Qi is well defined and given by equation (18) where q0 and q1 solve the

linear system of two equations with two unknowns given by

q0Φ = −q1Φ(θl + θh)

+ q1

(
r + Λ + δ + Φρσκ+ λ+ µ+ 1

2Φ(1− Φ)σ2
)
,

q1Φθlθh = 1 + q1m(λ+ µ)

− q0

(
r + Λ + δ + Φρσκ+ 1

2Φ(1− Φ)σ2
)

Substituting equation (18) into equation (29) and simplifying the terms we

obtain that the value of the firm growth options is given by

Gt = g0 + q2
1Eit

∫ ∞
t

e−Λ(s−t)ξt,sm
2
isX

2Φ
is ds

+ Eit

∫ ∞
t

e−Λ(s−t)ξt,s
(
(q2

0 + 2q0q1mis)X2Φ
is − 2b(q0 + q1mit)XΦ

it

)
ds

where g0 ≡ γb2/(2(r+Λ)). Using Lemma 2 we have that the last expectation

on the right hand side is well defined provided that

r + Λ
Φ

> max
[
θh − ρσκ−

1
2

(1− Φ)σ2; 2θh − 2ρσκ− (1− 2Φ)σ2

]
, (30)

and that in this case it is given by

(g10 + g11mit)XΦ
it + (g20 + g21mit)X2Φ

it

where the constants g10, g11, g20 and g21 solve the linear system of four

41



equations with four unknowns given by

g10Φ = 2bq1 − g11Φ(θl + θh),

+ g11

(
r + Λ + Φρσκ+ λ+ µ+ 1

2Φ(1− Φ)σ2
)
,

g11Φθlθh = g11m(λ+ µ)− 2bq0

− g10

(
r + Λ + Φρσκ1

2Φ(1− Φ)σ2
)

2g20Φ = −2g21Φ(θl + θh)− 2q0q1

+ g21

(
r + Λ + 2Φρσκ+ Φ(1− 2Φ)σ2 + λ+ µ

)
,

2g21Φθlθh = g21m(λ+ µ) + q2
0

− g20

(
r + Λ + 2Φρσκ+ Φ(1− 2Φ)σ2

)
.

In order to obtain the value of the firm’s growth options, it now only remains

to compute the first expectation

Ψ(mit, Xit) = Eit

∫ ∞
t

e−Λ(s−t)ξt,sm
2
isX

2Φ
is ds.

Since mi is bounded it follows from (30) that the function Ψ is well defined.

On the other hand, using the fact that the dynamics of the price process

are linear, it can be shown that the function Ψ is homogenous of degree 2Φ

with respect to x and it follows that

Ψ(m,x) = x2ΦH(m)

for some bounded function H : [θl, θh]→ R. Assuming that this function is
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smooth and applying Itô’s lemma we deduce that

m2 =
(
r + Λ + 2Φρσκ+ Φ(1− 2Φ)σ2 − 2Φm

)
H(m)

−
(
(λ+ µ)(m−m) + 2Φ(m− θl)(θh −m)

)
H ′(m)

− (1/2)
(
ε(m− θl)(θh −m)

)2
H ′′(m).

Unfortunately, this ordinary differential equation does not admit a closed

form solution because of the quadratic term on the right hand side. As a

result we will need to solve it numerically. To this end we have to specify

boundary conditions. Using the fact that θl and θh are entrance boundaries

for the process mi (see David (1997)) it can be shown that these boundary

conditions take the form

lim
m→θl,θh

|H ′′(m)| <∞.

In practice we impose some finite values for the second derivative of the

unknown function on the boundaries of the domain and verify that our

numerical solution is insensitive to the choice of these values.

Putting everything together we have that the value of an arbitrary firm

is given by equations (16), (18) and (19) with

g1(m) = (γ/2) (g10 + g11m) ,

g2(m) = (γ/2) (g20 + g21m+H(m)) ,

provided that the parameters of the model are such that inequality (30)

holds true. QED.
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Table 2
Key moments under the benchmark parameters

Moments Data Model

Average rate of investment 0.15 0.10
Average rate of disinvestment 0.02 0.03
Average share of adjustment costs 0.13 0.32
Average book-to-market ratio 0.42 0.50
Standard deviation of book-to-market ratio 0.27 0.31
Average volatility of stock returns 0.25−0.32 0.31

Notes: This table reports a set of moments generated by the model under the
parameter values of Table 1. The investment and disinvestment moments are from
Abel and Eberly (1999b) and Eberly et al. (2006). The average share of adjustment
costs is from Barnett and Sakellaris (1999). The empirical average and standard
deviation of book-to-market are computed using the reconstructed times series of
book-to-market of the Dow Jones index over the period 1981–2003. The data
sources for the range of volatilities of stock returns are Campbell et al. (2001) and
Vualteenaho (2001). All moments are expressed on an annual basis.



Table 3
Properties of portfolios sorted on volatility

α β R ιη ι a

Benchmark: Ang et al. (2006)

1 1.68 12.72
2 1.56 13.80
3 0.84 14.64
4 –3.36 11.88
5 –14.52 1.08

5–1 –16.20 –11.64

A. Sorted on total volatility

1 –0.841 (–21.64) 0.804 4.748 –0.839 27.18 2.44
2 –1.595 (–41.01) 0.999 4.157 –1.685 33.58 3.03
3 –2.092 (–53.81) 1.075 3.722 –2.199 35.97 3.25
4 –2.470 (–63.52) 1.120 3.381 –2.556 37.25 3.36
5 –2.834 (–72.88) 1.165 3.055 –2.906 38.29 3.46

5–1 –1.992 (–51.24) –1.693

B. Sorted on CAPM residual volatility

1 –0.862 (–22.18) 0.819 4.740 –0.861 27.26 2.45
2 –1.634 (–42.20) 1.012 4.129 –1.701 33.64 3.03
3 –2.108 (–54.22) 1.082 3.712 –2.205 35.98 3.25
4 –2.464 (–63.38) 1.122 3.388 –2.555 37.25 3.36
5 –2.816 (–72.42) 1.153 3.062 –2.899 38.28 3.45

5–1 –1.953 (–50.24) –1.678

Notes: The first panel of this table reports the estimation results of Ang et al. (2006)
for portfolios sorted on total volatility. Panels A and B report summary statistics
obtained in our simulations for portfolios sorted on total return volatility and on
idiosyncratic volatility relative to the CAPM. Portfolios are formed every months,
based on volatility computed using daily observations over the previous month.
Portfolio 1 (5) is the portfolio with the lowest (highest) volatilities. The statistics
in the columns labeled α, R, ιη, ι and a are measured in yearly percentage terms.
The α and β columns report Jensen’s alpha and the portfolio beta with respect to
the CAPM. The R column reports the average gross return. The ιη column reports
the idiosyncratic volatility effect. Finally, the columns labeled ι and a report the
idiosyncratic and aggregate volatilities as defined by equations (22) and (21). All
values are computed by taking averages across 10,000 simulations of a panel of 500
firms for 10 years with a daily time step. The parameters used in the simulations
are reported in Table 1.



Table 4
Properties of portfolios sorted on total volatility under

alternative parameter values

α β R ιη ι a

A. Symmetric shocks

1 –0.1041 (–0.51) 0.783 5.522 0.001 23.57 2.37
2 –0.0069 (–0.30) 0.969 5.791 –0.004 29.46 2.96
3 –0.0601 (–0.44) 1.038 5.988 –0.007 31.31 3.14
4 –0.0891 (–0.27) 1.083 5.805 –0.009 32.41 3.25
5 –0.0550 (–0.24) 1.133 5.887 0.013 33.45 3.59

5–1 0.049 (0.23) 0.510

B. High aggregate volatility

1 –1.272 (–32.71) 3.235 6.915 –0.878 20.46 9.79
2 –1.769 (–45.51) 4.108 7.095 –1.537 26.09 12.41
3 –2.179 (–56.05) 4.584 7.005 –2.058 29.13 13.81
4 –2.517 (–64.74) 4.913 6.875 –2.529 31.17 14.75
5 –2.936 (–75.53) 5.226 6.658 –3.063 32.94 15.57

5–1 –1.664 (–42.81) –0.003

Notes: This table reports summary statistics for portfolios sorted on total volatility.
The parameters used in the simulations are those of Table 1 except for µ = λ = 1,
−θl = θh = 0.707% in Panel A and ρ = 0.5 in Panel B. The statistics in the
columns labeled α, R, ιη, ι and a are measured in yearly percentage terms. The
α and β columns report Jensen’s alpha and the portfolio beta with respect to the
CAPM. The R column reports the average gross return. The ιη column reports
the idiosyncratic volatility effect. Finally, the columns labeled ι and a report the
idiosyncratic and aggregate volatilities as defined by equations (22) and (21). All
values are computed by taking averages across 10,000 simulations of a panel of 100
firms for 10 years with a daily time step.



Table 5
Properties of portfolios sorted on total volatility under

alternative model specification

α β R ιη ι a

A. Base case parameters

1 –0.016 (–0.42) 0.864 5.646 0.028 29.15 2.63
2 0.042 (1.08) 1.051 5.851 0.021 35.25 3.19
3 0.012 (0.31) 1.103 5.864 0.007 36.80 3.33
4 –0.046 (–1.17) 1.136 5.836 –0.011 37.69 3.41
5 –0.076 (–1.95) 1.174 5.839 –0.051 38.50 3.49

5–1 –0.060 (–1.93) 0.002

B. Symmetric shocks

1 –0.044 (–1.12) 0.785 5.546 –0.003 24.11 2.38
2 0.007 (0.19) 0.987 5.764 0.000 30.23 2.99
3 0.038 (0.98) 1.050 5.846 0.002 32.08 3.17
4 0.012 (0.31) 1.093 5.858 0.000 33.19 3.28
5 –0.030 (–0.77) 1.140 5.858 0.002 34.28 3.39

5–1 0.014 (0.35) 0.312

Notes: This table reports summary statistics for portfolios sorted on total volatility.
The parameters used in the simulations are those of Table 1 in Panel A and µ =
λ = 1, −θl = θh = 0.707% in Panel B. The statistics in the columns labeled α, R,
ιη, ι and a are measured in yearly percentage terms. The α and β columns report
Jensen’s alpha and the portfolio beta with respect to the CAPM. The R column
reports the average gross return. The ιη column reports the idiosyncratic volatility
effect. Finally, the columns labeled ι and a report the idiosyncratic and aggregate
volatilities as defined by equations (22) and (21). All values are computed by taking
averages across 10,000 simulations of a panel of 500 firms for 10 years with a daily
time step.



Figure 1: Estimation and optimal investment policy
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Notes: The top panel displays a sample path of θt and the corresponding path of
the estimation mit. The bottom panel displays the associated investment policy
under full information (dashed line) and incomplete information (solid line). The
parameters used for this figure are given in Table 1.



Figure 2: Idiosyncratic component in return and forecast error
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Notes: The top panel displays the idiosyncratic component in returns ιiηi and the
empirical distribution of the forecast error ηi conditional on being in the low state
(θt = θl). The bottom panel displays the same quantities conditional on being in
the high state (θt = θh). In both panels the state variable is set to its average value.
The data used for this figure is from a simulated panel of a thousand firms with
the parameters of Table 1.



Figure 3: Idiosyncratic component in return and forecast error
with symmetric shocks
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Notes: The top panel displays the idiosyncratic component in returns ιiηi and the
empirical distribution of the forecast error ηi conditional on being in the low state
(θt = θl). The bottom panel displays the same quantities conditional on being in
the high state (θt = θh). In both panels the state variable is set to its average value.
The data used for this figure is from a simulated panel of a thousand firms with
the parameters of Table 1 except for −θl = θh = 1.2% and µ = λ = 1.
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