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ABSTRACT 

 

The main purpose of the paper is to review and extend the existing mutual fund timing 

research models. This paper represents the first attempt to bring together all of the biases 

affecting traditional timing models that have been identified by the literature and also all of 

the corrective measures applied to solve the spurious coefficient problem caused by these 

biases. Moreover, we develop a new timing model that includes option cost. To examine the 

precision of alternative mutual fund timing models we find that our new model is subject to 

least bias in testing timing ability of mutual fund managers.  
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I. INTRODUCTION 

It has traditionally been supposed that a manager’s success is determined by his/her 

ability to choose stocks that outperform other securities with a similar level of non-

diversifiable risk. This strategy is known as “stock-picking.” The other strategy employed by 

managers to improve their results is to seek to change their exposure to the market at the right 

moment. Specifically, a good manager will maintain a higher beta in a bull market and a 

lower beta in bear market. This is the “market timing” strategy. Market timing involves 

swapping securities with different betas or changing the proportion of the portfolio invested in 

different stocks.  

In any event, overall performance can be broken down into stock-picking and market 

timing. The split between these components of performance is an issue that has been widely 

discussed in the financial literature. There are useful reasons to break performance down into 

its constituent parts. First, the difference between timing and stock-picking throws light on the 

functioning of investment funds, and second, the resulting distribution of returns on assets 

may differ depending whether more private information is available concerning the aggregate 

market than individual companies or vice versa. 

In general, it has proven far from easy to break performance down into its two 

constituent parts. Some scholars, such as Rubio (1993), consider the distinction to be 

conceptually inappropriate because the two strategies are not statistically independent. 

Gallagher, Swan, and Ross (2007), however, propose a measure to assess the timing ability of 

a manager in relation to an individual security. This allows them to break stock-picking skill 

down into its two basic components: security selection and security timing. 

On the other hand, the empirical evidence suggests that the correlation between stock-

picking and market timing is usually negative. For example, the findings of Bollen and Busse 

(2001) based on a sample of 230 equity funds reveal an inverse relationship between timing 

coefficients and alphas. Fung, Xo, and Yau (2002) also find this inverse relationship in their 

study of global hedge funds. Meanwhile, Somasundaram (2007) examines the relative 

performance of a group of actively managed Indian equity funds and another group of 

passively managed index funds. The results support fund managers’ stock selection ability but 

find that they have negative market timing skill. This hypothesis of a negative correlation 

between timing and selectivity is also supported by Lhabitant (2001). 

Strangely, managers who are skilled at picking the right stocks for their portfolios 

seem less able to anticipate market movement and vice versa. Furthermore, negative timing 

coefficients are easily found in the financial literature. However, as Matallín, Moreno, and 

Rodríguez (2007) point out, it is hard to imagine that managers would systematically 
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synchronize their risks against the correct trend. These two rather counterintuitive results 

suggest that the parameter measuring timing may not adequately reflect managers’ true skills 

but a spurious coefficient. 

A number of scholars have sought to explain the possible causes of such a spurious 

timing coefficient. For example, Jagannathan and Korajczyk (1986) argue that it may be the 

result of a nonlinear payoffs structure due to the inclusion of options or leveraged assets in 

funds. Meanwhile, Matallín (2006) points to the effect of the omission of benchmark 

portfolios as a possible cause of the spurious timing coefficient. Pastor and Stambaugh (2002) 

argue that bias might continue to exist even if the number of benchmark portfolios were 

sufficiently increased to represent assets of any class due to the different weightings of the 

investment fund considered and the benchmark portfolios utilized. 

Ferson and Warther (1996) and Ferson and Schadt (1996) argue that a conditional 

assessment of results might help to estimate the timing ability of managers more accurately, 

while Edelen (1999) considers that the bias is caused by the impact of investor cash flows on 

the fund’s beta. However, Matallín et al. (2007) argue that negative timing could be due to the 

asymmetric behavior of individual stocks held in the fund. 

In this paper, our objective is to review the existing market timing models by first 

analyzing the traditional timing models by Treynor and Mazuy (1966) and Merton and 

Henriksson (1981). Then, we discuss the biases inherent in these models, which have been 

identified by the literature. We also examine the corrections proposed by literature and obtain 

a more reliable measurement of timing ability by proposing an alternative correction 

connected with volatility timing.  Finally, we propose a new correction to the Merton and 

Herniksson model that includes the cost of the option, and we demonstrate that our new 

model is subject to least bias in testing timing ability. 

The paper makes various contributions to the financial literature on market timing. 

First, we provide an extensive review of existing timing models, focusing on their biases 

documented in the financial literature. We conduct an empirical analysis that allows us to 

measure the impact of applying the corrective measures proposed by the literature (and some 

proposed here) to overcome these biases. Furthermore, we avoid the data snooping bias 

resulting from the repeated analysis of the US and UK markets and instead analyze data from 

the Spanish markets.1  Finally, we believe that the main contribution of this paper to the 

                                                 
1 In this regard, Ayadi and Kryzanowski (2004) and Hallahan and Faff (2001) maintain that the analysis of less 

intensely explored markets than allows academics and professionals to analyze markets with different 

institutional features and, therefore, to make an original contribution to the financial literature. 
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financial literature on market timing lies in the inclusion of the options price in the Merton 

and Henriksson model (1981). To the best of our knowledge, the impact of this correction in 

the measurement of timing ability has not been measured to date. 

The rest of this paper is organized as follows. In section II, we review the traditional 

timing models in such a way that we divide this section in several sub-sections, each 

evaluating one kind of bias affecting traditional timing models, and we also revise the 

proposed corrections implemented by literature to overcome these biases. Moreover, in this 

second section, we propose the inclusion of the option cost in the Merton and Henriksson 

model as a way of correcting the misspecification of the model, as well as a new model to 

analyze volatility timing. Section III describes the data base analyzed and briefly refers to the 

rapid growth in the Spanish investment fund industry in recent years. In section IV, we 

conduct empirical analysis in order to assess and compare all the corrections proposed by 

literature of timing models and our own proposals. We provide summary and concluding 

remarks in section V. 

 

II. REVIEW OF CORRECTIONS PROPOSED BY LITERATURE TO 

IMPROVE TIMING MODELS 

In this section, we review the possible causes for the emergence of spurious timing 

coefficients in the traditional timing models that have been identified by the existing 

literature, and we also expose the corrections proposed to improve the measurement of timing 

ability. We propose an alternative correction related to volatility timing. Finally, to address 

the misspecification of the Merton and Henriksson model, it is also presented our proposal of 

correction which includes the cost of the option.  

 

A. Market Return and Volatility Timing 

Existing market timing measures, such as those proposed by Treynor and Mazuy 

(1966) and Merton and Henriksson (1981), focus on the convexity of the portfolio return with 

respect to the market return, but they ignore the reaction of the portfolio to changes in market 

volatility. The timing models of Treynor and Mazuy (1966) and Merton and Henriksson 

(1981) can be expressed in the following generic form: 

111,1,
1

1, ++++
=

+ +++= ∑ tttmtj

k

j
jptp Srrr εγβα ,  (1) 

where βj is the loading to factor j. The timing term is St+1 = rm,t+1 in the Treynor and Mazuy 

model and St+1 = I( rm,t+1>0)  in the Merton and Henriksson model. The coefficient γ measures 

return timing. K equals 1 for the single-market factor model. rp,t+1 (rm,t+1) represents the excess 
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return on portfolio p (the market) with respect to the return on one month Treasury Bills at 

month t+1; βp is the portfolio beta, which varies with the timing signal received by the fund 

manager at time t; and εt+1 is the idiosyncrasic risk. 

These models describe how a fund manager with superior information should modify 

the portfolio beta given signals indicating a shift in future market returns. Assuming that a 

fund’s return is generated by the following model: 

,11,1, +++ ++= ttmpptp rr εβα  1,...,0 −= Tt .  (2) 

Assuming that E(εt+1)=0 and Cov (rm,t+1, εt+1)=0, if the portfolio beta βp is constant, the 

intercept is Jensen’s α, which measures stock-picking or micro-prediction ability (Jensen, 

1968; Fama, 1972). However Jensen (1972) shows that if fund managers follow market 

timing strategies, then the intercept of a model for which the beta is constant will not be 

capable of measuring either stock picking ability or overall stock-picking and market timing 

ability. 

Assuming that market exposure is variable over time, Admati, Bhattacharya, 

Pfleiderer, and Ross (1986) show that a utility-maximizing manager should display the 

following beta: 

( )
( )ttm

ttm
p srVar

srE

1,

1,

* +

+=
θ

β  ,   (3) 

where θ, which is assumed to be constant, represents Rubinstein’s (1973) measure of risk 

aversion; st is the timing signal received by the manager. Equation (3) shows how a manager 

following market timing strategies incorporates information into the management of the 

portfolio. Thus, beta should increase with the expected return on the market portfolio (i.e., 

E(rm,t+1|st)) and decrease with the rise in the expected market variance (i.e., Var(rm,t+1|st)), 

allowing the fund manager to increase the expected utility of his investments and thereby 

raise the performance of the portfolio. In this light, it would seem necessary to examine 

market timing skill from two dimensions: market return and volatility. 

In fact, in the same way as a manager may implement market timing strategies when 

receiving signals of changes in the market return, he/she may also implement timing strategies 

given a shift in market volatility. Indeed, signals indicating a change in market volatility are 

more likely to exist than signs of a switch in the direction of the market.2  

                                                 
2 Any assessment of volatility timing necessarily involves analysis of the robustness of results obtained with 

regard to the return timing. Indeed, Volkman (1999) finds evidence for contrary volatility and return timing in 

periods of high volatility. 
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A fund manager may modify his/her exposure to the market on the basis of his/her 

perceptions of market returns and risk. Even where he/she predicts a high level of returns on 

the market, she may refrain from taking significant positions without considering volatility, 

and vice versa. It is plausible to suppose that a fund manager would reduce the portfolio beta 

not only in the face of a market downturn but also in the presence of significantly anomalous 

returns. Consequently, if the attitude to risk aversion is rational, timing may be based on the 

expected volatility of returns. Taking this into account, we may conclude that expression (3) 

is consistent with the reality. 

In this paper, we apply the Busse (1999) model to measure fund managers’ market 

timing ability in terms of both volatility and returns.3 

( ) 11,1,
2

1,1,1, ++++++ +−+++= tmtmtmtmtmpptp rrrr εσσλγβα ,  (4) 

where 1, +tmσ  represents market volatility at t+1 and mσ  the mean for the period analyzed.4 

Hence, the third component in the right-hand side of (4) (γr2
m,t+1) represents timing ability 

with regard to the market return, and the fourth component ((λrm,t+1(σm,t+1- mσ  )) represents 

volatility timing ability. We note here that a positive gamma indicates successful timing in 

terms of market return, and a negative lambda indicates successful timing in terms of market 

volatility because it represents a lower exposure to the market in scenarios of increased 

volatility. 

It is clear that Busse (1999) constructs his measure of volatility timing on the basis of 

the Treynor and Mazuy (1966) model, substituting st+1=  for st+1=1, +tmr ( )mtm σσ −+1,  .  We 

propose an alternative measure based on the Merton and Henriksson (1981) model. This 

model is based on the option of portfolio restructuring. It assumes that the manager is only 

able to distinguish between a bull market (rm,t+1>0), in which case beta will be high, and a 

bear market (rm,t+1<0) when the portfolio will have a lower beta. Consequently, the 

relationship between the portfolio and the market return is reflected by the two straight lines 

with differing slopes that depend whether or not a bull market prevails. This nonlinear 

                                                 
3 Busse (1999) uses a Taylor series expansion to express market beta as linear function of the difference between 

market volatility and its time series mean.  

4 In this paper, following Chen and Liang (2007), we use two proxies for market volatility, the implied volatility 

and the realized market volatility. Moreover, following Busse (1999), we also consider estimating market 

volatility from conditional volatility models (EGARCH). We obtain the same inferences with the three proxies, 

so we only report in the results section the findings obtained when using the realized market volatility. 
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relationship can be estimated with two different regressions, or a single regression represented 

by an indicator function I{ rm,t+1>0}, which is equal to 1 if rm,t+1>0 and is otherwise equal to 

zero. 

 Following this reasoning, we now assume that the manager does not perceive any 

signals with regard to market returns but is only able to predict market volatility. 

Consequently, the manager will increase his/her exposure to the market when it is less volatile 

(i.e., when 1, +tmσ < mσ  ) and will maintain his/her beta when the market is more volatile. 

Hence, the indicator function is now based on market volatility: I{ 1, +tmσ - mσ <0}. In this case, 

the function will be equal to 1 if 1, +tmσ - mσ <0 and zero otherwise. Our proposal for the 

measure of volatility timing may therefore be expressed as follows:  

101,1,1,1, 1, +<−++++ +−++=
+

tmtmtmtmpptp mtm
rrr εσσδβα σσ , (5) 

such that δ multiplies rm,t+1 and the absolute value of the demeaned market volatility, with the 

condition of low market volatility ( 01, <−+ mtm σσ  ). A positive δ would indicate successful 

market volatility timing on the part of the fund manager, indicating an increase in market 

exposure in a low volatility scenario. Of course, managers can make mistakes in terms of 

returns, which would result in losses due to higher exposure in relatively stable markets or the 

loss of gains due to reduced exposure to the market in a more volatile scenario. However, it is 

not the objective of this model to determine market timing in terms of returns but of risk. 

Furthermore, it is plausible, as argued above, that a fund manager might reduce the portfolio 

beta not only in the face of a market downturn but also in the presence of significantly 

anomalous returns. 

We obtain our proposal of a joint market return and volatility timing measure that we 

shall apply in this paper by including (4) in the Merton and Henriksson (1981) model: 

( ) 101,1,1,1,1,1, 1,
)0 +<−++++++ +−+>++=

+
tmtmtmtmtmtmpptp mtm

rrIrrr εσσδγβα σσ ,  (6) 

where  γ measures market return timing and δ volatility timing ability. 

 

B. Availability of Public Information 

The Treynor and Mazuy (1966) model is based on the existence of a convex 

relationship between the return on the fund and the market return, provided that the manager 

increases (decreases) the exposure of the portfolio to the market (specific risk) prior to 

increases (decreases) in the market itself (i.e., the benchmark index). This is what is known as 

market timing.  Nevertheless, this convex relationship may appear for reasons other than the 
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actual timing activity. One possible cause could be a common time variation in the portfolio 

beta and the expected market risk premium due to public information (i.e., information known 

by investors) about the economic cycle. 

Traditional timing models fail to consider this possibility. Ferson and Schadt (1996) 

and Ferson and Quian (2004), however, propose a conditional version of traditional timing 

models expressed as follows: 

111,1,1,1, )(' ++++++ ++++= tttmtmtptmpptp SrrZrr εγββα ,   (7) 

where Zt is a vector of economic cycle information variables, which can predict the market 

risk premium, and β’p(Ztrm,t+1) controls for the common time variation in the risk premium 

and the portfolio beta due to public economic information.  

Furthermore, the timing coefficient also varies over time. Indeed, it can be shown that 

this variable depends both on the accuracy of the signal the manager receives and his/her 

aversion to risk. The accuracy of the signal varies over time because it depends on economic 

conditions, and it would therefore appear reasonable to assume that the manager will receive 

information with a greater or lesser degree of uncertainty. Risk aversion may also change over 

time, and it tends to increase in adverse economic circumstances and decrease in more 

buoyant times. Hence, model (7) may be expanded to allow the timing coefficient to vary 

with the economic cycle: 

111,11,1,1,1, )(')(' ++++++++ +++++= tttmtpttmtmtptmpptp SrZSrrZrr εγγββα , (8) 

where the term γ’p(Ztrm,t+1St+1) captures the variability of the manager’s timing ability over the 

economic cycle due to the use of public information. 

Conditional models, then, separate fund management results into the component that is 

due to the use of public information accessible to the market as a whole and that which is the 

value-added by the manager as a result of the possession and use of superior information that 

is not available to any investor. Empirical evidence supports the use of specification (8). 

Furthermore, allowing time variations in conditional timing ability reveals that managers 

following timing strategies tend to do better when: the slope of the interest rate curve is high 

(i.e., higher long term than short term interest rates; future economic expansion); short term 

corporate debt markets are relatively more liquid; and aggregate liquidity in equities is higher. 

In fact, higher liquidity reduces the cost of timing activities. 

 

C. Dynamic Trading Effect 

Most studies on timing, including this one, are based on monthly data. However, this 

data frequency might fail to capture the contribution of a manager’s timing activities to fund 
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returns. Indeed, as Bollen and Busse (2001) have shown, it is possible that decisions 

regarding market exposure are likely made more frequently than monthly for most funds.  

Goetzmann, Ingersoll, Ivkovich (2000) show that measures based on returns are biased 

downward when funds engage in active timing and trade between the observation dates of 

fund returns. For example, when funds engage in daily timing, return timing measures that 

use monthly fund returns tend to underestimate timing ability. Jiang et al. (2005) call this the 

“dynamic trading effect,” arguing that it may introduce an artificial timing bias in returns-

based tests.  

To illustrate this effect, let us consider a case where a fund trades in each period, but 

returns are observed every two periods. Suppose a manager has no active timing ability but 

adjusts the fund beta during the second period conditional on the realized market return in the 

first period. This leads to a correlation between the fund beta in the second period and the 

market return over the first, and this further induces a seemingly contemporaneous nonlinear 

relation between the realized two-period fund and market returns. For example, a positive 

feedback manager who increases his/her market exposure after a market run-up would display 

positive artificial timing. Consequently, certain common, and apparently innocuous, trading 

strategies may generate nonlinear relationships between fund and market returns. 

This effect is also known in the literature as “interim trading” because it is the result of 

fund trading activities between the return observation dates. It may also cause return-based 

tests to underestimate the true market timing ability, and Goetzmann et al. (2000) in fact 

perform simulations to show that Merton’s and Henriksson’s measure based on monthly fund 

returns presents a downward bias and loses explanatory power when funds engage in daily 

market timing strategies. 

Goetzmann et al. (2000) propose a simple solution to the problem of timing 

measurement based on monthly returns for a manager engaged in daily timing activities. They 

solve this problem without the need of collecting daily returns. The solution is to take the 

daily returns to an index that is correlated to the timer’s risky asset. Values of a daily put on 

the index are cumulated over each month to form a regressor that captures timing skill. This 

factor is expressed as follows: 

{ } tm

N

fmtm RRRP ,
1

,,, 11,1max −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∏

=τ
ττ ,   (9) 

where Pm,t represents the value added by perfect daily timing per monetary unit of assets in 

the fund. Even though the daily returns on the risky assets by the timer are not available, as 

long as the returns on the assets considered to construct the factor Pm,t are highly correlated 
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with them, Pm,t thus captures daily timing. N is the number of days in month t, Rm,τ  is the 

market return on day τ, and Rf,τ is the return on the risk-free asset on the day in question.  

We can capture the correlation between the monthly return on the fund and the 

monthly value of daily timing by including this factor in the following regression, which 

employs monthly returns: 

1,1,1,1, ++++ +++= tptmptmpptp Prr εγβα     (10) 

In short, then, the value of a monthly put on the market (i.e., the Merton and 

Henriksson model) is substituted by a rolling account through the month of the gains to obtain 

a sequence of daily market puts. These sequential put contracts are known as “tandem 

options.” Tandem options are defined as a sequence of options in which the strike price is 

reset daily to the product of the present value of the risky asset and the gross daily return on 

the risk-free asset for the day in question. 

The accumulation of daily puts requires the behavioral assumption about the strategy 

followed by the perfect daily timer. Every day, the perfect daily timer will take the proceeds 

from the payoff from the daily put option that expires on that day (being the option ITM, or 

“in the money”) and will invest these amounts in the same way as the rest of the portfolio. 

Thus, if the timer predicts positive excess returns, he/she will take a 100% position (investing 

both the “old” funds and the new payoff obtained from the daily put) in the risky asset. In 

contrast, a timer who forecasts a negative excess return will take a 100% position in the risk-

free asset. This assumption is in line with the notion that the least a perfect daily timer could 

do with the proceeds from the daily put is to invest it in the risk-less asset and thus earn zero 

excess return. 

Ferson et al. (2006) also seek a solution to interim trading bias. To this end, they 

employ a continuous-time asset pricing model because a continuous-time model should, in 

theory, price portfolio strategies that do not employ private information. Specifically, these 

scholars include time-average state variables suggested by the pricing model as additional 

control factors.  

They show that time aggregation of state variables in an asset pricing model for 

discrete returns measured over the period from month t to t+1 leads to the following 

stochastic discount factor: 

[ ]( )tt
x
ttt xxcAbam −++= +++ 111 ''exp ,    (11) 

where x is the vector of state variables in the model and AX
t+1 = Σi= 1,…1/Δ x(t+(i-1)Δ)Δ 

represents the time-averaged levels of the state variables over the return measurement period. 

The measurement period is divided into periods of length Δ, which is equal to one trading 
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day. Hence, the empirical factors suggested by the stochastic discount factor are the discrete 

monthly changes in the state variables and their time averages within the month, i.e., (xt+1-xt) 

and AX
t+1, respectively. In this context, if the state variable is proxied by the logarithm of the 

market price level (i.e., xt = ln(Pt)), it would be possible to control for the problem of interim 

trading using the within-month average of the state variable.  

 Following Ferson et al. (2006) and Chen and Liang (2007), we have therefore included 

the monthly average of the logarithm of the market price level in the market timing 

regressions. 

 

D. The Value of the Option Implied in Timing Activities and the Passive Timing 

Effect 

Both the Treynor and Mazuy and the Merton and Henriksson timing models are option 

motivated. The quadratic regression employed by Treynor and Mazuy indicates that the 

portfolio beta fluctuates depending on the size of the market excess return. Thus, the slope is 

continually increasing from left (bear market) to right (bull market). On the other hand, the 

Merton and Henriksson model shows that the portfolio beta fluctuates between two values 

depending whether the market return is larger or lower than the risk-free rate. Both models 

thus rest on the notion of nonlinear payoff structures. Indeed, the quadratic regression 

exaggerates the option-like characteristics of the Merton and Henriksson model. 

However, the timing ability considered by these models can be understood as a free 

option. Thus, if we invest in options, we will have the same payoff structure as if we apply a 

market timing strategy, but the options have a non-negative cost. This implies that if funds 

invest in options (or similar instruments), the fall in returns as a result of the cost of the 

options will be transferred to the alpha coefficient. Since a positive timing coefficient in the 

Merton and Henriksson model is equivalent to purchasing a market put option without paying 

the price of the option, the reduction in the return from the cash paid for the purchase will 

show up as a negative alpha.  

Similarly, a negative timing coefficient is equivalent to selling a market put option 

without receiving the price for the option. Consequently, an increase in the return from the 

cash generated from the sale will show up as a positive alpha. Hence, a negative correlation 

should be expected between timing and selectivity measures when funds include options in 

their portfolios. 

In light of this, it is essential to recognize the cost of the option implied in timing 

models. To achieve this, we take the Merton and Henriksson model and consider the case of 

both the purchase and the sale of a put option (positive or negative timing coefficients, 

 11



respectively). We then assume that the (positive or negative) cash flow generated is invested 

(borrowed) in Treasury Bills at the risk-free rate. Hence, the new explanatory variable 

included would be as follows: 

( ) PRRRPut tftmtf )1(,0max' 1,1,1, +++ +−−= ,   (12) 

where P is the price of the European market put with a strike price equal to the risk-free rate. 

Thus, where the usual specification is 

1,1,1, +++ +++= tpptmpptp Putrr εγβα ,    (13) 

and with Put = max (0, Rf,t+1-Rm,t+1), the new model will be 

1,1,1, '' +++ +++= tpptmpptp Putrr εγβα .    (14) 

The new model (14) will correctly predict α’p= 0, while specification (13) implies 

( )PR tfppp 1,
' 1 ++−= γαα  . Hence, when α’p= 0, the alpha in the usual specification is 

( )PR tfpp 1,1 ++−= γα  , which explains the negative correlation between the alphas and the 

timing coefficients estimated using (13). 

The cost of the option (implied in timing) required to apply specification (14) is 

obtained based on the Black-Scholes options pricing formula.5 Even if the funds do not invest 

in options, they may display a similar payoffs structure, and options may be replicated by 

means of dynamic strategies between cash and stocks. If funds trade more frequently than the 

measurement of returns, they would be replicating the functioning of an option without the 

need to perceive a timing signal. This would create false evidence of timing. 

Furthermore, equity in a leveraged firm is just a call option on the firm’s assets with a 

striking price equal to the face value of debt. In addition, the debt may be equivalent to 

holding a risk-free zero coupon bond and to the sale of a put option on the value of the 

company with a striking price equal to the face value of the debt. Whenever funds buy debt 

and equity of leveraged companies, then their payoffs will be affected by these implicit 

                                                 
5 According to the Black-Scholes formula, the option value where ),()( 21 xXexSV rT Φ−Φ= −

( ) ( )[ ] ,/5.0ln 2
1 TTrXSx σσ++= ,T12 xx σ−= ( )1xΦ is the cumulative normal distribution 

function; S is the underlying stock price; X is the strike price; r is the instantaneous rate of interest; T is the 

expiration period; and σ is the return volatility per period (month, here). We follow Merton’s (1981) 

assumptions: S = 1, X = Rf, and e-rT-= 1/RF. Under these assumptions, it is straightforward to show that 

[ ] .15.02 −Φ= TV σ  From our data, we use the volatility implied in the at-the-money Spanish options on 

the Spanish equity market as σ, set T = 12 for a year, and obtain V = 0.07. 
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options. The alpha and gamma coefficients in timing models for funds of this type will be 

negatively correlated and the models will display spurious evidence of timing. 

  The returns on a passive portfolio investing in assets of this kind may also have a 

convex or concave relation with market returns even though the fund does not follow any 

timing strategy. This phenomenon is referred to in the financial literature as the passive 

timing effect. 

Jagannathan and Korajczyk (1986) argue that a fund manager holding options or assets 

with similar payoff structures to these could be misinterpreted as a market timer due to the 

options nonlinear payoff. Likewise, Brown, Gallagher, Steenbeek, and Swann (2005) argue 

that portfolio payoffs may exhibit concavity to the benchmark when the manager engages in 

“information-less investing.” In keeping with the proposal made by Jagannathan and 

Korajczyk (1986), we include various nonlinear functions of the market index, as “exclusion 

restrictions” in the timing regressions in order to test for model misspecification. Thus, 

significant coefficients on such nonlinear terms would indicate misspecification of the timing 

models. These nonlinear functions of the market index are ln(|rm,t+1|) y 1/rm,t+1: 

( )
1,

1,11,1,1,
1ln

+
+++++ +Ω+++=

tm
tmttmtmtp r

rSrrr λγβα   (15) 

 

E. Thin Trading Effect 

Chen, Ferson, and Peters (2005) show that systematic thin trading may also generate 

spurious evidence of timing ability. This is because thin or non-synchronous trading may bias 

the estimates of the portfolio beta. These scholars show that when the thinness of trading is 

systematically related to market conditions, it results in systematic stale pricing, which would 

create spurious concavity or convexity and, therefore, spurious evidence of market timing 

ability. Infrequent trading usually occurs in relation to certain illiquid assets, and many funds 

hold them, as noted by Asness, Krail, and Liew (2001) and Getmansky, Lo, and Makarov 

(2004). 

In order to mitigate the problem of infrequent trading of some assets (also known as 

the stale pricing problem), Chen et al. (2005) consider the true return on an asset as the 

difference between the natural log of the fund’s “true” net asset value per share, with the last 

period’s dividends reinvested at period t and the same natural log for the preceding period. 

Thus,  . This true return would be the observed return if no prices were stale.  1−−= ttt ppr

The measured price  is given by *
tp tttt pp )1(1 δδ −+−  , where [ 1,0 ]εδ t

*

 measures the 

extent of stale pricing in period t. Hence, the measured return on fund  will be given by: tr
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ttttt rrr )1(11
* δδ −+= −− .    (16) 

The authors model systematic stale pricing based on a regression of the extent of stale 

pricing at time t on the market factor: 

( ) tmtmt r εμδδδ +−+= ,10 ,    (17) 

where μm is the mean return on the market, and εt is the error term, which is assumed to be 

independent of the remaining factors in the model.  

Chen et al. (2005) look at the moments of the true return, e.g., Cov(rt,rm,t
2), that 

measures timing ability. Based on straightforward calculations, they relate the moments of the 

observable variables to the moments of unobservable variables. Let us focus on the moment 

measuring timing ability: 

( ) ( ) ( )22
1,

*2
,

* ,,, mtmttmt rrCovrrCovrrCov =+ − .    (18) 

Expression (17) provides a straightforward way to control for a biased market timing 

coefficient due to stale prices. The sum of the covariances of the measured return with the 

squared market factor and the lagged squared factor equals the true covariance or timing 

coefficient. Thus, Chen et al. (2005) conclude that this potential bias can be mitigated by 

including lagged terms of the benchmark as additional factors in the timing models. 

Following Chen and Liang (2007), we include two lagged market returns and their square 

terms to alleviate the thin trading effect in the Treynor and Mazuy model:6 

1,
2

1,
''2

,
'2

1,1,
''

,
'

1,1, +−+−++ +++++++= tptmptmptmptmptmptmpptp rrrrrrr εγγγβββα . (19) 

 

F. Changes in Market Conditions 

Investment fund managers may receive different timing signals ahead of different 

market conditions. For example, a fund may be expected to time the market level better in a 

bear market than in a bull market. It is difficult to outperform a soaring market, while a bear 

market may leave a room for the manager to improve. Furthermore, a manager following 

volatility timing strategy needs to avoid the market in volatile periods. In this light, we 

estimate return timing separately for bull and bear markets, and we estimate volatility timing 

separately for volatile and stable markets. Finally, joint market timing is measured separately 

for high and low Sharpe ratio market conditions. These separations are motivated by the fact 

that different timing abilities focus on different market moments. 

 

III. DATA 

                                                 
6 We add more lagged terms to check robustness, and the inference is unchanged. 
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In this section, we describe the data used in our analyses and provide background on 

the Spanish mutual funds. 

A. Mutual Fund Data 

Our database comprises a total of 180 Spanish mutual funds investing in domestic 

equities.  We select all Spanish funds in the domestic equities categories that have data for at 

least three years during the interval considered in the study (June 1994 to December 2006). 

The reason for this three-year requirement is the need to consider a minimum period to 

guarantee the statistical validity of our results. The aim is to ensure that our sample is free of 

“survivorship bias.” However, as Carhart, Carpenter, Lynch, and Musto (2002) observe, 

studies of this kind may be affected not only by survivorship but also by “look-ahead” bias, 

which arises when a certain breadth of data is required for each fund to apply the proposed 

methodology as is the case here.  

The analysis uses monthly return data, so there are up to 151 observations. The 

benchmark equity index selected for the study is the MSCI-Spain. All of the data are obtained 

from the Spanish National Securities Market Commission (CNMV), the Spanish equivalent to 

the SEC in the United States. We use the monthly return obtained by one-month repos on 

Treasury Bills as a proxy for the risk-free rate.  Table 1 shows the summary statistics for our 

data base. 

INSERT TABLE 1 

Table 2 presents the attrition and mortality rates for the sample.  The attrition rates 

represent the quotient between the number of funds disappearing in one year and the number 

of funds existing at the end of that year. The mortality rates for each year are calculated as one 

minus the quotient between the number of surviving funds in December 2006 that also existed 

at the end of the year analyzed and the number of funds existing at the end of that year.7 

 

INSERT TABLE 2 

 

There are various reasons for analyzing the Spanish investment fund market. As 

mentioned in the introduction, one of these is the issue of “data snooping,” which involves 

avoiding over-analyzing datasets.  Instead, we broader the area of research by examining the 

previously unexplored Spanish markets. Another reason for analyzing the Spanish investment 

                                                 
7 In general, attrition rates are low, especially in the early years. The highest attrition rate (6.41%) was obtained 

in 2002. The mortality rates follow a downward trend. 
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fund market is the growing significance of these products in Spain in recent years, as 

described in the next section. 

 

B. The Mutual Fund Industry in Spain 

 Investment funds have been a major phenomenon in the Spanish financial market. 

Growth in the assets managed by Spanish funds has been among the fastest in Europe in 

recent years (the majority of other European markets are also young, except for the United 

Kingdom, Germany and France) with annual growth running at a rate of over 24%. The 2,853 

currently existing Spanish funds manage assets worth €270,436 million, representing around 

6.2% of all mutual funds in Europe.8 

Mutual funds are the fourth most important instrument in Spanish private portfolios. 

More than 8.6 million individuals currently hold investments in Spanish funds, revealing the 

major impact such institutions have had on Spanish society in recent years with a net increase 

of 8.1 million investors since 1990. 

The average number of assets managed by each Spanish fund, meanwhile, is one of 

the lowest in the European Union, resulting in a market in which a small number of major 

funds coexist with a plethora of small funds. This feature is indicative of the powerful 

influence of the leading financial groups on the market. There are in fact 114 financial groups 

in Spain, but the top 10 handle around 73% of the country’s mutual funds.  

Management companies are, of course, interested in earning management fees, and 

this has been the main driver behind growth in the number of Spanish investment funds. 

Meanwhile, the legal framework regulating the country’s funds establishes ceilings on the 

management fees that can be charged to investors. Moreover, the favorable tax treatment of 

investment funds in Spain, which includes exemption for transfers between funds thereby 

eliminating the tax cost of such operations, is another key reason for the growth of the 

industry. This tax system has made investment funds into a very attractive opportunity in 

comparison to other forms of investment in recent years.  

In the early 1990s, the Spanish funds invested mainly in domestic equities and public 

debt. Investment patterns have changed significantly in recent years, however, with faster 

growth in investment in European and US equities. Nevertheless, Spanish assets still represent 

the lion’s share of portfolios.  Table 3 reflects the rapid growth of the Spanish investment 

fund market in recent years, providing comparative data for the market between 1995 and 

2006. We observe here that Total Net Assets (TNA) and the number of investment funds have 

                                                 
8 Data as of November 2007. 

 16



quadrupled over the period, and that TNA/GDP (Gross Domestic Product) has almost 

doubled. Finally, both the number of unit holders and TNA per capita have tripled. 

 

INSERT TABLE 3 

 

IV. EMPIRICAL RESULTS AT THE AGGREGATE LEVEL 

The aim of this section is to evaluate the performance of the various methods for the 

correction of the bias inherent in traditional timing models as proposed in the literature. We 

start by reporting the results obtained by the traditional Treynor and Mazuy (1966) and 

Merton and Henriksson (1981) return timing models. Our purpose is to demonstrate the 

negative correlation between stock-picking and market timing abilities delivered by 

traditional timing models, and then we examine whether this negative correlation disappears 

when applying the different corrections proposed by literature and also when applying our 

proposed model which includes the cost of the option in the Merton and Henriksson model. 

The results are provided at the aggregate level, i.e., for the whole the sample considered using 

pooled regressions.  

 

A. Results Estimated by the Traditional Models 

Table 4 presents the results estimated by the traditional Treynor and Mazuy return 

timing model (Panel A) and the Merton and Henriksson model (Panel B), as in equation (1). 

The table provides the alpha and gamma parameters, which measure the stock-picking ability 

of Spanish fund managers and market return timing, respectively. It also shows the beta for 

the model, as well as the adjusted R-squared. 

All of the parameters are statistically significant at the 5% level. Overall, the Spanish 

domestic equity funds do exhibit the ability to time the equity market regardless of model 

specification. The timing coefficients across the two regressions are all positive and 

statistically significant at the 5% level. 

Return timing of the funds is of economic significance as well. Consider the evidence 

from the single-factor Treynor and Mazuy model. The Spanish funds have a pooled beta of 

0.723, and the pooled timing coefficient (γTM) is 0.244. This means that, if the timing signal 

forecasts a market excess return of 5% in the next month, the fund will increase market beta 

by about 0.0122 (= 0.244 × 0.05). Conversely, an expectation of negative market excess 

return would decrease the fund’s market exposure, all else being equal. Results from the other 

model specification provide a similar impression about the economic significance of return 
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timing. Clearly, the Spanish funds adjust market exposure to their timing signals in a non-

trivial way.  

We can also observe the economic value of timing ability from the evidence of the 

Merton and Henriksson model. Note that the timing term in this model, rm*S = max (Rm-Rf, 

0), is equivalent to the payoff from an option. Merton (1981) shows that the value of timing 

ability can be calculated using the Black-Scholes formula if relevant assumptions are 

satisfied. Specifically, we follow Merton’s assumptions on the values of the underlying stock 

price and strike price and find the market timing funds deliver 0.34 cents per annum from 

timing ability for each euro invested.9 

Finally, we want to stress, for both models, the inverse relationship between stock-

picking and timing ability, a feature already widely confirmed by the financial literature. 

Specifically, we may observe a negative stock-picking ability, although very close to zero (α, 

approximately -0.20%) and successful market timing, especially when applying the Treynor 

and Mazuy model, where the timing parameter (γTM) is as high as 24%. 

In the following sub-sections of this empirical results section, we evaluate whether this 

negative correlation disappears when corrections proposed by literature are applied. 

 

INSERT TABLE 4 

 

B. Results Estimated by Market Return and Volatility Timing Models 

Table 5 provides the results estimated by the Busse joint volatility and return timing 

model (Panel A) from equation (4) and the results estimated by the joint timing model 

proposed in this paper (Panel B) from equation (6). The alpha coefficient indicates stock-

picking ability; the gamma coefficient measures market return timing ability; and the lambda 

(delta) coefficient denotes market volatility timing ability in the Busse model (in the proposed 

measure). 

All of the parameters are statistically significant at the 5% level. The alpha coefficient 

for both models is close to zero and is quite similar than that estimated by the traditional 

models. Both models also display a positive returns timing parameter (γ), which is particularly 

high (50%) in the case of the Busse model. Furthermore, the two models also reveal 

successful market volatility timing ability.10  This is very much the case for the Busse model, 

where the lambda parameter is -2.21.  This means that if a fund manager receives a signal 
                                                 
9 For V = 0.07 (see footnote 5), and for a timing coefficient 0.048 from the single-factor Merton and Herniksson 
regression, the added value from timing skills is 0.0034 (= 0.07 * 0.048). Of course, this value is at best an 
approximation, depending on the Black-Scholes conditions. 
10 The similarity between the results estimated by the Busse model and the measure proposed here confirms the 
correct specification of our proposal. 
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where the demeaned market volatility will be 0.07 in the next month but the market level is 

unchanged, accordingly the manager will lower the fund beta by 15.47% (= 0.07 * 2.21). We 

can also observe the economic value of volatility timing ability from the evidence of our 

proposed model. In this case, delta parameter is 0.048, which means that if a fund manager 

receives the same signal as the another manager, she will not change his market exposure; 

however if she receives another signal where the demeaned market volatility will be -0.07 in 

the next month, other things being equal, accordingly the manager will increase the fund beta 

by 0.34% (=0.048 * 0.07). We may therefore conclude that, regardless of the specification 

considered, managers are able to be ahead of the market in terms of return and also in terms of 

volatility. 

 Our proposed measure assumes a riskier view of the manager than the Busse’s 

measure in the sense that in our proposal the manager reacts to low volatility scenarios 

increasing his/her market exposure but maintains his/her position when the market volatility 

increases instead of reducing it as in Busse’s model. This is because we consider that the 

manager seeks to profit from the higher volatility by getting a higher return. We can reach the 

same conclusion analyzing the results above. In the presence of the same volatility signal, the 

reaction is riskier in the case of the second manager: if the signal is positive the first manager 

reduces his/her exposure by 15.47%, and the second one doesn’t change it; if the signal is 

negative the first manger increases his exposure by 15.47% and the second one by only 

0.34%, given that he expects not to get big benefits in a low market volatility scenario. 

Finally, note that the negative correlation between stock-picking and return timing 

abilities has not disappeared when considering joint timing models.  

 

INSERT TABLE 5 

 

C. Results Estimated by Models with Public Information Variables 

Data for three predetermined information variables representing the economic cycle 

are used to apply the conditional models represented by expression (8). Dividend yield is 

calculated from the dividends paid by the MSCI-Spain index in the prior twelve months 

divided by the current price of the index; term spread is calculated as the annualized yield 

spread between ten-year government bonds and the three-month interest rate on Treasury 

Bills; and short term interest rate is represented by the three-month interest rate on Treasury 

Bills. These three variables are chosen because their relevance for stock returns predictability 

has been proved (see Ferson and Schadt,  1996; Christopherson, Ferson, and Glassman ,1998; 

Cortez and Silva, 2002; and Roy and Deb, 2004). 
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Table 6 presents the results estimated by the conditional Treynor and Mazuy model 

(Panel A) and those estimated by the conditional Merton and Henriksson model (Panel B). 

The alpha coefficient measures managers’ stock-picking ability. Thus, a significant, positive 

alpha would indicate that the manager has made appropriate use of private information when 

picking the stocks to be included in the portfolio. The gamma parameter denotes conditional 

market timing ability. A significant, positive value for this coefficient would indicate 

appropriate use of private information by fund managers when timing the market in terms of 

return.  

INSERT TABLE 6 

 

The table also shows the beta coefficient and the three coefficient estimates for the 

conditional beta function – βDY, βTS, βSR (associated with the dividend yield variable, the term 

spread variable and the short term interest rate variable, respectively).  In addition, the 

coefficient estimates for the conditional gamma function are provided – γDY, γTS, γSR 

(associated with the dividend yield variable, the term spread variable and the short term 

interest rate variable, respectively). Finally, the adjusted R-squared is given. 

Both models display an alpha parameter very close to zero but higher than those 

estimated by the traditional timing models. This result is typical for mutual funds (e.g., see 

Ferson and Schadt, 1996), where public information can help explain the “negative” timing 

ability found in an unconditional model. Ferson and Warther (1996) find that a mutual fund 

typically experiences money inflows during a period of high expected market return based on 

public information. Such fund inflows reduce the fund’s market exposure because the fund 

has to hold more cash before eventually allocating the new money to the market. 

Consequently, there arises a negative relationship between the expected market return and the 

fund’s market exposure, which is consistent with negative timing ability estimated for mutual 

funds by an unconditional model and with better timing ability delivered by conditional 

models. 

Gamma is positive, although it is only statistically significant when applying the 

Merton and Henriksson model. We, therefore, cannot draw conclusions about timing ability 

based on conditional Treynor and Muzy model. However, based on the conditional Merton 

and Henriksson model, we observe that gamma parameter is higher in this model (0.0754) 

than in the traditional version of the model (0.0489). We can therefore confirm that fund 

managers do indeed make use of superior information to anticipate movements in the market 

given that the conditional model removes from gamma the timing ability reached as a 

consequence of the manager’s use of public information and transfers it to the dynamic 
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gamma parameters. Consequently, gamma parameter represents only the timing ability 

reached by the manager’s use of superior information. 

Next focusing on the dynamic betas, we observe that there are two significant 

parameters for each model: those connected with the dividend yield (βDY) and the term spread 

(βTS) for the Treynor and Mazuy model; and those related to the dividend yield (βDY) and the 

short term interest rate (βSR) for the Merton and Henriksson model. We can therefore conclude 

that these variables, particularly the dividend yield, have an influence on selectivity. The 

results show a significant negative relation between these variables and the conditional beta, 

which explains why conditional alphas are higher than the unconditional ones.  

In the Treynor and Mazuy model, none of the dynamic gammas are statistically 

significant at the 5% level. This result is not surprising, given that the average gamma (γTM) 

coefficient estimated by this model is not statistically significant at the 5% level. In the 

Merton and Henriksson model, however, the only dynamic gamma non-statistically 

significant at the 5% level is that associated with the term spread variable (γTS).  This  

indicates that, as for the selectivity, the dividend yield and the short term interest rate are the 

two variables that influence the ability of managers to anticipate market movements. 

Moreover, we find a negative relationship between these two variables (γDY and γSR) and the 

conditional gamma (γMH), which explains why the conditional gamma is higher than the 

unconditional one. 

Moreover, we want to stress that in both models the adjusted R-squared (0.84) is 

higher than in traditional models (0.74), indicating that changing information about the stance 

of the business cycle is relevant for managers’ abilities. However, note that conditional 

models do not manage to remove the negative correlation between the two abilities. 

 

 

D. Results Estimated by Models Correcting the Interim Trading Bias 

 

Panel A of Table 7 shows the results estimated by the model proposed by Goetzmann 

et al. (2000) to correct the interim trading bias. Panels B  and C display the results estimated 

by the Treynor and Mazuy model and the Merton and Henriksson model, respectively, after 

the inclusion of an additional regressor (Ω, the monthly average of the logarithm of the 

market price level) proposed by Ferson et al. (2006) and Chen and Liang (2007) to correct for 

the interim trading bias. 

In Panel A, we observe that the alpha (-0.004519, representing stock-picking ability) 

and gamma (0.47438, which captures daily timing) parameters are both statistically 
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significant at the 5% level. In this case, alpha remains close to zero. However gamma is 

positive and higher than in traditional models, which indicates that surely the manager is 

engaged in daily timing activities, and thus this is not captured in our monthly data analysis.  

 

INSERT TABLE 7 

 

Panels B and C display significant timing parameters and a non-significant coefficient 

(Ω) for the variable controlling for interim trading. The findings of timing ability are therefore 

unlikely due to model misspecification. Most notable from these results is that stock-picking 

ability continues to be negative and significant, although it is close to zero. Furthermore, the 

negative correlation between selectivity and timing persists. 

 

E. Results Estimated by Models Controlling for Options 

Panel A of Table 8 shows the results estimated by the Merton and Henriksson model, 

which is modified in order to include the cost of the option implied in timing activities. All of 

the parameters are significant at the 5% level. Notice that the correction made to the 

traditional Merton and Henriksson model makes possible the elimination of the negative 

correlation between alpha and gamma parameters. In fact the selectivity skill (α) becomes 

positive and high (10.14%), while market return timing ability (γ) is also positive and very 

high (0.122), which demonstrates the fund managers’ successful anticipation to market 

movements and his ability to choose the best stocks to include in his portfolio. We are, 

therefore, proving the need of including the cost of the option in traditional timing models in 

order to get well specified models with non-spurious coefficients. 

 

INSERT TABLE 8 

 

Panels B and C in Table 8 display the results estimated by the model proposed by 

Jagannathan and Korajczyk (1986), which includes two exclusion restrictions to control for 

the nonlinearity of options payoffs. Thus, the Ω parameter represents the coefficient on 

ln(|rm,t+1|), and λ represents the coefficient on 1/rm,t+1. In Panel B, these nonlinear terms are 

included in the Treynor and Mazuy model, and Panel C provides them for the the Merton and 

Henriksson model. 

The nonlinear terms are significant in both models, which indicate that the traditional 

timing models are incorrectly specified. These parameters are positive suggesting that timing 

ability is lower here than in the traditional models. This result is consistent with the literature 
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intuition, which points out that a fund manager simply holding options might be 

misinterpreted as a market timer because of the options’ nonlinear payoff. But it is not 

necessary to hold options; if the manager engages in “information-less investing,” the 

portfolio payoffs can exhibit also concavity to the benchmark. Furthermore, timing ability is 

non-significant in the Merton and Henriksson model with option factors as can be seen in the 

γMH of Panel C, which is not statistically significant.  

The parameter measuring stock-picking ability (α) is significant for both models, and 

it remains negative for the Treynor and Mazuy model with option factors (-0.006974), but it 

becomes positive for the Merton and Henriksson model with option factors (0.005984) 

Consequently, the negative correlation between selectivity and timing holds in the first model 

and disappears in the second one. However we want to stress the superiority of our proposal 

shown in Table 7 given that it not only removes this negative correlation but delivers 

significant coefficients, while in the Merton and Henriksson model including option factors 

from Jagannathan and Korajczyk the timing parameter is non-significant. 

 

F. Results Estimated by Models Controlling for the Thin-trading Effect 

Table 9 shows the results estimated from the model proposed by Chen and Liang 

(2007) to control for illiquid holdings, which consists of the inclusion of lagged terms of the 

market returns and their square terms as additional regressors, resulting in additional betas 

with one and two lags. The model also specifies additional gamma coefficients with one and 

two lags. 

INSERT TABLE 9 

 

Stock-picking ability is again close to zero (α, -0.002822), while successful market 

timing is observable once more (γ, 0.286742). These results are quite similar to those obtained 

with the traditional model. Furthermore, we observe that the estimate of contemporaneous 

timing ability is still significantly different from zero, although the second lagged market 

return and its square term pick up some explanatory power. This seems to suggest a certain 

level of thin trading with the timing funds, but the extent of thinness does not severely affect 

the inference about their timing skills. Finally, note that the negative relation between 

selectivity and timing has not disappeared.  

 

G. Results Estimated by Models Controlling for Changes in Market Conditions 
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Panel A of Table 10 displays the results estimated by the Treynor and Mazuy model 

for bull and bear market scenarios.11 We observe that return timing (γTM) is more apparent 

during bear markets than during bull markets. In bear markets, the timing coefficient is 1.44 

and significant, while it is -1.159 for bull markets. This result is as expected given that is 

easier for the manager to beat a bear market. Stock-picking ability (α) is close to zero for both 

scenarios, although it is slightly positive when the market gets gains (0.002391) and slightly 

negative (-0.003975) in the case of losses. The negative relation between selectivity and 

timing appears again in both scenarios.  

 

INSERT TABLE 10 

 

Panel B of Table 10 reports the results estimated by the Busse model measuring 

volatility timing both for a volatile scenario and for stable market conditions.12 We find that 

volatility timing is significant in volatile market states and negative (λ, -6.52135), indicating 

successful ability because the manager reduces his market exposure when it becomes more 

volatile. Stock-picking ability is negative but close to zero (α, -0.001329) in high volatile 

scenarios, and it is and positive, although close to zero (α, 0.000513), in less volatile 

conditions.13  We therefore can conclude that timing ability appears especially strong during 

bear markets or when the market is more volatile, suggesting that the Spanish fund provide 

investors with protection against unfavorable market states.  

Finally, Panel C of Table 10 reports the results estimated by the Busse volatility and 

return timing model for high and low performance scenarios, as indicated by the Sharpe ratio. 

We see that there is no evidence of difference in return and volatility timing between the high 

Sharpe ratio and the low Sharpe ratio states, as neither the gamma nor the lambda parameters 

are statistically significant at the 5% level. Selectivity is significant and close to zero in both 

                                                 
11 This analysis has not been performed for the Merton and Henriksson model, because given its specification, it 

makes no sense to apply it for a bear market scenario. 

12 This model is obtained on the basis of expression (3), but eliminating the third term on the right side, which 

represents the fund manager’s return timing ability. 

13 Results are similar when the measure (4) of volatility timing proposed in this paper is applied. These results 

are not given here for reasons of space, although they are available to interested readers upon request. 
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states.14 In a high Sharpe ratio framework, the negative correlation between both abilities 

disappears, but this result lacks interest because the timing parameter is non-significant.  

All the findings are summarized in the figure 1, which highlights the superiority of our 

proposal based on the inclusion of the option cost in the Merton and Henriksson model. 

INSERT FIGURE 1 

 

V. CONCLUSIONS 

This paper takes the traditional timing models of Treynor and Mazuy (1966) and 

Merton and Henriksson (1981) as its starting point, focusing on the frequent results evidenced 

by the financial literature suggesting that the traditional models are affected by a series of 

biases that generate spurious coefficients. These results indicate the existence of a negative 

correlation between timing and stock-picking, which is counterintuitive because it is difficult 

to imagine a fund manager who is skilled at picking the right stock but is not able to anticipate 

correct stock market movement and vice versa . 

 Taking this idea as starting point, the aim of this paper is to bring together all the 

proposals of correction of traditional timing models addressed by literature and to propose 

alternative corrections in order to overcome this negative correlation between both abilities. 

To do this, we conduct an empirical analysis using a Spanish sample of equity funds in order 

to analyze whether these proposals manage to overcome this situation. Each one of the 

proposals of correction focuses on a different weak spot of traditional timing models that has 

been identified by the literature. 

In this sense, the first bias analyzed in this paper is related with the failure of the 

traditional models to consider the reaction of fund managers in the face of changes in market 

volatility.  We consider the Busse volatility timing model as a proposal of correction of this 

bias, and we also propose an alternative model, which takes a riskier view of the manager. 

The second bias consists of the failure of the traditional models to not take account of 

shifts in investors’ expectations due to changes in the available information concerning the 

economic cycle. The third bias analyzed in this paper refers to the dynamic trading or interim 

trading effect, i.e., the underestimation of return timing measures when funds follow timing 

strategies and trade between the observation dates. 

The next bias examined in the paper is related with the option implied in timing 

activities. Both the Treynor and Mazuy and the Merton and Henriksson models are option 

                                                 
14 The results estimated by measure (5) of volatility and return timing, proposed in this paper, are very similar. 

These results are not given here for reasons of space, they are available to interested readers on request. 
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motivated in that both rest on the notion of nonlinear payoff structures, and timing ability as 

considered by these models may be understood as a free option. This implies that a positive 

(negative) timing coefficient in the Merton and Henriksson model is equivalent to the 

purchase (sale) of a market put option without paying (receiving) the price. Hence, the 

decrease (increase) in the return from the cash paid (obtained) for the purchase (from the sale) 

of the option will show up as a negative (positive) alpha coefficient. Thus, a negative 

correlation will be observed between timing and stock-picking measures where funds include 

options, or option-like instruments, in their portfolios. Then, we include the cost of the option 

in the timing models. 

We also seek to correct the passive timing effect, continuing with the concept of the 

option implied in timing activities. The returns on a passive portfolio investing in assets with 

an option-like payoff structure (for example, equity in a leveraged company) may have a 

convex or concave relation with market returns, even where the fund manager does not follow 

any timing strategies. 

The next bias considered in the study is the thin-trading effect, i.e., systematic thin 

trading may generate spurious evidence of timing ability. This results in systematic stale 

pricing of assets, creating a spurious concavity or convexity. 

Finally, we look at the bias caused in traditional timing models by changes in market 

conditions. We assume that investment fund managers may receive a variety of different 

timing signals ahead of the different market conditions. An inverse relationship between 

timing and stock-picking is observed for the traditional models, as noted in the introduction to 

this paper. As explained in the literature, this inverse relationship is indicative of the possible 

existence of bias in the traditional timing models. However, when the proposed bias 

corrections are applied, we find that the negative correlation between timing and stock-

picking ability does not disappear except for the Merton and Henriksson model including the 

cost of the option, which demonstrates this model is subject to the least bias in testing the 

timing ability of managers. 

In general, our results indicate that the stock picking ability of the Spanish fund 

managers is not evident, but that they display positive market return timing ability and 

successful volatility timing ability. We therefore can conclude that timing ability generates 

significant economic value to investors, and this finding is robust to alternative explanations, 

including public-information-based strategies, options trading, illiquid holdings. 
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TABLES 

Table 1: Summary Statistics* 

 

No. 

funds 

Average 

return 

(%) 

Return on 

MSCI-

Spain 

 (%) 

Maximum 

return 

(%) 

Minimum 

return 

(%) 

St. dev. 

June 1994/December 1994 81 -1.05 -1.87 9.60 -9.43 0.0332 

Jan. 1995/December 1995 86 0.97 1.32 9.16 -8.39 0.0301 

Jan. 1996/December 1996 98 2.08 3.32 10.63 -6.30 0.0291 

Jan. 1997/December 1997 134 2.53 3.31 15.71 -15.84 0.0536 

Jan. 1998/December 1998 155 2.39 3.23 28.76 -22.20 0.0875 

Jan. 1999/December 1999 160 0.66 1.74 21.04 -10.54 0.0425 

Jan. 2000/December 2000 160 -1.05 -0.86 27.37 -20.16 0.0510 

Jan. 2001/December 2001 160 -0.59 -0.51 19.82 -24.83 0.0569 

Jan. 2002/December 2002 156 -1.63 -2.46 24.77 -22.23 0.0696 

Jan. 2003/December 2003 161 1.60 2.20 12.53 -9.83 0.0366 

Jan. 2004/December 2004 155 1.03 1.31 9.08 -6.95 0.0234 

Jan. 2005/December 2005 147 1.30 1.37 9.62 -6.15 0.0269 

Jan. 2006/December 2006 146 1.83 2.23 8.54 -15.38 0.0253 

 
Note: *Table 1 shows the annual summary statistics of monthly returns for our sample (except for the first row where the database starts in June 1994). The first column shows the 

time period, and the second column provides the number of funds considered in each period. The third and fourth columns report the average return on the funds and the 

benchmark, respectively. Columns 5 and 6 show the maximum and minimum return on the funds analyzed. Finally, column seven contains the standard deviation of the returns on 

the funds. 
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Table 2: Attrition and Mortality Rates* 

 

Attrition rates 

(%) 

Mort. rates 

(%) 

June 1994/December 1994 0.00 22.22 

Jan. 1995/December 1995 0.00 22.09 

Jan. 1996/December 1996 0.00 20.41 

Jan. 1997/December 1997 0.00 21.64 

Jan. 1998/December 1998 0.00 20.00 

Jan. 1999/December 1999 0.00 20.00 

Jan. 2000/December 2000 0.00 20.00 

Jan. 2001/December 2001 2.50 18.13 

Jan. 2002/December 2002 6.41 12.82 

Jan. 2003/December 2003 2.48 9.32 

Jan. 2004/December 2004 3.87 5.81 

Jan. 2005/December 2005 4.76 0.68 

Jan. 2006/December 2006 0.68 0.00 

 

Note: *Table 2 presents the attrition and mortality rates for the sample. The attrition rates are calculated as the 

quotient between the number of funds disappearing in one year and the number of funds existing at the end of that 

year. The mortality rates for each year are computed as one minus the quotient of the number of surviving funds at 

December 2006 that also existed at the end of the year and the number of funds existing at the end of that year. 
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Table 3: Evolution of the Spanish Mutual Fund Market* 

 1995 2006 

TNA €73282 mill. €270436 mill. 

Unit holders 2943714 8637781 

Number of funds 751 2853 

TNA/GDP (%) 16.7 27.57 

Per capita TNA 1869 € 6081€ 
 

Note: *Table 3 shows the evolution between 1995 and 2006 of key figures in the Spanish mutual fund market. TNA is 

Total Net Assets, and GDP is Gross Domestic Product. 
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Table 4: Traditional Timing Models1, 2                                                                   

Panel A: Treynor & Mazuy model 

α β γTM
 Adjusted-R2 

-0.002106 

(0.0000)* 

0.723110 

(0.0000)*

0.243818 

(0.0000)* 0.736487 

Panel B: Merton & Henriksson model 

α β γMH
 Adjusted-R2 

-0.002276 

(0.0000)* 

0.744335 

(0.0000)*

0.048922 

(0.0003)* 0.735858 

 
Notes: 1 Table 4 shows the ability of the 180 Spanish domestic equity funds to time the market level from June 

1994 to December 2006. The results are from ordinary least squares (OLS) regressions of the traditional timing models 

from equation (1). We consider a single-market factor model.  Panel A shows the results estimated by the Treynor and 

Mazuy (1996) model, and Panel B shows the results estimated by the Merton and Henriksson (1981) model. Each panel 

reports estimated performance (α), systematic risk (β) and the estimation of the timing parameter (γΤΜ for the Treynor 

and Mazuy model and γMH for the Merton and Henriksson model). The adjusted R-squared is given in the last column. 

All of the parameters were obtained by means of a pooled regression. The p-value of the parameters is given in 

parenthesis.  Standard errors are consistent with heteroskedasticity and autocorrelation problems (Newey and West, 

1987). 
2  * denotes significant at the 5% level. 
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Table 5: Joint Timing Models1, 2 

Panel A: Busse’s joint timing model 

α β γ λ Adjusted-R2 

-0.001406 

(0.0000)* 

0.666075 

(0.0000)* 

0.501615 

(0.0000)* 

-2.20920 

(0.0000)* 
0.745469 

Panel B: Proposed joint timing measure 

α β γ δ Adjusted-R2 

-0.002211 

(0.0000)* 

0.765460 

(0.0000)* 

0.062978 

(0.0000)* 

0.047681 

(0.0000)* 
0.736464 

 
Notes: 1 Table 5 shows the ability of the Spanish domestic equity funds to time the market level and volatility 

jointly from June 1994 to December 2006. The results are from ordinary least squares (OLS) regressions of the 

join timing models (4) and (6). Panel A displays the results estimated by the Busse (1999) joint timing model and 

Panel B the results estimated by the proposed joint timing model. Each panel reports estimated performance (α), 

systematic risk (β), the estimated return timing parameter γ and the estimated volatility timing parameter (λ for 

the Busse model and δ for the proposed measure). We proxy market volatility by the realized volatility. The 

adjusted R-squared is given in the last column. All of the parameters were obtained by means of a pooled 

regression. The p-value of the parameters is given in parenthesis. Standard errors are consistent with 

heteroskedasticity and autocorrelation problems (Newey and West, 1987). 
2 * denotes Significant at the 5% level.  



Table 6: Conditional Timing Models1, 2 

 Panel A: Conditional Treynor-Mazuy model 

α βm γTM
 βDY

 βTS
 βSR γDY

 γTS γSR Adj-R2 

-0.001604 

(0.0000)* 

0.705786 

(0.0000)* 

0.026771 

(0.6684) 

-3.728225

(0.0000)*

-2.905875

(0.0001)*

-0.406124 

(0.0597) 

-34.94642

(0.1006) 

-13.20249

(0.0700) 

6.672194 

(0.1131) 
0.838607 

 

Panel B: Conditional Merton-Henriksson model 

α βm
 γMH

 βDY
 βTS βSR

 γDY
 γTS γSR

 Adj-R2 

-0.001355 

(0.0000)* 

0.730903 

(0.0000)* 

0.075426 

(0.0000)*

-3.578828

(0.0000)*

-1.680909

(0.1090) 

-0.597209 

(0.0274)* 

-3.143116

(0.0145)*

0.591464 

(0.6832) 

-1.533433

(0.0006)*
0.837548 

 

 

 
 

 

 

 

 

 

 

 
Notes: 1 Table 6 shows the results from ordinary least squares (OLS) regressions of the conditional versions of the Treynor and Mazuy model (Panel A) and the Merton and 

Henriksson model (Panel B), equation (8). The sample contains 180 Spanish domestic equity funds during the period of June 1994 to December 2006. Each panel reports the 

estimated conditional performance (α), the average conditional beta (βm), the conditional estimation of return timing term (γΤΜ for the Treynor and Mazuy model and γMH for the 

Merton and Henriksson model), the estimated coefficients for the conditional beta function. βDY, βTS and βSR represent the beta coefficient associated with the dividend yield, term 

spread and short term interest rate variables, respectively. The Table also shows the estimated coefficients for the conditional timing function.  γDY, γTS, γSR represent the gamma 

coefficient associated with the dividend yield, term spread and short term interest rate variables, respectively. The adjusted R-squared is given in the last column. All of the 

parameters were obtained using a pooled regression. The p-value of the parameters is given in parenthesis.  
2 * denotes Significant at the 5% level.  Standard errors are consistent with heteroskedasticity and autocorrelation problems (Newey and West, 1987). 
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Table 7: Timing Ability and Dynamic Trading Effect1, 2 

 

Panel A: Goetzmann et al model (2000) 

αp
 βm

 γ Adjusted-R2 

-0.004519 

(0.0000)* 

0.690217 

(0.000)* 

0.47438 

(0.0000)* 
0.757089 

 

Panel B: Treynor-Mazuy model including Ferson et al (2006) 

and Chen & Liang (2007) factor 

α β γTM Ω Adjusted-R2 

-0.013744 

(0.0001)* 

0.725543 

(0.0000)* 

0.084556 

(0.0002)* 

0.001444 

(0.0887) 
0.749796 

 

Panel C: Merton-Henriksson model including Ferson et al 

(2006) and Chen & Liang (2007) factor 

α β γMH Ω Adjusted-R2 

-0.014265 

(0.0000)* 

0.735084 

(0.0000)* 

0.020567 

(0.0001)* 

0.001485 

(0.1280) 
0.749751 

 

 
Notes: 1 Table 7 presents the results from ordinary least squares (OLS) regressions of the three models proposed to 

solve the problem of dynamic trading bias (interim trading bias). The sample includes 180 Spanish domestic equity 

funds during the period of June 1994 to December 2006. Panel A reports the results from the proposal made by 

Goetzmann et al. (2000), equation (10),, and Panel B reports the results from the Treynor and Mazuy model with the 

factor proposed by Ferson et al. (2006) and Chen and Liang (2007) to correct this bias. Likewise, Panel C reports the 

results from the Merton and Henriksson model with the factor proposed by Ferson et al. (2006) and Chen and Liang 

(2007) to correct the bias. This additional factor consists of the monthly average of the logarithm of the market price 

level. Each panel reflects estimated performance (α), the systematic risk (β), the estimated return timing parameter 

(γ for the Goetzmann et al. (2000) model; γTM for the modified Treynor and Mazuy model; and γMH for the modified 

Merton and Henriksson model), and the adjusted R-squared. Panels B and C also show the Ω coefficient associated 

with the factor proposed by Ferson et al. (2006) and Chen and Liang (2007) to correct the dynamic trading effect. All 

of the parameters were obtained using a pooled regression. The p-value of the parameters is given in parenthesis.  
2 *Significant at the 5% level.  Standard errors are consistent with heteroskedasticity and autocorrelation problems 

(Newey and West, 1987). 
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Table 8: Timing Ability and Options1, 2 

Panel A: Merton-Henriksson model including the cost of the option 

α β γ Adjusted-R2 

0.101445 

(0.0000)* 

0.775771 

(0.0000)* 

0.122271 

(0.0000)* 
0.737353 

 

Panel B: Treynor-Mazuy model including Jagannathan & Korajczyk (1986) factors 

α β γTM
 Ω λ Adjusted-R2 

-0.006974 

(0.0000)* 

0.727659 

(0.0000)* 

0.004020 

(0.0000)* 

0.001375 

(0.0000)* 

9.03E-06 

(0.0000)* 
0.737614 

 

Panel C: Merton-Henriksson model including Jagannathan & Korajczyk (1986) factors

α β γMH
 Ω λ Adjusted-R2 

0.005984 

(0.0050)* 

0.759002 

(0.0000)* 

0.073422 

(0.1105) 

0.000997 

(0.0245)* 

7.77E-06 

(0.0000)* 
0.736729 

 
Notes: 1 Table 8 shows the results from ordinary least squares (OLS) regressions of the three models proposed to control for the options included in the fund and for option-like payoff 

structure assets. The sample contains 180 Spanish domestic equity funds during the period of June 1994 to December 2006. Panel A reflects the results estimated by the modified 

version of the Merton and Henriksson model, which recognizes the cost of the option implied in timing activities (equation 14). Panels B and C respectively show the results 

estimated by the Treynor and Mazuy and Merton and Henriksson models, respectively, including the two factors proposed by Jagannathan and Koraczyk (1986) to correct the passive 

timing effect generated by fund assets with nonlinear payoff structures (equation 15). Each panel reflects estimated performance (α), systematic risk (β), the estimated return timing 

parameter (γ for the Merton and Henriksson model, including the cost of the option implied in timing activities, γΤΜ for the Treynor and Mazuy model, which includes the exclusion 

restrictions proposed by Jagannathan and Korajczyk (1986), and γMH for the Merton and Henriksson model, which includes the exclusion restrictions proposed by Jagannathan and 

Korajczyk (1986)), as well as the adjusted R-squared.  Panels B and C also include the Ω and λ coefficients associated with the nonlinear functions of the benchmark proposed by 

Jagannathan and Korajczyk (1986), which is to say ln(|rm,t+1|) and 1/rm,t+1, respectively. All of the parameters were obtained using a pooled regression. The p-value of the parameters is 

given in parenthesis.  
2 * denotes significant at the 5% level. Standard errors are consistent with heteroskedasticity and autocorrelation problems (Newey and West, 1987). 
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Table 9: Timing Ability and Thin-trading effect1, 2 

Treynor-Mazuy model including Chen & Liang (2007) factors 

α β γ β’ γ’ β’’ γ’’ Adjusted-R2 

-0.002822 

(0.0000)* 

0.719453 

(0.0000)* 

0.286742 

(0.0000)* 

-0.003348

(0.3952) 

-0.557805 

(0.3058) 

0.048762

(0.0000)* 

0.610592

(0.0000)* 
0.748641 

 

 
Notes: 1 Table 9 presents the results from ordinary least squares (OLS) regressions of the modified version of the Treynor and Mazuy model including the factors proposed by 

Chen and Liang (2007) to correct the thin trading effect (equation 19). These factors consist of two lagged market returns and their square terms. The sample includes 180 Spanish 

domestic equity funds during the period of June 1994 to December 2006. The table reflects the estimated performance (α), the systematic risk (β), the estimated return timing 

parameter (γ), and the adjusted R-squared.  It also shows the beta parameter with one and two lags (β’ and β’’) and the timing parameter with one and two lags (γ’ and γ’’). All of 

the parameters were obtained using a pooled regression. The p-value of the parameters is given in parenthesis.  
2 * denotes Significant at the 5% level. Standard errors are consistent with heteroskedasticity and autocorrelation problems (Newey and West, 1987). 

 

 



Table 10: Timing Ability in Different Market Conditions 1, 2 
Panel A: Treynor & Mazuy model  

Bull Market 

α β γTM
 Adjusted-R2 

0.002391 

(0.0000)* 

0.568487 

(0.0000)* 

-1.158598 

(0.3400) 
0.511268 

 

Bear Market 

α β γTM
 Adjusted-R2 

-0.003975 

(0.0000)* 

0.732913 

(0.0000)* 

1.437012 

(0.0020)* 
0.596829 

 

Panel B: Busse’s volatility timing model  

Volatile Market 

α β λ Adjusted-R2 

-0.001329 

(0.0003)* 

0.594484 

(0.0000)* 

-6.52135 

(0.0000)* 
0.755964 

 

Stable Market 

α β λ Adjusted-R2 

0.000513 

(0.0077)* 

0.669631 

(0.0000)* 

3.304975 

(0.1959) 
0.681249 

 

Panel C:  Busse’s joint timing model 

High Sharpe Ratio Market 

α β γ λ Adjusted-R2 

0.001047 

(0.0236)* 

0.716392 

(0.0000)* 

1.381635 

(0.0511) 

3.98206 

(0.0800) 
0.527146 

 

Low Sharpe Ratio Market 

α β γ λ Adjusted-R2 

-0.007255 

(0.0000)* 

0.600860 

(0.0000)* 

1.018421 

(0.0550) 

3.04780 

(0.4721) 
0.628688 

 

 
Notes: 1 Table 10 presents the results from ordinary least squares (OLS) regressions of the Treynor and Mazuy model 

(equation 1) for both bull and bear market scenarios (Panel A), the Busse (1999) volatility timing model for volatile 

and stable market scenarios (Panel B), and the Busse (1999) joint timing model (equation 4) for high and low 

performance scenarios (Panel C). The sample includes 180 Spanish domestic equity funds during the period of June 

1994 to December 2006. Each panel reports estimated performance (α), the systematic risk (β), and the adjusted R-

squared. Panels A and C show the estimated return timing parameter (γΤΜ for the Treynor and Mazuy model and γ 

for the Busse joint timing model). Panels B and C show the estimated volatility timing parameter (λ). All of the 

parameters were obtained using a pooled regression. The p-value of the parameters is given in parenthesis.  
2 * denotes Significant at the 5% level. Standard errors are consistent with heteroskedasticity and autocorrelation 

problems (Newey and West, 1987).

 40



 

FIGURES 

 

Figure 1: Summary Findings from the Different Models* 

MODEL TABLE DESCRIPTION SELECTIVITY RETURN TIMING VOLATILITY TIMING RELATION 
(ALPHA) (GAMMA) (LAMBDA, DELTA) ALPHA-GAMMA

Treynor-Mazuy 4 return timing model (traditional) negative positive negative
Merton-Henriksson 4 return timing model (traditional) negative positive negative
Busse joint timing 5 return + volatility timing model negative positive negative -successful negative
Proposed joint timing 5 return + volatility timing model negative positive positive-successful negative
Conditional Treynor-Mazuy 6 includes public information negative non-significant
Conditional Merton-Henriksson 6 includes public information negative positive negative
Goetzmann et al 7 controls for dynamic trading effect negative positive negative
TM with Ferson et al and Chen & Liang factors 7 controls for dynamic trading effect negative non-significant
MH with Ferson et al and Chen & Liang factors 7 controls for dynamic trading effect negative non-significant
MH with option cost 8 controls for the option cost positive positive positive

negativeTM with Jagannathan & Korajczyk factors 8 controls for options negative positive
MH with Jagannathan & Korajczyk factors 8 controls for options positive non-significant
TM with Chen & Liang factors 9 controls for thin-trading effect negative positive negative
TM bull market 10 controls for market conditions positive non-significant
TM bear market 10 controls for market conditions negative positive negative
Busse volatile market 10 controls for market conditions negative negative -successful
Busse stable market 10 controls for market conditions positive non-significant
Busse High Sharpe Ratio market 10 controls for market conditions positive non-significant non-significant
Busse Low Sharpe Ratio market 10 controls for market conditions negative non-significant non-significant  
Note: * Figure 1 reports a comparison between the findings from the different models considered in the paper. The two first rows refer to the traditional timing models, and the rest of 

the rows refer to different proposals made by literature in order to improve the traditional models. Rows 4 and 10 refer to models proposed here. Column 1 identifies the model; 

column 2 contains the number of table where the findings of the model are reported.  In the third column it is shown a description of the model. Columns 4 and 5 indicate whether the 

manager has a positive (successful), negative (perverse) or non-significant selectivity and return timing ability, respectively. Column 6 shows whether the manager has a successful, 

perverse or non-significant volatility timing ability. Finally column 7 shows the sign of the relationship between selectivity and return timing abilities. From this table, we can 

conclude that the only model that manages to remove the negative relation between both abilities existing in traditional model is our proposal including the cost of the option in MH 

model.  
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