
Returns and Volume: Between Information and

Liquidity

Serge Darolles∗ Gaëlle Le Fol† Gulten Mero‡

15th April 2009

Abstract

This paper develops a model for stock trading which takes into
account both information and liquidity shocks. First, we distinguish
between two trading strategies, information-based and liquidity-based
trading, and suggest that their respective impacts on returns and
traded volume should be modelized differently. Second, we focus on the
contemporaneous volatility-volume relationship to model impacts of in-
formation and liquidity. We relax the hypothesis of absence of liquidity
problems and extend the standard mixture of distribution hypothesis
(MDH) framework. This paper develops a modified MDH model which
takes into account information and liquidity shocks. Third, we show
how to use a structural model to exploit the volume-volatility rela-
tion in order to decompose the traded volume for a given stock into
two components. Thus, we separate information from liquidity impact
on the observed daily volume. This allows us to extract an average
intra-day liquidity measure using daily data.
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1 Introduction

This paper develops a model for stock trading which takes into account both
information and liquidity shocks. First, we distinguish between two trading
purposes: the information-based and the liquidity-arbitrage trading motives.
Then, we separate information from liquidity shocks by modeling their re-
spective impacts on stock return variance and traded volume. To do so, we
focus on the contemporaneous relationship between the daily stock returns
and the trading volume and propose a modified mixture of distribution hy-
pothesis model to account for both, information and liquidity shocks for a
given stock.

Previous empirical studies [see Ying (1966), Crouch (1970), Clark (1973),
Copeland (1976, 1977), Epps and Epps (1976), Westerfield (1977), Rogalski
(1978), Tauchen and Pitts (1983), Harris (1983-86)] of both futures and
equity markets find a positive association between price variability1 and
the contemporaneous trading volume2. The usual theoretical explanation
of this positive volume-return volatility relation comes from microstructure
models which analyze how information is disseminated and to which extent
market prices convey information. Thus, several models predict a positive
return volatility-volume relation that depends on the rate of information
flow and the interaction between specialists, informed and liquidity traders
[Kyle (1985), Glosten and Milgrom (1985), Easley and O’Hara (1987), Di-
amond and Verrecchia (1987), Admati and Pfleiderer (1988), Foster and
Viswanathan (1990, 1993), Easley et al. (1996)], the market size [Gallant
et al. (1992)], and the existence of short sales constraint [Diamond and
Verrecchia (1987)].

The mixture of distribution hypothesis (MDH) models attempt to ex-
plore the microstructure framework in which information asymmetries and
liquidity needs motivate trade in response to information arrivals. The MDH,
pioneered by Clark (1973) and extended by Tauchen and Pitts (1983), Harris
(1983), and Andersen (1996) among others, provides an explanation of the
positive correlation between volume and the squared value of price change.
For example, Clark’s (1973) model assumes that events important to the
pricing of a security occur at a random, not uniform, rate through time.
It appears that price data are generated by a conditional normal stochastic
process with a changing variance parameter that can be proxied by volume
whose distribution is assumed to be lognormal. Clark (1973) shows that
the lognormal-normal mixture outperforms several members of stable fam-
ily. Using the same assumption, Harris (1982-1987) and Tauchen and Pitts
(1983) show that the joint distribution of daily price changes and volume
can also be modeled by a mixture of bivariate normal distributions. They

1As measured by either the square price change or the price change per se.
2See Karpoff (1987) for a detailed review of the literature.
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assume that both variables (the daily price change and daily volume) are
conditioned by the rate of information which is random and serially uncorre-
lated. Assuming a lognormal distribution for the mixing variable, the model
can be estimated by maximum likelihood [see Tauchen and Pitts (1983) for
further discussion]. As pointed out by Harris (1986, 1987), the MDH can ex-
plain the fat tailed probability distribution of the daily price change, and the
positive correlation between return volatility and volume. It is important to
note that the standard MDH models assume that only information arrivals
drive the positive volatility-volume relationship. Securities are assumed to
be liquid and the liquidity problem effects on volatility-volume relation are
disregarded.

If earlier tests find evidence supportive of the MDH model [Clark (1973),
Epps and Epps (1976), Tauchen and Pitts (1983), Harris (1986, 1987)], later
studies are less favorable [Heimstra and Jones (1994), Lamoureux and Las-
trapes (1994), Richardson and Smith (1994), and Andersen(1996)]. Different
authors propose various extensions of the standard MDH model in order to
improve its explicative power. Lamoureux and Lastrapes (1994) extension
assumes that the information-arrival rate is serially correlated3. Andersen
(1996) develops a modified MDH model that includes a conditional Poisson
distribution for the trading process and a volume component that is not in-
formation sensitive. His tests suggest that the modified version significantly
outperforms the standard MDH, which assumes that both returns and vol-
ume are normally distributed.

Note that, previous MDH tests are performed under the assumption that
the market is perfectly liquid. Thus, they do not integrate the illiquidity di-
mension. However, several studies show that liquidity shocks are priced by
the market [see Amihud (2002), and Acharya and Pedersen (2005) among
others] and that they impact both returns and traded volume [see Chor-
dia et al. (2001a), Chordia et al. (2000), and Darolles and Le Fol (2005)].
For example, Darolles and Le Fol (2005) point out that the liquidity prob-
lems cause price pressures which will increase the intraday price volatility4.
These market imperfections will motivate the liquidity arbitragers to enter
the market in order to provide the missing liquidity, and cash the liquidity
premium. The presence of liquidity arbitragers raise the daily traded vol-
ume. It follows that the observed daily traded volume is the result of both
information-based traders and liquidity arbitragers. It would be interesting
to be able to decompose the volume into two components in order to isolate

3However their model fails to explain GARCH persistence in return variance. Their
finding is consistent with the results of Richardson and Smith (1994), who used GMM to
test the mixture model but did not account for time dependencies in the data. Thus, the
evidence against the model isolates the inability of the model to jointly accommodate the
dynamic properties of squared returns and volume.

4In particular, the liquidity pressures will rise the price for stocks facing sell-side liq-
uidity lacks and lower the price of stocks facing buy-side liquidity lacks.
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the impact of each type of trading on stock prices.
These observations motivate us to develop a modified MDH model which

considers both, information and liquidity effects on individual stocks. We
include an additive mixing variable L in the model of Tauchen and Pitts
(1983) to take into account the random liquidity shocks. Our MDH model
with two latent variables permits us to decompose the trading volume into
two components driven by information and liquidity. Following Richardson
and Smith (1994) we propose a direct test of the modified MDH model. In
fact, because the model imposes restrictions on the joint moments of price
changes and volume as a function of only a few parameters, it is possi-
ble to form overidentifying restrictions on the data. These restrictions can
be tested using the generalized method of moments (GMM) procedure of
Hansen (1982).

The contribution of this paper is threefold. First, it distinguishes between
two trading strategies, information trading and liquidity arbitrage, and sug-
gests that their respective impacts on returns and traded volume should be
modelized differently. The former is incorporated into daily price changes
and traded volume, and drives the positive volatility-volume relationship.
The latter has intra-day effects on price variations but do not affect daily
price changes. However, it increases the daily traded volume. Second, the
paper relaxes the hypothesis of absence of liquidity problems and extends
the MDH framework by developing a modified MDH model which integrates
both information and liquidity shocks. Third, we use a structural model,
the modified MDH model herein proposed, to exploit the volume-volatility
relation in order to decompose the traded volume for a given stock into two
components and thus separate the information from the liquidity trading im-
pact in the observed volume. This allows us to extract an average intra-day
liquidity measure using daily data.

The paper is organized as follows. In section 2, we briefly present the
standard MDH model based on the Tauchen and Pitts (1983) framework.
Section 3 develops our model. We first discuss the limits of the standard
MDH model. Then, we present a mixture model which allows for the presence
of both, information and liquidity shocks. In section 4, we present the GMM
test and discuss the empirical application. Section 5 concludes.

2 The standard MDH model (Tauchen and Pitts,

1983)

This section summarizes the standard MDH model based on the theorical
framework of Tauchen and Pitts (1983), henceforth TP. The model focuses
on a single market for a traded asset with a random liquidation value of F at
a (distant) point in the future. There are J active traders in the market who
take long or short positions in a single asset. The authors assume that J is
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nonrandom and fixed for each day. Within the day the market passes through
a sequence of distinct within-day equilibria. The movement from the (i−1)st
equilibrium to the ith is initiated by the arrival of new information to the
market. The intervals between successive equilibria are not necessarily of the
same length. Note that , since buy or sell orders are executed sequentially,
many actual transactions at the exchange can comprise what we think of as
a single market clearing or transaction.

It is important to note that no assumptions are made concerning liquidity
problems since, in the TP economy, assets are deemed perfectly liquid. At
the ith equilibrium, the jth trader is willing to trade Qij , which is given by
the linear relation:

Qij = α[p∗ij − pi], (j = 1, 2, ..., J),

where α > 0 is constant, p∗ij is the trader’s reservation price and pi is the
current market price. Note that a positive value for Qij represents a desired
long position in the stock while a negative value represents a short position5.

Traders react differently to new information and propose different reser-
vation prices p∗ij. The reservation price heterogeneity in the population of
traders comes from expectation heterogeneity about the future liquidation
value F , and from different needs to transfer the risk through the market.
Equilibrium requires

∑J
j=1

Qij = 0. This implies that the reservation price

average pi = 1

J

∑J
j=1

p∗ij clears the market. Using this equation and the
equilibrium condition, the stock price change and the trading volume at the
ith equilibrium can be written respectively as:

∆pi =
1

J

J
∑

j=1

∆p∗ij, (1)

Vi ≡
1

2

J
∑

j=1

|Qij −Qi−1,j| =
α

2

J
∑

j=1

|∆p∗ij − ∆pi|, (2)

where ∆p∗ij is the increment of the jth trader reservation (log) price. TP
assume that traders update their reservation price as follows:

∆p∗ij = φi + ψij, (3)

with φi ∼ N(0, σ2

φ), ψij ∼ N(0, σ2

ψ),

5The demand equation abstracts from transaction costs and assumes that the traders
differ only in their reservation prices.
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where φ and ψ are mutually independent both across traders and through
time6. They show that ∆pi and Vi are normally distributed7: ∆pi ∼ N(0, σ2

p)
and Vi ∼ N(µv, σ

2
v).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
I1 

p0 
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Figure 1: Day t price change as a function of intra-day price variations due to information
shocks.

TP assume that the number of daily equilibria It is random because
the number of new pieces of information hitting the market each day varies
significantly. Figure 1 shows a simplified example of how intra-day price
varies in response to the inflow of new information. Let p0 be the equilibrium
price at the beginning of the trading day t. We assume that only three pieces
of information arrive at day t, I1, I2 and I3.

I1 is perceived as good news: trader expected value for the given asset
is to increase, resulting in a new equilibrium price, p1 > p0, and the price
increment due to the arrival of I1, ∆p1, is positive. I2 being seen as bad
news, the next price increment, ∆p2 is negative. Lastly, I3, which turns out
to be good news, initiates the movement to the third intra-day equilibrium
and ∆p3 is positive. At the end of day-t, we observe the daily price increment
∆pt = p3−p0. Note that, the daily price change is the sum of intra-day price
increments due to the arrival of the new information: ∆pt = ∆p1+∆p2+∆p3.

Summing the within-day price changes and trading volumes, we get the

6According to TP, the component φi is common to all traders while ψij is specific to
the jth trader. For example, a large absolute value of common component relative to the
absolute values of the specific components represent a situation in which the traders react
nearly unanimously to the new information.

7See TP (1983) proposition, page 490.
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day- t price change, ∆pt, and traded volume, Vt:

∆pt =

It
∑

i=1

∆pi, ∆pi ∼ N(0, σ2

p), (4)

Vt =

It
∑

i=1

Vi, Vi ∼ N(µv.σ
2

v), (5)

Both ∆pt and Vt are mixtures of independent normals with the same mixing
variable I. Conditional on It, the daily price change ∆pt is N(0, σ2

pIt) and
the daily volume is N(µvIt, σ

2
vIt). The bivariate normal mixture can also be

written as:

∆pt = σp
√

ItZ1t,

Vt = µvIt + σv
√

ItZ2t, (6)

where Z1t and Z2t are independent standard normal variables. At the end of
the day t, all the incoming information is incorporated into the price change
∆pt. Following TP, the only reason for prices and volumes to change on
an intra-day basis, as well as a day frequency, is information arrival. From
equations given in (6), it follows that the contemporaneous relation between
∆p2

t and Vt is:

Cov(∆p2

t , Vt) = E[∆p2

tVt] − E[∆p2

t ]E[Vt]

= σ2

pµvE[I2

t ] − σ2

pµv(E[It])
2

= σ2

pµvV ar[It] > 0.

The volatility-volume relationship arises because ∆p2
t and Vt are positively

related to the unobserved mixing variable It, whose variance is different from
zero. Note that when V ar[It] = 0, the relationship vanishes.

Using maximum likelihood estimations8, TP show that the standard
MDH model captures the positive relationship between price change vari-
ance and volume on the 90-day T-bills futures market.

8Conditional on It, ∆pt and Vt are independent and so their joint conditional density
is the product of marginals:

fc(∆pt, Vt|It;σp, µv, σv) = n(∆pt; 0, σ
2

pIt)n(Vt;µvIt, σ
2

vIt) (7)

where n(·) is the normal density. The unconditional joint density is:

f(∆pt, Vt; σp, µv, σv, θ) =

Z
fc(∆pt, Vt|It;σp, µv, σv)G(It; θ) (8)

where G(It; θ) is the marginal distribution function of the mixing variable and θ is the
vector of its parameters.
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Richardson and Smith (1994) extend TP work by introducing a mean
parameter for daily price change, and use GMM tests to validate the model.
In this paper, we use Richardson and Smith (1994) version when estimating
the standard MDH model for robustness checks (see section 4).

3 The modified MDH model with information and

liquidity shocks

This section develops a modified MDH model integrating both information
and liquidity shocks. TP model disregards the liquidity problem, and even if
when J (number of traders in the TP model) is small some liquidity frictions
may arise. In that case, the equilibrium price may differ greatly from the
price revealing the information. In our model, the price distortion will be cor-
rected by the intervention of a new type of trader: the liquidity arbitragers.
We focus on a single market for a traded asset with random liquidation value
F at a distant point in the future. We consider two kinds of traders: the ac-
tive traders of TP, and the liquidity arbitragers. We assume that the number
of each category of traders is nonrandom and fixed for each day. Based on
TP, we make several assumptions concerning the information flow. Within
the day, the market passes through a sequence of distinct equilibria. We
assume that, for a particular stock, the movement from one equilibrium to
the other is initiated by the occurrence of the new information, which modi-
fies trader expectations about the future liquidation value, F , and motivates
them to rebalance their positions. We assume that the information flow is
random, which drives the randomness of the within-day equilibria:

A1 The number of daily equilibria, It, is random because the number of
new pieces of information reaching the market each day varies significantly.

In addition, we assume that between two equilibria, or two successive
information arrivals, informed traders may face liquidity problems. The
lack of liquidity for a given stock can be either on the sell or the buy side.
These liquidity problems cause price pressures which lift the price for stocks
facing sell-side liquidity shortage and lower the price of stocks facing buy-
side liquidity shortage. These market imperfections motivate the liquidity
arbitragers to enter the market in order to provide the missing liquidity and
cash the liquidity premium9. To formalize our reasoning and account for both
information and liquidity shocks, we need to make additional assumptions:

A2 Liquidity shocks arise only between two within-day equilibria (or two
successive information arrivals), during the price adjustment process from

9See Darolles and Le Fol (2005) for a more detailed discussion.
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one equilibrium to the next.

A3 The transaction prices when dealing with liquidity arbitragers are dis-
advantageous compared to prices that would prevail in the absence of liquidity
problems.

If the market faces sell (buy) side liquidity shortage, the transaction
prices with a liquidity arbitrager are higher (lower) than those in absence
of liquidity shocks, but this price would be even higher if the liquidity arbi-
trager was not participating. The presence of liquidity traders helps correct
price imperfections: the sell-side prices decrease while the buy-side ones get
higher. This motivates them to liquidate their initial positions and receive
the liquidity premium. As a consequence, liquidity arbitragers react to mar-
ket volatility rather than being responsible for it. The volume they trade
adds to the volume that would be traded if there were no liquidity imperfec-
tion.

A4 The liquidity arbitragers liquidate their positions and collect the liquid-
ity premium, before the following information arrival.

This hypothesis is set for simplification purpose. It can be relaxed with-
out loss of generality.

A5 The number of the within-day t liquidity shocks, Lt, is random and
independent of It.

Trading can occur either when information hits the market or when a
liquidity event occurs. At each transaction date there is a probability q
that an information occurs. The reservation prices of the traders are then
updated such that:

∆p∗ij = φi + ψij , (9)

with ψ ∼ N(0, σ2

ψ) as in TP, but:

φi =







N(0, σ2

φ) when an information event occurs

0 otherwise.

(10)

Figure 2 is based on the example of the previous section (figure 1) while
relaxing the hypothesis of the absence of liquidity imperfections. It shows
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how intra-day price increment behaves in response to both information flow
and liquidity shocks. The intra-day price behavior in absence of liquidity
shocks is visually described by the dashed lines. Let ∆pi be the price incre-
ment due to ith information inflow into the market in absence of liquidity
shocks, and ∆p

′

i be the price variation due to liquidity shortage. Remember
that in our example, only three flows of information reach the market: two
positive ones, I1 and I3, and a negative one, I2.

 

I1 

p0 

∆p1 

p1 

I2 

∆p2 

p2 

I3 

∆p3 

p3 

∆p1’  ∆p1’’  

Liquidity 
Trading 

∆p2’  
∆p2’’  

∆p2’’  

Liquidity 
Trading 

∆p3’  

Liquidity 
Trading 

∆p3’’  

No Liquidity 
problems 

∆pt 

Figure 2: Day t price change as a function of intra-day price fluctuations due to infor-
mation and liquidity shocks.

As for I1 , the informed trader expectations concerning the future value
of the asset will rise, resulting in a positive ∆p1. Should the active traders
face sell-side liquidity shortage, the asset price will increase more than if
there were no liquidity problems, say p3. The liquidity arbitragers observing
this price distortion will enter the market to provide the missing liquidity.
They will sell at a price between p1 and p3. They will trade the stock at
p0 + ∆p1 + ∆p

′

1
. Later on, the liquidity arbitragers will enter the market to

buy at p1 (the information revelation price), and thus will cash the liquidity
premium. We get p1 = p0 + ∆p1 + ∆p

′

1
+ ∆p

′′

1
, where ∆p

′′

1
and ∆p

′

1
have

opposite signs. Since |∆p′′

1
| = |∆p′

1
|, the price returns to fully revealing

equilibrium.
When I2 hits the market, the price will be lessened by ∆p2. In ad-
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dition, should the market face buy-side liquidity shortage, the price is to
decrease by even more than ∆p

′

2
. As the liquidity arbitragers track these

market imperfections, they will subsequently decide to enter the market and
to purchase the stock at p1 + ∆p2 + ∆p

′

2
. Thanks to liquidity arbitrager

intervention, the price is to converge toward its fully revealing equilibrium
level, p1 + ∆p2. The liquidity trading may not be sufficient to immediately
bring back prices to equilibrium. In this case, we observe a sequence of ∆p

′′

2

such as ∆p
′

2
= −∑

∆p
′′

2
. In any case, liquidity arbitragers will liquidate

their positions in a sequence of prices which are higher than p1 +∆p2 +∆p
′

2
,

until the market comes back to p1 + ∆p2.
In the third case, price increments will fluctuate in a similar way as in

the first case. At the end of day t we observe ∆pt = p3 − p0. Since ∆p
′

i and
∆p

′′

i offset one another, the daily price change is the sum of intra-day price
increments due to the arrival of the new information: ∆pt = ∆p1+∆p2+∆p3.

Generally speaking, the sign of ∆p
′

i depends on the side of liquidity short-
age, but ∆p

′

i and ∆pi have the same sign. From assumption A4, it follows
that the liquidity arbitragers tend to correct prices before the next equi-
librium by making ∆p

′

i vanish. Here, ∆p
′′

i should be viewed as the price
adjustment due to liquidity arbitrager activity. Summing the within-day
price changes ∆pi, and the price imperfections due to lacks of liquidity ∆p

′

i,
and to liquidity adjustments ∆p

′′

i , yields the day t price change, ∆pt, as
follows:

∆pt =

It
∑

i=1

∆pi +

It
∑

i=1

∆p
′

i +

Lt
∑

l=1

∆p
′′

l (11)

where Lt is the number of liquidity adjustments within a day and It is the
number of information arrivals (or within-day equilibria) for day t.

Two cases can be observed: (i) If |∆p′′

i | = |∆p′

i|, the price is immediately
back to equilibrium i: pi = pi−1 + ∆pi; (ii) If |∆p′′

i | < |∆p′

i|, the price
adjustment will not be immediate, but a convergence mechanism will take
place. We assume that this mechanism will result in a price convergence to its
equilibrium value, pi. The lower the lack of liquidity, the higher the absolute
value of the liquidity price adjustment and the faster the price adjustment.

The intra-day price and volume evolutions depend on both information
as well as liquidity shocks. However, in the presence of liquidity arbitragers,
price change between two consecutive equilibria due to liquidity shocks is
not integrated into the daily price fluctuation. As a consequence, we have,
∑It

i=1
∆p

′

i +
∑Lt

l=1
∆p

′′

l = 0. Following TP, we assume that the intra-day
price change due to information imperfections is normally distributed with
mean zero and variance σ2

p, which yields:

∆pt =

It
∑

i=1

∆pi, ∆pi ∼ N(0, σ2

p) (12)
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Note that liquidity problems increase intra-day price variance, while liquidity
arbitrage transactions have a mean reverting effect which tends to correct
intra-day price imperfections due to liquidity shocks. Consequently, only
information flow impact is integrated in the daily price change.

However, the volume traded by liquidity arbitragers in order to liquidate
their positions adds to the volume that would be traded if there were no
liquidity imperfection. When the ith piece of information hits the market,
the active traders revise their expectations and decide to rebalance their
portfolios. Let Vi be the traded volume driven by the ith information arrival
for a given asset in the absence of liquidity frictions. If the market faces
liquidity problems, the active traders can not trade the requested amount.
However, when assuming the presence of liquidity arbitragers, active traders
will trade the remaining volume with them at a disadvantageous price, as
described in the aforementioned example. From assumption A3, it follows
that, in presence of liquidity arbitragers, the daily traded volume is not
affected by liquidity problems. Active traders can exchange the amount they
want, partly with the market, V

′′

i , and partly with the liquidity arbitragers,
V

′

i , such as: Vi = V
′

i +V
′′

i . The more illiquid the market, the higher the part
of volume traded with liquidity arbitragers, V

′

i . Since the latter will liquidate
their positions10, the total traded volume will be higher than if there were no
liquidity problem. Let Vl be the traded volume due to arbitrager inventory
purposes. Between two information arrivals we have: V

′

i =
∑

l Vl, where l
denotes the number of liquidity shocks. Summing the within-day transaction
volume motivated by information flow Vi, and the traded volume due to
liquidity shocks Vl, gives the day t volume Vt as follows:

Vt =

It
∑

i=1

Vi +

Lt
∑

l=1

Vl, Vi ∼ N(µv1, σ
2

v1), Vl ∼ N(µv2, σ
2

v2) (13)

where Lt is the total number of within-day liquidity shocks at day t. We
assume that Vi and Vl are independent normals with parameters µv1, σ

2

v1 and
µv2, σ

2
v2. In our model, since trades are initially motivated by information

flows, and the sum of Vl corresponds to part of Vi, we assume that Lt does
not impact the within-daily volume variance, by imposing σ2

v2 = 0, which
means that Vl = µv2. For notation simplicity, we replace σ2

v1 by σ2
v .

From equations (12) and (13), we can get a mixture of distribution model
with two latent variables, I and L. From assumption A5, it follows that
Cov(I, L) = 0 and Cov(f(I), f(L)) = 0, where f(I) and f(L) can be any

10Once the market is back to equilibrium.
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function of I and L. The bivariate normal mixture can, then, be written:

∆pt = σp
√

ItZ1t

Vt = µv1It + µv2Lt + σv
√

ItZ2t (14)

with Cov(∆pt, Vt | It, Lt) = 0

where Z1t and Z2t are mutually independent standard normal variables
(and independent of It and Lt). Conditional on It, the daily price change,
∆pt, is N(0, σ2

pIt). Conditional on It and Lt, the daily volume, Vt, is
N(µv1It + µv2Lt, σ

2
vIt). Thus, our model implies that information flow im-

pacts both, daily price change and traded volume, while only the daily vol-
ume is impacted by the random liquidity shocks.

From equations given in (14), it follows that the unconditional contem-
poraneous relation between ∆p2

t and Vt is:

Cov(∆p2

t , Vt) = E[∆p2

tVt] − E[∆p2

t ]E[Vt]

= σ2

pµv1V ar(It).

This relation is strictly positive and identical to that implied by the standard
MDH model of Tauchen and Pitts (1983).

The model given in (14) is called the modified MDH model with liquid-
ity (henceforth MDHL model), and forms the basis of our empirical work.
The particularity of this model is that it takes into account information and
liquidity shocks. While the former impacts volatility-volume relationship,
the latter impacts the traded volume. Based on the MDHL model, we can
exploit the volume-volatility correlation in order to decompose the traded
volume for a given stock into two components and, thus, separate the in-
formation from the liquidity trading impact on the observed daily volume.
More precisely, using the positive volume-volatility relationship, we can first
filter the latent variable It. Then, we can isolate the component of traded
volume driven by It, the rest being the volume component due to liquidity
shocks. The model estimation will help identifying the presence of liquidity
shocks for a given stock and extract an average intra-day liquidity measure
using daily data.

4 Empirical application

Subsection 1 describes the data. The methodology used to test the model
is developed in subsection 2. Finally, we discuss the empirical results in
subsection 3.
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4.1 The data

Our sample consists of the daily return and volume time series of all of the
stocks listed on FTSE100 index at July 10, 2007. Note that, in our empirical
work, we use the daily return Rt instead of the daily price change without
loss of generality. Henceforth, ∆pt is replaced by Rt. The data history ex-
tends from January 4, 2005 to June 26, 2007. Over the sample period, we
have 636 observations. We exclude stocks with missing observations ending
up with 93 stocks. Daily returns and transaction volumes are extracted from
Bloomberg databases. The float is calculated as annual common shares out-
standing less closely held shares for the fiscal year for the dates requested.
The common and closely held shares are extracted from Factset databases.
Following Darolles and Le Fol (2005), and Bialkowski, Darolles and Le Fol
(2007), we retain the turnover ratio as a measure for volume. Remember
that turnover, as a measure of volume, was first introduced to account for
the dependency between the traded volume and the total number of shares
outstanding. The turnover ratio, that is the traded volume corrected by the
number of shares outstanding, seems to be appropriate when studying the
market volume [Smidt (1990), LeBaron (1992), Campbell, Grossman and
Wang (1993)] or when comparing individual asset volumes [Morse (1980),
Bamber (1986), Bamber (1987), Lakonishok and Smidt (1986), Richard-
son, Sefcik and Thompson (1986), Stickel and Verrechia (1994)]. However,
Darolles and Le Fol (2005), Bialkowski, Darolles and Le Fol (2007) replace
the number of shares outstanding by the float. Let qit be the number of
shares traded for asset i, i = 1, ..., N on day t, t = 1, ..., T , and Nit the float
for asset i on day t. The individual stock turnover for asset i on day t is
Vit = qit

Nit
.

(Return)2 with
Mean Standard Skewness Kurtosis Volume

Deviation Correlation

Returns Mean 0,0007 0,0137 0,2853 9,9205 0,42
Std 0,0005 0,0031 0,9271 9,8313 0,14
Min -0,0005 0,0074 -4,0840 3,2134 0,17
Max 0,0024 0,0263 3,1510 61,3788 0,75

Volume Mean 0,0087 0,0065 3,4636 28,4178 -
Std 0,0052 0,0062 1,7526 26,5025 -
Min 0,0018 0,0011 1,0041 4,6813 -
Max 0,0405 0,0545 9,8661 133,8895 -

Table 1: Summary statistics for return and turnover across securities.

For each of the 93 stocks, we compute the empirical first moments (mean,
standard deviation, skewness and kurtosis) of volume and returns as well as
the correlation between squared returns and volume. The cross-security dis-
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tribution of these statistics are summarized in Table 1. The first column
reports the average, the standard deviation, the min, and the max of the
means of returns and volume across the 93 stocks. The second column gives
the same cross-section statistics (the mean, the standard deviation, the min
and the max) of the standard deviations of returns and volume, and so on
for the skewness, kurtosis, and the correlation between squared returns and
volume. We perform Pearson test to check the significance of the correlation
coefficients. Our results show that the correlation coefficients are statisti-
cally significants for 92 over 93 stocks at the 95% confidence level. The
statistics reported in the last column of Table 1 are computed using only the
statistically significant correlations between squared returns and volume.

The implications of the Mixture of Distribution Hypothesis (MDH) for
the joint distribution of daily returns and volume, are examined in details
by Clark (1973), Westerfield (1977), Tauchen and Pitts (1983), and Harris
(1986, 1987) among others. They assume that both variables (the daily price
change and daily volume) are conditioned by the rate of information - called
the mixing variable - which is random and serially uncorrelated. They show
that the hypothesis can explain why the sample distribution of daily returns
is kurtotic relative to the normal distribution, why the distribution of the
associated traded volume is positively skewed and kurtotic relative to the
normal distribution, and why squared returns are positively correlated with
trading volume. The key to the mixture model is the randomness of the
mixing variable. If the mixing variable were constant, there would be no
reason to observe the above empirical patterns, and the daily returns and
volume should be mutually independent and normally distributed.

The results reported in Table 1 are consistent with the mixture of distri-
bution hypothesis. The mean and the min statistics of volume skewness and
squared return correlation with volume are positive; and the averages and
min statistics of return and volume kurtosis are superior to 3, as predicted
by the mixture model. Moreover, the cross-security means and min statistics
are all greater than their expected values if there were no variation in the
mixing variable11. Note that, for the full sample and for various subdivisions
of the sample, we found that returns have zero mean.

Finally, in figure 3, we present the scatter plots of returns and squared
returns against turnover for two stocks, Anglo American (AAL LN) and
AVIVA (AV LN), belonging to FTSE 100. The upper (lower) graphs are
pairwise scatter plots for AAL LN (AV LN) return-turnover on the left, and
volatility-turnover on the right. The graphs highlight the well-documented
positive12 relation between the return volatility and volume.

11The expected value of the volume skewness and correlation coefficient is zero, and the
expected value of return and volume kurtosis is 3 when the mixing variable is constant.

12Clark (1973), Copeland (1976, 1977), Tauchen and Pitts (1983), Harris (1983-86),
Epps and Epps (1976), and Westerfield (1977) among others show a positive correlation
between the variability of price change and volume.
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Figure 3: Scatter plots of returns and squared returns against turnover for stocks Anglo
American (AAL LN), and AVIVA (AV LN) belonging to FTSE 100.

4.2 The MDHL model test methodology

In this subsection, we develop a procedure which aims at testing whether
time series of return and turnover stock-specific data are consistent with
the MDHL model presented above. As discussed by Richardson and Smith
(1994), since the model imposes restrictions on the joint moments of price
changes and volume as a function of only a few parameters, it is possi-
ble to form overidentifying restrictions on the data. These restrictions can
be tested using the generalized method of moments (GMM) procedure of
Hansen (1982).

We first summarize the GMM test procedure developed by Hansen (1982),
and then present the moment restrictions implied by our model.

4.2.1 The GMM procedure

Let Xt = (Rt, Vt) be the vector of stock-specific return and volume in day t.
If the bivariate series Xt conforms to MDHL model given in equation (14),
its unconditional moments should also confirm those of MDHL model:

E[h(Xt, θ)] = 0, (15)

where h(.) is an (Nh x 1) vector of unconditional moment conditions implied
by the MDHL model, and θ is an (Np x 1) vector of parameters governing the
model. θ contains the mean and variance parameters of Xt related to both
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mixing variables I and L (σ2
11
, µ21, µ22, σ

2
2
), and the second central moments

of I and L (m2I ,m2L).
We do not observe the expectation of h(.), and so we calculate its em-

pirical counterpart gT . In large samples, under the null hypothesis that Xt

is distributed as MDHL model, the sample moments of (15) should be close
to zero13:

gT (θ) ≡ 1

T

T
∑

t=1

h(Xt, θ) −→ 0, when T → ∞. (16)

As a consequence, the idea behind the GMM procedure is to find the
values of the unknown parameters θ that set the sample vector gT (θ) equal
to zero. This will not be possible if the system is overidentified, i.e., if
Np < Nh. In this case, we minimize a quadratic form, QT (θ), a weighted
sum of squares and cross-products of the elements of gT (θ):

QT (θ) ≡ gT (θ)′WT gT (θ), (17)

where WT is an (Nh x Nh) symmetric, positive definite weighting matrix.
Since the problem is now nonlinear, this minimization must be performed
numerically. The first order condition is:

DT (θ̂T )′WT gT (θ̂T ) = 0, (18)

where DT (θ̂) is a matrix of partial derivatives defined by14:

DT (θ̂) = ∂gT (θ̂)/∂θ̂′. (19)

Hansen (1982) shows that the optimal weighting matrix, WT , that min-
imizes the variance of the estimation error, V , is any positive scalar times
the inverted variance-covariance matrix of h(Xt, θ), S

−1

0
. In practice, S0 is

approximated by ST (θ̂) given by:

ST (θ̂) = V ar[T−1/2gT (θ̂)]. (20)

Hansen also provides the necessary distributional results for the parame-
ter estimators, θ̂, and for the overidentifying test statistic, JT (θ̂):

√
T (θ̂ − θ) ∼asy N(0, [D′

0S
−1

0
D0]

−1),

JT ≡ TgT (θ̂)S−1

0
gT (θ̂) ∼asy χ2

Nh−Np
.

In practice, S0 and D0 are replaced by their consistent estimators, ST (θ̂)
and DT (θ̂). The next subsection develops the moment restrictions implied
by the MDHL model, as given by equation (14).

13See Hansen (1982).
14Note that DT (θ̂) is the sample approximation of the true partial derivative matrix

D0.
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4.2.2 The MDHL model moment restrictions

To test the validity of the MDHL model, we focus on the skewness and
kurtosis of specific return and turnover time series and on some of their
corresponding cross moments. We also include the covariance between the
squared returns and turnover or squared turnover. In fact, under MDHL
model in equation (14), it is possible to calculate the implied unconditional
second, third and fourth moments and the corresponding cross-moments of
the observable variables Rt and Vt. As Tauchen and Pitts (1983) point out,
MDHL model is invariant with respect to scalar transformations of It and
Lt. Thus, if a is any positive constant and I∗t ≡ It/a and L∗

t ≡ Lt/a, then
the model

Rt ∼ N(0, [σ2

pa]I
∗
t | It, Lt),

Vt ∼ N([µv1a]I
∗
t + [µv2a]L

∗
t , [σ

2

va]I
∗
t | It, Lt), (21)

with Cov(Rt, Vt | It, Lt) = 0,

cannot be differentiated empirically from MDHL model in equation (14).
By normalizing E[I∗t ] = E[L∗

t ] = 1, it is possible to identify the transformed
parameters µ∗v1 = µv1m1I , µ

∗
v2 = µv2m1L, σ∗2p = σ2

pm1I , σ
∗2
v = σ2

vm1I ,
m∗

2I = m2I/m
2

1I , m
∗
2L = m2L/m

2

1L, m∗
3I = m3I/m

3

1I , m
∗
3L = m3L/m

3

1L,
m∗

4I = m4I/m
4

1I , and m∗
4L = m4L/m

4

1L. Henceforth, we will consider only
the transformed parameters. However, for notation simplicity, we omit the
"∗" symbol.

Moreover, we need to chose a distribution function for the latent vari-
ables It and Lt. Tauchen and Pitts (1983) assume that the mixing variable It
follows a lognormal distribution15. This assumption has also been suggested
by a number of authors such as Clark (1976) and Foster and Viswanathan
(1993b). Richardson and Smith (1994) tested several distribution functions
for information flow and conclude that the data reject the lognormal distrib-
ution less frequently than the other distribution candidates such as inverted
gamma and Poisson distributions. These results motivate us to retain a log-
normal distribution for both mixing variables It and Lt. As discussed by
Richardson and Smith (1994), it is possible to show that the lognormality
assumption implies the following moment restrictions:

m3j −m3

2j − 3m2

2j = 0

m4j + 4(1 +m2j)
3 + 3 − (1 +m2j)

6 − 6(1 +m2j) = 0 (22)

where j = (It, Lt) and mij , (i = (2, 3, 4)) is the ith centered moment for the
mixing variable j.

Under the above transformations and the assumptions made here, the
corresponding sample moment vector gT (θ) is given by:

15Note that lognormality permits them to insure the positiveness of It.
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gT (θ) =
1

T

T
∑

t=1





























(Vt − E(Vt)) (1)
(Rt −E(Rt))

2 (2)
(Vt −E(Vt))

2 (3)
(R2

t − E(R2
t ))(Vt − E(Vt)) (4)

(R2
t − E(R2

t ))(V
2
t − E(V 2

t )) (5)
(Vt −E(Vt))

3 (6)
(Rt −E(Rt))

4 (7)
(Vt −E(Vt))

4 (8)
(Rt − E(Rt))

2(Vt − E(Vt))
2 (9)





























(23)

where the sample moments (1) to (9) and E(.) operators are functions
of the vector of parameters (θ = (µv1, µv2, σ

2
p, σ

2
v ,m2I ,m2L)) governing the

distribution of the observables Rt and Vt, and the latent variables It and
Lt. Sample moments (1) to (9) are given in the Appendix A. The above
restrictions represent a system of nine equations and six parameters to be
estimated. This leaves us with three overidentifying restriction to test. By
applying the GMM procedure to the sample moment vector in (23), we can
estimate θ and test the MDHL model jointly. Let θ̂ be the vector of the
estimated parameters. Then, the resulting JT (θ̂) will have an asymptotic
χ2

3
distribution. If, for example, JT (θ̂) exceeds 7.8, then we can reject the

MDHL model at the 95-percent level of significance. Finally, note that the
weighting matrix is estimated using Newy and West (1987) procedure.

4.3 Empirical results

We applied the GMM procedure to the sample moment vector in (23) in
order to estimate θ and test the MDHL model jointly. Tables 2 and 3 in
the Appendix B.1 present the test of the moment restrictions implied by
the MDHL model, applied to the FTSE 100 stocks. The test statistics
are given in the column 9. With three overidentifying restrictions, they are
asymptotically distributed as a χ2

3
. For 94% of the stocks of our sample, the

test statistic values do not exceed their critical value of 7, 815. Consequently,
we can not reject the MDHL model at the 95 level of significance. For
robustness checks, we also estimate the standard MDH model using the
procedure of Richardson and Smith (1994)16. Results are presented in tables
4 and 5 in the Appendix B.2. The model is accepted by the data for 89%
of stocks. In terms of global validity, our model outperforms the standard
MDH model.

Columns 2 to 5 in tables 2 and 3 provide the parameter estimates for re-
turns and volume, while columns 6 and 7 provide the estimated variances for

16To estimate the standard MDH model we use the implied unconditional means, vari-
ances, skewness, and corresponding cross-moments of the observable variables, Rt and Vt.
See Richardson and Smith (1994) for more detailed calculations.

19



the latent variables It and Lt. We have denoted by "*" or "**" the statisti-
cally significant parameters at respectively 90% and 95% level of confidence.
It is important to comment the behavior of the mean parameters for volume.
Since we work with normalized data in order to identify and estimate the
parameters (E(It) = E(Lt) = 1), the estimated µv1 and µv2 can be inter-
preted as the average, across days, of respectively the amplitude of intra-day
information flow and liquidity shocks. The more illiquid the market for a
given stock, the higher is the volume traded with liquidity arbitragers, which
results in higher volumes and thus, higher µv2. The model helps identifying
the presence of liquidity shocks and their extent by decomposing the average
volume into two components, and separate the information from the liquidity
trading impact.

Since our model implies that information guides the market from one
equilibrium to the next, and liquidity shocks appear between these equilibria,
we should expect to observe a statistically significant µv2 parameter only for
stocks having also a significant µv1. The results exposed in the Appendix
B.1 confirm our intuitions. 25 stocks have both mean parameters statistically
significants and there is no stock with only µv2 significant. Three additional
remarks can be made: (i) A µv2 significantly positive suggests that the stock
faces, on average, intra-day lacks of liquidity, which motivate the liquidity
arbitragers to enter the market and increase the average traded volume.
Since we do not observe liquidity shocks, we can infer their occurrence from
liquidity arbitrage trading, which directly impacts the volume. Our model
helps identifying the intra-day impact of this type of traders in the traded
volume using daily data. Using our data, we can identify 23 stocks facing
liquidity problems. (ii) If µv2 is nonsignificant, our model corresponds to that
of Tauchen and Pitts (1983) which assumes that traded volume is explained
by information flow. Empirically, we conclude that, for half of the stocks in
our sample, volume can be explained by information; (iii) When comparing
mean volume parameters obtained by both models, we observe that µv is
equal to the sum of µv1 and µv2. The result is intuitive and shows that
the MDHL model succeeds in decomposing the average traded volume into
information and liquidity-based components.

We use a structural model to separate the respective impacts of the two
latent variables I an L on the trading volume. To do so, our model exploits
the positive volatility-volume relation driven by I to extract the impact of I
on volume, µv1. Then, the remaining volume is due to liquidity shocks. The
model is particularly interesting in practice since it provides a measure for
average intra-day liquidity shocks using daily data.
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Figure 4: Relative liquidity volume versus average market cap measured by the float.

Figure 5: Relative liquidity volume versus average daily traded volume.

Previous literature relates stock liquidity to traded volume, and suggests
that illiquid stocks have low traded volume or turnover17. It follows that the

17See Datar, Naik and Radcliffe (1998), and Chordia, Subrahmanyam and Anshuman
(2000) ammong others.
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traded volume is a good proxy for liquidity. Moreover using market capi-
talization as a proxy for stock liquidity is a current practice in the financial
markets: small stocks are assumed to face more liquidity problems than large
ones. We focus on the estimated µv2 to investigate the relationship between
the liquidity shocks as measured by µv2, and market capitalization or traded
volume. Our results show that size and traded volume are not good proxies
for liquidity problems. For example, the three smallest18 stocks of our sam-
ple, Lonmin (LMI), Vedanta (VED), and Whitbread (WTB), have µv2 not
significant. In addition, some other stocks, such as GlaxoSmithKline (GSK),
Old Mutual (OML), HSBC Holdings (HSBA), having significant µv2 belong
to the two highest deciles of average market capitalization.

Figures 4 and 5 focus on the 23 stocks of our sample having µv2 statis-
tically significant, and plot the relative liquidity volume with respectively
average market capitalizations and average daily traded volume. The rela-
tive liquidity volume for a given stock is the estimated µv2 parameter divided
by the sum of µv1 and µv2. The average market capitalization and traded
volume for a given stock are calculated over the estimation period. Both
graphs point out that the relation between liquidity problems and average
market capitalization (or traded volume) is not very clear. In fact, for low
values of average market capitalization (or traded volume), we observe a
high heterogeneity of µv2 relative values. Stocks having important µv2 rela-
tive values as well those having relative µv2 close to zero rank on the lowest
average market capitalization (or traded volume) deciles. Vice-versa, some
stocks having important relative values of µv2, have hight values of market
capitalization (or traded volume). These results suggest that size (or traded
volume) is not always a good proxy for liquidity shocks: stocks with higher
market capitalizations (or traded volume) may be less liquid than small (or
less traded) ones.

Finally, table 6 given in the Appendix B.3 compares our paper contribu-
tions to previous research results. Three additional remarks can be made:
(i) As previously observed, the MDHL model implies a positive volatility-
volume relation driven by the dependence of both variables in the information
flow. In our model, this positive correlation is function of the part of vol-
ume due to information-based trading, µv1, after controlling for the impact
of liquidity shocks, µv2. Here, the standard MDH model appears to be a
special case of the MDHL model in absence of liquidity shocks; (ii) While
previous literature considers liquidity consumers versus liquidity providers,
we are the first to distinguish two types of liquidity providers, the strategic
(the liquidity arbitragers) and the non strategic traders. The intervention of
liquidity arbitragers rises the daily traded volume; (iii) The interest of our
approach is that we use daily data to estimate a liquidity measure related
to intra-day phenomena, such as the flow of liquidity shocks. This allows us

18Stocks having the lowest average market cap over the sample period.
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to identify illiquid stock for a given period.

5 Concluding remarks

In this paper, we develop a model for stock trading which considers both
information and liquidity shocks. We first distinguish between two trading
strategies, information-based and liquidity-based trading, and suggest that
their respective impacts on returns and traded volume should be modelized
differently. The former is incorporated into daily price changes and traded
volume, and drives the positive volatility-volume relationship. The latter
consists of strategic (liquidity arbitrage) and non-strategic trading. Liquidity
arbitrage trading has mean reverting intra-day effects on price change but
do not affect daily price fluctuations. However, it raises the daily traded
volume.

Second, we focus on the contemporaneous relationship between return
variance and volume to modelize the impacts of information and liquidity.
The paper relaxes the hypothesis of absence of liquidity imperfections and
extends the standard MDH framework by developing a modified MDH model,
which incorporates both information and liquidity shocks.

Third, we show how to use a structural model, to exploit the volume-
volatility relation in order to decompose the traded volume for a given stock
into two components, and separate the information from the liquidity im-
pact in the observed daily volume. In other words, the increase of volume
due to liquidity arbitragers helps inferring the presence of liquidity shocks
for a given stock. To do so, we first need to estimate the normal volume
that would prevail if there were no liquidity shortage. This information is
contained in the volatility-volume positive relation. Once I filtered from
volume, we know that the remaining part is related to liquidity shocks. The
model is particularly interesting in practice since it provides a measure for
average intra-day liquidity shocks using daily data. It would be interesting
to confront this measure to other liquidity intra-day measures such as price
spreads or trade impact.

Finally, the MDHL model developed in this paper can be extended to al-
low for serial dependence in L. Several studies actually indicate that liquidity
shocks are not isolated events in time but rather seem to be persistent19. We
state that persistence in Lt may explain the presence of serial correlation in
volatility and volume. It would be interesting to use signal extraction meth-
ods to filter the latent variables It and Lt. This point is to be investigated
in a forthcoming paper.

19See, for example, Acharya and Pedersen (2005).
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APPENDIX A

Sample moment conditions for the MDHL model

The sample moment conditions in equation (23) are given as follows:

(Vt − E(Vt)) = µv1 + µv2, (24)

(Rt − E(Rt))
2 = σ2

p, (25)

(Vt − E(Vt))
2 = µ2

v1m2I + µ2

v2m2L + σ2

v , (26)

(R2

t − E(R2

t ))(Vt − E(Vt)) = µv1σ
2

pm2I , (27)
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2

t − E(V 2

t )) = µ2

v1σ
2

p(m3I + 2m2I) (28)

+2µv1µv2σ
2
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vσ
2

pm2I ,

(Vt − E(Vt))
3 = 3µv1σ

2
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v1m3I + µ3

v2m3L, (29)

(Rt − E(Rt))
4 = 3σ4
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v1m4I (30)
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2

v2m2Im2L
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where equations (24) to (31) correspond respectively to sample moment con-
ditions (1) to (9) in equation (23), and where the third and fourth central
moments of I and L, (m3I ,m3L,m4I ,m4L), are functions of their respective
second central moments, (m2I ,m2L), as given in equation (22), and where
E(.) operators are also functions of θ:

E(Rt) = 0,

E(Vt) = µv1 + µv2,

E(R2

t ) = σ2

p, (33)

E(V 2

t ) = σ2

v + 2µv1µv2

+µ2

v1(m2I + 1) + µ2

v2(m2L + 1).

APPENDIX B.1

GMM estimation results for MDHL model
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ID µv1 µv2 σ2

p σ2

v m2I m2L χ2

1

1 0,004592** 0,002557** 0,000353** 0,000003 0,356521** 0,100684 0,43
2 0,007168* -0,000986 0,000077** 0,000003 0,367095* 1,581157 2,95
3 0,005085** 0,001414* 0,000143** 0,000001 0,809817** 0,000038* 4,04
4 0,072554 -0,056201 0,000371** 0,000218 0,054197 0,000137 3,64
5 0,004189** 0,000792 0,000130** 0,000003 0,282547** 2,900634** 2,70
6 0,015721 -0,010089 0,000112 0,000012 0,074901 0,000936 9,08
7 0,004356** 0,004089** 0,000202** 0,000009* 0,823090** 0,077773 1,51
8 0,005958** -0,000228 0,000142** 0,000002 0,314040** 0,000266** 3,32
9 0,005805** -0,000413 0,000106** 0,000000 0,216152** 0,001290** 6,95
10 0,009839* 0,003839 0,000242 0,000004 0,568549 0,494827 11,91
11 0,006748** 0,003519* 0,000240** 0,000021** 0,338145** 0,343929 3,23
12 0,006007** -0,001428 0,000203** 0,000001 0,152702** 0,091857 1,90
13 0,041900 -0,034455 0,000162** 0,000019 0,036970 0,022144 5,39
14 0,008303** -0,003144 0,000378** 0,000007* 0,170230** 0,083028 2,15
15 0,014961* -0,009137 0,000134** 0,000010 0,066888 0,007497 0,92
16 0,015013** -0,002631 0,000117** 0,000019* 0,475838** 2,111389 1,09
17 0,015933 -0,010203 0,000128** 0,000018 0,098846 0,006966 5,75
18 0,006421** -0,000114 0,000103** 0,000000 0,312727* 0,000502** 1,10
19 0,002351** 0,000162 0,000172** 0,000000 0,537135** 0,001305 1,11
20 0,013597** -0,007242* 0,000152** 0,000007 0,131178** 0,086226 2,02
21 0,032198 -0,022711 0,000156** 0,000093 0,134339 0,009017 3,98
22 0,035934 -0,029251 0,000120** 0,000011 0,046330 0,037325 3,28
23 0,054873 -0,042099 0,000205** 0,000238 0,101230 0,000140 3,13
24 0,003045** 0,002650** 0,000069** 0,000006** 0,480282** 0,336686** 0,26
25 0,013947 -0,008718 0,000124** 0,000020 0,172881 0,016039 3,16
26 0,021351 -0,010105 0,000141** 0,000035 0,144205 0,050033 6,25
27 0,014124* -0,003456 0,000248** 0,000012 0,239652* 0,019187 5,84
28 0,008981** 0,000050* 0,000137** 0,000001 0,365326** 0,000495** 0,97
29 0,006198** 0,002057** 0,000177** 0,000012 1,225154** 2,477023 0,48
30 0,002285** 0,002052** 0,000112* 0,000000 0,774375** 0,075987 0,61
31 0,004133* 0,000001 0,000102 0,000001 0,307006* 0,000359** 5,83
32 0,006426 -0,000302 0,000166 0,000000 0,363608 0,001853 10,44
33 0,005551** 0,001758* 0,000185** 0,000013 0,669770** 1,824690** 1,78
34 0,006700** 0,002500** 0,000156** 0,000040* 0,760000** 0,670000** 1,89
35 0,005362** 0,002834** 0,000295** 0,000031** 0,982038** 1,420236* 0,82
36 0,006316 0,002451 0,000209** 0,000003 0,673408 0,638940 6,51
37 0,008268** 0,001223 0,000150** 0,000005 0,501508** 1,636350 3,40
38 0,004326** 0,003339** 0,000137** 0,000015** 0,649970** 0,397851** 1,84
39 0,006440** -0,000879 0,000092** 0,000001 0,309875** 4,093407** 1,98
40 0,026387 -0,017941 0,000199* 0,000035 0,080861 0,004867 8,54
41 0,018477** -0,007157 0,000197** 0,000048** 0,290554** 0,040000 1,19
42 0,014043** -0,004334 0,000293** 0,000023 0,294781** 0,000113 2,42
43 0,007237** -0,000479 0,000158** 0,000001 0,367964** 6,304101** 2,33
44 0,006176** -0,000019 0,000121** 0,000000 0,283954** 0,001691** 6,60
45 0,012112** -0,002277 0,000171** 0,000020* 0,414964** 0,004042 2,55

Table 2: MDHL model estimated parameters (1).
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ID µv1 µv2 σ2

p σ2

v m2I m2L χ2

1

46 0,018687 -0,012749 0,000148** 0,000023 0,102885 0,010298 3,84
47 0,017643 -0,012088 0,000160** 0,000006 0,072632 0,049380 2,85
48 0,002142** 0,003388** 0,000144** 0,000009** 1,024586** 0,159036* 2,06
49 0,015456 -0,009203 0,000087** 0,000009 0,098522 0,035609 4,60
50 0,008890** 0,004488 0,000430** 0,000020 0,958863** 0,523920 0,99
51 0,007465* 0,004276 0,000179** 0,000074 1,105972 2,180080 1,98
52 0,010325** -0,001414 0,000134** 0,000008 0,495946** 2,666157 2,87
53 0,011136** -0,001733 0,000152** 0,000024 0,543685** 0,771515 4,72
54 0,005144 -0,000520 0,000096** 0,000000 0,225200 0,000951 6,80
55 0,006715 0,002134 0,000132** 0,000005 0,458861 0,490909 7,07
56 0,038058 -0,024071 0,000130** 0,000097 0,107051 0,002521 8,03
57 0,004692** 0,002332** 0,000216** 0,000001 0,523044** 1,599162** 3,57
58 0,011572 -0,004839 0,000186** 0,000007 0,158543* 0,100663 4,50
59 0,006421** 0,001363 0,000263** 0,000004 0,399654** 0,661273 0,99
60 0,012708** -0,004618 0,000112 0,000003 0,171040* 0,200807 3,53
61 0,013023** 0,000005** 0,000177** 0,000014** 0,477992** 44,548389* 2,32
62 0,010417* -0,004819 0,000102** 0,000005 0,135650* 0,038057 4,82
63 0,053063 -0,048449 0,000083** 0,000057 0,021441 0,000152 7,24
64 0,004278* -0,002492 0,000121** 0,000001 0,117000* 0,101503 1,81
65 0,006781* 0,000071 0,000101** 0,000003 0,329437** 0,000282** 4,56
66 0,015129** -0,007553* 0,000108** 0,000010 0,185757** 0,130840 3,43
67 0,017310 -0,010584 0,000297** 0,000010 0,057213 0,002983 11,59
68 0,008915** 0,001087 0,000195** 0,000004 0,286098** 0,280562 1,98
69 0,015410** -0,006659 0,000184** 0,000020 0,201118* 0,022876 4,03
70 0,006848** 0,002909 0,000168** 0,000060* 0,237499** 1,839111** 6,62
71 0,017676 -0,007115 0,000180** 0,000075 0,445070 0,124465 1,66
72 0,002303** 0,001375** 0,000162** 0,000000 0,489226** 0,355318** 2,47
73 0,009789** 0,001865 0,000100** 0,000017 0,714350** 2,885819** 3,78
74 0,003229** 0,004530** 0,000126** 0,000030** 1,321688** 0,516989** 1,50
75 0,003300** 0,000875 0,000224** 0,000002 0,498127** 1,441435 1,66
76 0,004904** 0,002485** 0,000188** 0,000005 0,695894** 0,218002 0,65
77 0,030266 -0,024020 0,000153** 0,000014 0,056328 0,035361* 1,75
78 0,008342** 0,002784 0,000223** 0,000003 0,947708** 0,361908 1,96
79 0,004100** 0,004564** 0,000137** 0,000023** 0,652324** 0,336706** 2,39
80 0,014816 -0,006544 0,000131** 0,000032 0,251056 0,001193 5,16
81 0,004453** 0,001321 0,000110** 0,000008** 0,256106** 1,678379 2,73
82 0,004621** 0,001241** 0,000176** 0,000005 0,543131** 2,076741** 4,08
83 0,006758** 0,000965 0,000121** 0,000006 0,292637** 1,904712** 2,91
84 0,006561** -0,001419 0,000099** 0,000005 0,262634** 0,104353 2,18
85 0,001196* 0,001151* 0,000099** 0,000000 0,715224** 0,490877 2,10
86 0,002067** 0,005255** 0,000083** 0,000001 1,137846** 0,327187** 0,50
87 0,067322 -0,047323 0,000518** 0,000322 0,106073 0,004482 4,89
88 0,013626 -0,008762 0,000160** 0,000015 0,105255 0,010584 3,53
89 0,380956 -0,341413 0,000175** 0,000829 0,048733 0,030764 7,64
90 0,003705** 0,004630** 0,000126** 0,000010** 0,752620** 0,097367 0,23
91 0,009685** -0,000671 0,000141** 0,000006 0,578370** 4,920062 2,99
92 0,015439** 0,013117** 0,000455** 0,000415** 0,385198* 0,781706 4,52
93 0,040238 -0,030511 0,000153** 0,000180 0,161703 0,020837 3,42

Table 3: MDHL model estimated parameters (2).
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APPENDIX B.2

Results for Richardson and Smith (1994) MDH model GMM
estimation
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ID µp µv σ2

p σ2

v m2I m3I χ2

3

1 0,001576** 0,006974** 0,000341** 0,000000 0,164821** 0,076466** 4,43
2 0,000293 0,006213** 0,000082** 0,000007 0,537526** 0,771725** 4,04
3 0,000459 0,006450 0,000124 0,000003 0,615128 1,182884 9,18
4 0,002793** 0,016191** 0,000348** 0,000015 0,168119** 0,086267** 7,89
5 0,000593 0,004944** 0,000117** 0,000000 0,251352** 0,200954* 6,16
6 0,000648 0,005961** 0,000141** 0,000013** 0,623407** 0,916119** 1,89
7 0,000992** 0,008348** 0,000198** 0,000008 0,370009** 0,002626 2,39
8 0,000304 0,005915** 0,000136** 0,000000 0,335995** 0,431232** 2,61
9 0,001127** 0,005421** 0,000104** 0,000001 0,273959** 0,000798 4,37
10 0,000924* 0,014019** 0,000277** 0,000043** 0,506739** 0,544113** 0,85
11 0,001128** 0,010572** 0,000247** 0,000020** 0,209113** 0,504891** 4,44
12 0,001227** 0,004564** 0,000203** 0,000000 0,201264** 0,081835 2,78
13 0,000790* 0,007445** 0,000185** 0,000008* 0,236387** 0,547731** 3,55
14 0,002101** 0,005181** 0,000354** 0,000002 0,218648** 0,422673** 7,01
15 0,000725 0,005650 0,000122 0,000000 0,142258 0,053039 8,15
16 0,000204 0,012450** 0,000116** 0,000020 0,626882** 1,485704** 2,77
17 0,000516 0,005783** 0,000136** 0,000004** 0,369925** 0,364957** 3,74
18 0,000308 0,006282** 0,000104** 0,000002 0,383053** 0,491836** 1,15
19 -0,000209 0,002463** 0,000163** 0,000001 0,462963** 0,457725** 2,70
20 0,000640 0,006393** 0,000152** 0,000002 0,261004** 0,290055** 2,57
21 0,000582 0,009301** 0,000138** 0,000003 0,358138* 0,402375** 7,50
22 0,000851** 0,006702** 0,000119** 0,000006 0,268992** 0,385132 3,77
23 0,001061* 0,012701** 0,000209** 0,000028 0,574036** 0,816102 7,33
24 0,000560** 0,005666** 0,000067** 0,000000 0,254055** 0,296119** 1,31
25 -0,000340 0,005180** 0,000103** 0,000018* -0,213526 1,376168 4,97
26 0,000337 0,011794** 0,000171** 0,000062** 0,791139** 1,474336** 4,09
27 0,001466** 0,011202** 0,000271** 0,000015** 0,468301** 0,549208** 0,32
28 0,000753 0,008973** 0,000135** 0,000000 0,348388** 0,386472** 1,62
29 0,000160 0,008094** 0,000171** 0,000009 0,742010** 2,013111* 1,78
30 0,000213 0,004189** 0,000101** 0,000001 0,253895* 0,083571 4,78
31 0,000403 0,004333** 0,000110** 0,000001 0,338555** 0,400176** 1,81
32 0,000780 0,007169** 0,000187** 0,000011* 0,417406** 1,046547** 2,13
33 0,001097** 0,007001** 0,000178** 0,000018 0,360728* 10,347836 2,76
34 0,000092 0,003656** 0,000052** 0,000001 0,342485** 0,366668** 1,22
35 0,000013 0,008095 0,000271 0,000025 0,181488 0,632359 8,64
36 0,000806* 0,008736** 0,000207** 0,000013 0,505544** 0,636415* 5,52
37 0,000832* 0,009746** 0,000156** 0,000006 0,484987** 0,656846** 1,42
38 0,000898** 0,007722** 0,000143** 0,000002 0,315477** 0,334730** 3,73
39 0,000501 0,005558** 0,000091** 0,000001 0,392350** 0,757375** 3,18
40 0,001586** 0,008806** 0,000226** 0,000011** 0,448834** 0,447771** 0,68
41 -0,000652 0,010979 0,000175 0,000007 0,297440 0,761764 8,64
42 0,000931 0,009666** 0,000311** 0,000025 0,646960** 1,074764 1,94
43 0,000782* 0,006418** 0,000147** 0,000000 0,326012** 0,549908** 4,60
44 0,000667* 0,006578** 0,000119** 0,000005* 0,249873** 0,414520** 3,13
45 -0,001165** 0,009964** 0,000168** 0,000004 0,464029** 1,221262** 5,37

Table 4: MDH model estimated parameters (1).
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ID µp µv σ2

p σ2

v m2I m3I χ2

3

46 0,000308 0,006052** 0,000170** 0,000002 0,369355** 0,421853** 3,22
47 0,000359 0,005642** 0,000158** 0,000006 0,218251** 1,077850 2,74
48 0,000282 0,005360** 0,000126** 0,000002 0,304649** 0,321132** 6,57
49 0,000184 0,006046 0,000083 0,000001 0,235209 0,195631 9,36
50 0,002334** 0,013313** 0,000435** 0,000039* 0,612897** 1,071623** 1,61
51 0,001268** 0,012308** 0,000185** 0,000009 0,896280** 3,419218** 2,99
52 0,001181** 0,008821** 0,000129** 0,000015* 0,648002** 1,009654** 7,64
53 0,000696 0,009805** 0,000161** 0,000044** 1,140210** 3,849740** 7,01
54 0,000398 0,004967** 0,000107** 0,000003 0,266530** 0,480544** 3,24
55 0,000037 0,009627** 0,000139** 0,000010 0,518172** 0,794861* 3,86
56 0,000210 0,014942** 0,000170** 0,000108** 0,855629** 1,725279** 1,08
57 0,000429 0,007450** 0,000179** 0,000017** 0,429604** 2,473198** 12,86
58 0,000385** 0,006954** 0,000189** 0,000010** 0,491210** 0,718748** 6,44
59 0,000551 0,007730** 0,000253** 0,000004 0,229570** 0,237471** 2,13
60 0,000270 0,008247** 0,000112** 0,000001 0,327870** 0,370144** 2,49
61 0,000975* 0,013523** 0,000176** 0,000025 0,483996** 2,539710** 1,21
62 0,000763** 0,005644** 0,000105** 0,000001 0,310431** 0,257974** 6,28
63 0,000080 0,004747** 0,000093** 0,000004* 0,453089** 0,922374** 4,41
64 0,000421 0,001753** 0,000122** 0,000000 0,256621** 0,317692** 2,41
65 0,000399 0,007069** 0,000121** 0,000025** 0,807689** 1,646781** 1,44
66 0,000322 0,007495** 0,000113** 0,000006 0,532255** 0,735960** 3,05
67 0,002328 0,006563 0,000259 0,000004 0,081158 0,034710 13,13
68 0,001318* 0,010106** 0,000195** 0,000003 0,328610** 0,391733** 1,66
69 0,001144** 0,009141** 0,000197** 0,000016** 0,569769** 0,797812** 2,70
70 -0,000217** 0,011143** 0,000159** 0,000214** 0,015643 16,593616* 3,31
71 0,000831* 0,010479** 0,000168** 0,000007 0,539331** 1,714445 2,91
72 0,000684 0,003646** 0,000158** 0,000000 0,264416** 0,196433** 6,06
73 0,000830** 0,012073** 0,000104** 0,000082** 1,263259** 2,909492 2,95
74 0,000318 0,007707** 0,000123** 0,000005 0,415593** 0,990330** 2,07
75 0,000801 0,004110** 0,000216** 0,000001 0,329465** 0,565500** 3,21
76 0,000259 0,007227** 0,000179** 0,000003 0,358411** 0,352879 3,54
77 0,000297 0,005903** 0,000144** 0,000006 0,280831** 0,527107** 5,27
78 0,001124* 0,011166** 0,000217** 0,000021 0,626097** 1,111593 3,63
79 0,000378 0,008791** 0,000141** 0,000003 0,315523** 0,413985** 2,90
80 -0,000031 0,008275 0,000108 0,000022 0,003433 0,377380 10,43
81 0,000828** 0,005752** 0,000110** 0,000005** 0,165209** 0,225023** 1,37
82 0,000016 0,006422** 0,000177** 0,000012** 0,338610** 1,834843** 6,33
83 0,000415 0,007782** 0,000124** 0,000002 0,296313** 0,011812 3,64
84 0,000401 0,005160** 0,000101** 0,000004** 0,426593** 0,517322** 1,30
85 0,000494 0,002321** 0,000093** 0,000000 0,275580** 0,259745** 5,16
86 0,000398 0,007114** 0,000072** 0,000003 0,150148** 0,093268** 3,25
87 0,003429** 0,020237** 0,000541** 0,000001 0,418237** 0,420424** 4,32
88 0,000316 0,004931** 0,000184** 0,000011* 0,698633** 1,195637 2,12
89 0,000265 0,038437** 0,000218** 0,001783** 0,602895** 2,741132* 1,17
90 -0,000004 0,008261** 0,000115** 0,000006* 0,159434** 0,250851** 5,56
91 0,001053** 0,008996** 0,000137** 0,000025** 0,889680** 2,407741** 7,87
92 0,002545** 0,029124** 0,000449** 0,000298** 0,188494** 0,762121** 2,06
93 0,000493 0,010147** 0,000180** 0,000029** 1,005279** 3,151976** 1,73

Table 5: MDH model estimated parameters (2).
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APPENDIX B.3

Summary results

34



MDH Model
Data extension validity Contributions

Tauchen 90-day T-bills Explains
and futures market − Favorable Cov(R2

t , Vt) > 0
Pitts (1983)

Richardson Dow Jones30
and stocks E(Rt) 6= 0 Less favorable GMM test

Smith (1994)

Lamoureux 10 NYSE MDH explanation for
and stocks Cov(It, It−1) 6= 0 Unfavorable GARCH effects?

Lastrapes
(1994)

Andersen IBM common Non-informed Unfavorable to Volume decomposition:
(1996) stocks part of volume standard MDH; informed versus

Modified MDH unindormed part
does better. of volume

with market maker

Roskelley Dow Jones30 Cov(It, It−1) 6= 0 Unfavorable Moment
(2001) stocks simplification

Li and Dow Jones30 Extend Rejection of Non-informed traders
Wu (2006) stocks Andersen (1996): Andersen (1996); have negative impact

Non-informed part Validation on Cov(R2

t , Vt)
of return volatility of their model.

MDHL model FTSE 100 Extend Favorable Liquidity arbitragers
Stocks TP (1983): to standard MDH are strategic agents

and not noisy traders;
Information and to MDHL Extends standard MDH

and Liquidity by accounting for
shocks liquidity shocks;

Volume decomposition;
Proposes a new liquidity

measure.

Table 6: Paper contributions compared to previous literature.
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