
Measuring Volatility Regime Switching and Volatility Contagion: A Range-based 
Volatility Approach 

 
 

MIN-HSIEN CHIANG AND LI-MIN WANG* 
Institute of International Business, National Cheng Kung University, TAIWAN 

 
 

December 2008 
 
 

Abstract 
 
This article proposes a new approach to evaluate volatility regime switching and 
volatility contagion in financial markets. A time-varying conditional autoregressive 
range (TVCARR) model is proposed to capture possible regime switching in the 
range process. A misspecification test for the conditional autoregressive range (CARR) 
model against the TVCARR model is introduced. The finite-sample properties of the 
test are discussed by simulation. Copula functions are used to construct the bivariate 
TVCARR model. The approach is applied to the stock markets of the G71 in order to 
investigate the impact of the subprime mortgage crisis. The evidence shows that 
volatility regime switching and volatility contagion occurred in most of the seven 
markets. 
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1. Introduction 
 
As financial markets becoming increasingly integrated, the linkages of financial 
markets are believed to become an important mechanism for the transmission of 
financial shocks across countries. This dynamic linkage is of importance in risk 
management, asset pricing, and portfolio allocation. Most recent research on 
cross-country linkages has been carried out under the concept of contagion2 via 
modeling the temporal dependence of financial returns to investigate the 
co-movement of asset prices between financial markets. Although contagion 
necessarily entails a substantial change in the market linkages before and after a 
financial crisis, the linkages do not necessarily connect through asset returns. 
Research on the dependence structure of return-based volatility has also caused 
significant attention, as the relation between volatilities gives an interesting 
perspective with which to interpret causation in variance between financial markets.  
 
Even though return-based volatility is a well applied volatility measure in time series 
analysis, especially after the appearance of the (G)ARCH model, one drawback of this 
measure is that it has to be estimated via the return process since it is by nature 
unobserved property. As we know, the accuracy of estimated variables could be 
influenced by the estimation method and data quality. Another problem is less 
sensitivity when compared to the observed volatility measure, range-based volatility. 
Chou (2005) first proposed the concept of modeling range dynamically via the ACD 
framework and named the model “Conditional Autoregressive Range” (CARR). He 
shows that the CARR model provides sharper volatility estimates when compared 
with a standard GARCH model.  
 
This study aims at two main purposes. First, we will propose a time-varying CARR 
(TVCARR) model to investigate the regime switching dynamic volatility structure. 
By using time as the transition variable in the smooth transition function, this model 
can identify the location of regime switching for a range-based volatility process. In 
addition, the causality relationship between each process can also be investigated by a 
VAR framework. Therefore the behavior in each regime can be studied separately. 
Second, in order to investigate the contemporaneous dependence structure between 
different volatility processes, we construct a bivariate TVCARR (BTVCARR) model 
via a copula approach. Consequently, we can evaluate the dependence change of two 
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range-based volatility processes in different regimes and discuss the existence of 
volatility contagion. 
 
Aside from a variety of studies that focused on the presence of spillovers of shocks to 
market returns, there is a growing body of literature that considers the possibility of 
contagion taking place through spillovers of volatility across financial markets. These 
volatility spillover related studies aim at understanding how information is transmitted 
across assets and markets. Cheung and Ng (1996) indicated that changes in variance 
reflect the arrival of information, and the relation between information flow and 
volatility gives an interesting perspective from which to interpret the causation in 
variance between a pair of financial time series. Engle and Susmel (1993) argued that 
international markets might be uncorrelated in returns but related through their 
volatility. Engle et al. (1990) applied the GARCH model with a VAR framework to 
test the spillovers in daily exchange rate volatility across Japanese and American 
foreign exchange markets. They found that the intra-daily exchange rates across 
market segments present the meteor shower phenomenon, that is, intra-daily volatility 
spillovers from one market to the next. Hong (2001) indicated that the presence of 
volatility spillover means that the impact of one large shock not only increases the 
volatility of its own market but also other markets as well. If information comes in 
clusters, asset prices may exhibit volatility even if the market adjusts perfectly and 
instantaneously to the news. 
 
All of these papers show that market volatility is transmitted across countries. 
However, they do not explicitly test whether the extent of transmission changes 
significantly after a financial crisis. Lin et al. (1994) indicated that when volatility is 
high, the price changes in major markets tend to become highly correlated. Edwards 
and Susmel (2001) proposed a bivariate SWARCH model to investigate the behavior 
of volatility in Latin American markets and found that there is more evidence of 
volatility co-movement across countries than there is evidence of contagion stories. 
Unlike the aforementioned studies, Diebold and Yilmaz (2008) proposed a 
quantitative measure that directly used the opening, closing, highest, and lowest 
prices3, instead of using return-based volatility, in order to investigate the volatility 
spillover during both non-crisis and crisis periods. They found strong contagion in 
volatility but not in returns. 
 
In this study, the daily range series is used to measure volatility regime switching and 
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volatility contagion by the proposed TVCARR model. A misspecification test against 
the TVCARR model is also introduced. The results of the size and power simulation 
for the test show that the proposed test performs well when the sample size is large 
enough. In the empirical study, we apply the proposed approach to the daily ranges of 
seven developed stock market (the G7) indices in order to test the volatility regime 
switching and volatility contagion caused by the ongoing subprime mortgage crisis 
that has occurred since 2007. The evidence shows that the presence of causality in 
volatility between the U.S. market and other indices exists during the data period. A 
misspecification test indicates that five of the seven markets experience volatility 
regime switching caused by the subprime mortgage crisis. The copula approach also 
indicates contemporaneous dependence changes of volatility between the U.S. and the 
other five markets before and after the crisis. According to the evidence of 
contemporaneous dependence changes, we conclude that the volatility contagion 
occurs due to the subprime mortgage crisis.   
  
The article is organized as follows: In Section 2, we introduce the CARR model and 
derive the misspecification test against its time-varying counterpart, TVCARR model. 
Size and power simulations are also performed. In Section 3, properties of conditional 
copula are introduced. In Section 4, seven indices of the G7 are used to test the 
volatility regime switching and volatility contagion caused by the subprime mortgage 
crisis originating from the United States. We conclude in Section 5. 
 
2. Univariate dynamic volatility model 
 
Unlike the return-based volatility estimated by the GARCH-type models used in most 
volatility contagion studies, we resort to observable range-based volatility as the 
volatility measurement. In this section, the original CARR model with Burr error 
distribution will be introduced first and followed by the introduction of a time-varying 
CARR model. 
 
2.1. Burr-CARR model 
 
The Conditional Autoregressive Range (CARR) model was first proposed by Chou 
(2005). Let tP  be the logarithmic price of an asset at time t. The observed range is 

defined as }min{}max{ ττ PPRt −= , where .,...,21,11,1 t
n

t
n

tt +−+−−=τ  

Therefore, the range tR  is modeled as 
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This model is called the CARR model with exogenous variables (CARRX) model, 

where ltX , , for Ll ,,2,1 L= , are the exogenous variables, )(⋅f  is a general 

distribution over ),0( ∞  with parameter vector ϑ . 1−tI  is the information set 
available up to time 1−t . 
 
Since the range is non-negative, and the distribution is highly right skewed, there are 
several distributions to be chosen. The literature regarding ACD models provides a 
great number of options, such as exponential, Weibull, Burr, and Generalized gamma 
distributions, of which all are potential candidates. In the study, we use the Burr 
distribution as the conditional error term distribution for its flexibility with regard to 
capturing the distribution of daily range data. The correct specification of error 
distribution is important in fitting the CARR model since the misspecification of error 
distribution would subsequently influence the estimation accuracy of the copula 
approach. The density of Burr distribution is as follows: 
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where κ  and 2σ  are the shape parameters, which adjust the shape of the Burr 
distribution according to the behavior of the range data. 
The conditional density of range tR  is 
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2.2. Time-varying CARR model 
 
When modeling a financial series using a CARR model, it is unrealistic to assume that 
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the parameters of the conditional mean function are constant since the possibility of 
regime shifts caused by certain events occurred during the study period. In order to 
accommodate this situation, we propose a CARR model allowing for time-varying 
parameters and having the capacity to identify the location of structural shifts. This 
time-varying CARR (TVCARR) model5 is constructed as follows: 

tttR εξ= , 
μ
λξ )exp( t
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The transition variable ts  in the logistic transition function ),;( cγtsG  is defined as 
the day t  from the beginning of the sample to the end. The size of γ  governs the 
transition speed, and c  represents the potential switching time location. 
The log-likelihood function for observation tR  is 
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2.3. Misspecification test for the TVCARR model 
 
2.3.1. Linearity approximation for the TVCARR model 
 
Before estimating the parameters of the TVCARR model, the first step is to verify the 
adequacy for this alternative by conducting a misspecification test. The transition 
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function is first approximated by its first order Taylor expansion around 0=γ  since 
the adoption of the linear approximation in TVCARR model avoids the problem of 
nuisance parameters under the null. 

By the Taylor expansion, ),;( cγtsG  in (6) can be approximated as 
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where ],0[~ γγ ∈ . Then the conditional mean function can be reformulated as follows: 

( )

( ) ∑∑∑

∑∑∑

∑

∑ ∑

∑ ∑

∑

∑∑∑

∑∑

=
−

==
−

=
−

==
−

=

=
−

=

=
−

=

=

==
−

=
−

=
−

=
−

+++

+++

++=

⎟
⎠

⎞
⎜
⎝

⎛
⋅++

⎟
⎠

⎞
⎜
⎝

⎛
⋅++

⎟
⎠

⎞
⎜
⎝

⎛
⋅+=

⎟
⎠

⎞
⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

++≅

q

j
jt

l
tl

m

l
j

q

j
jtjj

p

i
it

l
tl

m

l
i

p

i
itii

l
tl

m

l

q

j
jt

l
tl

m

l
jj

p

i
it

l
tl

m

l
ii

l
tl

m

l

t
l

tl

m

l

q

j
jtj

p

i
iti

q

j
jtj

p

i
itit

scc

scc

scc

sc

sc

sc

sGsc

1 1

*

1
0

*

1 1

*

1
0

*

1

*
0

*

1 0

*

1 0

*

0

*

01

*

1

**

11

)(~~

)(~~

)(~)~(

)(~

)(~

)(~

),~;()(~

λγβλγββ

εγαεγαα

γωγωω

λγββ

εγαα

γωω

γγλβεαω

λβεαωλ

c

 

Let 0
* ~cw γωω += , 0

* ~ca iii γαα += , 0
* ~cb jjj γββ += , l

tll scd )(~*γω= , liil ce ~*γα= , 

and ljjl cf ~*γβ= , the formula above can be written as  

∑∑∑∑∑∑∑
=

−
==

−
===

−
=

− +++++≅
q

j
jt

l
t

m

l
jl

p

i
it

l
t

m

l
il

l
t

m

l
l

q

j
jtj

p

i
itit sfsesdbaw

1 11 1111
)()()( λελελ  . (9) 

Using the linear approximation above, we have transformed the original testing 
problem into testing the CARR(p, q) against the approximate alternative 
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According to the new expression, this model reduces to the null model when 0=ld , 

),,1( ml L= , 0=ile , ),,1,,,1( mlpi LL == , and 0=jlf , ),,1,,,1( mlqj LL == , 

and all parameters are identified under the null hypothesis. 
 
The next step of the misspecification test is to provide an accurate and powerful test 
statistic. Because of the structural similarity between the CARR model and the ACD 
model, we follow a procedure similar to that used in the theorem in Meitz and 
Terasvirta’s (2006) time-varying ACD model, and introduce the LM test statistic for 
the TVCARR model. 
  
2.3.2. LM test statistic 
 
Consider the generalized expression model (10). Let  
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has an asymptotic chi-squared distribution with Kqp )1( ++  degrees of freedom. 
 
For the proof, see Appendix A. 
 
2.3.3. Size simulations 
 
The data generating process used in the size simulation has the form 
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Two parameter settings are used in the simulation,  
Case 1: )1 ,4 ,95.0 ,1.0 ,1.0() , , , ,( 2 −=σκβαω ,  
Case 2: )1 ,5 ,95.0 ,15.0 ,15.0() , , , ,( 2 −=σκβαω   

Sample sizes are set as 000,5 ,000,2 ,000,1=T ; the replication is 10,000. The results 
of the experiments shown in Table 1 indicate that the proposed misspecification test 
performs well for 000,5=T . Some distortions are present when 000,1=T  and 
when 000,2=T . In general, a larger sample size is required for adopting the 
asymptotic chi-squared distribution. 
 
2.3.4. Power simulations 
 
To evaluate whether the testing performance is affected by the transition speed γ  
and the switching location c , two parameter specifications are used according to the 
estimation results from the empirical study. The data generating process has the 
following form: 
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The parameter settings of the two cases are as follows6: 
 
Case 3: )7.0 ,7.3 ,02.0 ,1.0 ,07.0 ,94.0 ,16.0 ,15.0() , , , , , , ,( 2*** −−−=σκβαωβαω  
Case 4: ).21 ,7.4 ,02.0 02.0 ,07.0 ,95.0 ,11.0 ,10.0() , , , , , , ,( 2*** −−−=σκβαωβαω  

                                                 
6 The parameter settings of Case 3 and Case 4 are the parameter estimates of SP and CAC in fitting 
TVCARR(1,1) model, respectively. 



 
The sample sizes are 000,2 and ,500,1 ,000,1=T ; with each experiment having 
10,000 replications. Three different settings of transition speed ( 0.1 and ,5.0 ,1.0=γ ) 
and three switching locations ( TTTc 75.0 and ,5.0 ,25.0= ) are considered for the 
experiments. The results in Table 2 show that the performance is good and has no 
relevance with γ  and c  as 000,2=T . A relatively slight power loss occurs when 

500,1 and 000,1=T . 
 
3. Bivariate time-varying CARR model 
 
3.1. The copula function 
 
The selection of a bivariate distribution for modeling bivariate financial time series 
data is essential but sometimes difficult. In this subsection, in order to handle the 
modeling in the bivariate time series flexibly, the copula function methodology is 
introduced7.  
 
Consider the two continuous random variables X  and Y  have marginal 
distributions )Pr()( xXxFX ≤= , and )Pr()( yYyGY ≤= . According to Sklar’s 
theorem, for continuous distribution, the joint distribution, 

),Pr(),( yYxXyxH ≤≤= , can be uniquely constructed by a copula C  such that, 
for all real number x  and y , one has the equality 

))(),((),( yGxFCyxH YX= .                        (12) 
Note that the copula does not constrain the choice of marginal distributions. Since the 
copula is based on ranks, the dependence is invariant under strictly increasing 
transforms. That is, the copula extracts the way in which x  and y  co-move, 
regardless of the scale used to measure them. Besides, copula is a convenient way of 
creating modeling dependence between random variables because it separates the 
marginal and the association part of a multivariate distribution. 
 
In order to apply the copula function to a financial time series area, Patton (2004) 
introduced the concept of the conditional copula, which relaxes the i.i.d. assumption 
in Sklar’s theorem. Let tH  be a conditional bivariate distribution function with 
continuous marginal distributions tF  and tG , and let 1−tI  be some conditional set. 
Then there exists a unique conditional copula tC : ]1,0[]1,0[]1,0[ →×  such that 

)|)|(),|(()|,( 1111 −−−− = tttttttttttt IIyGIxFCIyxH , Ryx tt ∈∀ , ,     (13) 

                                                 
7 A thorough introduction to copula is presented in Joe (1997), and Nelsen (2006). 



where }{±∞= URR . )|( 1−ttt IxF  and )|( 1−ttt IyG  are the conditional probability 

integral transforms of X  and Y  given the past information set 1−tI . In this study, 

tx  and ty  represent the residuals of two TVCARR models. 
 
Because the distribution of range data is highly right skewed, the joint distribution of 
two or more range series is far from the elliptical distribution. Therefore, the 
traditional dependence measure, the linear correlation coefficient, is no longer a 
satisfactory measure of the dependence in this study. The alternative selection is the 
use of non-parametric dependence measure, Kendall’s τ . The Kendall’s τ  can be 
calculated as the following formulas: 
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directly derived by the estimated dependence parameters in copula. The relationship 
will be introduced later. 
 
Another important feature of copula is the tail dependence. The tail dependence 
coefficient is defined as the probability that a random variable is higher (lower) than a 
certain threshold value, given that another random variable is higher (lower) than the 
threshold value. Supposing U  and V  are two random variables, the lower tail 
dependence, Lτ , and upper tail dependence, Uτ , are defined as follows: 

ε
εεεεεετ

εεε

),(lim)|Pr(lim)|Pr(lim
000

CUVVUL

→→→
=≤≤=≤≤≡ ,      (15) 

ε
εεεεεεετ

εεε −
+−

=>>=>>≡
→→→ 1

),(21lim)|Pr(lim)|Pr(lim
111

CUVVUU . (16) 

Two random variables exhibit lower tail dependence if 0>Lτ , and they exhibit upper 
dependence if 0>Uτ . This indicates that a positive Uτ  would imply a non-zero 
probability of observing an extremely large volatility of one series together with an 
extremely large volatility of the other series in this study. 
 
We consider two copulas which have different characteristics in terms of tail 
dependence. The Gumbel copula has upper tail dependence, while the 
Gumbel-Clayton copula has both upper and lower tail dependence since it mixes the 
Gumbel and Clayton copulas8. For notational convenience, set )(xFu X= , and 

                                                 
8 Table B1 presents the Kendall’s τ  and tail dependence information about the two copulas 
referenced herein. 



)(yGv Y= . The Gumbel copula is defined as  

}])ln()ln[(exp{);,( /1 ηηηη vuvuCG −+−−= ,            (17) 

where the parameter η  determines the dependence and tail dependence. The range of 
η  is ),1[ +∞ . The Gumbel-Clayton copula, called BB1 in Joe (2001), is defined as 
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If 0→δ , the Gumbel-Clayton copula becomes the Gumbel copula. 
 
One main purpose of this paper is to measure the volatility contagion effect. First, the 
breakpoint of the volatility structural shift can be identified by the TVCARR model. 
Then, the regime variation dependence between low and high regimes can be captured 
by the following regime switching setting in a conditional copula: 
Let 
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 if ),;|,(

);,|,(
1

1
1 κ

κ
κκ ,           (19) 

where Lκ  and Hκ  are the dependence parameters in the low and high regimes, 
respectively. bt  is the break time regarding the structural shift. Corresponding to the 
constant version of Gumbel and Clayton-Gumbel copulas given in (17) and (18), the 
same copulas with regime switching setting are called the regime switching version of 
the Gumbel and Clayton-Gumbel copulas. The four copulas (Gumbel and 
Clayton-Gumbel with constant and regime switching versions) are fitted in the 
empirical study. The AIC (Akaike's information criterion) is used in measuring the 
goodness-of-fit of the four copulas. If a constant version of the copulas is formally 
selected, then no dependence changes between two volatility regimes. On the other 
hand, the selection of a regime switching version of the copulas indicates that the 
series experiences dependence change before and after time bt , and this can be 
inferred as volatility contagion. 
 
3.2. Two-stage maximum likelihood estimation 
 
The density function of ),( ttt yxH  can be decomposed as the product of marginal 
densities and copula density.  

)|,()|()|()|,( 1111 −−−− ⋅⋅= tttttttttttttt IvucIygIxfIyxh , Ryx tt ∈∀ , ,  (20) 

where )|( 1−= tttt IxFu , )|( 1−= tttt IyGv , and )|,( 1−tttt Ivuc  is the density of 
)|,( 1−tttt IvuC . The joint log-likelihood function is then 



( )∑
=

−−− ++=
T

t
tttttttttt IvucIygIxfL

1
111 )|,(ln)|(ln)|(ln ,        (21) 

which permits an application of the maximum likelihood estimation in two stages: 
first the parameters of the marginals, tf  and tg , and then the parameters of the 
copula tc .   
 
4. Empirical application 
 
To illustrate the application of the bivariate TVCARR model discussed above, this 
section explores the turmoil in equity markets resulting from the subprime mortgage 
crisis originating from the U.S. since 2007. The subprime mortgage crisis is an 
ongoing economic event which became more apparent after mid-2007. It began with 
the bursting of the U.S. housing bubble and high default rates on subprime mortgages. 
 
The interest of this paper aims to study how this crisis influences the stock markets in 
the world. The purposes will be carried out by investigating the volatility regime 
switching and the volatility contagion between stock indices of seven major countries, 
the G7. In the following analyses, we use abbreviations to represent the seven indices. 
The labels are SP for the S&P 500, TSX for the S&P/Toronto Composite Index, FTSE 
for the Financial Times 100 stock index, DAX for the Deutsche Aktien Index, CAC 
for the French Cotation Automatique Continue index, MIB for the Milano Italia Borsa 
30 Index, and N225 for the NIKKEI 225 index. For simplicity, SP is also called the 
volatility “originator”, and the other six indices are also called the volatility 
“recipients”9. The daily ranges series used in this article are from Datastream, 
sampled at a daily frequency during periods from January 2, 2004 to September 30, 
2008. Fig. 1 displays the daily ranges of the seven stock market indices. 
 
Since the U.S. is serving as the numeraire country, the observations of each index are 
first extracted according to the trading days of the SP. The records with at least one 
missing value in the other six indices are then eliminated from the dataset. To allow 
for differences in the time zones between the stock markets in North America, Europe, 
and Asia, according to Bae et al. (2003), the log ranges10 of the N225 index are dated 
at calendar time t , while those of the other six indices are dated at calendar time 

1−t . 
 
4.1. Univariate analysis: preliminary results 
                                                 
9 The terminologies “originator” and “recipient” are borrowed from Edwards and Susmel (2001). 
10 The log range means the difference between the maximum and minimum of the logarithmic price of 
an index, as defined in Section 2. We call it “range” for the purpose of saving space hereafter. 



 
Table 3 provides sample statistics of range observations, including dependence 
measures Kendall’s τ  for the full sample period – January 2, 2004, to September 30, 
2008 (1086 observations). In Panel A, the averages and standard deviations of daily 
ranges in all seven indices are quite similar. The DAX has the highest average daily 
range (1.28%), and the FTSE has the highest daily range standard deviation (0.808%). 
The values of skewness and kurtosis indicate the nature of the right skewness and the 
leptokurtosis of the daily range. The Ljung-Box (LB) statistics suggest significant 
autocorrelation in all seven indices. Panel B presents the dependence matrix between 
the seven indices measured by Kendall’s τ . The dependence measure demonstrates 
that the SP is highly positively dependent in volatility with the other six indices. Not 
surprisingly, the SP has the strongest positive dependence with the TSX, while has the 
weakest dependence with the N225. In addition, dependence within regions (North 
America, Europe) is higher than dependence across regions. 
 
As the first step in our analysis of stock market volatility, we fit the CARR model for 
each one of the series. The results of the AIC, SBC, and likelihood ratio test in Table 4 
indicate that the CARR(1,1) model is adequate with regard to the SP, TSX, DAX, and 
CAC, while the CARR(2,2) is adequate with regard to the FTSE, MIB, and N225. 
Table 5 represents the parameter estimates and the p-values of the misspecification 
LM test for each indices11. The estimates of 1β  (or 21 ββ + ) indicate high-volatility 
persistence over time for all of the series. Hamilton and Susmel (1994) indicated that 
the observed high persistence of shocks to conditional volatility implies a potential 
structural break in volatility. We will discuss this property hereafter.  
 
Before the discussion of the TVCARR model and its application to the subprime 
mortgage crisis, we first investigate the causality for the volatility of the seven indices. 
Following the definition of causality in Granger (1969), causality in volatility is 
defined as the effects of one foreign market’s daily ranges on the subsequent domestic 
daily ranges. Therefore, to analyze the direction of causality in volatility, the 
exogenous variable, lagged ranges of the other ( 1−′tR ), is included in the CARRX 
models to examine the causality from originator to recipients, and vice versa. 
 
Table 6 presents the parameter estimates of six originator-recipient pairs of CARRX 
models. For the four VAR-type pairs, SP—TSX, SP—CAC, SP—FTSE, and 
SP—MIB, the estimates of Rφ  with respect to SP are significant, which indicate that 
the four indices—TSX, CAC, FTSE, and MIB, cause SP in volatility through their 

                                                 
11 Quasi maximum likelihood estimation is used in the parameters estimation in this study. 



lagged ranges 1−tR . On the other hand, the estimates of Rφ  with respect to CAC, 
FTSE, and N225 of the three VAR-type pairs, SP—CAC, SP—FTSE, and SP—N225, 
are significant. This indicates that SP causes CAC, FTSE, and N225 in volatility. SP 
and DAX do not present the causality in volatility for each other.  
 
4.2. Regime switching analysis: time-varying CARRX (TVCARRX) model 
 
The results from the preceding section provide some preliminary evidence of daily 
ranges fitted by the CARRX model. According to the aforementioned high volatility 
persistence results, the regime switching model may be another good choice to model 
these daily range series. In this subsection, we first evaluate the structural break effect 
for each range series by using the misspecification test proposed in section 212. Then 
the TVCARR models are applied to the series rejected by the test. The results of the 
misspecification test are shown in Table 5. Five of the seven indices with the 
exception of DAX and N225 are formally rejected by the misspecification test and 
identified to have one regime shift during the sample period under the linearity 
hypothesis. Table 7 presents the parameter estimates of the five TVCARR and of the 
two CARR models.  
 
The first regime with parameter estimates of 2121  , , , , ββααω  represents the dynamic 
status of conditional mean ranges at the location time c since the transition function 
is ),;( csG t γ , not ),;( csG t γ . The dynamic behavior of conditional ranges departed 
from location time c would be adjusted by the second regime with parameter 
estimates of *

2
*
1

*
2

*
1

*  , , , , ββααω  as well as the parameter estimates of c ,γ in the 
transition function. The transition variable ts , representing the trading days from the 
beginning of the sample to the end, is first standardized to obtain values between 0 
and 1 for numerical stability when conducting estimation. Hence the estimates of cs 
are all between 0 and 1. As the major purpose of this study is to measure volatility 
contagion from SP to recipient markets, we focus on the c estimate of the SP. The 
estimate of c in the SP market is 0.749, represented by the 813th observation, which 
also corresponds to the trading day July 18, 2007. Therefore, the day July 18, 2007 is 
identified as the breakpoint of volatility regime switching. Daily ranges before this 
day are regarded as low volatility regime, and those after are regarded as high 
volatility regime.  
 
The same exogenous variables fitted in CARRX models are included again in 

                                                 
12 The number for the breakpoint is set as one ( 1=m ) to precisely capture the subprime mortgage crisis 
event even though the proposed method is able to detect one more regime switching breakpoint. 



modeling the six originator-recipient VAR-type pairs of TVCARRX models to 
investigate the causality in volatility. The parameter estimates are given in Table 8. 
The significant estimates of Rφ  with respect to the SP of the SP—TSX and 
SP—N225 pairs indicate that the TSX and the N225 cause SP in volatility. On the 
other hand, the significant estimates of Rφ  with respect to the FTSE, MIB, and N225 
of the SP—FTSE, SP—MIB and SP—N225 pairs indicate that the SP causes the 
FTSE, MIB, and N225 in volatility. The differences of causality in volatility with 
respect to the SP between low and high volatility regimes is pronounced ( *

Rφ ) for the 
SP—TSX pair. This positively estimated value of *

Rφ  indicates that the strength of 
causality in volatility of the TSX to the SP is stronger in the high volatility regime 
than it is in the low volatility regime. Similarly, we find that the strength of causality 
in volatility of the SP to the MIB has the same result. 
 
4.3. Bivariate analysis: A Copula approach 
 
Because the conditional copula is a function of conditional probability integral 
transforms in residuals of the TVCARRX model, the accuracy of dependence 
measured by the copula method is based on the correctness of the density 
specification of the TVCARRX models. The misspecification of marginal 
distributions would lead to incorrect probability integral transforms, thus affecting the 
accuracy of the estimated dependence. Hence, two essential examinations to evaluate 
the goodness-of-fit of CARRX (or TVCARRX) model are performed before the 
copula approach. The first one is the Lagrange Multiplier (LM) test provided by 
Diebold et at. (1998) and applied by Patton (2004) for testing serial dependence in the 
probability integral transforms of the AR-GARCH model. In this study, the test is 
performed by examining the serial correlation of k

t uu )( −  and k
t vv )( − , for 

Tt ,,1L= , 4,,1L=k , where tu  and tv  represent the probability integral 
transforms of residuals of originator and recipient models, separately. This test is 
carried out by regressing k

t uu )( −  and k
t vv )( −  on their own 15 lags. The test 

statistic, 2)15( RT − , a function of coefficient of determination 2R  then follows 
)15(2χ  distribution under null hypothesis. The results (labeled )(kindep in p-values) 

in Table 8 indicate almost all the first four moments are serially uncorrelated for all of 
the six pair models13. The second is the density specification test. If the error term 
distribution in the CARRX (or TVCARRX) model is correctly specified, the 
distribution of probability integral transforms will be Uniform(0,1). The 
Kolmogorov-Smirnov (KS) test is used to test the density specification. Each pair in 
the CARRX (or TVCARRX) model passes the test, and the p-values of the KS test are 
                                                 
13 Only one statistic, )2(indep with respect to TSX in SP—TSX pair is significant at 5% level. 



given in Table 8. 
 
Two copulas, Gumbel and Clayton-Gumbel with constant and regime switching 
versions, are used to capture the dependence structure of the bivariate TVCARR 
model. Tables 9 and 10 present the separate estimated results of the Gumbel and 
Clayton-Gumbel copulas. According to the AIC statistic, regime switching Gumbel 
copula is adequate for the SP—FTSE model; the constant version of the 
Clayton-Gumbel copula is adequate for the SP—DAX model; while the regime 
switching version of the Clayton-Gumbel copula is adequate for the SP—TSX, 
SP—CAC, SP—MIB, and SP—N225 models. Hence, the dependence structure 
changes before and after the breakpoint of the SP’s volatility regime shift for five 
pairs except for the SP—DAX. The estimates of dependence parameters in high 
volatility regimes ( RSHG ,η  and RSHCG ,η ) are larger than estimates in low volatility 
regimes ( RSLG ,η  and RSLCG ,η ) for the five dependence change pairs. The estimates of 
Kendall’s τ  present the same results since τ  is an increasing function of η . 
Because the originator of the subprime mortgage crisis is known as beginning in the 
U.S., the dependence changes indicate that the volatility is contagious from SP to TSX, 
CAC, FTSE, MIB, and N225. In addition, the association between the SP and the five 
markets are stronger in a high volatility regime. The estimates of tail dependence in 
Clayton-Gumbel copulas indicate that a lower tail dependence is weak for daily range 
data, while upper tail dependence is pronounced and larger in a high volatility regime. 
Table 11 presents a summary of the estimates of Kendall’s τ  and the tail dependence. 
The high and low volatility regimes are separated by the estimated breakpoint of the 
SP index. Kendall’s τ  and the tail dependence are the estimated results extracted 
from Tables 9 and 10 according to the selected models. 
 
5. Conclusions 
 
In this paper, we propose a new approach to the study of volatility regime switching 
and volatility contagion. A Lagrange multiplier test has been developed for testing a 
linear CARR model against a time-varying CARR model. The Burr distribution is 
used as the error term distribution of the CARR/TVCARR model because of its 
superior flexibility in capturing the distribution of range data by two shape parameters. 
The dependence measurement resorts to copula functions for modeling the 
dependence structure between range series since bivariate distribution of range data 
cannot be easily specified. 
 
The results of the size simulation show that the proposed misspecification test 



performs well for a large sample size; some slight distortions are present otherwise. In 
the power simulation, the transition speed does not influence the performance, while 
time location causes some performance loss in the case of a small sample size. 
 
In the empirical study, we apply the proposed approach to the daily ranges of seven 
developed stock market indices. The evidence of causality in volatility analysis shows 
that the SP and other indices cause each other in volatility with the exception of the 
DAX. Five indices are tested to be adequate for the TVCARR model with the 
exception of the DAX and the N225. Therefore, the SP, TSX, CAC, FTSE, and MIB 
experience volatility regime switching caused by the subprime mortgage crisis. In the 
contemporaneous dependence analysis, the regime switching version of Gumbel 
copula is adequate for the SP—FTSE; the constant version of Clayton-Gumbel copula 
is adequate for the SP—DAX, while the regime switching version of Clayton-Gumbel 
copula is adequate for the other four pairs. According to the evidence of 
contemporaneous dependence, we conclude that volatility contagion occurs due to the 
subprime mortgage crisis.  
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Appendix A: Proof of LM test statistic 
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The quadratic form 
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follows an asymptotic chi-squared distribution )(2 dfχ  under the null hypothesis, 
and df is the dimension of 2θ . 
where 
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Appendix B: The two copulas used in the study 
 
Table B1. The properties of Gumbel and Clayton-Gumbel copulas 

Copula ),( vuC  Kendall’s τ  Lτ  Uτ  

Gumbel }])ln()ln[(exp{ /1 ηηη vu −+−−  11 −−η  0 η122 −

Clayton-Gumbel [ ]{ } δηηδηδ
11  1)1()1( 
−

−− +−+− vu ηδ
ηδ
)2(

2)2(
+

−+  δη12−  η122 −

 
 
 



Table 1. Size simulation of the Lagrange multiplier test for misspecification test 
  Case 1 Case 2 
  Significance Level Significance Level 

T  1% 5% 10% 1% 5% 10% 
1,000  0.01 0.07 0.12 0.02 0.07 0.13 

2,000  0.01 0.06 0.11 0.01 0.06 0.11 

5,000  0.01 0.05 0.11 0.01 0.05 0.10 

 



Table 2. Power simulation of the Lagrange multiplier test for misspecification test 
  Case 3 Case 4 
  c  c  

T γ   0.25T 0.5 T 0.75 T 0.25 T 0.5 T 0.75 T
1,000 0.1  0.842 0.967 0.960 0.993 0.968  0.821 

 0.5  0.836 0.965 0.953 0.993 0.962  0.812 
 1.0  0.835 0.958 0.960 0.995 0.958  0.815 

1,500 0.1  0.953 0.998 0.997 1.000 0.996  0.968 
 0.5  0.951 0.998 0.998 1.000 0.997  0.958 
 1.0  0.959 0.997 0.997 1.000 0.996  0.964 

2,000 0.1  0.991 1.000 1.000 1.000 1.000  0.996 
 0.5  0.991 1.000 1.000 1.000 1.000  0.996 
 1.0  0.992 1.000 1.000 1.000 1.000  0.995 

Note: Significance level is 5%.



Table 3. Summary statistics of daily ranges on G7 stock market indices, January 2, 
2004, to September 30, 2008 
 Panel A. Descriptive statistics 
  SP TSX DAX CAC FTSE MIB N225 
Mean (%) 1.125  1.116 1.280 1.185 1.197 1.035  1.271 
Std Dev (%) 0.715  0.695 0.686 0.726 0.808 0.635  0.677 
Skewness 3.029  2.958 2.287 3.016 3.118 2.893  1.511 
Kurtosis 21.806  20.090 14.667 20.864 21.430 18.229  6.372 
Min (%) 0.247  0.262 0.302 0.297 0.232 0.282  0.299 
Max(%) 8.872  8.200 7.547 8.483 9.688 6.515  5.112 
T  1,086 1,086 1,086 1,086 1,086 1,086 1,086 

)15(LB  2,289 2,128 1,747 2,136 2,974 1,769 1,412 

 Panel B. Dependence matrix: Kendall’s τ  
  SP TSX DAX CAC FTSE MIB N225 
SP 1.00        
TSX 0.43  1.00       
DAX 0.39  0.28  1.00     
CAC 0.41  0.30  0.64 1.00    
FTSE 0.41  0.37  0.47 0.55 1.00   
MIB 0.40  0.32  0.54 0.62 0.51 1.00   
N225 0.21  0.21  0.21 0.24 0.23 0.22  1.00 
 

τ  



Table 4. Model selection by AIC, SBC, and likelihood ratio test 
  Models AIC SBC LL LR test 
SP CARR(1,1) 1.085 1.108 -584.21 0.252 
 CARR(2,2) 1.086 1.118  -582.83  

TSX CARR(1,1) 1.014 1.037 -545.39 0.174 
 CARR(2,2) 1.014 1.046 -543.64  

DAX CARR(1,1) 1.240 1.263 -668.27 0.121 
 CARR(2,2) 1.240 1.272 -666.16  

CAC CARR(1,1) 1.070 1.093 -576.18 0.608 
 CARR(2,2) 1.073 1.105 -575.68  

FTSE CARR(1,1) 1.011  1.034 -543.92 <0.001 
 CARR(2,2) 0.992 1.024 -531.57  

MIB CARR(1,1) 0.825 0.848 -442.96 <0.001 
 CARR(2,2) 0.812 0.845 -434.10  

N225 CARR(1,1) 1.351 1.374 -728.64 0.002 
  CARR(2,2) 1.344 1.376 -722.54  

Note: AIC represents the Akaike Information Criterion. SBC represents the Schwarz 
Bayesian Criterion. LL denotes the log-likelihood function. LR test represents the 
likelihood ration test. The values present in LR test are p-values. The CARR(3,3) 
model is also considered but yields insignificant results. The p-values less than 0.1 are 
shown in boldface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Parameter estimates of CARR(1,1) and CARR(2,2) models and the p-values of misspecification LM test 
  SP TSX DAX CAC FTSE MIB N225 
  Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err 
ω  -0.150 0.017  -0.181 0.017 -0.129 0.022 -0.123 0.025 -0.322 0.055 -0.266 0.062 -0.029 0.030  

1α  0.145 0.016  0.166 0.016 0.119 0.020 0.112 0.024 0.152 0.026 0.114 0.027 0.188 0.027  

2α          0.151 0.028 0.117 0.028 -0.161 0.032  

1β  0.982 0.008  0.977 0.009 0.987 0.008 0.985 0.009 -0.014 0.014 -0.013 0.013 1.661 0.226  

2β          0.979 0.013 0.976 0.011 -0.663 0.223  

κ  3.760 0.169  4.354 0.200 4.729 0.214 4.749 0.226 4.506 0.212 5.081 0.188 4.316 0.251  
2σ  0.752 0.112  1.061 0.108 1.159 0.124 1.201 0.145 1.000 0.135 1.438 0.132 1.092 0.155  

LL  -584  -545  -668  -576  -544  -443  -723  

Misspecificantion 
LM test <0.001  <0.001  0.337  0.001  <0.001  <0.001  0.098  

Note: 1. Model: t
t

tR ε
μ
λ )exp(

= , ∑∑
=

−
=

− ++=
2

1

2

1 j
jtj

i
itit λβεαωλ . 

2. κ  and 2σ  represent the parameters of Burr distribution. LL denotes the log-likelihood function. The values of misspecification LM 
test are p-values. The estimated parameters with p-values less than 0.05 are shown in boldface. 

 



Table 6. Parameter estimates of CARRX(1,1) and CARRX(2,2) models with the exogenous variables, lagged range of the other ( 1−′tR ), for each 
pair indices 
    SP TSX SP DAX SP CAC 
   Coef Std Err Coef Std Err Coef Std Err Coef Std Err  Coef Std Err Coef Std Err
ω   -0.162 0.021 -0.193 0.030 -0.162 0.023 -0.136 0.028 -0.168 0.019 -0.134 0.029 

1α   0.115  0.013 0.162 0.024 0.135 0.015 0.115  0.021 0.127 0.013 0.098 0.023 
2α               
1β   0.939 0.027 0.956 0.027 0.962 0.017 0.967 0.021 0.939 0.022 0.951 0.034 
2β               
Rφ   0.042 0.017 0.017 0.015 0.017 0.010 0.016 0.013 0.033 0.015 0.028 0.022 

κ   3.732 0.204 4.325 0.248 3.806 0.249 4.629 0.184 3.785 0.197 4.658 0.230 
2σ   0.708 0.123 1.038 0.153 0.778 0.161 1.088 0.144 0.759 0.125 1.129 0.148 

LL   -575  -544  -582  -666  -579  -571  

   SP FTSE SP MIB SP N225 
   Coef Std Err Coef Std Err  Coef Std Err Coef Std Err  Coef Std Err Coef Std Err
ω   -0.161 0.023 -0.263 0.063 -0.171 0.025 -0.018 0.240 -0.177 0.031 -0.279 0.048 

1α   0.123 0.017 0.157 0.021 0.124 0.018 0.135 0.033 0.149 0.017 0.145 0.025 
2α     0.023 0.043   -0.123 0.122   0.082 0.021 
1β   0.934 0.022 0.555 0.100 0.933 0.025 1.766 1.893 0.962 0.017 0.058 0.042 
2β     0.345 0.090   -0.771 1.790   0.865 0.043 
Rφ   0.031 0.013 0.074 0.030 0.044 0.018 0.004 0.067 0.019 0.013 0.040 0.012 

κ   3.725 0.207 4.376 0.255 3.783 0.186 5.119  0.591 3.772 0.198 4.304 0.254 
2σ   0.717 0.127 0.884 0.147 0.756 0.114 1.440 0.398 0.755 0.126 1.069 0.152 

LL   -579  -530  -579  -433  -582  -718  

Note: 1. Model: t
t

tR ε
μ
λ )exp(
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2. κ  and 2σ  represent the parameters of Burr distribution. LL denotes the log-likelihood function. The estimated parameters with 
p-values less than 0.05 are shown in boldface. 



Table 7. Parameter estimates of TVCARR(1,1) and TVCARR(2,2) models 
  SP TSX DAX CAC FTSE MIB N225 
  Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err 
ω  -0.148 0.021  -0.187 0.020 -0.129 0.022 -0.101 0.027 -0.165 0.065 -0.246 0.040 -0.029 0.030  

1α  0.160 0.014  0.187 0.019 0.119 0.020 0.110  0.036 0.169 0.027 0.113 0.018 0.188 0.027  

2α          0.065 0.036 0.111 0.020 -0.161 0.032  

1β  0.935 0.022  0.939 0.019 0.987 0.008 0.945 0.047 0.430 0.036 -0.062 0.031 1.661 0.226  

2β          0.406 0.042 0.923 0.028 -0.663 0.223  
*ω  -0.066 0.046  -0.066 0.048   0.065 0.056 -0.045 0.119 0.151 0.088   
*
1α  0.111  0.033  0.101 0.046   -0.019 0.072 0.001 0.071 -0.023 0.039   
*
2α          0.215 0.057 -0.042 0.042   
*
1β  -0.022 0.048  -0.026 0.035   -0.020 0.092 -1.066 0.113 0.036 0.066   
*
2β          0.870 0.074 0.024 0.059   

γ  5.089 0.755  2.283 1.190   1.364 0.636 0.663 1.183 1.054 0.165   
c  0.749 0.003  0.750 0.005   0.811  0.008 0.746 0.004 0.742 0.004   
κ  3.746 0.147  4.379 0.170 4.729 0.214 4.735 0.191 4.594 0.211 5.114 0.250 4.316 0.251  

2σ  0.714 0.101  1.053 0.108 1.159 0.124 1.168 0.113 1.000 0.124 1.421 0.145 1.092 0.155  

LL  -571  -536  -668  -568  -524  -428  -723  

Note: 1. Model: t
t
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λ )exp(

= , ),;(
2

1

*
2

1

**
2

1

2

1

csG t
j

jtj
i

iti
j

jtj
i

itit γλβεαωλβεαωλ ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++= ∑∑∑∑

=
−

=
−

=
−

=
−  

2. κ  and 2σ  represent the parameters of Burr distribution. LL denotes the log-likelihood function. The estimated parameters with 
p-values less than 0.05 are shown in boldface.  

 



Table 8. Parameter estimates of TVCARRX(1,1) and TVCARRX(2,2) models with the exogenous variables, lagged range of the other ( 1−′tR ) 
    SP TSX SP DAX SP CAC 
   Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err 
ω   -0.117 0.026 -0.182 0.028 -0.163 0.034 -0.136 0.028 -0.158 0.026 -0.097 0.026  

1α   0.083 0.023 0.183 0.026 0.142 0.028 0.115 0.021 0.145 0.023 0.085 0.023  

2α               
1β   0.857 0.036 0.928 0.067 0.892 0.043 0.967 0.021 0.898 0.040 0.904 0.058  

2β               
Rφ   0.058 0.016 0.000 0.025 0.027 0.016 0.016 0.013 0.027 0.016 0.031 0.019  
*ω   0.009 0.053 -0.080 0.057 -0.034 0.055   -0.043 0.054 0.104 0.047  
*
1α   -0.030 0.047 0.091 0.055 0.135 0.053   0.109 0.040 -0.054 0.047  
*
2α               
*
1β   -0.163 0.069 -0.065 0.135 0.039 0.078   -0.026 0.081 -0.057 0.106  
*
2β               
*
Rφ   0.087 0.030 0.030 0.050 -0.042 0.031   -0.013 0.031 0.007 0.035  

γ   5.089  2.283  5.089    5.089  1.364  

c   0.749  0.750  0.749    0.749  0.811  

κ   3.711 0.171 4.386 0.206 3.815 0.156 4.629 0.184 3.773 0.180 4.661 0.155  
2σ   0.662 0.108 1.057 0.121 0.744 0.091 1.088 0.144 0.724 0.116 1.111 0.103  

LL   -561  -535  -564  -666  -568  -564  

KS   0.260  0.218  0.363  0.374  0.283  0.402  

)1(indep   0.331  0.623  0.233  0.871  0.243  0.435  

)2(indep   0.596  0.044  0.563  0.504  0.461  0.614  

)3(indep   0.722  0.183  0.655  0.290  0.642  0.464  

)4(indep    0.438  0.109  0.407  0.563  0.348  0.356  

Note: 1. Model:  
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Table 8. Continuous 
   SP FTSE SP MIB SP N225 
   Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err Coef Std Err 
ω   -0.154  0.026  -0.119 0.046  -0.163 0.040  -0.229 0.004  -0.184 0.034  -0.279 0.048  

1α   0.152  0.018  0.072 0.036  0.149 0.022  0.107 0.005  0.153 0.020  0.145 0.025  

2α     0.009 0.043    0.080 0.003    0.082 0.021  

1β   0.916  0.037  0.480 0.122  0.905 0.044  0.005 0.014  0.861 0.052  0.058 0.042  

2β     0.247 0.094    0.792 0.000    0.865 0.043  

Rφ   0.015  0.015  0.103 0.027  0.029 0.022  0.031 0.004  0.049 0.022  0.040 0.012  
*ω   -0.052  0.050  0.338 0.088  -0.037 0.074  0.225 0.012  -0.102 0.070    
*
1α   0.122  0.039  -0.170 0.066  0.127 0.042  -0.073 0.010  0.094 0.040    
*
2α     -0.072 0.075    -0.081 0.006      
*
1β   -0.007  0.069  0.121 0.234  0.017 0.082  0.184 0.017  -0.136 0.110    
*
2β     -0.341 0.178    -0.225 0.010      
*
Rφ   -0.023  0.030  0.084 0.056  -0.046 0.035  0.037 0.008  0.072 0.043    
γ   5.089   0.663  5.089  1.054  5.089    
c   0.749   0.746  0.749  0.742  0.749    
κ   3.756  0.167  4.518 0.229  3.791 0.168  5.151 0.333  3.782 0.185  4.304 0.254  

2σ   0.715  0.109  0.908 0.134  0.734 0.108  1.417 0.035  0.723 0.106  1.069 0.152  

LL   -569  -506  -567  -419  -566  -718  

KS   0.281   0.310  0.307  0.600  0.326  0.184  

)1(indep   0.274   0.999  0.202  0.998  0.098  0.133  

)2(indep   0.420   0.632  0.615  0.306  0.414  0.248  

)3(indep   0.693   0.929  0.626  0.996  0.422  0.278  

)4(indep    0.320   0.670  0.365  0.244  0.300  0.578  

Note: 2. κ  and 2σ  represent the parameters of Burr distribution. LL denotes the log-likelihood function. KS  denotes the 
Kolmogorov-Smirnov statistic. Statistics )(kindep , 4,3,2,1=k  denote the independence test. The estimated parameters with p-values 
less than 0.05 are shown in boldface. 

 



Table 9. Parameter estimates of constant and regime switching versions of Gumbel copula 
Gumbel copula  SP—TSX SP—DAX SP—CAC  SP—FTSE SP—MIB SP—N225 
   Coef Std Err Coef Std Err Coef Std Err  Coef Std Err Coef Std Err Coef Std Err 

CONSTG ,η   1.451 0.032 1.356 0.030 1.331 0.030  1.302 0.028 1.318 0.030 1.069 0.020  

RSLG ,η   1.399 0.036 1.323 0.032 1.281 0.031  1.265 0.029 1.273 0.030 1.035 0.013  

RSHG ,η   1.623 0.072 1.450 0.053 1.484 0.062  1.417 0.064 1.455 0.064 1.181 0.046  

CONSTG ,τ   0.311 0.015 0.263 0.016 0.249 0.017  0.232 0.017 0.242 0.018 0.064 0.018  

RSLG ,τ   0.285 0.019 0.244 0.018 0.219 0.019  0.210 0.018 0.214 0.018 0.034 0.012  

RSHG ,τ   0.384 0.027 0.310 0.025 0.326 0.028  0.294 0.032 0.313 0.030 0.153 0.033  
U

CONSTG ,τ   0.387 0.017 0.333 0.019 0.317 0.020  0.297 0.020 0.308 0.021 0.087 0.023  
U

RSLG ,τ   0.359 0.021 0.311 0.021 0.282 0.022  0.270 0.021 0.276 0.022 0.046 0.017  
U

RSHG ,τ   0.467 0.029 0.387 0.028 0.405 0.031  0.369 0.036 0.390 0.034 0.201 0.041  

CONSTGLL ,   150.0  105.2  95.8   84.2  88.4  7.1  

RSGLL ,   153.8  106.8  99.9   86.6  91.7  11.2  

CONSTGAIC ,   -0.274  -0.192  -0.175  -0.153  -0.161  -0.011  

RSGAIC ,   -0.279  -0.193  -0.180  -0.156  -0.165  -0.017  

Note: LL denotes the log-likelihood function. AIC represents the Akaike Information Criterion. The first subscript of each coefficient notation 
G  denotes the Gumbel copula, while the second subscript denotes constant version (CONST ), regime switching version ( RS ), regime 
switching version in low volatility regime ( RSL ), and regime switching version in high volatility regime ( RSH ). The standard errors of τ  
and Uτ are calculated by delta method. The estimated parameters with p-values less than 0.05 are shown in boldface. 
 
 
 
 
 



Table 10. Parameter estimates of constant and regime switching versions of Clayton-Gumbel copula 
Clayton-Gumbel copula  SP—TSX SP—DAX SP—CAC  SP—FTSE SP—MIB SP—N225 
   Coef Std Err Coef Std Err Coef Std Err  Coef Std Err Coef Std Err Coef Std Err 

CONSTCG ,δ   0.135 0.070 0.293 0.078 0.186 0.067  0.033 0.079 0.123 0.067 0.117 0.064  

CONSTCG ,η   1.382 0.046 1.223 0.036 1.246 0.038  1.287 0.051 1.261 0.039 1.032 0.022  

RSLCG ,δ   0.104 0.081 0.292 0.079 0.187 0.082  0.030 0.082 0.153 0.072 0.104 0.065  

RSLCG ,η   1.348 0.051 1.196 0.040 1.198 0.044  1.252 0.048 1.202 0.042 1.011 0.021  

RSHCG ,δ   0.219 0.146 0.292 0.134 0.211 0.151  0.033 0.151 0.070 0.127 0.094 0.139  

RSHCG ,η   1.499 0.093 1.304 0.076 1.381 0.090  1.400 0.102 1.421 0.076 1.144 0.061  

CONSTCG ,τ   0.322 0.030 0.287 0.030 0.266 0.030  0.235 0.039 0.253 0.031 0.085 0.032  

RSLCG ,τ   0.295 0.035 0.270 0.033 0.236 0.037  0.213 0.040 0.227 0.035 0.060 0.033  

RSHCG ,τ   0.399 0.051 0.331 0.051 0.345 0.058  0.297 0.068 0.320 0.052 0.165 0.066  
U

CONSTCG ,τ   0.349 0.027 0.238 0.030 0.256 0.030  0.286 0.037 0.267 0.029 0.043 0.028  
U

RSLCG ,τ   0.328 0.033 0.215 0.035 0.216 0.038  0.260 0.037 0.220 0.035 0.015 0.029  
U

RSHCG ,τ   0.412 0.045 0.299 0.053 0.348 0.054  0.359 0.059 0.371 0.042 0.167 0.059  
L

CONSTCG ,τ   0.024 – 0.144 0.068 0.050 0.011  0.000 – 0.011 – 0.003 – 
L

RSLCG ,τ   0.007 – 0.137 0.065 0.045 – 0.000 – 0.023 – 0.001 – 
L

RSHCG ,τ   0.121 0.148 0.162 0.124 0.092 0.118  0.000 – 0.001 – 0.002 – 

CONSTCGLL ,   151.8  114.8  99.7   84.3  90.2  9.4  

RSCGLL ,   155.8  116.3  104.1   86.7  94.0  13.2  

CONSTCGAIC ,   -0.276  -0.208  -0.180  -0.152  -0.162  -0.014  

RSCGAIC ,   -0.279  -0.207  -0.184  -0.152  -0.166  -0.017  

Note: LL denotes the log-likelihood function. AIC represents the Akaike Information Criterion. The first subscript of each coefficient notation 
CG  denotes the Clayton-Gumbel copula, while the second subscripts denote constant version (CONST ), regime switching version ( RS ), 
regime switching version in low volatility regime ( RSL ), and regime switching version in high volatility regime ( RSH ).The standard errors of 
τ , Lτ , and Uτ are calculated by delta method; notation “–” means the calculated Std Err is not a real value. The estimated parameters with 
p-values less than 0.05 are shown in boldface.



Table 11. Summary of the estimates of Kendall’s τ , and tail dependence for each selected model 
  SP—TSX  SP—DAX SP—CAC SP—FTSE SP—MIB  SP—N225

CONSTτ    0.287      

RSLτ   0.295   0.236  0.210  0.227  0.060  

RSHτ  0.399   0.345  0.294  0.320  0.165  
U
CONSTτ   0.238      
U
RSLτ  0.328   0.216  0.270  0.220  0.015  
U
RSHτ  0.412   0.348  0.369  0.371  0.167  
L
CONSTτ   0.144      
L
RSLτ  0.007   0.045   0.023  0.001  
L
RSHτ  0.121   0.092   0.001  0.002  

The selected model RSCGC ,  CONSTCGC , RSCGC ,  RSGC ,  RSCGC ,  RSCGC ,  
Note: RSGC , , CONSTCGC , , and RSCGC ,  denote the regime switching Gumbel copula, constant 
Clayton-Gumbel copula, and regime switching Clayton-Gumbel copula, respectively. The 
subscripts of the estimated parameters denote constant version (CONST ), regime switching version 
in low volatility regime ( RSL ), and regime switching version in high volatility regime ( RSH ).The 
estimated parameters with p-values less than 0.05 are shown in boldface. 
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